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2D point vortex dynamics in bounded domains: global

existence for almost every initial data

Martin Donati

Abstract

In this paper, we prove that in bounded planar domains with C2,α boundary, for
almost every initial condition in the sense of the Lebesgue measure, the point vortex
system has a global solution, meaning that there is no collision between two point-
vortices or with the boundary. This extends the work previously done in [13] for the unit
disk. The proof requires the construction of a regularized dynamics that approximates
the real dynamics and some strong inequalities for the Green’s function of the domain.
In this paper, we make extensive use of the estimates given in [7]. We establish our
relevant inequalities first in simply connected domains using conformal maps, then in
multiply connected domains.

1 Introduction

Let us begin by recalling the Euler equations for two dimensional incompressible and inviscid
fluids. Let Ω be an open, bounded and connected subset of R2. We denote by

u :

{
Ω× R+ → R2

(x, t) 7→ u(x, t),

the velocity of a perfect incompressible fluid filling Ω. Then u must verify the incompressible
Euler equations:





∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t), ∀(x, t) ∈ Ω× R∗
+

u(x, 0) = u0(x), ∀x ∈ Ω

∇ · u(x, t) = 0, ∀(x, t) ∈ Ω× R+

u(x, t) · nΩ(x) = 0, ∀(x, t) ∈ ∂Ω× R+,

where p is the pressure within the fluid, nΩ is the exterior normal unit vector to ∂Ω and u0
is the initial velocity at the time t = 0. Introducing the vorticity ω = curl u = ∂1u2 − ∂2u1,
the first equation of Euler’s system gives the following equation for the vorticity:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = 0. (1)
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We can also express the velocity in terms of the vorticity thanks to the Biot-Savart law.
When Ω is simply connected, the Biot-Savart law reads

u(x, t) =

∫

Ω

∇⊥
xGΩ(x, y)ω(y, t)dy, (2)

where GΩ is the Green’s function of the domain Ω. It is important to recall that the Green’s
function of any open and connected subset of R2 - we call them domains in this paper - can
be decomposed as

GΩ = GR2 + γΩ, (3)

where γΩ is a smooth function in Ω× Ω. Indeed, γΩ(x, y) is harmonic in both variables.
We define the point vortex system as in [14]. We assume that at the initial time, the

vorticity is a sum of Dirac masses ω0 =
∑N

i=1 aiδxi
where N is an integer greater than 1,

which we fix for the rest of this paper, and the masses ai are real numbers, also fixed. Since
the vorticity equation (1) is a transport equation in ω, we expect the vorticity to remain a
sum of Dirac masses with the same intensity as at the initial time. So we choose to write
ω(t) =

∑N
i=1 aiδxi(t). We then define the point vortex system in a simply connected domain

as the solution of the system of equations:

∀1 ≤ i ≤ N,
dxi(t)

dt
=

N∑

j=1
j 6=i

∇⊥
xGΩ(xi(t), xj(t))aj +∇⊥

x γΩ(xi(t), xi(t))ai. (4)

This is obtained by introducing the expression of the vorticity and the decomposition (3)
into the Biot-Savart law (2) and by removing the singular term that appears in the limit of

∇xGR2(x, xi(t)) =
(x−xi(t))

⊥

2π|x−xi(t)|2
when x goes to xi(t). This term represents high speed rotation

around xi(t), so it shouldn’t affect the motion of xi(t) itself.
All those choices have been mathematically justified in [15], where it has been proved

that highly concentrated smooth solution of the Euler equations converges in the sense of
measures to the solution of the point vortex system, as the initial data converges towards
the initial sum of Dirac masses. It has also been proved in [6] that the point vortex system
is a good approximation of the Euler equation from the point of view of numerics, taking as
initial data a grid of vortices approaching a smooth initial vorticity.

The question that naturally arises now is whether the system of equations defined in (4)
has a global solution for every initial condition (xi(0))i. The answer to that question unfor-
tunately is negative in general, since in R

2 one can build an initial datum such that point
vortices collapse in finite time. See [14], [11], or [10] for explicit examples. By construction,
the point vortex dynamics isn’t defined anymore as soon as a collapse occurs, since equation
(4) becomes singular when two points collide. But what we can expect is that these occur-
rences of collapse are exceptional, meaning that the initial configurations leading to collapse
are negligible in the sense of the Lebesgue measure. This result has been proved in [13] in
the unit disk D(0, 1). In the case of R2, it has been proved with the additional assumption
that every possible sum of the masses never vanishes, meaning that

∑
i∈P ai 6= 0 for every

P ⊂ {1, . . . , n}. Proofs of these results can be found in [13] and [14]. Very recently, [5]
proved that the assumption that

∑N
i=1 ai 6= 0 in R2 can be removed.

Let us give a precise statement of the result of [13] in the case of the disk.
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Theorem 1.1. If Ω = D(0, 1) the open unit disk, then the point vortex dynamics (4) for any

fixed number of points N ≥ 1 and masses (ai)i ∈ R
N is globally well defined except maybe for

a set of initial conditions in ΩN which has vanishing Lebesgue measure.

The purpose of this article is to prove a generalization of this theorem to more general
bounded domains. Let Ω be an open bounded and connected subset of R2 with a C2,α

boundary for some α > 0. In the case where Ω is multiply connected, the point vortex
dynamics is changed since the Biot Savart law is different. We refer to [4, Chapter 15] for the
point-vortex system in multiply-connected domains. We will give all the details in section 3
but the result is that for a domain Ω that has m holes, the point vortex dynamics is given
by

dxi(t)

dt
=

N∑

j=1
j 6=i

∇⊥
xGΩ(xi(t), xj(t))aj +∇⊥

x γΩ(xi(t), xi(t))ai +
m∑

j=1

cj(t)∇⊥wj(xi) (5)

for all 1 ≤ i ≤ N . Above

cj(t) = ξj +

N∑

k=1

akwj(xk(t)),

ξj is the circulation of the velocity u on the boundary of the j-th hole of Ω, and wj are
the harmonic measures of the domain Ω. Let us observe that by the Kelvin theorem, the
circulations ξj are constant in time. They are therefore prescribed at the initial time.

Let λ be the Lebesgue measure on R2N . We define on the set Ω
N

:

d(X) = min

(
min
i 6=j

|xi − xj |,min
i

d(xi, ∂Ω)

)
∀X = (x1, . . . , xN).

We define Γ = {X = (x1, . . . , xN ), d(X) > 0}. This is the set of all configurations for
which relation (5) makes sense. We note by StX the evolved configuration by the dynamics
(5) from the starting configuration X ∈ Γ, after a time t. We know there exists a time
τ(X) = sup{t ≥ 0, StX ∈ Γ} > 0 until which the dynamics is well defined. In this paper we
will prove the following theorem.

Theorem 1.2. Let Ω be an open, bounded and connected subset of R2 with a C2,α boundary

for some α > 0 with m ∈ N holes. We fix the number of point vortices N ≥ 1, the masses

(ai)1≤i≤N ∈ RN , and the circulations (ξj)1≤j≤m ∈ Rm. With the previous notations we have

that

λ({X ∈ ΩN , τ(X) <∞}) = 0,

meaning that for almost every starting position X, the point vortex dynamics in Ω is well

defined for every time.

We observe that Theorem 1.2 has a simple proof in the case of a single point vortex
in a simply connected domains, that is in the case N = 1 and m = 0. We introduce
the Robin function γ̃Ω(x) = γΩ(x, x). Since γΩ(x, y) = γΩ(y, x), we have that ∇γ̃Ω(x) =
∇xγΩ(x, x) +∇yγΩ(x, x) = 2∇xγΩ(x, x). In this case the dynamics of a single point vortex
becomes

dx(t)

dt
=

1

2
∇⊥γ̃Ω(x(t))a.
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Therefore, a single point vortex evolves on the level set of the Robin function. This map
has been studied in [7], from which we know in particular that γ̃Ω(x) −→

x→∂Ω
+∞. Therefore a

single point vortex can’t hit the boundary so the dynamics is well defined for every time.
The proof of Theorem 1.2 that we will give in section 4.2 borrows arguments from [13], but

we have to deal with two major difficulties. The first one is the construction of a convenient
regularized dynamics, and the second one is to prove some analytic inequalities on the Green’s
function and the Robin function of the domain Ω. In Section 2 we will obtain the required
inequalities for those maps in the case of simply connected domains, and in Section 3, we will
extend those results to the case of multiply connected domains. Section 4 is devoted to the
construction of the regularized dynamics and the completion of the proof of Theorem 1.2.

2 Simply connected and exterior domains

List of notations:

• N ∈ N denotes the number of point vortices;

• λ is the Lebesgue measure on R
2N ;

• (x1, x2)
⊥ = (−x2, x1);

• Ω is a C2,α bounded domain of R2 with m ∈ N holes, and its boundaries are Γj , 0 ≤ j ≤ m,
with Γ0 the exterior boundary;

• U denotes a general bounded domain with C2,α boundary;

• U denotes a general simply connected bounded domain with C2,α boundary;

• Π denotes a general exterior domain with C2,α boundary;

• D(x0, r) is the disk of center x0 and of radius r and D = D(0, 1);

• ΠD =
(
D(0, 1)

)c
;

• T denotes a biholomorphic map, usually from U to D or from Π to ΠD;

• nU is the exterior normal unit vector to ∂U , extended to a neighborhood of ∂U by relation
(22) when possible;

• GU is the Green’s function of the domain U , and G = GΩ in section 4;

• γU is the regular part of GU , see relation (3), and γ = γΩ in section 4;

• γ̃U (x) = γU (x, x) is the Robin function of the domain U , and γ̃ = γ̃Ω in section 4 ;

• C,C1, C2, . . ., are strictly positive constants that may vary from one line to another, when
their value is not important to the result;

• a · b is the scalar product of vectors in R
2;

• ∇f and ∇ · g are respectively the gradient of f and the divergence of g;

• Vj are neighborhoods of Γj, and K is a compact set as in the decomposition (25);
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Figure 1: An example for m = 1. The domains Ω, Ω0 and Ω1 and their boundaries.

• StX is the solution of the point vortex dynamics starting from X after a time t, and Sε
tX the

regularized dynamics constructed in Section 4.1;

For the rest of this paper, Ω denotes a bounded domain whose boundary is C2,α for some
0 < α < 1. It is either simply connected or it has m ∈ N holes that are the simply connected
bounded domains U1, . . . , Um and their boundaries are Γ1, . . . ,Γm. We denote by Γ0 the
exterior boundary of Ω, meaning that Ω lies within the interior in the Jordan sense of Γ0,
and by Ω0 the simply connected bounded domain whose boundary is Γ0, namely the domain
Ω "without holes". Finally, we call exterior domain a domain whose complement is bounded
and simply connected. We denote for 1 ≤ j ≤ m, Ωj = (Uj)

c the exterior domains of the m
holes. The domain Ω is pictured in Figure 1.

Since Ω =
⋂m

j=0Ωj , with Ω0 simply connected, and where Ωj , j ≥ 1 are exterior domains,
our strategy in this paper is to establish inequalities on Ω by establishing them for any
bounded and simply connected domain U , and for any exterior domain Π.

We also denote by D = D(0, 1) the unit disk, and by ΠD the exterior domain of D,
namely ΠD = {x ∈ C, |x| > 1}.

2.1 Holomorphic maps

Holomorphic maps are the subject of the Chapter 2 of [1]. A map T : C → C is a biholomor-

phic map if T and T−1 are holomorphic maps. Such maps satisfy that their derivative never
vanishes. Let us write T = T1 + iT2, and we identify R2 and C, meaning that we also denote

T =

(
T1
T2

)
. Then a holomorphic map satisfies the Cauchy-Riemann equations

{
∂1T1 = ∂2T2

∂1T2 = −∂2T1.

We have that
T ′ = ∂1T = −i∂2T

and therefore
T ′′ = ∂21T = −∂22T = −i∂1∂2T.

Finally, the Jacobian matrix of T is JT =

(
∂1T1 ∂2T1
∂1T2 ∂2T2

)
, so det JT = |T ′|2. In the following,

we will freely use these properties. In particular, we can always substitute the second partial
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derivative ∂2 with i∂1 according to these formulas. For any map f ∈ C1(C,R), we have that

∇(f ◦ T )(x) =
(
∂1T1(x)∂1f(T (x)) + ∂1T2(x)∂2f(T (x))
−∂1T2(x)∂1f(T (x)) + ∂1T1(x)∂2f(T (x))

)
. (6)

We conclude this paragraph with a technical lemma.

Lemma 2.1. For any bounded domain U whose boundary is C2,α, and for any κ < 1, we

have that ∫∫

U×U

1

|x− y|1+κ
dxdy <∞,

and ∫∫

U×U

1

d(x, ∂U)κ
1

|x− y|dxdy <∞.

Moreover there exists a constant C depending only on U such that for sufficiently small ε > 0,

∫

{x∈U ,d(x,∂U)≥ε}

1

d(x, ∂U)1+κ
dx ≤ Cε−κ. (7)

Proof. Let R = diam (U) so that U ⊂ B(x,R) for every x ∈ U . Then

∫∫

U×U

1

|x− y|1+κ
dxdy ≤

∫

U

∫

B(x,R)

1

|x− y|1+κ
dxdy = |U|

∫ R

0

∫ 2π

0

1

r1+κ
rdθdr <∞.

With the same argument,

∫∫

U×U

1

d(x, ∂U)κ
1

|x− y|dxdy ≤ 2πR

∫

U

1

d(x, ∂U)κdx.

To prove that the integral
∫
U

1
d(x,∂U)κ

dx is finite, and to prove (7), we make a finite number
of local changes of coordinates and we use that U is bounded to write

∫

U

1

d(x, ∂U)κdx ≤ C

∫ R

0

1

sκ
ds <∞

and ∫

{x∈U ,d(x,∂U)≥ε}

1

d(x, ∂U)1+κ
dx ≤

∫ R

ε

1

s1+κ
ds ≤ Cε−κ.

2.2 The Riemann Mapping Theorem

We refer now to Chapter 6 of [1].

Theorem 2.2 (Riemann Mapping Theorem). For any non empty, open and simply connected

subset U of C, that isn’t the whole plane, there exists a biholomorphism from U to the unit

disk D.

6



The consequence of this theorem is that any suitable domain is linked to the disk by a
map that has very interesting properties related to the Green’s function of both domains.
However the Riemann Mapping Theorem only states the theoretical existence of such map,
and only a few explicit examples are known. In particular, we have no control over the
derivatives of the biholomorphism in general. We combine Theorems 3.5 and 3.6 from [16]
to obtain the following corollary of the Kellogg-Warschawski Theorem.

Theorem 2.3. Let T be a biholomorphism mapping on a bounded, open, and simply connected

set U whose boundary ∂U is a C2,α Jordan curve, with 0 < α < 1. Then T , T ′ and T ′′

are continuous up to U , and T−1 and (T−1)′ are continuous up to T (U). Thus there exist

constants m and M satisfying for every x ∈ U that 0 < m ≤ |T ′(x)| ≤M and |T ′′(x)| ≤M .

Let us stress the fact that since the automorphisms of the disk are known explicitly and
belong to C∞(D), if there exists one biholomorphism T : U → D that is smooth up to the
boundary, then every biholomorphism T : U → D is smooth up to the boundary. Since in
this paper we will always consider smooth domains U , every biholomorphism T : U 7→ D
will satisfy the conclusions of Theorem 2.3.

Please note that the C2,α condition is not optimal. For instance, it is known that if ∂U
has a parametrization with a Dini-continuous curvature, then the conclusion of the theorem
is still true. Also, assuming that ∂U ∈ Cn,α implies more generally that T (n) is continuous
up to ∂U . Despite these remarks, we will stick to the condition C2,α in the context of this
article.

In conclusion, the Riemann Mapping Theorem states the existence of the map T : U → D
and Theorem 2.3 states that ∀x ∈ U, 0 < m ≤ |T ′(x)| ≤M and |T ′′(x)| ≤M .

We have a very similar result, this time concerning exterior domains, which we define as
the complement of the closure of a bounded and simply connected set in C. We have the
following theorem.

Theorem 2.4. Let Π be an exterior domain, with C2,α boundary. Let T be a biholomorphic

map from Π to ΠD = {x ∈ C, |x| > 1}. Such a map exists and satisfies that T , T ′ and T ′′

are continuous up to Π, and that T−1 and (T−1)′ are continuous up to T (Π). Moreover there

exist constants m and M such that ∀x ∈ Π, 0 < m ≤ |T ′(x)| ≤M and |T ′′(x)| ≤M .

The proof of this result can be found in [8]. It follows from the bounded domain case
using the holomorphic map T : ΠD → D, T (z) = 1

z
.

2.3 Green’s Function

We start by recalling that for every (x, y) ∈ D ×D, x 6= y,

GD(x, y) =
1

2π
ln

|x− y|
|x− y∗||y| , (8)

where y∗ = y
|y|2

is the inverse of y relative to the unit circle. Using the decomposition (3) we

have that for every (x, y) ∈ D ×D, x 6= y,

γD(x, y) = GD(x, y)−GR2(x, y) = − 1

2π
ln(|x− y∗||y|) (9)

7



and by continuity the relation γD(x, y) = − 1
2π

ln(|x − y∗||y|) holds true also for y = x. For
every x ∈ D we thus have that

γ̃D(x) = γD(x, x) = − 1

2π
ln ||x|2 − 1|. (10)

Notice that γ̃D is a radial function.
Let U be a bounded and simply connected domain. If T : U → D is a biholomorphic

map, then we have the following property.

Proposition 2.5. For every (x, y) ∈ U × U , x 6= y,

GU(x, y) = GD(T (x), T (y)) =
1

2π
ln

|T (x)− T (y)|
|T (x)− T (y)∗||T (y)| .

Using this in the decomposition (3) we obtain

γU(x, y) +GR2(x, y) = γD(T (x), T (y)) +GR2(T (x), T (y)) (11)

and thus

∀x ∈ U, γ̃U(x) = lim
y→x

γU(x, y)

= lim
y→x

(
γD(T (x), T (y)) +

1

2π
ln

|T (x)− T (y)|
|x− y|

)
.

Therefore

∀x ∈ U, γ̃U(x) = γ̃D(T (x)) +
1

2π
ln |T ′(x)|. (12)

A quite remarkable fact is that for every (x, y) ∈ ΠD, x 6= y,

GΠD
(x, y) =

1

2π
ln

|x− y|
|x− y∗||y| , (13)

which is the same expression as for GD(x, y). Thus the relations above also hold true for any
exterior domain Π and any biholomorphism T : Π → ΠD, which exists according to Theorem
2.4. For example, for every (x, y) ∈ Π× Π, x 6= y,

GΠ(x, y) = GΠD
(T (x), T (y)) =

1

2π
ln

|T (x)− T (y)|
|T (x)− T (y)∗||T (y)| .

Let us recall here a classical theorem, see for example [3, Theorem 4.17].

Theorem 2.6. Let U be a bounded domain with C2,α boundary. Then GU ∈ C2
(
U × U \

{(x, x), x ∈ U}
)
.

In other words, except where x = y, the Green’s function is smooth up to the boundary.
In their proof of Theorem 1.1, the authors of [13] show that for any κ < 1,

∫∫

D×D

1

d(x, ∂D)κ
|∇xGD(x, y) · ∇⊥γ̃D(x)| <∞ (14)

and ∫∫

D×D

1

|x− y|κ |∇xGD(x, y) · ∇⊥γ̃D(x)| <∞. (15)

In this paper we will extend these inequalities to the more general bounded domain Ω.
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2.4 Intermediate lemmas

We recall that U is a bounded simply connected domain, and T is a biholomorphism from U
to D.

The following lemma is the first step to extend inequalities (14) and (15) to the domain
U .

Lemma 2.7. For every x and y in U :

∇xGU(x, y)·∇⊥γ̃U(x) = |T ′(x)|2∇xGD(T (x), T (y))·∇⊥γ̃D(T (x))+
∇xGD(T (x), T (y)) · ψ(x)

|T ′(x)|2 ,

(16)
with ψ : U → R2 an explicit bounded function on U .

Proof. From Proposition 2.5 and relation (6), we have that

∇xGU(x, y) =

(
∂x1

GD(T (x), T (y))∂1T1(x) + ∂x2
GD(T (x), T (y))∂1T2(x)

−∂x1
GD(T (x), T (y))∂1T2(x) + ∂x2

GD(T (x), T (y))∂1T1(x)

)
.

Similarly from relation (12) and relation (6), since T ′ is also a holomorphic map, we have
that

∇γ̃U(x) =




∂1γ̃D∂1T1 + ∂2γ̃D∂1T2 +
∂1T1∂

2
1T1 + ∂1T2∂

2
1T2

2π|T ′|2

−∂1γ̃D∂1T2 + ∂2γ̃D∂1T1 +
−∂1T1∂21T2 + ∂1T2∂

2
1T1

2π|T ′|2


 . (17)

Therefore,

∇xGU · ∇⊥γ̃U = − (∂x1
GD∂1T1 + ∂x2

GD∂1T2)

×
(
−∂1γ̃D∂1T2 + ∂2γ̃D∂1T1 +

−∂1T1∂21T2 + ∂1T2∂
2
1T1

2π|T ′|2
)

+ (−∂x1
GD∂1T2 + ∂x2

GD∂1T1)

×
(
∂1γ̃D∂1T1 + ∂2γ̃D∂1T2 +

∂1T1∂
2
1T1 + ∂1T2∂

2
1T2

2π|T ′|2
)
.

We notice that the terms with the factor ∂x1
GD∂1γ̃D cancel each others, as well as the terms

with ∂x2
GD∂2γ̃D. We thus have that

∇xGU · ∇⊥γ̃U = − 1

2π
(∂x1

GD∂1T1 + ∂x2
GD∂1T2)

(−∂1T1∂21T2 + ∂1T2∂
2
1T1

|T ′|2
)

+
1

2π
(−∂x1

GD∂1T2 + ∂x2
GD∂1T1)

(
∂1T1∂

2
1T1 + ∂1T2∂

2
1T2

|T ′|2
)

− ∂x1
GD∂2γ̃D(∂1T1)

2 + ∂x2
GD∂1γ̃D(∂1T2)

2

− ∂x1
GD∂2γ̃D(∂1T2)

2 + ∂x2
GD∂1γ̃D(∂1T1)

2.

The last two rows can be simplified, showing that they are equal to |T ′|2∇xGD · ∇⊥γ̃D.
For the first two rows, we factor out by ∂xi

GD and then by ∂21Ti, so that

9



∇xGU · ∇⊥γ̃U =
∂x1

GD

2π|T ′|2 [−2∂1T1∂1T2∂
2
1T1 + ((∂1T1)

2 − (∂1T2)
2)∂21T2]

+
∂x2

GD

2π|T ′|2 [(−(∂1T2)
2 + (∂1T1)

2)∂21T1 + 2∂1T1∂1T2∂
2
1T2]

+ |T ′|2∇xGD · ∇⊥γ̃D.

This proves equality (16) with the following explicit function ψ:

ψ(x) =
1

2π

(
−2∂1T1∂1T2∂

2
1T1 + ((∂1T1)

2 − (∂1T2)
2)∂21T2

(−(∂1T2)
2 + (∂1T1)

2)∂21T1 + 2∂1T1∂1T2∂
2
1T2

)
. (18)

The function ψ is bounded since, thanks to Theorem 2.3, both T ′ and T ′′ are bounded.

Notice that the proof of this lemma only uses Proposition 2.5 and relation (12), so the
lemma also holds in the domain Π. More precisely, if T denotes this time a biholomorphism
from Π to ΠD we have that

∇xGΠ(x, y) · ∇⊥γ̃Π(x) = |T ′(x)|2∇xGΠD
(T (x), T (y)) · ∇⊥γ̃ΠD

(T (x))

+
∇xGΠD

(T (x), T (y)) · ψ(x)
|T ′(x)|2 ,

where ψ is another bounded function on Π that has the same expression in terms of the
conformal map T .

We specify now some properties of γU .

Lemma 2.8. We have that for any x0 ∈ ∂U , γU(x, y) −→
x,y→x0

+∞.

Proof. Let T : U → D a biholomorphism. Relations (11) and (9) yield that

γU(x, y) = − 1

2π
ln
(
|T (x)− T (y)∗||T (y)

)
+

1

2π
ln

|T (x)− T (y)|
|x− y| . (19)

Obviously |T (x) − T (y)∗||T (y)| → |T (x0) − T (x0)
∗||T (x0)| = 0 when x and y go to x0 so

− 1
2π

ln
(
|T (x)− T (y)∗||T (y)|

)
goes to +∞. Therefore we only need to obtain a lower bound

for the other term. By Theorem 2.3 the map x, y 7→ |T (x)−T (y)|
|x−y|

is continuous and non zero on

U × U . Therefore, there exists a constant C such that

|T (x)− T (y)|
|x− y| > C, (20)

for all x, y ∈ U and thus the lemma is proved.

Noticing that for any exterior domain Π and biholomorphism T : Π → ΠD there exists a
neighborhood of ∂Π×∂Π in Π×Π and a constant C such that in this neighborhood relation
(20) holds, the proof of the previous lemma holds for exterior domains too and thus,

∀x0 ∈ ∂Π, γΠ(x, y) −→
x,y→x0

+∞. (21)

The following lemma gives explicit estimates of d(x, ∂U), d(y, ∂U) and |x−y| when γU(x, y) →
+∞.
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Lemma 2.9. Let k > 0 and M ≥ 0 be constants. Let ε > 0. Assume that (x, y) ∈ U × U
are such that

k

2π
| ln ε| −M ≤ γU(x, y).

Then there exists a constant C = C(M,U) such that





|x− y| ≤ Cεk

d(x, ∂U) ≤ Cεk

d(y, ∂U) ≤ Cεk.

Proof. Using relation (19) we have

k

2π
| ln ε| −M ≤ − 1

2π
ln
(
|T (x)− T (y)∗||T (y)|

)
+

1

2π
ln

|T (x)− T (y)|
|x− y| .

Recalling relation (20), there exists a constant C such that

k

2π
| ln ε| −M ≤ − 1

2π
ln
(
|T (x)− T (y)∗||T (y)|

)
+ C,

and thus
|T (x)T (y)− 1| ≤ εke2π(C+M).

Moreover we have that for every (a, b) ∈ D, |a− b| ≤ |1− ab|. Indeed, one can check that

|1− ab|2 − |a− b|2 = (1− |b|2)(1− |a|2) > 0.

Therefore
|T (x)− T (y)| ≤ εke2π(C−M)

and relation (20) gives that
|x− y| ≤ Cεk.

It also yields that

(1− |T (x)|2)(1− |T (y)|2) ≤ |T (x)T (y)− 1|2 ≤ Cε2k.

That means that either 1−|T (x)|2 ≤
√
Cεk, or 1−|T (y)|2 ≤

√
Cεk. We can assume without

loss of generality that 1 − |T (x)|2 ≤
√
Cεk. We infer that 1 − |T (x)| ≤

√
Cεk and by the

properties of the map T−1 given in Theorem 2.3, we conclude that d(x, ∂U) ≤ C ′εk. Since
|x− y| ≤ Cεk, that means that d(x, ∂U) ≤ Cεk and d(y, ∂U) ≤ Cεk.

This lemma also stands in the case of an exterior domain Π as follows.

Lemma 2.10. Let k > 0 and M ≥ 0 be constants. Let ε > 0. Let U ⊂ Π be a bounded

domain. Assume that (x, y) ∈ U × U are such that

k

2π
| ln ε| −M ≤ γΠ(x, y).

Then there exists a constant C = C(M,U ,Π) such that




|x− y| ≤ Cεk

d(x, ∂Π) ≤ Cεk

d(y, ∂Π) ≤ Cεk.

11



Proof. We argue as in Lemma 2.9. Relation (13) gives that if T : Π → ΠD is a biholomor-
phism, then

γΠ(x, y) = − 1

2π
ln
(
|T (x)− T (y)∗||T (y)|

)
+

1

2π
ln

|T (x)− T (y)|
|x− y| .

Relation (20) holds true on the set U × U , so we still have that

|T (x)T (y)− 1| ≤ εke2π(C+M).

We notice now that for every (a, b) ∈ ΠD we also have that |a − b| ≤ |1 − ab| since
(1− |b|2)(1− |a|2) > 0. Thus

|x− y| ≤ Cεk

and
(1− |T (x)|2)(1− |T (y)|2) ≤ |T (x)T (y)− 1|2 ≤ Cε2k.

We have either |T (x)|2 − 1 ≤
√
Cεk, or |T (y)|2 − 1 ≤

√
Cεk, and by the same argument,

recalling Theorem 2.4, we have that

|T (x)|2 − 1 ≤
√
Cεk =⇒ d(x, ∂Π) ≤ Cεk.

This proves the lemma.

The next lemma give the formula for the exterior normal vector to ∂U .

Lemma 2.11. Let x ∈ ∂U . If nU(x) is the exterior normal unit vector to ∂U in x, and

nD(T (x)) the exterior normal unit vector to ∂D in T (x), then

nU (x) =
1

|T ′(x)|

(
∂1T1(x)n

1
D(T (x)) + ∂1T2(x)n

2
D(T (x))

∂1T1(x)n
2
D(T (x))− ∂1T2(x)n

1
D(T (x))

)
. (22)

Proof. Since we chose U and T as in Theorem 2.3, the map:

Γ : R → ∂U, Γ(θ) = T−1(eiθ)

is well defined and smooth. Therefore, denoting x = Γ(θ) we have that T (x) = eiθ and

Γ′(θ) = ieiθ(T−1)′(eiθ) =
ieiθ

T ′(T−1(eiθ))
=

ieiθ

T ′(x)
.

Naturally, the exterior normal unit vector nD(e
iθ) to ∂D in eiθ is itself eiθ. Since an holo-

morphic map preserves the orientation, −i Γ′(θ)
|Γ′(θ)|

is the exterior normal unit vector to ∂U in

T−1(eiθ) = x. Therefore

nU(x) = −i Γ
′(θ)

|Γ′(θ)| =
eiθ

T ′(x)
|T ′(x)| = nD(T (x))T ′(x)

|T ′(x)| .

We then compute the product

nDT ′ = (n1
D + in2

D)(∂1T1 − i∂1T2) = n1
D∂1T1 + n2

D∂1T2 + i(n2
D∂1T1 − n1

D∂1T2)

and the lemma is now proved.
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We extend the map nD to the interior of D by the natural formula nD(x) = x. We then
extend the map nU to U by formula (22). The following lemma holds true.

Lemma 2.12. There exists a constant C such that for every x ∈ U , we have that

|∇⊥γ̃U(x) · nU(x)| ≤ C

Proof. We compute the scalar product ∇⊥γ̃U ·nU by using relations (17) and (22). We obtain

∇⊥γ̃U · nU =




∂1γ̃D∂1T2 − ∂2γ̃D∂1T1 +
+∂1T1∂

2
1T2 − ∂1T2∂

2
1T1

2π|T ′|2

∂1γ̃D∂1T1 + ∂2γ̃D∂1T2 +
∂1T1∂

2
1T1 + ∂1T2∂

2
1T2

2π|T ′|2




· 1

|T ′|

(
∂1T1n

1
D + ∂1T2n

2
D

∂1T1n
2
D − ∂1T2n

1
D

)
.

We write

∇⊥γ̃U · nU ≡ 1

|T ′|A+
1

2π|T ′|3B

with

A =

(
∂1γ̃D∂1T2 − ∂2γ̃D∂1T1
∂1γ̃D∂1T1 + ∂2γ̃D∂1T2

)
·
(
∂1T1n

1
D + ∂1T2n

2
D

∂1T1n
2
D − ∂1T2n

1
D

)

and

B =

(
∂1T1∂

2
1T2 − ∂1T2∂

2
1T1

∂1T1∂
2
1T1 + ∂1T2∂

2
1T2

)
·
(
∂1T1n

1
D + ∂1T2n

2
D

∂1T1n
2
D − ∂1T2n

1
D

)
.

We have that

A = n1
D

[
∂1γ̃D

(
∂1T1∂1T2 − ∂1T2∂1T1

)
− ∂2γ̃D

(
∂1T1∂1T1 + ∂1T2∂1T2

)]

+ n2
D

[
∂1γ̃D

(
∂1T2∂1T2 + ∂1T1∂1T1

)
+ ∂2γ̃D

(
− ∂1T2∂1T1 + ∂1T1∂1T2

)]

= −n1
D∂2γ̃D|T ′|2 + n2

D∂1γ̃D|T ′|2

= |T ′|2nD · ∇⊥γ̃D.

We know from relation (10) that γ̃D is a radial function and thus nD · ∇⊥γ̃D = 0. So A = 0.
We now compute B.

B =

(
∂1T1∂

2
1T2 − ∂1T2∂

2
1T1

∂1T1∂
2
1T1 + ∂1T2∂

2
1T2

)
·
(
∂1T1n

1
D + ∂1T2n

2
D

∂1T1n
2
D − ∂1T2n

1
D

)

= n1
D(∂

2
1T1(−2∂1T2∂1T1) + ∂21T2((∂1T1)

2 − (∂1T2)
2))

+ n2
D(∂

2
1T1((∂1T1)

2 − (∂1T2)
2) + 2∂21T2∂1T2∂1T1)

= 2πψ(T ) · nD,

where the map ψ is defined by relation (18), and is bounded. Since there exists a constant
m such that |T ′(x)| > m > 0, we infer that there exists a constant C such that

|∇⊥γ̃U(x) · nU (x)| ≤ C.
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Similarly, the normal vector nΠD
can be extended to ΠD as a smooth function by the

formula nΠD
(x) = −x for all x ∈ ΠD. We can then reproduce Lemma 2.11 to extend nΠ to

the interior of Π by the formula

nΠ(x) =
1

|T ′(x)|

(
∂1T1(x)n

1
ΠD

(T (x)) + ∂1T2(x)n
2
ΠD

(T (x))
∂1T1(x)n

2
ΠD

(T (x))− ∂1T2(x)n
1
ΠD

(T (x))

)
.

Lemma 2.12 can be adapted to the exterior domain case in a straightforward manner.
We obtain that for any exterior domain Π, and any bounded subset U ⊂ Π, there exists a
constant C such that ∀x ∈ U ,

|∇⊥γ̃Π(x) · nΠ(x)| ≤ C. (23)

2.5 Inequalities for simply connected bounded domains and exterior

domains

We start with an estimate on the gradient of the Green’s function. Let U be a bounded
domain with C2,α boundary. There exists a constant C depending only on U such that

∀(x, y) ∈ U × U , x 6= y, |∇xGU(x, y)| ≤
C

|x− y| . (24)

This estimate can be found in [12], see also [9, Proposition 6.1].
Now we can state the required inequalities for simply connected domains. We recall that

U is a simply connected bounded domain with C2,α boundary.

Lemma 2.13. The following inequalities hold true for any κ < 1:
∫∫

U×U

1

d(x, ∂U)κ
|∇xGU(x, y) · ∇⊥γ̃U(x)|dxdy <∞

and ∫∫

U×U

1

|x− y|κ |∇xGU(x, y) · ∇⊥γ̃U(x)|dxdy <∞.

Proof. We start by denoting either p(x, y) = 1
|x−y|κ

or p(x, y) = 1
d(x,∂U)κ

. We use Lemma 2.7.
Since ψ is bounded, and since from Theorem 2.3 there exist constants m and M such that
for every x ∈ U , 0 < m < |T ′(x)| < M , we obtain that

∫∫

U×U

p(x, y)|∇xGU(x, y) · ∇⊥γ̃U(x)|dxdy

≤ C

∫∫

U×U

p(x, y)[|∇xGD(T (x), T (y)) · ∇⊥γ̃D(T (x))|+ |∇xGD(T (x), T (y))|]dxdy.

We now change variables using that 0 < m < |T ′(x)| < M , to obtain that

∫∫

U×U

p(x, y)|∇xGU(x, y) · ∇⊥γ̃U(x)|dxdy

≤ C

∫∫

D×D

p(T−1(x), T−1(y))[|∇xGD(x, y) · ∇⊥γ̃D(x)|+ |∇xGD(x, y)|]dxdy.
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Assume now that p(x, y) = 1
d(x,∂U)κ

. By the properties of the map T , there exists a

constant C > 0 such that d(T−1(x), ∂U) ≥ Cd(x, ∂D). We thus have that

p(T−1(x), T−1(y)) =
C

d(T−1(x), ∂U)κ
≤ C

d(x, ∂D)κ
.

In the light of this inequality, using relation (24) and Lemma 2.1 on U = D yields that
∫∫

D×D

p(T−1(x), T−1(y))|∇xGD(x, y)|dxdy ≤ C

∫∫

D×D

1

d(x, ∂D)κ|x− y| <∞.

Recalling relation (14) implies
∫∫

U×U

1

d(x, ∂U)κ
|∇xGU(x, y) · ∇⊥γ̃U(x)|dxdy <∞.

We assume next that p(x, y) = 1
|x−y|κ

. By the properties of the map T , we have for every

(x, y) ∈ D ×D, x 6= y that |T−1(x)− T−1(y)| > C|x− y|. Thus

p(T−1(x), T−1(y)) ≤ Cp(x, y).

Using once again (24) and Lemma 2.1, we have that
∫∫

D×D

p(T−1(x), T−1(y))|∇xGD(x, y)|dxdy ≤ C

∫∫

D×D

1

|x− y|1+κ
<∞,

and recalling relation (15) we conclude that
∫∫

U×U

1

|x− y|κ |∇xGU(x, y) · ∇⊥γ̃U(x)|dxdy <∞.

The lemma is proved.

We now show these inequalities for ΠD. However the integral must be taken on a bounded
subset.

Lemma 2.14. Let U be any bounded subset of ΠD. The following inequalities hold true for

any κ < 1: ∫∫

U×U

1

d(x, ∂ΠD)κ
|∇xGΠD

(x, y) · ∇⊥γ̃ΠD
(x)|dxdy <∞

and ∫∫

U×U

1

|x− y|κ |∇xGΠD
(x, y) · ∇⊥γ̃ΠD

(x)|dxdy <∞.

Proof. We recall that GD and GΠD
have the same explicit expression, see relations (8) and

(13). Noticing that for (x, y) ∈ C × C
∗, |x − y∗||y| = |xy − 1| we obtain that for every

(x, y) ∈ ΠD ×ΠD, x 6= y,

GD

(
1

x
,
1

y

)
=

1

2π
ln

∣∣∣ 1x − 1
y

∣∣∣
| 1
xy

− 1| =
1

2π
ln

|x− y|
|xy − 1| = GΠD

(x, y).
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We can reproduce the proof of Lemma 2.7 where we replace the biholomorphism T : U → D
with the map T : ΠD → D, T (z) = 1/z. This map is holomorphic and satisfies that
0 < m < |T ′(x)| < M and |T ′′(x)| < M on U . The calculations given in the proof of Lemma
2.7 allow to obtain the following bound

|∇xGΠD
(x, y) · ∇⊥γ̃ΠD

(x)| ≤ C

∣∣∣∣∇xGD

(
1

x
,
1

y

)
· ∇⊥γ̃D

(
1

x

)∣∣∣∣+ C

∣∣∣∣∇xGD

(
1

x
,
1

y

)∣∣∣∣ .

for all x, y ∈ U .
Thus for any p : C2 → R, we have that

∫∫

U×U

p(x, y)|∇xGΠD
(x, y) · ∇⊥γ̃ΠD

(x)|dxdy

≤ C

∫∫

U×U

p(x, y)

(∣∣∣∣∇xGD

(
1

x
,
1

y

)
· ∇⊥γ̃D

(
1

x

)∣∣∣∣ +
∣∣∣∣∇xGD

(
1

x
,
1

y

)∣∣∣∣
)
dxdy.

Changing variables we obtain

∫∫

U×U

p(x, y)|∇xGΠD
(x, y) · ∇⊥γ̃ΠD

(x)|dxdy

≤ C

∫∫

T (U)×T (U)

p

(
1

x
,
1

y

)(
|∇xGD(x, y) · ∇⊥γ̃D(x)|+ |∇xGD(x, y)|

)
dxdy.

The end of the proof is very similar to Lemma 2.13. We start by showing that in the case
p(x, y) = 1

d(x,∂ΠD)κ
= 1

(|x|−1)κ
, we have for every x, y ∈ T (U)× T (U) that

p

(
1

x
,
1

y

)
=

|x|κ
(1− |x|)κ ≤ 1

d(x, ∂D)κ
.

We can use relation (24) and Lemma 2.1 on T (U) which is a bounded domain, to observe
that ∫∫

T (U)×T (U)

1

d(x, ∂D)κ
|∇xGD(x, y)|dxdy <∞.

Relation (14) implies that

∫∫

T (U)×T (U)

1

d(x, ∂D)κ
|∇xGD(x, y) · ∇⊥γ̃D(x)|dxdy <∞.

We proved that
∫∫

U×U

1

d(x, ∂ΠD)κ
|∇xGΠD

(x, y) · ∇⊥γ̃ΠD
(x)|dxdy <∞.

Similarly, in the case p(x, y) = 1
|x−y|κ

, we have that

p

(
1

x
,
1

y

)
=

|xy|κ
|y − x|κ ≤ 1

|y − x|κ .
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Since U is bounded, Lemma 2.1 apply, and using relation (24) yields that

∫∫

U×U

1

|y − x|κ |∇xGD(x, y)|dxdy <∞.

Relation (15) implies that

∫∫

T (U)×T (U)

1

|x− y|κ |∇xGD(x, y) · ∇⊥γ̃D(x)|dxdy <∞.

We conclude that
∫∫

U×U

1

|x− y|κ |∇xGΠD
(x, y) · ∇⊥γ̃ΠD

(x)|dxdy <∞.

The lemma is now proved.

We conclude this section with the same inequalities for any exterior domain Π.

Lemma 2.15. Let U be any bounded subset of Π. The following inequalities hold true for

any κ < 1: ∫∫

U×U

1

d(x, ∂Π)κ
|∇xGΠ(x, y) · ∇⊥γ̃Π(x)|dxdy <∞

and ∫∫

U×U

1

|x− y|κ |∇xGΠ(x, y) · ∇⊥γ̃Π(x)|dxdy <∞.

Proof. The proof follows the same outline as the proofs of Lemmas 2.13 and 2.14.

3 Multiply connected domain

We work now with the multiply connected domain Ω. There exists a compact set K such
that Ω \K has exactly n + 1 connected components V0, . . . , Vn that satisfy d(Vi,Γj) > 0 for
every i 6= j. For example one can take Vi to be the ε-neighborhood of Γi, for ε small enough.
Thus we also have that

Ω = K ∪
(

m⋃

j=0

Vj

)
. (25)

3.1 Biot-Savart law

Let ω be a fixed function on Ω. Obtaining the velocity u in terms of the vorticity ω is solving
the following problem 




curl u = ω, in Ω

∇ · u = 0, in Ω

u · n = 0, on ∂Ω.

(26)
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Γ0

Γ1

K

V1
V0

Figure 2: Decomposition (25).

As in the simply connected case, a particular solution is given by

u(x) =

∫

Ω

∇⊥
xGΩ(x, y)ω(y)dy.

Since (26) is linear, the general solution is given by this particular solution plus the general
solution of the homogeneous problem. The solution is of the form (see [9])

u(x, t) =

∫
∇⊥

xGΩ(x, y)ω(y, t)dy +
m∑

j=1

cj,ω(t)∇⊥wj(x)

where

cj,ω(t) =

∫
wj(x)ω(x, t)dx+ ξj,

ξj is the circulation of the velocity u on Γj and wj : Ω 7→ R are the harmonic measures
defined by {

∆wj = 0 in Ω

wj = δj,l on Γl, 0 ≤ l ≤ n.

The vector fields
βj(x) = ∇⊥wj(x)

are called harmonic vector fields.
In the case of a discrete vorticity

ω(t) =
N∑

j=1

ajδxj(t)

we define the point vortex dynamics in multiply connected bounded domains as follows:

∀1 ≤ i ≤ N,
dxi(t)

dt
=

N∑

j=1
j 6=i

∇⊥
xGΩ(xi(t), xj(t))aj +∇⊥

x γΩ(xi(t), xi(t))ai +
m∑

j=1

cj(t)βj(x)

where

cj(t) = ξj +
N∑

k=1

akwj(xk(t)).

Let us observe that by the Kelvin theorem, the circulations ξj are constant in time. They
are therefore prescribed at the initial time. The harmonic measures wj being smooth, we
observe that the functions cj : R

+ → R are bounded.
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3.2 Inequalities for multiply connected domains

We know from [9, Proposition 6.1] that the inequality

|GΩ(x, y)| ≤ C(1 + | ln |x− y||) (27)

holds true for bounded domains. We also recall relation (24):

|∇xGΩ(x, y)| ≤
C

|x− y| .

We combine this with Lemma 2.1. Since Ω is bounded, for any κ < 1 we have that
∫∫

Ω×Ω

1

|x− y|κ |∇xGΩ(x, y)|dxdy <∞ (28)

and ∫∫

Ω×Ω

1

d(x, ∂Ω)κ
|∇xGΩ(x, y)|dxdy <∞. (29)

The following proposition gives an estimate of the map γ̃Ω near the boundary.

Proposition 3.1 (Gustafsson [7] Proposition 3.3). Denoting by Kj the connected components

of R2 \ Ω and dj(x) = inf{|x− y|, y ∈ Kj}, Dj(x) = sup{|x− y|, y ∈ Kj}, we have that

∀x ∈ Ω, ln d(x, ∂Ω) ≤ −2πγ̃Ω(x) ≤ min
j

ln
4dj(x)

1− dj(x)

Dj(x)

.

Clearly, dj(x) < Dj(x) for every x ∈ Ω, so by compactness

sup

{
dj(x)

Dj(x)
, x ∈ Ω

}
< 1.

That means that there exists a constant C1 depending only on Ω such that for every x ∈ Ω

ln d(x, ∂Ω) ≤ −2πγ̃Ω(x) ≤ min
j

ln dj + C1

and thus
ln d(x, ∂Ω) ≤ −2πγ̃Ω(x) ≤ ln d(x, ∂Ω) + C1. (30)

In particular,

γ̃Ω(x) ∼ − 1

2π
ln d(x, ∂Ω) as x→ ∂Ω

and
inf
Ω
γ̃Ω = min

Ω
γ̃Ω > −∞. (31)

In addition, we state in the following proposition an estimate of ∇γ̃Ω near the boundary.

Proposition 3.2 (Gustafsson [7] Proposition 3.5). There exists a constant C such that for

every x ∈ Ω,

|∇γ̃Ω(x)| ≤
C

d(x, ∂Ω)
(32)

Moreover, we can take C = 1
2π

if Ω is simply connected.
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We now want to compare the map γΩ near the boundary Γj , to the map γΩj
.

Lemma 3.3. For any 0 ≤ j ≤ m, the map γΩ − γΩj
is bounded in Vj × Ω.

Proof. We have that

γΩ(x, y)− γΩj
(x, y) = GΩ(x, y)−GΩj

(x, y)

We fix x ∈ Vj , and we define F (y) = GΩ(x, y)−GΩj
(x, y). It satisfies that






∆yF (y) = 0, on Ω,

F (y) = 0, on Γj,

|F (y)| ≤ C on Γk, k 6= j,

where
C = sup

x∈Vj

k 6=j
y∈Γk

|GΩj
(x, y)| <∞

is a constant that does not depend on x ∈ Vj. The supremum is finite since d(Vj,Γk) > 0 for
each k 6= j. Therefore by the maximum principle,

|γΩ(x, y)− γΩj
(x, y)| = |F (y)| ≤ max

y∈∂Ω
|F (y)| ≤ C

for every (x, y) ∈ Vj × Ω.

Observe that, for x ∈ Vj , the map F̃ (y) = ∇xγΩ(x, y) − ∇xγΩj
(x, y) satisfies the exact

same problem: its Laplacian vanishes over Ω, F̃ (y) = 0 on Γj and it is bounded on Γk by
a map C(x) that is itself bounded in Vj . Hence the map ∇xγΩ −∇xγΩj

is also bounded in
Vj × Ω. Since Vj × Vj ⊂ Vj × Ω, we can set y = x in those inequalities and obtain similar
bounds for γ̃Ω − γ̃Ωj

and ∇γ̃Ω −∇γ̃Ωj
. In this manner we obtain the following corollary.

Corollary 3.4. For any 0 ≤ j ≤ m, we have that

• the map ∇xγΩ −∇xγΩj
is bounded in Vj × Ω.

• the map γ̃Ω − γ̃Ωj
is bounded in Vj.

• the map ∇γ̃Ω −∇γ̃Ωj
is bounded in Vj.

Lemma 2.8 is stated for bounded simply-connected domains, it is also true for exterior
domains, see relation (21). Lemma 3.3 allows to prove it for multiply connected domains.

Corollary 3.5. We have that for any x0 ∈ ∂Ω, γΩ(x, y) −→
x,y→x0∈∂Ω

+∞.

We now combine Lemma 2.12 and Lemma 3.4 to obtain the following result.

Corollary 3.6. There exists a constant C such that for every x ∈ Ω and every 1 ≤ j ≤ m,

|∇γ̃Ω(x) · βj(x)| ≤ C.
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Proof. Let 1 ≤ j ≤ m and 0 ≤ k ≤ m. In a neighborhood of Γk, we decompose

βj(x) ≡ β1
j (x)nΩk

(x) + β2
j (x)n

⊥
Ωk
(x).

Since βj is tangent to the boundary, β1
j (x) = 0 when x ∈ Γk. Since βj is smooth, there exists

a constant Cj,k such that |β1
j (x)| ≤ Cj,kd(x,Γk) in a neighborhood of Γk. Recalling relation

(32) and provided that the neighborhood is sufficiently small so that d(x, ∂Ω) = d(x,Γk), we
have that

|β1
j (x)∇γ̃Ω(x) · nΩk

(x)| ≤ Cj,kd(x,Γk)
C

d(x, ∂Ω)
≤ Cj,k.

If k = 0, we apply Lemma 2.12. If k 6= 0, we use relation (23). In both cases, it yields that

|∇⊥γ̃Ωk
(x) · nΩk

(x))| ≤ Ck

in a neighborhood of Γk. Thus by Corollary 3.4, and since nΩk
is bounded in that neighbor-

hood,
|∇⊥γ̃Ω(x) · nΩk

(x))| ≤ Ck.

Consequently, since βj is bounded,

|β2
j (x)∇γ̃Ω(x) · n⊥

Ωk
(x))| ≤ Cj,k.

Therefore on this neighborhood of the boundary Γk, there exists a constant Cj,k such that

|∇⊥γ̃Ω(x) · βj(x)| ≤ Cj,k

Outside of each of these neighborhoods, we know that the maps ∇γ̃Ω and βj are bounded.
Therefore, as there are a finite number of boundaries Γk, and of maps βj , there exists a
constant C depending only on Ω such that for every x ∈ Ω,

|∇⊥γ̃Ω(x) · βj(x)| ≤ C.

We can now extend Lemma 2.13 to the case of multiply connected domains.

Lemma 3.7. The following inequalities hold true for any κ < 1:
∫∫

Ω×Ω

1

|x− y|κ |∇xGΩ(x, y) · ∇⊥γ̃Ω(x)|dxdy <∞.

and ∫∫

Ω×Ω

1

d(x, ∂Ω)κ
|∇xGΩ(x, y) · ∇⊥γ̃Ω(x)|dxdy <∞.

Proof. Let us introduce the map h defined by

h(x, y) = ∇xGΩ(x, y) · ∇⊥γ̃Ω(x).

We must show that ph ∈ L1(Ω × Ω) for p(x, y) = 1
|x−y|κ

and also for p(x, y) = 1
d(x,∂Ω)κ

. We

split the integral using the decomposition (25), pictured in Figure 2.
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First, there exists a constant C such that |∇⊥γ̃Ω(x)| ≤ C on K. Relations (28) and
(29) thus imply that ph ∈ L1(K × Ω) for both expression of p. Now we must prove that
ph ∈ L1(Vj × Ω) for every 0 ≤ j ≤ m. We fix 0 ≤ j ≤ m. By Corollary 3.4 as well as
relations (28) and (29), we know that proving ph ∈ L1(Vj × Ω) is equivalent to proving that
ph1 ∈ L1(Vj × Ω), with

h1(x, y) = ∇xGΩ(x, y) · ∇⊥γ̃Ωj
(x).

Let us introduce
h2(x, y) = ∇xGΩj

(x, y) · ∇⊥γ̃Ωj
(x).

We have that h1−h2 ∈ C∞(Ω×Ω) and that ∆y(h1−h2) = 0. The maximum principle yields

∀(x, y) ∈ Vj × Ω, |h1(x, y)− h2(x, y)| ≤ sup
y∈∂Ω

|h1(x, y)− h2(x, y)|. (33)

However, h1(x, y) = 0 when y ∈ ∂Ω, since ∀x ∈ Ω, GΩ(x, y) = 0 when y ∈ ∂Ω. And similarly,
h2(x, y) = 0 when y ∈ ∂Ωj . Thus,

sup
y∈∂Ω

|h1(x, y)− h2(x, y)| = sup
k 6=j
y∈Γk

|h2(x, y)|.

We need to bound h2(x, y) when x ∈ Vj and y ∈ Γk. We decompose

∇xGΩj
(x, y) ≡ g1(x, y)nΩj(x) + g2(x, y)n

⊥
Ωj(x)

where nΩj(x) is defined in Section 2.4. We have that g2(x, y) = 0 when x ∈ Γj sinceGΩj
(x, y) =

0 for every (x, y) ∈ Γj×Γk so ∇xGΩj
(x, y) is normal to the boundary Γj. By Theorem 2.6, GΩj

is C2 up to the boundary except on the diagonal, thus there exists a constant C independent
of y ∈ Γk such that |g2(x, y)| ≤ Cd(x,Γj) for all x ∈ Vj and y ∈ Γk. Using relation (32), we
have that

|g2(x, y)n⊥
Ωj(x)

· ∇⊥γ̃Ωj
(x)| ≤ C.

Using Lemma 2.12 if j = 0 and relation (23) if j 6= 0, we have that

|g1(x, y)nΩj(x) · ∇⊥γ̃Ωj
(x)| ≤ C

for all x ∈ Vj and y ∈ Γk. So there exists a constant independent of x ∈ Vj and y ∈ Γk such
that |h2(x, y)| ≤ C. Thus there exists a constant C such that

sup
y∈∂Ω

|h1(x, y)− h2(x, y)| ≤ C. (34)

Therefore, since p ∈ L1(Ω× Ω), relations (33) and (34) yield that p(h1 − h2) ∈ L1(Vj × Ω).
If j = 0, we now apply Lemma 2.13 to Ω0. If j 6= 0 we apply Lemma 2.15 to the domain

Ωj and to its bounded subset Ω. In both cases, we get that ph2 is integrable on Ω × Ω.
Therefore ph1 ∈ L1(Vj × Ω) and thus ph ∈ L1(Vj × Ω). This completes the proof of the
lemma.

4 Completion of the proof of Theorem 1.2

In this section we denote by G, γ and γ̃ the maps associated to the domain Ω in order to
lighten the notations as there should be no ambiguity.
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4.1 Construction of a regularized dynamic

We need to construct a dynamics that is well defined for every time and which is the same
as the point vortex dynamics as long as no point vortex is close to the boundary and no two
point vortices are close to each other. More precisely, we need to construct two functions Gε

and γ̃ε such that the dynamics

∀1 ≤ i ≤ N,
dxεi (t)

dt
=

N∑

j=1
j 6=i

∇⊥
xGε(x

ε
i (t), x

ε
j(t))aj +

1

2
∇⊥γ̃ε(x

ε
i (t))ai +

m∑

j=1

cj(t)βj(x
ε
i (t)) (35)

is well defined in Ω for every time. It suffices that Gε ∈ C2(Ω×Ω) and γ̃ε ∈ C1(Ω) and that
∇⊥

xGε and ∇⊥γ̃ε are tangent to ∂Ω when the first variable is at the boundary. Moreover, we
want to ensure that the following implication is true for every (x, y) ∈ Ω× Ω,






|GR2(x, y)| < 1

2π
| ln ε|

|γ̃(x)| < 1

2π
| ln ε|

|γ(x, y)| < 1

2π
| ln ε|

=⇒
{
Gε(x, y) = G(x, y)

γ̃ε(x) = γ̃(x).
(36)

This ensures that the maps Gε, and γ̃ε are good approximations of the maps G and γ̃ when
ε goes to 0.

In order to have a proper control over the regularized maps, we also want to ensure that





|γ̃ε(x)| ≤ |γ̃(x)|
|∇γ̃ε(x)| ≤ |∇γ̃(x)|
|Gε(x, y)| ≤ |G(x, y)|

|∇xGε(x, y)| ≤
C

|x− y|

(37)

for a constant C independent of ε.
We consider fε ∈ C∞(R,R) an odd map such that





fε(r) = r, ∀|r| < 1
2π
| ln ε|

fε(r) = Lε, ∀r > 1
2π
| ln ε|+ 1

0 ≤ f ′
ε(r) ≤ 1, ∀r ∈ R

for some constant Lε.

Construction of γ̃ε

We define the regularized Robin function as

γ̃ε(x) = fε(γ̃(x))
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so that
∇γ̃ε(x) = ∇γ̃(x)f ′

ε(γ̃(x)).

We recall that according to Proposition 3.1, γ̃(x) −→
x→∂Ω

+∞ and thus γ̃ε(x) −→
x→∂Ω

Lε and

∇γ̃ε(x) −→
x→∂Ω

0. Therefore γ̃ε ∈ C1(Ω) and ∇⊥γ̃ε is indeed tangent to the boundary since it

vanishes at the boundary, and satisfies both

|γ̃ε(x)| ≤ |γ̃(x)|

and
|∇γ̃ε(x)| ≤ |∇γ̃(x)|.

Construction of Gε

We define the regularized Green’s function for (x, y) ∈ Ω× Ω as follows:






Gε(x, y) = fε(GR2(x, y)) + fε(γ(x, y)) if (x, y) ∈ Ω× Ω, x 6= y

Gε(x, y) = 0 if x ∈ ∂Ω or y ∈ ∂Ω

Gε(x, x) = −Lε + fε(γ̃(x)) if x ∈ Ω.

Let us notice straight away that Gε(x, y) = Gε(y, x).
We collect some properties of Gε in the following lemma.

Lemma 4.1. We have that Gε ∈ C2(Ω × Ω) and that ∇⊥
xGε(x, y) is tangent to ∂Ω when

x ∈ ∂Ω. Moreover, |Gε(x, y)| ≤ |G(x, y)| and there exists a constant C independent of ε such

that |∇xGε(x, y)| ≤ C
|x−y|

.

Proof. We start by proving that Gε ∈ C1(Ω× Ω). Since fε ∈ C∞(R), the map Gε is clearly
C∞ on the set Ω× Ω \ {x = y}.

We show first the continuity over Ω × Ω. From relation (30) we clearly have that
Gε(x, x) → 0 as x→ ∂Ω, so the restriction of Gε to the set ∂Ω×Ω∪Ω×∂Ω∪{(x, x) ; x ∈ Ω}
is continuous.

Let (x0, y0) ∈ Ω× Ω. We take x → x0 and y → y0 and we want to show that Gε(x, y) →
Gε(x0, y0). We can assume without loss of generality that x 6= y and x, y ∈ Ω. We consider
several cases depending on the location of (x0, y0).

Assume first that x0 ∈ ∂Ω and y0 ∈ Ω, with x0 6= y0. By Theorem 2.6,

GR2(x, y) + γ(x, y) = G(x, y) −→
(x,y)→(x0,y0)

G(x0, y0) = 0

since x0 ∈ ∂Ω. Moreover

GR2(x, y) −→
(x,y)→(x0,y0)

1

2π
ln |x0 − y0|

so

γ(x, y) −→
(x,y)→(x0,y0)

− 1

2π
ln |x0 − y0|.
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We recall that fε is odd and continuous and thus

Gε(x, y) = fε(GR2(x, y)) + fε(γ(x, y)) −→
(x,y)→(x0,y0)

0 = Gε(x0, y0).

Now assume x0 = y0 ∈ Ω. Then

GR2(x, y) −→
(x,y)→(x0,y0)

−∞

and
γ(x, y) −→

(x,y)→(x0,y0)
γ̃(x0)

thus
Gε(x, y) −→

(x,y)→(x0,y0)
−Lε + fε(γ̃(x0)) = Gε(x0, y0).

Finally, assume that x0 = y0 ∈ ∂Ω. Then

GR2(x, y) −→
(x,y)→(x0,y0)

−∞

and by Corollary 3.5 we have that

γ(x, y) −→
(x,y)→(x0,y0)

+∞

thus
Gε(x, y) −→

(x,y)→(x0,y0)
−Lε + Lε = 0 = Gε(x0, y0).

We conclude that Gε is continuous.
We prove now that Gε is C1 up to the boundary. Let us compute its gradient in the first

variable for any (x, y) ∈ Ω× Ω, x 6= y:

∇xGε(x, y) = ∇xGR2(x, y)f ′
ε(GR2(x, y)) +∇xγ(x, y)f

′
ε(γ(x, y)). (38)

Since f ′
ε is compactly supported, f ′

ε(GR2(x, y)) = 0 in a neighborhood of the diagonal of
Ω×Ω. Similarly, if x0 ∈ ∂Ω then f ′

ε(γ(x, y)) = 0 in a neighborhood of (x0, x0) so f ′
ε(γ(x, y))

is smooth in a neighborhood of the diagonal of Ω× Ω.
Let now x0 ∈ ∂Ω and y0 ∈ Ω with x0 6= y0. Consider x → x0, y → y0 where x 6= y

and x, y ∈ Ω. By Theorem 2.6, ∇xG(x, y) converges, so ∇xγ(x, y) converges too, and thus
all quantities involved in (38) converge. We proved that Gε ∈ C1(Ω × Ω). The proof that
Gε ∈ C2(Ω× Ω) follows along the same lines.

We now notice that ∇⊥
xGε(x, y) is tangent to the boundary when (x, y) ∈ ∂Ω × Ω, since

Gε(x, y) = 0 when x ∈ ∂Ω, for every y ∈ Ω.
We now prove the bounds stated in the lemma. Since fε is an odd Lipschitz map with

Lipschitz constant 1, we have that

∀(a, b) ∈ R
2, |fε(x) + fε(y)| = |fε(x)− fε(−y)| ≤ |x− (−y)| = |x+ y|

and therefore

|Gε(x, y)| = |fε(GR2(x, y)) + fε(γ(x, y))| ≤ |GR2(x, y) + γ(x, y)| = |G(x, y)|.
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Combining relation (3) with inequality (24) we have that |∇xγ(x, y)| ≤ C
|x−y|

which gives that

|∇xGε(x, y)| ≤
1

2π|x− y| +
C

|x− y| .

Therefore |∇xGε(x, y)| ≤ C
|x−y|

and this completes the proof of the lemma.

Note that by construction, the implication (36) is true. We thus constructed a suitable
regularized dynamics.

Additional properties

We need to establish that the estimates of Lemma 3.7 also hold true for the regularized
dynamics.

Lemma 4.2. We have that for any κ < 1

∫∫

Ω×Ω

1

|x− y|κ |∇xGε(x, y) · ∇⊥γ̃ε(x)|dxdy < C.

∫∫

Ω×Ω

1

d(x, ∂Ω)κ
|∇xGε(x, y) · ∇⊥γ̃ε(x)|dxdy < C.

where the constant C doesn’t depend on ε.

Proof. One can check from (38) that the following relation holds true

∇xGε(x, y) = ∇xG(x, y)f
′
ε(GR2(x, y)) +∇xγ(x, y)(f

′
ε(γ(x, y))− f ′

ε(GR2(x, y))).

We use the expression of γ̃ε and the previous relation to obtain that

∇xGε(x, y) · ∇⊥γ̃ε(x) = ∇xG(x, y) · ∇⊥
x γ̃(x)f

′
ε(γ̃(x))f

′
ε(GR2(x, y))

+∇xγ(x, y) · ∇⊥
x γ̃(x)f

′
ε(γ̃(x))(f

′
ε(γ(x, y))− f ′

ε(GR2(x, y)))

≡ A1,ε(x, y) + A2,ε(x, y).

Recalling that |f ′
ε| ≤ 1, we can apply directly Lemma 3.7 to the term A1,ε to obtain that

there exists a constant C that doesn’t depend on ε such that

∫∫

Ω×Ω

1

d(x, ∂Ω)κ
|A1,ε(x, y)|dxdy < C

and ∫∫

Ω×Ω

1

|x− y|κ |A1,ε(x, y)|dxdy < C.

It remains to prove the same bounds for A2,ε. Let

E = {(x, y) ∈ Ω× Ω, f ′
ε(γ̃(x))

(
f ′
ε(γ(x, y))− f ′

ε(GR2(x, y))
)
6= 0}.
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Since
∣∣f ′

ε(γ̃(x))
(
f ′
ε(γ(x, y))− f ′

ε(GR2(x, y))
)∣∣ ≤ 2, we have that

∫∫

Ω×Ω

p(x, y)|A2,ε(x, y)|dxdy ≤
∫∫

E

2p(x, y)|∇xγ(x, y)||∇⊥
x γ̃(x)|dxdy (39)

with p(x, y) = 1
d(x,∂Ω)κ

or p(x, y) = 1
|x−y|κ

.

We now want to show that for every (x, y) ∈ E, we have that d(x, ∂Ω) ≥ Cε. By
construction of fε, if γ̃(x) > 1

2π
| ln ε|+ 1 then f ′

ε(γ̃(x)) = 0. By construction of E this means
that for ε small enough such that −( 1

2π
| ln ε| + 1) < minΩ γ̃, for every (x, y) ∈ E, we have

that |γ̃(x)| ≤ 1
2π
| ln ε|+ 1. Moreover relation (30) gives that

− ln d(x, ∂Ω)− C1 ≤ 2π|γ̃(x)| ≤ | ln ε|+ 2π

and therefore, provided ε < 1,

d(x, ∂Ω) ≥ ε exp (−2π − C1) ≡ C2ε.

Consequently E ⊂ E1 with

E1 = {(x, y) ∈ Ω× Ω, d(x, ∂Ω) ≥ C2ε}.

Moreover we have that f ′
ε(γ(x, y))− f ′

ε(GR2(x, y)) = 0 on the set

E ′ =
{
(x, y) ∈ Ω× Ω, |GR2(x, y)| < 1

2π
| ln ε| and |γ(x, y)| < 1

2π
| ln ε|

}
.

Since E ⊂ (E ′)c, assuming that ε < 1
diam Ω

we have that E ⊂ E2 ∪ E3 with

E2 = {(x, y) ∈ Ω× Ω, |x− y| ≤ ε}

and

E3 =
{
(x, y) ∈ Ω× Ω, |γ(x, y)| ≥ 1

2π
| ln ε|

}
.

Using the fact that E ⊂ (E1 ∩ E2) ∪ (E1 ∩ E3) as well as relation (32) into relation (39)
yields that

∫∫

Ω×Ω

p(x, y)|A2,ε(x, y)|dxdy ≤
∫∫

E1∩E2

p(x, y)Bε(x, y)dxdy

+

∫∫

E1∩E3

p(x, y)Bε(x, y)dxdy (40)

with

Bε(x, y) = 2|∇xγ(x, y)|
C

d(x, ∂Ω)
.

We bound now the quantity
∫∫

E1∩E2

p(x, y)Bε(x, y)dxdy. Let x ∈ Ω be such that d(x, ∂Ω) ≥
C2ε. We have that {y ∈ Ω, (x, y) ∈ E2} = D(x, ε) ∩ Ω. Since ∇xγ is harmonic in both its
variables, by the maximum principle we have that

sup
y∈D(x,ε)∩Ω

|∇xγ(x, y)| ≤ sup
y∈∂(D(x,ε)∩Ω)

|∇xγ(x, y)|.
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Since ∂(D(x, ε)∩Ω) ⊂ {y ∈ C, |x−y| = ε}∪∂Ω, and d(x, ∂Ω) ≥ C2ε, we have that for every
y ∈ ∂(D(x, ε) ∩ Ω), there exists a constant C independent of x and y such that |x − y| >
Cε. Since |∇xγ(x, y)| ≤ C

x−y
, for every y ∈ ∂(D(x, ε) ∩ Ω) we have that |∇xγ(x, y)| ≤ C

ε
.

Therefore,

sup
y∈D(x,ε)∩Ω

|∇xγ(x, y)| ≤
C

ε

and thus in the case p(x, y) = 1
d(x,∂Ω)κ

,

∫∫

E1∩E2

p(x, y)Bε(x, y)dxdy ≤
C

ε

∫∫

E1∩E2

1

d(x, ∂Ω)1+κ
dxdy

≤ C

ε
2πε2

∫

{x,d(x,∂Ω)≥Cε}

1

d(x, ∂Ω)1+κ
dx

≤ Cε1−κ

≤ C

where we used Lemma 2.1.
For the other expression of p(x, y) we directly use that |∇xγ(x, y)| ≤ C

|x−y|
as well as

relation (32) to obtain that
∫∫

E1∩E2

p(x, y)Bε(x, y)dxdy ≤
∫∫

E1∩E2

C

|x− y|1+κ

1

d(x, ∂Ω)
dxdy

≤
∫

d(x,∂Ω)≥C2ε

C

d(x, ∂Ω)

(∫

|x−y|≤ε

1

|x− y|1+κ
dy
)
dx

≤ Cε1−κ

∫

d(x,∂Ω)≥C2ε

C

d(x, ∂Ω)
dx

≤ Cε1−κ| ln(ε)|
≤ C.

Therefore ∫∫

E1∩E2

p(x, y)Bε(x, y)dxdy < C

for both choices of p.
Now we need to estimate the quantity

∫∫
E1∩E3

p(x, y)Bε(x, y)dxdy. We start by recalling
that since γ is smooth on Ω×Ω and symmetric, for ε small enough, the relation (x, y) ∈ E3

implies that either x ∈ Vj or y ∈ Vj for an index j. By Lemma 3.3, we know that on
Vj × Ω the map γ − γΩj

is bounded by a constant M . We conclude that ∀(x, y) ∈ E3,
1
2π
| ln ε| −M ≤ |γΩj

(x, y)| and therefore using Lemma 2.9 or Lemma 2.10 with k = 1, we
know that there exists a constant C such that

|x− y| ≤ Cε.

So E3 is included in a domain of similar form to E2 and we can reproduce the previous
argument and conclude that there exists a constant C independent of ε such that

∫∫

E1∩E3

p(x, y)Bε(x, y)dxdy < C.
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Recalling relation (40), we have proved that

∫∫

Ω×Ω

p(x, y)|A2,ε(x, y)|dxdy < C

which concludes the proof of the lemma.

Lemma 4.3. There exists a constant C independent of ε such that for every 1 ≤ j ≤ m,

|∇γ̃ε(x) · βj(x)| ≤ C. (41)

Proof. Recalling that |f ′
ε| ≤ 1, this lemma is a direct consequence of the fact that ∇γ̃ε(x) =

∇γ̃(x)f ′
ε(γ̃(x)) and of Corollary 3.6.

4.2 End of the proof of Theorem 1.2

The end of the proof of Theorem 1.2 is largely inspired from the work previously done in [13].
Recall that Γ = {X = (x1, . . . , xN), d(X) > 0} where

d(X) = min

(
min
i 6=j

|xi − xj |,min
i

d(xi, ∂Ω)

)
∀X = (x1, . . . , xN).

The aim of the Theorem 1.2 is to prove that τ(X) = ∞ for λ-almost every X in ΩN .
Since λ(ΩN \Γ) = 0, we can assume that X ∈ Γ. We denote by StX = (x1(t), . . . , xN(t)) the
maximal solution of the point vortex system (5) with (x1(0), . . . , xN(0)) = X, and by Sε

tX =
(xε1(t), . . . , x

ε
N (t)) the global solution of equations (35) which is the regularized dynamics with

the same initial data X.
For any X ∈ Γ, we define τε(X) as the supremum of all times such that the system of

relations 



|GR2(xi(t), xj(t))| < 1
2π
| ln ε|

|γ̃(xi(t))| < 1
2π
| ln ε|

|γΩ(xi(t), xj(t))| < 1
2π
| ln ε|

are true for any i 6= j and any t ∈ [0, τε(X)[, with the convention that τε(X) = 0 if there
exists no such t. By relations (36), we know that for every X ∈ Γ, Sε

tX = StX for every
t < τε(X).

Let us introduce the function

F (r) = exp(−ηr), (42)

with a constant 0 < η < 1 that we will specify later. Let φε : Γ → R be defined by

φε(X) =
1

2

∑

i 6=j

F (Gε(xi, xj)) +
1

2

∑

i

F (−γ̃ε(xi)), (43)

and Λε : Γ× R+ → R defined by

Λε(X, t) =
d

dt
φε(S

ε
tX). (44)
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Since equations (35) are autonomous, we have that

Λε(X, t) = Λε(S
ε
tX, 0). (45)

We now claim that the following proposition is true.

Proposition 4.4. For every X ∈ Γ,

φε(S
ε
τε(X)X) ≥ 1

2
F

(
1

8π
ln(ε)

)
=

1

2
ε−

η

8π .

We delay the proof for the time being. Let τ > 0 be a fixed time. By Proposition 4.4,

{X ∈ Γ, τε(X) ≤ τ} ⊂
{
X ∈ Γ, sup

t∈[0,τ ]

φ(Sε
tX) ≥ 1

2
ε−

η
8π

}
,

Therefore,

λ({X ∈ Γ, τ(X) ≤ τ}) ≤ λ({X ∈ Γ, τε(X) ≤ τ})

≤ λ

({
X ∈ Γ, sup

t∈[0,τ ]

φε(S
ε
tX) ≥ 1

2
ε−

η

8π

})

≤ 2ε
η

8π

∫

Γ

sup
t∈[0,τ ]

φε(S
ε
tX)dλ(X).

Recalling the definition (44) of Λε and relation (45), for every t ∈ [0, τ ] we have that

φε(S
ε
tX) = φε(X) +

∫ t

0

Λε(X, s)ds = φε(X) +

∫ t

0

Λε(S
ε
sX, 0)ds,

thus

sup
t∈[0,τ ]

φε(S
ε
tX) ≤ |φε(X)|+

∫ τ

0

|Λε(S
ε
sX, 0)|ds.

Using Fubini-Tonelli’s Theorem we have that
∫

Γ

sup
t∈[0,τ ]

φε(S
ε
tX)dλ(X) ≤

∫

Γ

|φε(X)|dλ(X) +

∫ τ

0

∫

Γ

|Λε(S
ε
sX, 0)|dλ(X)ds.

Since the flow Sε is Hamiltonian, it is area preserving (see [2, Corollary 1.10]) and thus we
have that for any s ∈ R+,

∫

Ω

|Λε(S
ε
sX, 0)|dλ(X) =

∫

Ω

|Λε(X, 0)|dλ(X).

We will prove later that there exists a constant A0 depending only on Ω, N , η and on the
masses (ai)i, such that for every ε > 0 and t ∈ R, we have that

∫

Γ

φε(X)dλ(X) ≤ A0, (46)
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and ∫

Γ

|Λε(X, 0)| dλ(X) ≤ A0. (47)

Relations (46) and (47) yield that

∫

Γ

sup
t∈[0,τ ]

φε(S
ε
t (X))dλ(X) ≤ A0(1 + τ)

and therefore
λ({X ∈ Γ, τ(X) ≤ τ}) ≤ 2ε

η

8πA0(1 + τ).

This being true for every ε > 0, and given that the left-hand side of the equation doesn’t
depend on ε, letting ε→ 0 yields

λ({X ∈ Γ, τ(X) ≤ τ}) = 0.

This is true for every time τ > 0, and since

{X ∈ Γ, τ(X) <∞} =

∞⋃

k∈N∗

{X ∈ Γ, τ(X) < k},

we have the desired result:
λ{X ∈ Γ, τ(X) <∞} = 0.

Proof of Proposition 4.4

We recall that for every t ≤ τε(X) and any i 6= j, we have that Gε(xi, xj) = G(xi, xj),
γε(xi, xj) = γ(xi, xj) and γ̃ε(xi) = γ̃(xi). Let (x, y) ∈ Ω, x 6= y. We recall that at the time
t = τε(X), there exist i 6= j such that either

|GR2(xεi (τε(X)), xεj(τε(X)))| = 1

2π
| ln ε|

or

|γΩ(xεi (τε(X)), xεj(τε(X)))| = 1

2π
| ln ε|

or

|γ̃(xεi (τε(X)))| = 1

2π
| ln ε|.

Recalling the definition of Φ given by relation (43), and the fact that F is positive, we have
that

φε(S
ε
τε(X)X) ≥ max

(
1

2
F (Gε(x

ε
i (τε(X)), xεj(τε(X))),

1

2
F (−γ̃ε(xεi (τε(X))))

)
.

Therefore, since F is decreasing, in order to prove Proposition 4.4 it is enough to prove the
following lemma.
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Lemma 4.5. Let (x, y) ∈ Ω× Ω. If one of the conditions




|GR2(x, y)| ≥ 1
2π
| ln ε|

|γ(x, y)| ≥ 1
2π
| ln ε|

|γ̃(x)| ≥ 1
2π
| ln ε|

is true, then it implies that either

G(x, y) ≤ 1

8π
ln ε

or

γ̃(x) ≥ − 1

8π
ln ε.

Proof. Firstly, provided that ε is small enough such that − 1
2π
| ln ε| < minΩ γ̃, which is possible

by relation (31), the relation |γ̃(x)| ≥ 1
2π
| ln ε| implies that γ̃(x) ≥ − 1

2π
ln ε ≥ − 1

8π
ln ε.

Secondly assume that |γ(x, y)| ≥ 1
2π
| ln ε|. We recall the decomposition (25). Since K is

a compact set, the map γ is bounded on K ×K. Therefore, provided ε is small enough such
that 1

2π
| ln ε| > maxK×K |γ|, we have that the condition |γ(x, y)| ≥ 1

2π
| ln ε| implies that there

exists 0 ≤ j ≤ m such that either x ∈ Vj or y ∈ Vj. By symmetry, we assume that x ∈ Vj .
We recall Lemma 3.3 which states that the map γ−γΩj

is bounded on Vj ×Ω. Therefore,
there exists a constant M > 0 such that |γΩj

(x, y)| ≥ 1
2π
| ln ε| −M . If j = 0, we use Lemma

2.9 with k = 1 and U = Ωj , else we use Lemma 2.10 with k = 1 and Π = Ωj , and U = Ω, to
obtain that d(x, ∂Ω) ≤ Cε. Therefore relation (30) gives that

2πγ̃(x) ≥ − ln(Cε)− C1.

We deduce that there exists ε0 > 0 such that for every ε < ε0 we have

γ̃(x) ≥ − 1

8π
ln(ε).

Thirdly, assume that |GR2(x, y)| ≥ 1
2π
| ln ε|, which is equivalent to GR2(x, y) ≤ 1

2π
ln ε

provided that ε is smaller than 1
diam Ω

. Recalling relation (3), then either G(x, y) ≤ 1
4π

ln ε or
−γ(x, y) ≤ 1

4π
ln ε. The condition G(x, y) ≤ 1

4π
ln ε naturally implies that G(x, y) ≤ 1

8π
ln ε.

Assume now that γ(x, y) ≥ − 1
4π

ln ε. As in the second case, we use Lemma 2.9 or Lemma
2.10 with k = 1

2
to obtain that d(x, ∂Ω) ≤ C

√
ε, which leads by relation (30) to

γ̃(x) ≥ − 1

8π
ln(ε),

for ε small enough. The lemma is now proved, which concludes the proof of Proposition
4.4.

Proof of relations (46) and (47).

We start by proving (46). Recalling the definitions of φε and F given by relations (43) and
(42) we have that

φε(X) =
1

2

∑

i 6=j

exp(−ηGε(xi, xj)) +
1

2

∑

i

exp(ηγ̃ε(xi)).
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Since η > 0 and exp is an increasing function, relations (37) yield that

|φε(X)| ≤
∑

i 6=j

exp(η|G(xi, xj)|) +
∑

i

exp(η|γ̃(xi)|).

Relation (30) gives that |γ̃(xi)| ≤ − 1
2π

ln d(xi, ∂Ω) + C3. Using also (27), we have that

|φε(X)| ≤ 1

2

∑

i 6=j

exp(ηC(1 + | ln |xi − xj ||)) +
1

2

∑

i

exp(− η

2π
ln d(xi, ∂Ω) + ηC3).

Since | ln |x − y|| ≤ max{− ln |x − y|, ln(diam Ω)}, we bound | ln |x − y|| ≤ − ln |x − y| + C
and thus

|φε(X)| ≤ exp(ηC4)

[
1

2

∑

i 6=j

(
1

|xi − xj |ηC
)
+

1

2

∑

i

1

d(xi, ∂Ω)η/2π

]
.

Choosing η < min{ 2
C
, 2π}, and noticing that the last expression doesn’t depend on ε, we

obtain that
∫
Γ
φε(X)dλ(X) is bounded independently of ε. This proves relation (46).

We now want to prove relation (47). By the definition of Λε given in relation (44), we
have that ∫

Γ

|Λε(X, 0)| dλ(X) =

∫

Γ

∣∣∣∣
d

dt
[φε(S

ε
tX)]

∣∣
t=0

∣∣∣∣ dλ(X).

Therefore in order to prove relation (47) we have to show that at time t = 0, the quantity
d
dt
φε(S

ε
tX) is bounded in L1(Γ) independently of ε. Let us compute:

d

dt
φε(S

ε
tX) =

d

dt

[
1

2

∑

i 6=j

F (Gε(x
ε
i (t), x

ε
j(t))) +

1

2

∑

i

F (−γ̃ε(xεi (t)))
]

=
1

2

∑

i 6=j

F ′(Gε(x
ε
i (t), x

ε
j(t)))∇xGε(x

ε
i (t), x

ε
j(t)) ·

dxεi (t)

dt

+
1

2

∑

i 6=j

F ′(Gε(x
ε
i (t), x

ε
j(t)))∇yGε(x

ε
i (t), x

ε
j(t)) ·

dxεj(t)

dt

− 1

2

∑

i

F ′(−γ̃ε(xi(t)))∇γ̃ε(xεi (t)) ·
dxεi (t)

dt
.

However, one can notice that since Gε(x, y) = Gε(y, x) we have that ∇yGε(x, y) = ∇xGε(y, x)
and thus

d

dt
φε(S

ε
tX) =

∑

i 6=j

F ′(Gε(x
ε
i (t), x

ε
j(t)))∇xGε(x

ε
i (t), x

ε
j(t)) ·

dxεi (t)

dt

− 1

2

∑

i

F ′(−γ̃ε(xεi (t)))∇γ̃ε(xεi (t)) ·
dxεi (t)

dt
.
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We recall relation (35):

dxεi (t)

dt
=

N∑

k=1
k 6=i

∇⊥
xGε(x

ε
i (t), x

ε
k(t))ak +

1

2
∇⊥γ̃ε(x

ε
i (t))ai +

m∑

k=1

ck(t)βk(x
ε
i (t)).

Therefore,

d

dt
φε(S

ε
tX) =

∑

i 6=j
k 6=i

F ′(Gε(x
ε
i (t), x

ε
j(t)))∇xGε(x

ε
i (t), x

ε
j(t)) · ∇⊥

xGε(x
ε
i (t), xk(t))ak

+
∑

i 6=j

F ′(Gε(x
ε
i (t), x

ε
j(t)))∇xGε(x

ε
i (t), x

ε
j(t)) ·

1

2
∇⊥γ̃ε(x

ε
i (t))ai

+
∑

i 6=j

F ′(Gε(x
ε
i (t), x

ε
j(t)))∇xGε(x

ε
i (t), x

ε
j(t)) ·

m∑

k=1

ck(t)βk(x
ε
i (t))

− 1

2

∑

i

F ′(−γ̃ε(xεi (t)))∇γ̃ε(xεi (t)) ·
N∑

k=1
k 6=i

∇⊥
xGε(x

ε
i (t), x

ε
k(t))ak

− 1

4

∑

i

F ′(−γ̃ε(xεi (t)))∇γ̃ε(xεi (t)) · ∇⊥γ̃ε(x
ε
i (t))ai

− 1

2

∑

i

F ′(−γ̃ε(xεi (t)))∇γ̃ε(xεi (t)) ·
m∑

k=1

ck(t)βk(x
ε
i (t))

≡ B1(t) +B2(t) +B3(t) +B4(t) +B5(t) +B6(t).

We recall that xεi (0) = xi, where X = (x1, . . . , xN). First of all, we observe that B5(t) = 0.
Notice that from relations (37) we have that

|∇xGε(x, y)| ≤
C

|x− y| (48)

where the constant C is independent of ε.
The same estimates as at the beginning of the proof of relations (46) and (47) show that

for any X ∈ Γ we have that

|F ′(Gε(xi, xj))| ≤
C ′

|xi − xj |ηC
(49)

and

|F ′(−γ̃ε(xi))| ≤
C

d(xi, ∂Ω)η/2π
(50)

where we used that 0 < η < 1. Relation (50), together with relation (41), yields

|B6(0)| ≤
∑

i

C

d(xi, ∂Ω)η/2π
.
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We also have that
|ck(0)βk(xi)| ≤ C,

and therefore using relations (49) and (48) we have that

|B3(0)| ≤
∑

i 6=j

C ′

|xi − xj |ηC+1
.

Both B3(0) and B6(0) are therefore bounded in L1(Γ) uniformly in ε provided that η is small
enough.

Using relation (49), we have that

|B2(0)| ≤
∑

i 6=j

C ′

|xi − xj |ηC
|∇xGε(xi, xj) · ∇⊥γ̃ε(xi)|

and thus Lemma 4.2 implies that B2(0) is bounded in L1(Γ) uniformly in ε if η is small
enough. Similarly, using this time relation (50), we have that

|B4(0)| ≤
∑

i 6=k

C

d(xi, ∂Ω)η/2π
|∇γ̃ε(xi) · ∇⊥

xGε(xi, xk)|

and once again, Lemma 4.2 allows to conclude that B4(0) is bounded in L1(Γ) uniformly in
ε if η is small enough.

Finally, we bound B1(0) by noticing first that for k = j, the expression ∇xGε(x
ε
i (t), x

ε
j(t))·

∇⊥
xGε(x

ε
i (t), xk(t)) vanishes, and therefore using relation (49) and the relation (48) we obtain

that

|B1(0)| ≤
∑

i 6=j
k 6=i
k 6=j

C ′

|xi − xk||xi − xj |ηC+1
.

This term is bounded in L1(Γ) uniformly in ε when η is small enough. This concludes the
proof of relation (47). The proof of Theorem 1.2 is completed.
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