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HYPERBOLIC QUASILINEAR BOUNDARY VALUE PROBLEMS:
CONSTRUCTION OF A LEADING PROFILE

CORENTIN KILQUE

ABSTRACT. We investigate in this paper the existence of the leading profile of a WKB expansion
for quasilinear initial boundary value problems with a highly oscillating forcing boundary term.
The framework is weakly nonlinear, as the boundary term is of order O(g) where the frequencies
are of order O(1/e). We consider here multiple phases on the boundary, generating a countable
infinite number of phases inside the domain, and we therefore use an almost periodic functional
framework. The major difficulties of this work are the lack of symmetry in the leading profile
equation and the occurrence of infinitely many resonances (opposite to the simple phase case
studied earlier) The leading profile is constructed as the solution of a quasilinear problem, which
is solved using a priori estimates without loss of derivatives. The assumptions of this work are
illustrated with the example of isentropic Euler equations in space dimension two.
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1. INTRODUCTION

We consider in this paper hyperbolic quasilinear initial boundary value problems with a highly
oscillating forcing boundary term. We are interested in constructing, in the high frequency
asymptotic, an approximate solution to this problem in the form of a WKB expansion. This
is the type of question studied in hyperbolic geometric optics. The general idea is to consider
an hyperbolic system, of which the source term, the initial term or the boundary term (in the
case of boundary value problems) is highly oscillatory, namely with frequencies of order 1/e
and to look for an approximate solution to the system in the form of an asymptotic expansion.
First the equation satisfied by the terms of the asymptotic expansion needs to be formally
derived, and then to be solved in a suitable functional space. Once this formal series has been
constructed, one may prove that the truncated sums actually approaches the exact solution in
the high frequencies asymptotic. The present paper addresses the first part of this framework,
and more precisely we prove existence and uniqueness for the leading profile of the asymptotic
expansion.

The study of hyperbolic geometric optics goes back to [Lax57] for the study of the linear
Cauchy problem. When the system is nonlinear, the multiplicity of phases in the source term,
initial term or boundary term is important since nonlinear interactions between phases may
occur. In the case of only one phase, the construction of an asymptotic expansion was first
performed by [CB64]. For the justification of this asymptotic expansion we can refer to [JR92]
in the semi-linear case and [Gue93] in the quasi-linear case. The first study of the multiphase
case for the Cauchy problem goes back to [HMR86]. The question has then been largely resolved
by J.L. Joly, G. Métivier and J. Rauch, see in particular [JMR93], [JMR94] and [JMR95]. The
natural question is to obtain results for boundary value problems, similar to the ones for the
Cauchy problems. In [Chi9l], the author deals with a semi-linear boundary value problem for
a system of two equations, the general case of multiple equations being treated for example in
[Wil96] and [Wil00]. The quasi-linear case but with only one phase on the boundary is treated
notably in [Wil02], [CGW11], [CW13] (the latter taking interest into the justification, which is
not addressed in this paper) and [Her15]. This work is an extension to the multiphase case:
we deal with the same quasi-linear boundary value problem, but with multiple phases on the
boundary.

Because of the multiple frequencies on the boundary, the nonlinearity of the problem generates
a countable infinite number of phases inside the domain, forcing us to consider an almost-periodic
framework, the group of frequencies being, in general, not finitely generated. This almost-
periodic functional framework has been previously used to construct approximate solutions to
systems with multiple phases, for semi-linear systems in the context of Wiener algebras by
[JMR94] for the Cauchy problem and [Wil96] for the boundary value problem. For quasi-linear
systems, Bohr-Besicovich spaces are generally used, notably by [JMR95] for the Cauchy problem.
In this work we attempt to achieve the next step, namely to obtain a similar result as the one
of [JMR95], for quasi-linear boundary value problems. We adapt the functional framework of
[JMRI5] to the context of boundary value problems, by considering functions that are quasi-
periodic with respect to the tangential fast variables and almost-periodic with respect to the
normal fast variable. Concerning the regularity, we choose a Sobolev control for the (slow and
fast) tangential variables, and a uniform control for the normal variables. The leading profile
of the WKB expansion is then obtained as the solution of a quasilinear problem which takes
into account the potentially infinite number of resonances between the phases. We solve this
quasilinear problem in a classical way by proving estimates without loss of regularity. The
example of gas dynamics is used all along the paper to illustrate the general assumptions that
will be made during the analysis. The main difference between this paper and [JMR95] is the
absence of symmetry in the problem. Indeed, starting with an evolution problem in time, we
modify it to obtain a propagation problem in the normal variable x4, with respect to which the
system is not hyperbolic. In [JMR95], these symmetries are used for the a priori estimates to
handle the resonance terms that appear in the equations. Even though it is relatively easy in our
problem to create symmetries for the self-interaction terms, it is more delicate for the resonance
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terms, which, unlike the case of [CGW11], are in infinite number. The last assumption of the
paper is made to deal with this issue, and in essence controls the lack of symmetry of resonance
terms. The notions associated to it appear in [Raul2, Chapter 11].

The proof of existence of a leading profile is divided in three parts: formal derivation of the
equation satisfied by the leading profile, reduction and decoupling of these equations, and finally
energy estimates on these equations. Formal derivation of the WKB cascade is quite classical
in geometric optics, and consists on formally replacing the series in the exact system (system
(2.1) in the following). As usual, this cascade is decoupled using projectors and an operator
on the space of profiles. The said operator remains formal in this paper, and the projectors
require a small divisors assumption to be rigorously defined. The second part of the proof takes
interest into decoupling and reducing the system to a system for the oscillating resonant modes,
a system for each oscillating non-resonant mode, and a system for the evanescent part. In order
to do that, extending the system into modes, we begin by showing that the mean value satisfies
a decoupled system with zero source term and boundary term, and is therefore zero. Next
we prove that the outgoing modes are also zero, deriving energy estimates for them. For this
purpose we use a suitable scalar product on the space of profiles, that requires a compact support
in the normal direction. Therefore a finite speed propagation is proven beforehand. Once there
are only incoming and evanescent modes, it is easy to determine a boundary condition for each
mode from the original boundary condition, and therefore decouple the system. The equation
satisfied by the evanescent part gives a formula for it using the double trace on the boundary, so
its construction is quite straightforward. However we need to check that the constructed solution
is actually in the space of evanescent profiles. To construct the oscillating parts we show a priori
estimates without loss of regularity for the linearized oscillating systems, which allow us to prove
the well-posedness of these linearized systems, and then by an iterative scheme the existence of
solutions to the original systems. To derive the energy estimates we use an alternative scalar
product that takes advantage of propagation in the normal direction. Several terms need to be
handled. The transport and Burgers ones are quite classical to treat, and the assumption on
the set of resonances is used to address the resonant ones. Since it is quite usual, we do not
give the details of the construction of the solution to the linearized systems and the iterative
schemes. Reassembling the constructed profiles we finally get the leading profile solution to the
initial system.

The paper is organized as follows. After the first section devoted to this introduction, the
second one introduces the problem and states the usual assumptions on the system. First
the problem studied in this work is precisely described, and the example of Euler equations
that will be used throughout the analysis is introduced, and then characteristic frequencies and
the strict hyperbolicity assumption are looked at. Finally interest is made on properties and
assumption about the boundary condition. Assumptions of this section ensure that the initial
boundary problem is well posed locally in time for the exact solution. However, due to the high
frequencies in the forcing term, we do not know if the lifespan of the exact solution is uniform
with respect to the small wavelength. Third section is devoted to the functional framework of the
paper. After a motivation of this framework with a formal study of the frequencies created inside
the domain and some assumptions on it, we describe the spaces of profiles which will be used,
and introduce scalar products on these functional spaces. After this rather long introduction
of the problem and assumptions, the ansatz of the expansion and the main result are stated
in section 4. The proof is then divided in two sections. The fifth one is a formal derivation of
the equations satisfied by the leading profile. First the cascade of equations for the profiles is
obtained by a formal WKB study. It gives rise to a certain fast problem, that is resolved in a
second part, which allows to finally write the decoupled equations for the leading profile. The
last section of this paper is the core of the proof. First some coefficients associated to resonances
are introduced and the last assumption of this work is made about these coefficients to deal with
the lack of symmetry in resonance terms. We proceed by making rigorous the results of the fifth
section analysis which will be used after. Next part is devoted to reducing and decoupling the
equations into an equation for the evanescent part, and equations for the resonant oscillating
part and each non-resonant oscillating part. A lot of the techniques used in this part are used in
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the next two ones, that achieves the main step of the proof, namely proving energy estimates on
the linearized equations for the oscillating resonant and non-resonant parts. These estimates are
used in the following part to construct an oscillating solution, using an iterative scheme. It is also
proven that the constructed evanescent part belongs to the space of evanescent profiles. Finally
a conclusion and some perspectives are drawn. In the appendix is presented three technical
proofs that have been postponed, and are about notions of the second section.

In all the paper the letter C' denotes a positive constant that may vary during the analysis,
possibly without any mention being made, and for every matrix M, the notation !M refers to
its real transpose.

2. NOTATIONS AND ASSUMPTIONS

2.1. Presentation of the problem. Given a time T" > 0 and an integer d > 2, let ) be the
domain Q7 := (—o0,T] x R x R, and wr := (—o00,T] x R¥! its boundary. We denote as
t € (—o0,T) the time variable, z = (y,z4) € R¥! x R, the space variable, with y € R%"! the
tangential variable and x4 € Ry the normal variable, and at last z = (¢,x) = (¢,y,x4). We also
denote by 2z’ = (t,y) € wr the variable of the boundary {x4y =0}. For i = 1,...,d, we denote
by 0; the operator of partial derivative with respect to z;. Finally we denote as o € R%*! and
¢ € R? the dual variables of z € Qp and 2’ € wp. We consider the following problem

d
L(uf,0:) v = O0puf + Y Ai(uf) Ojuf =0 in Qr,
=1
(2.1) Buf, g=¢g on wr,
uft@ =0,

where the unknown «f is a function from Q7 to an open set @ of RV containing zero, with
N > 1, the matrices A; are regular functions of O with values in My (R) and the matrix B
belongs to Mjy;«n(R) and is of maximal rank. The integer M is made precise in Assumption
3 below. To simplify the notations and clarify the proofs we consider here linear boundary
conditions, but it would be possible to deal with non-linear ones. Furthermore we assume the
boundary to be noncharacteristic, that is the following assumption is made.

Assumption 1 (Noncharacteristic boundary). For all u in O, the matriz Ag(u) is invertible.

The dependence on € > 0 of system (2.1) comes from the source term ¢ g° on the boundary
wr, where the quasi-periodic function ¢° is defined, for 2’ in wr, as
/ 2 C1 2 - Cm

(2.2) F() =G (Z ) ,

9 9

where G is a function of the Sobolev space H>®(R? x T™), with m > 2, that vanishes for negative
times ¢ and of zero mean with respect to 8 in T™, and where (1, . . ., {, are frequencies of R%\ {0}.
Here the notation T stands for the torus R/27Z. We denote by ¢ the m-tuple ¢ := (¢1,...,(m)-
The function G being periodic and of zero mean with respect to 8, we may write

(2.3) G(Z,0)= Y Gunl)e™?,

nez™\{0}

where Gy, is in H*(R?) and is zero for negative times t, for all n in Z™ \ {0}. The framework
of weakly non-linear geometric optics is chosen here, namely we expect the leading profile in
the asymptotic expansion to be of order &, which explains the ¢ factor in front of ¢° in the
boundary condition. Note that without loss of generality, we can assume that (i,...,(, are
linearly independent over Q.

Condition uf; ., = 0 in (2.1) expresses the nullity of the initial conditions. The time of
existence T' > 0 is not fixed at first and is likely to become sufficiently small to ensure existence
of a leading profile.
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The study of [Wil02], [CGW11] and [Her15] is here extended to several phases on the bound-
ary. No assumption on the group of boundary frequencies generated by the frequencies ((i, . ..
(m) is made, apart from it being finitely generated. In particular it may not be discrete.

We want to approximate the exact solution to (2.1), in the limit where £ goes to 0, by an
approximate solution that behaves as ¢ in range, and 1/¢ in frequency. This is the weakly
nonlinear geometric optics framework, see [Raul2] and [Mét09]. Recall that in this paper we do
not prove stability, i.e. that the approximate solution converges in some sense to the exact one,
since we do not know if the latter exists on a time interval independent of . To obtain this kind
of result, we first have to make several suitable assumptions about the original problem. The
rest of this section is devoted to these assumptions, and focuses on the characteristic frequencies
associated with the system. Let us first detail the example that inspires the general framework
developed in this paper.

)

FEzample 2.1. The isentropic compressible Euler equations in two dimensions provide a system
of the form of (2.1). Under regularity assumptions on the solution, the associated boundary
value problem reads

Ve + A1 (VE) 1 VE + A(VE) D VE =0 in Qp,
(2.4) B édzo =cg° on wr,
\igo =0,

with V& = (v%,uf) € R3, where v° € R* represents the fluid volume, and u® € R? its velocity,
and where the functions A; and Ay are defined on R x R? as

u; —v 0 us 0 —wv
(2.5) Ai(V) = —c(v)?/v u 0 , Ay(V) = 0 u 0 )
0 0 w —c(v)?/v 0 up

with ¢(v) > 0 representing the sound velocity in the fluid, which depends on its volume v. The
noncharacteristic boundary Assumption 1 for system (2.4) is now discussed. In this article, we
consider geometric optics expansions for system (2.1) constructed as perturbations around the
equilibrium 0, performing a change of variables if necessary. For the Euler system the natural
coefficients Ay, Ao are rather used, and a perturbation around the equilibrium Vy = (vg, 0, up) is
considered, where vy > 0 is a fixed volume, and (0, ug) is an incoming subsonic velocity, that is
such that 0 < ug < ¢g, where we denote ¢y := c(vy).

The Assumption 1 concerns in this case the invertibility of the matrix Ay(V) for V =
(v,u1,u2) € R% x R? in the neighborhood V. The determinant of the matrix Ay(V) is given
by det A2(V) = us (u3 — c(v)?), which is nonzero if the velocity uy satisfies 0 < ug < c¢(v). The
equilibrium Vj verifying this condition, every small enough neighborhood O of V; suits to satisfy
Assumption 1.

The rest of the section is dedicated to the characteristic frequencies related to the problem
and the associated assumptions.

2.2. Strict hyperbolicity. The following definition introduces the notion of characteristic fre-
quency.

Definition 2.2. For a = (1,1,&) € R x R x R, the symbol L(0,«) associated with L(0,0,)
is defined as
d-1
L(0,a) =TI+ Y _n;iAi(0) + £A4(0).

i=1
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Then we define its characteristic polynomial as p(T,n,&) = det L(O7 (7,77,5)). We say that
a € R js ¢ characteristic frequency if it is a root of the polynomial p, and we denote by C
the set of characteristic frequencies.

The following assumption, called strict hyperbolicity (see [BGS07, Definition 1.2]), is made.
Assumptions 1 of non-characteristic boundary and of hyperbolicity (whether strict or with con-
stant multiplicity) are very usual, see e.g. [Wil96, CGW11, JMR95], and related to the structure
of the problem. Assumption of hyperbolicity of constant multiplicity, which is more general than
Assumption 2 of strict hyperbolicity, is sometimes preferred like in [CGW11, JMR95]. We chose
here to work with the latter for technical reasons.

Assumption 2 (Strict hyperbolicity). There exist real functions 11 < --- < Tn, analytic with
respect to (1,€) in R\ {0}, such that for all (n,&) € R\ {0} and for all T € R, the following
factorisation is verified

N

d—1
p(7,1,§) = det <7'I + Zm’Ai(O) + 5Ad(0)> = H (1= 1(n,9)),
i1

k=1

where the eigenvalues —T(n, &) of the matriz A(n,§) = Z?;ll n:Ai(0) + £Aq(0) are therefore
simple. Consequently, for all (n,€) € RI\{0}, the following decompositions of CN into dimension
1 eigenspaces hold

(26) (CN = ker L(O? 1 (77’ 5)’ 7, 5) @ D ker L(O, TN(T}’ 5)’ 7, 5) ’

(27)  CY=A4(0)7" ker L(0,11(n,€),n, €) @ -+ & Ag(0) " ker L(0, 7 (n,£), 7, ).

For k = 1,...,N and for (n,€) in R\ {0}, we define the projectors m(n,€) and T (n,€),
respectively associated with decompositions (2.6) and (2.7).

For k = 1,...,N and (n,&) € R4\ {0}, we also denote as Ej(n,€&) a unitary eigenvector
generating the eigenspace kerL(O,Tk(n,f),n,g), so that

(28) E1(777§)7 7EN(777§)
is a real normal basis of C adapted to decomposition (2.6). Observe that the family
(29) Ad(o)_lEl(U,f)a--- ,Ad(o)_lEN(nag)

is therefore a real normal basis of CV adapted to decomposition (2.7).
Remark 2.3. 1) We will be led further on to consider the modified operator
L(0,8.) := Ag(0)~* L(0,8,).

This justifies the introduction of the modified symbol L(0, a) := A4(0)~* L(0, &), and thus
of the projector (7, £), the symbols L(0, ) and L(0, o) having different ranges.

ii) Since the matrix A(n,&) = Z?;ll niA;(0) + €A4(0) is real for (n,€) € R? and the eigenvalues
Ti,...,7N are real, decompositions (2.6) and (2.7) also hold in R¥, but we are interested in
the ones of C¥ since some functions that will be studied are complex valued.

iii) If @ = (7,1, §) is a characteristic frequency, then by definition and according to Assumption
2, the triplet (7,7, &) satisfies
N
H (T - Tk(Th 5)) =0.
k=1

There exists therefore an integer k between 1 and N such that 7 = 74(n, £). In other words,
the characteristic manifold C is the union of the N hypersurfaces given by {7 = 7(n,§)},
k=1,...,N.

Remark 2.4. One can verify that in Assumption 2, the functions 74 for k = 1, ..., N are positively
homogeneous of degree 1 in R?\ {0}. The projectors mj, and 7 for k = 1,..., N are therefore
positively homogeneous of degree 0 in R%\ {0}.
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Ezample 2.5. Returning to Example 2.1, for system (2.4) linearized around Vj = (vg, 0, ugp), the
characteristic polynomial p reads

T+&uy —wvon —v0§
p(r,n, &) =det | —cZnj/vg T+&uy O = (74 &ug) ((T + Euo)® — g (> + &)).

—cgf/vo 0 T4+ Eug

Thus the eigenvalues of the matrix A(n,§) = nA1(Vo) + & A2(Vp) are the additive inverse of the
roots with respect to 7 of the polynomial p, given by

(210) T1(n,&) == —upé& —coVn*+ &2, 10, = —uo, 11§ :=—-ugk+coVn?+E

The functions 71,72 and 73 are analytic and distinct in R? \ {0}. System (2.4) is therefore
strictly hyperbolic, which means that it satisfies Assumption 2 of strict hyperbolicity. We have
represented in Figure 1 the characteristic frequencies o = (7,7,¢) € R3 for system (2.4).

T = 7—2(777 5)

FIGURE 1. Characteristic frequencies for the isentropic compressible Euler sys-
tem (2.4)

We now define projectors derived from the CV decomposition (2.6), that we extend to non-
characteristic frequencies. We also determine some equalities between the kernel and range of

the projectors m, and 7, and of the matrices L(0, a) and E(O, «). The proof is based on the one
of [CG10, Lemma 3.2].

Definition 2.6. Let o = (1,1,&) € R4\ {0} be a characteristic frequency and k the in-
teger between 1 and N such that T = 1,(n,§). We denote by mo = 7r(n,&) (resp. T =
71(n,€)) the projection from CN onto the eigenspace ker L(O,Tk(n,g),n,g) (resp. the subspace
Aqg(0)~! ker L(O,Tk(n,g),n,g)) according to decomposition (2.6) (resp. (2.7)). If the frequency

a € RN\ {0} is not characteristic, we denote To = To := 0 and if a = 0 we denote
7o := 7o := I. For all o in R, we can verify that ©, satisfies

(2.11) ker L(0, o) = ker L(0, o) = Im 7,

and

(2.12) Im L(0, o) = ker 7q,
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and that the projector T, satisfies
(2.13) Im L(0, a) = ker 7,

recalling that L(0, ) refers to the modified symbol L(0, o) := Ag(0)~! L(0, ).
For all o € R\ {0}, we denote by Q,, the partial inverse of the matriz L(0, ), namely the
unique matriz Qg such that Qu L(0,a) = L(0,0) Qq = I — . If a =0, we define Qq := 1.

Proof. Consider a = (1,71,€) in R¥1. Equation (2.11) is satisfied by definition of 7, and
equality of the kernels ker L(0, a) and ker L(0, ), the matrix A4(0) being invertible. Regarding
equation (2.12), we first note that by the rank-nullity theorem and by definition of w,, the
subspaces Im L(0, «) and ker 7, have the same dimension. We denote by k¢ the integer between
1 and N such that 7 = 74,(n,&). We consider then an element L(0,«) X of Im L(0, v), with X
in CV that we decompose according to (2.6), as X = Zszl me(n, &) X. For k = 1,... N, the
projector 7 (n,§) admitting the eigenspace of the matrix A(n, ) associated with the eigenvalue
—7(n, &) as range, we have

N

L(0,0) X = (Tko(n’ﬁ) I+ A(nﬁ))m(nﬁ)x
k=1

= Z (Tko (0, €) — T (1, €)) mie(n, &) X.
ksko

Equation (2.11) being satisfied, we deduce that L(0,«) X belongs to

@ kerL(O, (Tk(n,é),n,ﬁ)),

ko

which, by definition of the projectors 7, is equal to the kernel of my,(n,&) = 7. With the
equality of dimensions, equation (2.12) is therefore verified. The proof of equation (2.13) is
similar: we consider X in C" that we decompose as X = Zgzl mk(n,€) X, and then we write

N
L0.0) X = Aa(0) " Y (o (1, I + A, ) ) m(n. €) X

k=1

= Aq0)7" D (e (n,€) = (0, €)) T, ) X,

kko

so that L(0,) X belongs to

D Aa(0) " ker L(0, (1:(n, €),m, €)) = ker 7o,
k£ko

Once again by equality of dimensions it leads to equation (2.13). O

Remark 2.7. i) For every k = 1,..., N, the projectors mi(n,&) and 7 (n,§) are positively
homogeneous of degree 0 in (n,£) € R?\ {0}. Furthermore, by strict hyperbolicity, the basis
E1(n,€),...,Enx(n,€) and Ag(0)"LE1(n,£),..., Ag(0) " En(n, &) are analytic with respect
to (n,&) € R%\ {0}, and the maps (n,&) — (1, &) and (n,€) = 7x(n,€) are therefore
analytic in R?\ {0}. Thus, by compactness of the sphere S*!, for all k = 1,..., N, the
projectors m(n, &) and 7 (n, &) are uniformly bounded with respect to (n,£) € R\ {0}.
The projectors 7, and 7, are therefore bounded with respect to o in R4,

ii) Unlike the projectors mj and g, k = 1,..., N, the projectors 7, and 7, are homogeneous of
degree 0 with respect to o in R4*!, and not only positively homogeneous. Indeed, the claim is
obvious if « is zero or noncharacteristic, and if « is a nonzero characteristic frequency, and A
a nonzero real number, then, since ker L(0, A ) = ker L(0, &) and Im L(0, A ) = Im L(0, o),
we have ), = 7. The proof is the same for 7.
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2.3. The uniform Kreiss-Lopatinskii condition and some preliminary results. We de-
fine the following space of frequencies

E:={(=(0c=7—iy,n) € (CxR"N{0} |y >0},
Si={CeZ |+ + > =1},
Eo:={C€E|y=0},

Yo :=ZpNX.

We also define the matrix that we get when applying the Laplace-Fourier transform to the
operator L(0,0,). For all ( = (o,n) € Z, let

d—1
A(Q) = =i Aa(0) ™ (o + Y 1 4,(0)).
=1

The noncharacteristic boundary Assumption 1 is used here to define the matrix A(¢). We note
that if { = (7,7n) € Zo, and if ¢{ is an imaginary eigenvalue of A({), then the frequency (7,7,€)
is a real characteristic frequency, and vice versa.

Hersh lemma [Her63, Lemma 1] ensures that for ¢ in Z\=g, the matrix .A({) has no eigenvalue
of zero real part, and that the stable subspace associated with the eigenvalues of negative real
part, denoted by E_(({), is of constant dimension, denoted p. Furthermore, the integer p is
obtained as the number of positive eigenvalues of the matrix A4(0). We denote by E,(¢) the
unstable subspace A(() associated with eigenvalues of positive real part, that is of dimension
N —p.

In [Kre70] (see also [CP82, Theorem 3.5] and [BGS07, Lemma 4.5]) it is shown that the stable
and unstable subspaces E1 extend continuously to the whole space = in the strictly hyperbolic
case (Assumption 2). We still denote by E. the extensions to =. The main assumption of this
work may now be stated, which, along with Assumptions 1 and 2, ensures that system (2.1)
is well posed locally in time. Indeed the three assumptions 1, 2 and 3 are stable under small
perturbations around the equilibrium. Just like Assumptions 1 and 2, the following assumption
is very structural to the problem.

Assumption 3 (Uniform Kreiss-Lopatinskii condition). For all { € 2, we have
ker BN E_(¢) = {0}.

In particular, it forces the rank of the matriz B to be equal to the dimension of E_((), namely
M =p.

Remark 2.8. Historically, the first given definition of the uniform Kreiss-Lopatinskii condition
did not involve the extension of F_ to =y. The original definition states that, for all { € Z\ Ey,

ker BN E_(¢) = {0},

and that the linear map (B‘ Ei(c))fl is uniformly bounded with respect to { € =\ Ey, see for
instance [Sar65]. Indeed, the space E_({) being homogeneous of degree zero and continuous
with respect to ( € =, and by compactness of the unitary sphere ¥, we note that Assumption 3

implies that the linear map (B| B (C))_l is uniformly bounded with respect to ¢ € =.

It has already been discussed that for ¢ € 2\ Ey, the matrix .4(¢) has no imaginary eigenvalue.
We now commit to describe more precisely the matrix A(() for ¢ in Z( as well as the continuous
extension to Zy of the spaces Ei((). The following result, proved by Kreiss [Kre70] for the
strictly hyperbolic case that is of interest here, Métivier [Mét00] for the constantly hyperbolic
case, and extended by Métivier and Zumbrun [MZ05] to an even more general framework, gives
a very useful decomposition of the matrix 4(¢) when ¢ belongs to =.

Proposition 2.9 (Block structure). When Assumption 2 is satisfied, for all { € Z, there exist
a neighborhood V of ¢ in =, an integer L > 1, a partition N = p1 + ---+ pr and an invertible
matriz T analytic in V such that for all { € V, we have

T(O)AQ)T() " = diag (A1(C), - -, AL()),
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FIGURE 2. Incoming (i), outgoing (o) and glancing (g) vector field.

where for all j the matriz A;(C) is of size pj and satisfies one of the following properties:
i) the real part of the matriz A;(C), defined by (A;(C) + A;(C)*)/2, is positive-definite,
ii) the real part of the matriz A;(() is negative-definite,
iii) p; = 1, A;(Q) is imaginary when v is zero and dyA;(() € R*,
iv) p;j > 1, the coefficients of A;(C) are imaginary when ~y is zero, there exists £ € R such

that
7 § 7 1 0
Ai(Q) = i |
0 i&j

and the bottom left coefficient of 0,.A;(C) is real and non zero.

This result, commonly referred to as ”block structure” [BGS07, Section 5.1.2], is fundamental
for the proof of Proposition 2.21 below. In the aim of describing the subspaces E1 () for ¢ € Ey,
the vector fields associated with each real characteristic phase are now defined.

Definition 2.10. Let o = (1,7,&) € R\ {0} be a characteristic frequency, and k the integer
between 1 and N such that T = 1,(n,£). The group velocity v,, associated with « is defined as

Vo = Ve (0, ).
We shall say that o is glancing (resp. incoming, outgoing) if Octip(n,§) is zero (resp. negative,
positive). Then the vector field X, associated with « is defined as
(2.14) Xo =0 — Vo V=0 —Vyr(n,&) - Vy — 0c7(n,§) On,-

The vector field X, is represented in Figure 2 in the glancing, incoming and outgoing case.

Ezample 2.11. We start by giving an example of a boundary condition for Example 2.1 satisfying
the uniform Kreiss-Lopatinskii condition. For this purpose we look for a matrix B in M3 3(R) of
maximal rank, that generates strictly dissipative boundary conditions (see [BGS07, Definition
9.2]), namely such that its kernel, which is of dimension 1, is generated by a nonzero vector F
satisfying
'ES(V)Ay(V)E <0

for all V' in the neighborhood of V{), where the matrix S(V') refers to a Friedrichs symmetrizer
of the system. Such strictly dissipative boundary conditions satisfy in particular the uniform
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Kreiss-Lopatinskii condition, see [BGS07, Proposition 4.4]. In our example, the following sym-
metrizer may be considered

S(V) = diag (c(v)z, V2, v2).
Recall that, in the notations of the example, a symmetrizer S(V') is a positive definite matrix
such that the matrices S(V) A1 (V') and S(V) A3(V) are symmetric for all V' in a neighborhood
of Vy. It is then determined that a suitable vector E is given by E = (vp,0,up), since in that
case we have

'ES(Vo) A2(Vo) E = o g (ug — c5)

the right-hand side quantity being negative by assumption on Vj, so it stays negative in a
neighborhood of V4. Thus a matrix B of maximal rank whose kernel is generated by F is for
example given by

B.— 0 Vo 0

—Ug 0 Vo

which gives an example of a boundary condition satisfying the uniform Kreiss-Lopatinskii con-
dition for Example 2.1 of compressible isentropic Euler equations in dimension 2.

Interest is now made on the eigenvalues of the matrix A(7,7n) for the system of Example 2.1.
Their expressions, for (1,7) € R?\ {0}, depend on the sign of 72 — n? (¢3 — u?), as represented
in Figure 3.

If || > \/c3 — ud |n|, i.e. if ¢ = (7,7) is in the so-called hyperbolic region H ([Benl14, Definition

2.1]), then the matrix A(¢) admits three simple imaginary eigenvalues given by

T ug + sign(7) cg /72 — 12 (g — ud)

(2.15a) i&1(mym) =1 5 5 )
G — Up
| g sign(r) co E P& D)
(2.15b) i&(T,m) =1 = —\/u2 0 0/
0 0
(2.15¢) i&(r,m) =i —L,
]

where sign(z) := z/|z| for x # 0. The number & (7,7) being real, the frequency a;(7,n) =
(7’,77,51 (7’,77) is a real characteristic frequency. It is then determined that we have 7 =
T3 (77,51 (1, 77)) ifr>0and T=n (77,51 (1, 77)) if 7 < 0. A calculation gives, if 7 > 0,

2 2)

2 2 _
Oer3(n, & (m)) = \/T 2 — ug)

n? + & (7, n)

and, if 7 < 0,

2 2

2 2 _
i - \/T Ua Zﬁ(fc?f 771;0)'

Thus the frequency aq(7,7) = (T, n, &1 (7, n)) is always outgoing. Likewise, it is determined that
the real characteristic frequency as(7,7n) := (T, n, & (T, n)) is always incoming, and the frequency
as(T,n) = (7’,77,53(7’, 77)) is incoming as well.

If ¢ is located in the so-called glancing region G, i.e. if |7| = \/c§ — u?|n|, then the matrix

A(¢) admits one imaginary simple eigenvalue i £3(¢) which is still given by formula (2.15¢), and
a double imaginary eigenvalue given by

. . . TUg
i&1(Q) =i&(() =i 5—-
g —u
In this case we still have 7 = 7'3(77,51(7', n)) if r>0and 7 = 7'1(77,51(7-, 77)) if 7 < 0, and
regarding the characteristic frequency as(7,n) = (7,7,&(7, 1)), we still have T = 72(n, &(7,1)).
Thus it is determined that

01 (77,51(7, 77)) = 357'3(7%51(7" 77)) =0,
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FI1GURE 3. Areas of Z( for the isentropic compressible Euler equations

and therefore, regardless of the sign of 7, the frequency ay(7,7n) is glancing. As for it, the
frequency as3(7,n) is always incoming.

Finally if |7| < \/c3 — u? |n| and so if ¢ is in the so-called mized region EH, then the matrix
A(¢) has one simple imaginary eigenvalue i&3(¢) given by formula (2.15¢), and two simple
eigenvalues of nonzero real part (symmetric with respect to the imaginary axis), that are still
denoted by 7&; et i&; and which are given by

_Tug +ico sign(r) \/772 (cg — u%) — 72

i&(r,m) =1 ,
g — ug

)  Tug —ico sign(7) /n? (2 —u2) — 12

i&(T,m) =1 5 \/2 0 0 ]
Co — Up

The real characteristic frequency ag(7,n) = (7’, 7, &3(T, 17)) is once again incoming.

In the following, in order for the matrix factor of the partial derivative with respect to the
normal variable x4 in the equations to be the identity matrix, the modified operator E(u, 0,) =
Aq(u)~! L(u, d,) shall be considered. For j = 1,...,d — 1, we denote Zj = A;lAj and Ag :=
A;l. The following lemma, which is a result of [Lax57] adapted by [CGW11, Lemma 2.11], shows
that, under suitable assumptions, the operator 7, Z(O, 0,) 7o is given by a constant coefficient

scalar transport operator, and therefore that the operator 7, L(0,3,) acts on polarized profiles
(i.e. profiles U such that 7, U = U) as a much simpler operator.

Lemma 2.12 ([CGW11, Lax Lemma]). Let a = (1,1,£) € R\ {0} be a real non glancing
characteristic frequency and k the integer between 1 and N such that 7 = 1(n,§). Then we have

~ -1
To L(0,0,) 1y = 7—F—= Xo Ta Ta,
(0.8:) IeTi(n, €)
where X, is the vector field associated with o defined by (2.14). Then we denote
~ -1 1 1
Xo=—FXo=0,, — o + Voti(n,€) - V.
IeTi(n, €) T 0emi(n,€) T Oemie(n, &) ,8) ¥y

For the sake of completeness, the proof of [CGW11] is recalled here.

Proof. According to identity (2.11), we have

d—1
(216)  L(0, (re(1,€):m,€)) me(n. ) = (s, €) Ao(0) + Y mi Ai(0) + € 1) ma(n,€) = 0.
i=1

The Dunford formula and the implicit function theorem ensure that in the strictly hyperbolic
case, the projectors mj as well as the real functions 7 are differentiable with respect to (n,§)
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in R%\ {0} (they even depend analytically of (n,&)). Thus identity (2.16) is differentiated with
respect to ¢ in a neighborhood of a frequency (7, &) in RY\ {0} to obtain

(5ng(777§)g0(0)+I> me(n,€) + (Tk n,€) Ap(0 +Zm i +§I> Iemi(n,€) =0,
and therefore, multiplying by 7x(n, &) on the left, according to identity (2.13), we get

1
 Oemi(n, €)

Likewise, for i = 1,...,d — 1, equality (2.16) is differentiated with respect to 7; and next
multiplied by 7 (n,§) to obtain

710, ) (90, 7(1.€) Ao 0) + A(0) ) mi(n. ) = 0.
With (2.17), we thus get

0. €) A0)mu(0.6) = PR 0, 6) i),

which concludes the proof of the lemma. O

The following results use the classical Lax Lemma, whose proof is similar to the one of Lemma
2.12. The result is recalled here.

Lemma 2.13 ([Lax57]). Let a = (,n,£) € R1*9\ {0} be a real characteristic frequency and k
the integer between 1 and N such that T = 11(n,&). Then we have

L(07 az) o = Xa Ta,
where X, is the vector field associated with o defined by (2.14).

The first lemma below, quite standard, states that the group velocities v, are bounded. The
result presented here is not optimal, considering the constant C' can be taken equal to 1, but it
is sufficient for our analysis, and its proof is simpler.

Lemma 2.14. There exists a positive constant C' such that, for k = 1...,N and (n,§) in
RY\ {0}, we have

Ve, &) < C sup  p(A(n,€)),
(n,€)esd—1

where we recall that A(n, &) has been defined for (n,€) in R%\ {0} in Assumption 2, and where
p(A(n,{)) refers to the spectral radius of the matriz A(n,€). Then we denote by V* the finite
quantity
Vi=C sup  p(A®n,€)),
(n,§)esi—t
which bounds the group velocities.

Proof. First note that the quantity V* is actually finite. Indeed, according to Assumption 2, we
have

p(AW€)) = max | €).

and the real functions 71, ..., 7y are analytic in R?\ {0}, and thus bounded on S%~1.
Now let (1, £) be in R?\ {0} and k between 1 and N. According to Lax Lemma 2.13, we have,

Tk (77’ 5) A(U,, 5,) Tk (77’ 5) = _di (77’ 5) ' (77,’ 5,) Tk (77’ 5)
But since the following equality holds,

Ve &) = sup  |dre(n,€) - (', €)]|,
(' &) esd—1
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we obtain
(2.18) Ve, € < e, &)l sup  [JA(,€)]].
(' ,€)esd—1
On an other hand, because of Remark 2.7, there exists a positive constant C' such that
(2.19) e, Ol <C, k=1,...,N,

uniformly with respect to (n,¢) in R?\ {0}. Finally, Assumption 2 claims that the matrix
A(n/, &) is diagonalizable and well-conditioned, so there exists a positive constant C' such that

(2:20) sup  [JA(, €[ <C sup - p(A(n,€)).
(n',&)es—1 (n',&")es—1
Equations (2.18), (2.19), and (2.20) then lead to the result. O

The second result quantitatively links the vector 7, Ex(n, &) to the vector Eg(n, &), which will
be useful in the following to get a control from below of the first vector. It is mentioned, for its
second part, in [CG10].

Lemma 2.15. Let o = (1,1,&) € R1T9\ {0} be a real characteristic frequency and k the integer
between 1 and N such that T = 11,(n,§). Then we have

To Be(n, €) = —0e(n,€) Aa(0) " Ex(n, €).

In particular, if the frequency « is not glancing, the projector T, induces an isomorphism from
Imm, to Imm,.

Proof. First the vector Ej(n,&) is decomposed in basis (2.9) adapted to decomposition (2.7):
N

(2.21) Ex(n,€) =Y X Aa(0) " E;(n,€),
j=1

so that we have 7o, Ex(n,€) = A\ Aq(0) "L Ek(n,€). Thus the aim is to determine the coefficient
k. Given that 7y Ex(n,&) = Ex(n,£), and according to decomposition (2.21), we have

N
Aq(0) 7o Ex(1,6) = > Xj Ej(n,€),
j=1

thus
T Ad(o) T Ek(na 5) = >‘k Ek(ﬁ, 5)
And we conclude using Lax Lemma 2.13 which claims that 74 Ag(0) 7o = —0c7,(n, &) Ta-

To show that the projector 7, induces an isomorphism from Im 7, to Im 7., the two spaces
Im 7, and Im 7, having the same dimension, it is sufficient to prove that the intersection

ker o, N Im 7y

is trivial. So we consider a vector X of CV belonging to this intersection. Because X belongs
to Im 7, by definition of the vector Eg(n,§), it writes

X = )\Ek(naé.%

where k is the integer between 1 and N such that o = (Tk(n, €),n, 5) and A € R. According to
the previous result, we have

To X = —0¢7i(n, €) Ag(0) ' X,

But we also have 7, X = 0 by assumption and 0¢7(n,§) # 0, the frequency a being non-
glancing. We therefore obtain X = 0, which is the sought result. O

We are now in position to describe the decomposition of the stable subspace E_(() for ¢ € Ey,
which uses the strict hyperbolicity Assumption 2.
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Proposition 2.16 ([Wil96], Proposition 3.4). Consider ¢ = (1,1) € Eg. We denote by i&;(C)
forj=1,...,M(() the distinct complex eigenvalues of the matriz A(C), and if £;(C) is real, we
shall denote by o;(C) = (7,1,&;(T,n)) the associated real characteristic frequency. If £;(C) is
real, we also denote by k; the integer between 1 and N such that T = 14,(n,§;(C)). Then the set
{1,2,...,M({)} decomposes as the disjoint union

(2.22) {1,2,..., M(Q)} = G(Q) UZ() UP(() U O) UN(Q),
where the sets G(C), Z(C), P(¢), O(C) and N(C) correspond to indexes j such that respectively
a;(C) is glancing, a;(C) is incoming, Im(&;(C)) is positive, a;(C) is outgoing and Im(&;(C)) is
negative.

Then the following decomposition of E_({) holds

(2.23) E.Q)= Fe P e P F©.
) )

7eg (¢ JEL(C JEP(Q)
where for each indez j, the subspace E]_(C) 18 precisely described as follows.

i) If j € P(C), the space E’ (C) is the generalized eigenspace A(C) associated with the
eigenvalue i £;(C).

it) If j € R(C), we have E{(C) = kerL(O,ozj(C)), which is of dimension 1.

iii) If j € G(C), we denote by n; the algebraic multiplicity of the imaginary eigenvalue i&;(C).
For small positive vy, the multiple eigenvalue 1 £;(T,n) splits into n; simple eigenvalues,
denoted by i{f(T —iv,m), k=1,...,nj, all of nonzero real part. We denote by p; the
number (independent of v > 0) of the eigenvalues 15;‘“(7' —17,m) of negative real part.

Then Ei(C) is of dimension p; and is generated by the vectors w satisfying [A(C) —
i&;(Q)]"w = 0. Furthermore, if nj is even, p; = n;j/2 and if n; is odd, p; is equal to
(nj —1)/2 or (n; +1)/2.

Likewise, the unstable subspace E(C) decomposes as

(2.24) Ei(Q)= P FLOe P Fie P ELO,

J€G(Q) JEO(C) JEN(C)

with similar description of the subspaces Ei(g“) In particular, if the set G(C) is empty, then

CV =E_(Q) @ EL(¢).

Remark 2.17. The notation &;(¢) should not be taken for a function {; depending on ¢ €
Eo. Indeed for example the set M(() depends on (. However, note that the matrix A(¢)
is homogeneous of degree 1 with respect to ¢ in Zy. Thus the number M({) as well as the
cardinality of the sets G(¢), Z(¢) U O(¢) and P(¢) UN({) depend only on the direction of ¢ in
Eo. We therefore assume that, {( € Zy being fixed, for A € R*, the indexes 1,..., M(A() are
arranged in a way that, for j =1,..., M({), we have

§(AQ) = Ag(¢), sothat  aj(A¢) = Aay(().

With this ordering, we note that if for ( € Zy, the frequency «a;(¢) is glancing, incoming or
outgoing (resp. &;(¢) is of nonzero imaginary part), ie. if j € G({) U O(¢) UZ(() (resp.
Jj € P(Q)UN(C)), then for A € R*, the frequency a;(A¢) = Ay (() is still glancing, incoming or
outgoing (resp. &;(A() is still of nonzero imaginary part), that is to say j € G(A{) UO(A() U
Z(XC) (resp. j € P(AC) UN(XC)). More precisely, if j € P(¢) (resp. N(¢)), then j € N (=)
(resp. P(—()).

Definition 2.18. Consider { € Z3. We say that ¢ is a glancing point and we denote { € G
if, with notations of Proposition 2.16, there exists an index j between 1 and M(() such that
J € G(C), in other words, if  is such that there exists a real monzero number & such that the
frequency (€, §) is characteristic and glancing.

An assumption is now made, that helps to prove that the projectors associated with decom-
position (2.23) are bounded uniformly with respect to ¢ in Zy. This assumption has already
been made in [Sar65, Wil96], and seems essential, see [Wil00].
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Assumption 4. For allk =1,...,N, and for all (n,§) € R4\ {0}, we have

oT k (927' k

D 8—52@’ §) #0.
Remark 2.19. We will see during the proof of Proposition 2.21 in appendix A that assumption
4 implies that for all ¢ in Zy, for all index j in G((), we have n; = 2, using the notations of
Proposition 2.16. We deduce that p; = 1 and that the component E? (¢) of the stable subspace
E_(() is of dimension 1 and given by ker L(0, o;(()).

) =0 =

Definition 2.20. For ¢ € Zy and, using the notations of Proposition 2.16, for an index j in
G(C)UZ(C), we denote by II”_(¢) the projection from E_({) on the component E’ () according
to decomposition (2.23).

We also denote by I1¢ ({) the projection from E_({) on the elliptic stable component E€ ({) :=

D ep)EL(C) according to decomposition (2.23).
Finally, if ¢ is not glancing, that is if the set G({) is empty, then according to Proposition
2.16 we have the following decomposition of CN

(2.25) V=P ELOe P ELOe D EOe D EWQ.

J€0(C) FEN(Q) J€Z(C) JEP(Q)
In that case we denote by I1¢.y (C) the projection from CN on the stable elliptic component E° (C)
according to this decomposition, and by HE’;(C) the projection from CYN on the unstable elliptic
component ES(C) == @jen()EY () according to the same decomposition.

The following proposition will be a key result in our analysis. It uses in a crucial way As-
sumption 4, as well as the strict hyperbolicity Assumption 2.

Proposition 2.21 ([Wil96]). Under Assumptions 2 and 4, for { € Ey, the projectors H];(C) for
J in G(C) UZ(C), and the projectors 11¢ (¢) are uniformly bounded with respect to ¢ in Zy.

The proof of this result, omitted in [Wil96] and which requires some work, is postponed until
Appendix A.

Thanks to Assumption 4 we are also able to prove the following result, which continues Lemma
2.15, and establishes a control from below over the normal component of the group velocity,
and therefore over the vector 7, E(n,§) for all « = (Tk (n,€),m, {), involving the distance from
(Tk(n, €), 77) to the glancing set G. Its proof uses notations and results from the one of Proposition
2.21, and is therefore also skipped until Appendix A.

Lemma 2.22. There exists a positive constant C' > 0 such that, if the real frequency o = (1,1,§)
in R\ {0} is characteristic, and if k between 1 and N is such that T = 4(n,€), then we have

dist ((T, n), Q)
(7, m)[ /2

Using Lemma 2.15, we therefore obtain the following estimate

dist ((7', n), Q) 1/2
(7, m)[1/2

3. FUNCTIONAL FRAMEWORK

1/2

(2.26) 7o B0, )] > C

3.1. Set of frequencies inside the domain. To define the functional framework that will
be used, we need first to determine a priori which frequencies may appear in the solution to
(2.1). For a detailed discussion of this analysis, reference is made to [Raul2, Chapters 9 and 10]
and [MAS88]. The presence on the boundary of the frequencies (i, ..., ¢, creates, by nonlinear
interaction, the following group of frequencies on the boundary

(3.1) Fo=QZ++(nZCRY
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The assumption is now made that this group does not contain any glancing point, which have
been introduced in Definition 2.18. This assumption is often made, and allows to avoid compli-
cations created by the glancing modes, see e.g. [CG10, CGW11].

Assumption 5. We have

(7o \{0}) NG =0.
In other words, with the notations of Proposition 2.16, for all { € Fy, \ {0}, the set G(C) of
indezes j between 1 and M(() such that the characteristic frequency (C,@(C)) 1s glancing, is an
empty set.

However, attention must be paid on the fact that despite Assumption 5, the set F; \ {0} may
contain frequencies arbitrary close to the set of glancing frequencies G, namely frequencies ¢
admitting a lifting inside the domain o = (Tk (n,€),m, 5) of which the normal component of the
group velocity given by —0¢7 (7, §) is arbitrary close to zero. This phenomenon is well illustrated
in Example 3.1 of compressible isentropic Euler equations below. In the following, we will need
a control on the projectors II¢,y (¢) for ¢ in the group F\ {0}, defined for ¢ non glancing. Indeed
the norm of this projector increases when ( gets close to the glancing set G. This is why a small
divisor assumption is now made, that gives a control over the distance between ( in F, and G
for large ¢, notably leading to Proposition 6.16 below.

Assumption 6. There exists a real number a1 and a positive constant ¢ such that for all ¢ in
F» \ {0}, we have
dist (¢,G) = c|¢|7™.

Note that Assumption 5 is a consequence of Assumption 6, so could be omitted. However we
have chosen to keep both assumptions because they play two different roles in the proofs. Small
divisors Assumption 6 is quite unusual, and plays a technical role in the proofs.

The operator L(0,d,) being hyperbolic, the frequencies on the boundary ¢ € F;,\ {0} are then
lifted inside the domain into frequencies (¢, &). We will see that the polarization conditions for
the leading profile cancel the modes associated with noncharacteristic frequencies. Therefore,
since we are interested in bounded solutions, at this point only the incoming and evanescent
characteristic frequencies lifted from frequencies on the boundary are created. Assumption 5
is used here to exclude the possibility of creating glancing frequencies (C ,fj(C)), that is with
j € G(¢). Thus, at this stage, the set of frequencies {0} U F™ U F°¥ has been obtained for the
leading profile, where the sets F'* and F° are given by
(3.2)

Fr= (&) Ce RN}, G e T}, Fi={(C.&(0). Ce R0} j PO}

Apart from exceptional cases, the set F™ is not finitely generated, which imposes an almost-
periodic framework for the normal fast variable.

Interest is now made on resonances that may occur inside the domain. By nonlinear interac-
tion, two frequencies a;,((p) = ({p, &), (Gp)) and v, (&) = (¢g, &5, () of F™ may resonate to
create a characteristic frequency «;, (¢,) = (Q, £jr(Q)) in the following way:

np @, (Cp) +ng i, (Gg) = nr @, (Gr),  Mpymg,ne € Z\ {0}
If the index j, belongs to the set O((,), that is to say if o, (¢) is an outgoing real characteristic
frequency, a new frequency inside the domain is thus created, which does not already belong to
the initial set F® defined above. The simplifying assumption that it does not occur is made, so
there is no outgoing characteristic frequency created through a resonant triplet. More precisely,
we assume that the outgoing and the incoming frequencies do not resonate one with the other.
The set of outgoing frequencies F°" is defined as

(3.3) = {(¢6(0), ¢e R0}, je o)}

Assumption 7. i) There does not exist a couple (o, q) of incoming characteristic frequen-
cies F and a couple of integers (ny,n,) such that the frequency

np Qp + g Qg
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1s real, characteristic and outgoing.
i) There does not exist a couple (ay,q) of outgoing characteristic frequencies F°' and a
couple of integers (ny,ng) such that the frequency

Np Qp + Mg Qg
1s real, characteristic and incoming.

This is a strong assumption, that, up to our knowledge, cannot be found in the literature.
It implies that there is no outgoing mode in the leading profile of the expansion. For example
in [CGW11], there is no such assumption, but since there is only one phase on the boundary,
there are a finite number of resonances, conversely to our case. When there are outgoing modes,
they are coupled with incoming ones through the trace on the boundary. This is an issue since
it seems that the suitable functional framework for outgoing modes, tailored for evolution in
time, is different from the one for incoming modes, adapted to propagation in normal direction.
It also complicates the iterative process used to construct a solution. We have chosen here to
focus on the construction of a functional framework for incoming modes that allows to solve the
problem.

Note that if three real characteristic frequencies ay,, ag, o resonate as

Np Qp + Ng Qg = Ny Q. N, Ng, Ny € Z,

then according to the previous assumption, the frequencies «, oy, o, are either all incoming or all
outgoing. On an other hand, despite Assumption 7, there may exist a countable infinite number
of resonances between incoming frequencies, as it is the case in Example 3.1 of compressible
isentropic Euler equations in dimension 2.

At this stage, for a new frequency to be created from F", there must exist a resonance
between two frequencies of F, that creates a real characteristic frequency which does not
already belong to F™. The frequencies in F are incoming, and according to Assumption 7
above, a resonance between two incoming frequencies may only produce an incoming frequency,
which already belongs to F*. There is therefore no new frequency created, and the final set
of frequencies inside the domain created by nonlinear interaction on the boundary and lifting
inside the domain is given by

(3.4) Fi={0ru{a;(0), e F\{0}, j €T UPQ}.

We expect for the leading profile of the solution to (2.1) to feature all frequencies in F created
by lifting. It leads to consider, to maintain generality, all frequencies in F. Yet it seems unlikely
that the group generated by F may be finitely generated, which a priori excludes an asymptotic
expansion of the solution u® in the form of quasi-periodic functions. Following [JMR95] and
[CGW11] after, a quasi-periodic framework is nevertheless considered for the tangential fast
variables (the group of frequencies on the boundary being finitely generated), but an almost-
periodic framework for the normal fast variable is considered. The next subsection is devoted to
that question and describes the functional framework used in this analysis. This part is ended
by verifying the different assumptions and assertions made in this subsection for Example 2.1
of compressible isentropic Euler equations in dimension 2.

Ezxzample 3.1. The notations of Example 2.1 and those after are used. Assumptions 5,6 and 7
concern the group of frequencies on the boundary F, thus adequate frequencies on the boundary
must be considered for Example 2.1. To simplify the calculations, we take two frequencies ¢!
and ¢° given by ¢! := (cono,m0) and ¢% := (co o, Mo), with 7o > 0 and ¢ an irrational number
strictly larger than 1, so that ¢' and ¢% are both in the hyperbolic region H. Recall that
co = c(vg) > 0 refers to the sound velocity and that the equilibrium Vjy = (vg,0,ug) satisfies
0 < ug < ¢g. The boundary frequencies lattice JF;, is therefore given in this example by

Fy={(como (p+6a),m0 (p+ ) | p,qg € Z} CR%.

We denote by Cpg = (Tpg:Mpq) = (como (p + 6q),m0 (p + ¢)) the frequency of F, given by
p¢t+q¢°, for p,q in Z.
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p/q> K4 Ky >p/g>—0 p/qg< -6
<0 Cp,q 1s in the hyperbolic (p,q is in the mixed region (Cp,q is in the hyperbolic
1 region H with 7, , > 0 EH region ‘H with 7, , <0
<0 Cp,q 1s in the hyperbolic Cp,q is in the mixed region (Cp,q is in the hyperbolic
1 region H with 7, , <0 EH region H with 7, , > 0

FIGURE 4. Position of ¢, , depending on p and gq.

A nonzero frequency ¢, 4 is glancing if and only if |7, 4| = \/c2 — u3 |04/, that is to say if and
only if !

3.5 ,
(35) ¢ \1-VI—M? 1+V1-M?

We have denoted by M the Mach number given by M := ug/cy, belonging to (0,1). If the two

real numbers

' T 1-V1i-M? RV v
are irrational, then there does not exist a relation of the form (3.5), and there is therefore no
glancing frequency in the group F; \ {0}. Thus we make the assumption that K_ and K are
irrational, so that the assumption 5 is verified. We may for example take M = v/3/2 and § > 1
irrational. We summarize now the different areas where the frequencies ¢, , may be, depending
on p and ¢. First note that we have 0 > K, > K_ > —¢. Recall that the frequency ¢,
is in the hyperbolic region (resp. mixed region) if and only if |7, 4 > /¢ — ud || (resp.
1Tp.ql < /3 — ud |npgl). We thus infer the classification given in Figure 4. The calculation steps
are not detailed, but one case is treated in more details below.

ge{m—é —m_a}

The remark concerning the group velocities that follows Assumption 5 is now illustrated.
For that purpose a sequence of frequencies on the boundary that draw near the glancing set
is considered, see Figure 5. The real number K given (3.6) being irrational, there exist two
sequences (pg)r and (gg)r of integers such that for & > 0, py and ¢ are coprime, g > 0, and

such that

po > VISMP-8

Qr k—+oo  1+4++/1— M2 -
Note that since Ky > K_ > —4, for all k£ > 0, we have p;/qx > K_ > —J, so on one hand
we have pp + dqr > 0, and on the other hand, independently of the sign of pi + gr, we have
Pk + 0qr > V1 — M?|p + qi|. The frequencies ¢, 4, are therefore in the hyperbolic region H
with 7 > 0, and draw near the glancing region G, see Figure 5. Since 7,, , > 0, according to
Example 2.11, the last component of the group velocity associated with the frequency on the
inside a1 (7, g5, Mps.q) 1S given by

2

2 2 2
Tor.ar — Tow, (cp — up)
(3.7) 867'3(77%7%751(7%,%7kavqk)) < \/ Pl Ak Lr ok

2
Mor

S — 1— M? VI MZ -
(35) :cO\/qk(Hm) et S~ 0 2 90 >\/%_—1+ M

Note that the quantity under the first square root sign of (3.8) is non negative, since for all
k>0, q >0and pg/q. > K_, so that pp + dqr — (px + qx)(1 — M?) > 0. This quantity being
bounded, the quantity (3.8) converges towards zero by construction of the integers (pg, qx). We
see that the normal group velocity (3.7) of the hyperbolic frequencies (,, 4, converges towards

11f ¢ = 0, then according to the relation |7, 4| = \/cZ — 42 |[1p.4], we have p? = (1 — u2/c2) p® so p is also zero, i.e.
the frequency (p 4 is zero, which is excluded by assumption.



20 CORENTIN KILQUE

zero as k goes to infinity. It shows that the normal group velocity of the hyperbolic frequencies,
although nonzero, may be arbitrary close to zero.

A

T

H

CP47Q4 ..
<p27q2 ()

° ° °
Cp1.ay Cpps

WV

EH

FIGURE 5. Sequence of frequencies that draw near the glancing region, of which
the normal group velocity goes to zero.

Interest is now made on Assumption 7 and into the resonances between real characteristic
frequencies. We recall the notations of Example 2.11, and we first determine that, in the
hyperbolic region, the eigenvalues i&1(¢), i&2(¢) and i£3(C), defined by (2.15), are given, for

¢ =(pgin Fp \ {0}, by
M (p+ 0q) + sign(p + 6q) /(p + )2 M? + 2pq(6 — 1) + ¢>(62 — 1)

i&1 (Cp,q) =110

1— M? ’
. M (p+6q) —sign(p+3q) \/(p + q)2 M2 + 2pq(6 — 1) + ¢2(02 — 1)
2§Z(Cp7q) =170 1— M2 ’

. . p+iq
ZgB(Cp,q) = —17o M

The case of the glancing region is excluded by assumption, and the one of the mixed region is
included in the following, considering there is in this case only one imaginary eigenvalue, which
is the linear eigenvalue i£3(¢). We first observe that, the eigenvalue i£3((p, ) begin linear, it
generates resonances of the form

a3(<p,q) + a3(<7’,8) = a3(<p+r,q+s), Vp,q,7, 5 € Z.

The frequency as((p4) being always incoming, there are therefore already an infinite number
of resonances between incoming frequencies. From now on the notation aj2 refers to one of
the characteristic frequency «q or as. Since by linearity of a3, the resonance between two
frequencies a3 and a frequency o 2 is impossible, the two following cases of resonance are still
to be investigated:

@12(Cp.q) + 12(Crs) = a3(Cprrgrs) et a12(Cpg) + a1,2(Grs) = a12(Cprrgts)-
In the first case, it is equivalent to the relation
(3.9)
[(p+a)* = (r+ )’ ] M® +2[(p + q)° = (r + 5)°] (2(rs — pa) (6 — 1) + (5* — ¢*) (6" — 1)) M°
+ Cy(p,q,7,8,6) M* + Co(p,q,7,5,0) M? + (p+ 1+ 6q +05)> =0

where coefficients Cy(p, q,7,s,0) and Ca(p, q,7,s,0) are polynomial in their variables. Two cases
may now occur, depending on whether the coefficient in front of M® in equation (3.9) is zero or
not.
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i) Either we have (p+q)? — (r +5)? # 0, in which case equation (3.9) is a polynomial equation
of degree 4 in Q[d] satisfied by M?2.

ii) Or we have (p+¢)? = (r+s)?, and in this case (3.9) is a polynomial equation of degree at most
2 satisfied by M? in Q[6]. If once again the coefficients Cy(p, ¢, 7, 5,6) and Ca(p,q,7,5,6) in
front of M* and M? are zero, then we get p + r + dq + 05 = 0. Therefore we have r = —p
and s = —q, that is to say (. s = —(p,q, s0 the studied resonance is actually self-interaction
of (p4 with itself to generate the zero frequency. Thus, if (p+ ¢)? = (r + s)?, the only cases
of a real resonance are those where M? is a root of a polynomial of degree 1 or 2 in Q[d].

It has therefore been determined that for a resonance of the first type to occur (not of self-
interaction type), then M? needs to be a root of a polynomial of degree at most 4 in Q[6].

For the second type of resonance, such a relation is verified if and if only if the following
relation holds

(3.10) (ps —qr)*(1 — M?)(§ — 1)* =0,

that is to say, since we have 0 < M < 1 and § > 1, if and only if the two frequencies ¢, , and ¢, s
are collinear. Then one may write (, ¢ = A (t o and (s = p Gr 5 With (; 4 @ hyperbolic frequency,
and A, p in Z*. Next verify that, since we have sign(\ (t + dw)) = sign(A) sign(t 4+ dw), the two
following relations hold &1 (A (tw) = A&1(Crw) and E2(A Crw) = A&2(Crw). The same holds for the
two frequencies 1 (s, and (A + p) (. The only two resonances that may occur are therefore

A al(Ct,w) +u al(Ct,w) = ()‘ + M) aq (Ct,w) et A aQ(Ct,w) +u OCQ(Ct,w) = ()‘ + M) 042(Ct,w)7

which both are actually self-interaction of frequencies v ((t ) and aa(( ) with themselves: the
evolution of the harmonics A\ and p are coupled with the one of A 4+ u. In particular, the three
frequencies implied in this resonance are either all incoming or all outgoing. Thus, if M? is not
a root of a polynomial of degree at most 4 in Q[d], Assumption 7 is verified for the compressible
isentropic Euler equations in dimension 2, with the group of frequencies on the boundary that
has been considered.

We finally dig into the small divisors Assumption 6. One can check that?, depending on the
sign of p, g, the distance between (, , and the glancing set G is given by

Qist(GpsG) = C |(p 4+ 0) = V1= M2(p + g)] = Cq(1 % /1= M)

P_ g,
q

If p and ¢ are not of the same size scale, then the same holds for p+ dq and p+ g, so the previous
distance can be lower bounded by a positive constant. We thus may in the following assume
that

(3.11) Cilp| < lg| < Calpl.

According to Roth theorem, see [Sch91, Theorem 2A], if the real numbers K| and K_ given
by (3.6) are algebraic numbers (and irrational, which has been previously assumed), then they
satisfy

K= > Cla e,
for all ¢ € N*, p € Z and € > 0. So for all {, , in Fp \ {0}, we get, using (3.11),
dist(Cpq, 9) 2> Cla|** > C‘gp,q’_3/27

and Assumption 6 is therefore verified.

In conclusion, for the compressible isentropic Euler equations in dimension 2 to satisfies
Assumptions 5, 6 and 7, it is therefore sufficient that the Mach number M and the parameter
§ > 1 are such that K, and K_ are irrational algebraic numbers and that M? is not a polynomial
solution of degree at most 4 in Q[d]. The set of solutions to such equations being countable, one

2Using the fact that the glancing set is constituted here of two lines, an elementary geometrical argument allows
to reduce to the distance with respect to n only, where the constant C' is given by

c.— sin arctan(mx
V1I—DM?
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may convince himself that the set of real numbers M satisfying these properties is not empty.
One may for example choose M := /3/2, which gives K_ = 1 — 2§ and K, = —(1 + 2§)/3,
and also choose § = v/2 > 1. In this way the real numbers K, and K_ are actually irrational
algebraic numbers. On an other hand, a relation of the form (3.9) cannot be satisfied, except
for trivial cases on p, q, 7, s, because one can check that it forms an algebraic equation of degree
4 in §, which is not an algebraic number of degree 4.

3.2. Spaces of profiles. According to the analysis of which frequencies may appear in the
solution to (2.1), we must define for the leading profile a functional framework that allows to
consider superposition of waves of the form

a(z) el ooz/a7
for « a characteristic frequency in F. Since we choose a quasi-periodic framework for the fast
tangential variables, we write such a wave as

a(z) M e L inm Gn e gikaule,

where o = (¢,§) with ( = n1 G+ -+ npGn € Fp and £ € C. Next we denote by § =
(01,...,0,) € T™ the fast tangential variables which substitute to (2’ - (1/e,...,2 - (n/€) and
g € Ry the fast normal variable substituting to x4/e.

For each integer s > 0 and for T' > 0, we denote by Hf (wr x T™) the space of functions of
(t,y,0) € wp x T™, zero for negative times ¢, of which all derivatives of order less or equal to s
belong to L2(wr x T™).

Now we describe the general space that will contain the oscillating and evanescent profiles
spaces. We choose only a uniform control with respect to the fast and slow normal variables
since it would be difficult to control derivatives of the leading profile with respect to these two
variables.

Definition 3.2. For an integer s > 0 and for T > 0, we define the space Es as the set of
functions U of (7', 24,0,14) € wr Xx Ry x T™ x Ry, bounded continuous with respect to (x4,1q)
in Ry x Ry with values in HS (wp x T™), equipped with the obvious norm

HUHES,T = ll?d>801,111/1)d>0 HU( - Xdy - 7wd)HHi(wT><’]Tm) :

We may now introduce the space of oscillating profiles, corresponding to real frequencies a;(().
Following [JMR95], we choose a quasi-periodic framework with respect to # and an almost-
periodic one with respect to 14, namely we consider the closure of the space of trigonometric
polynomials with respect to ¢4 in the space & 1 of quasi-periodic functions with respect to 6.
See [Cor09, Chapters 3, 4] for more details about almost-periodic functions with values in a
Banach space.

Definition 3.3. We call a trigonometric polynomial with respect to 1q every function U of Es
that writes as a finite sum in real numbers &,

U(z,0,%a) =Y Ue(z,0) e V¢,
3
with U in Cy(RY , HY (wr x T™)) for all €.
The space of oscillating profiles PJ% is then defined as the closure in Es T of the set of trigono-
metric polynomials with respect to 1q. This space is equipped with the norm of E .

Concerning evanescent profiles, corresponding to frequencies o;(¢) with j € P((), we consider
quasi-periodic functions with respect to . The factors e?¢¥d with Im & > 0 are expressed through
a convergence to zero as ¥y goes to infinity.

Definition 3.4. For s 2 0 and T' > 0, the space Pgy of evanescent profiles is defined as the set
of functions U of Es 1, converging to zero in H®(wr x T™) as g goes to infinity (for every fized
xq > 0). The space P is equipped with the norm of Es .
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We may now describe the space of profiles, constructed as the sum of an oscillating and an
evanescent part.

Definition 3.5. For T'> 0 and s > 0, we define the space of profiles Ps of reqularity of order
s as

—— 0SC
PS,T T s, T @ S T’
ev

equipped with the obvious norm. If U belongs to Ps 1, we denote by U Por and U € Py
the profiles such that U = U 4 U®Y.

The proof of the fact that the spaces PJ% and 2’379 are indeed in a direct sum is presented
later, after the introduction of a scalar product used in the proof.

One can find in [JMR95] a partial proof of the following result, that we recall here for the
sake of clarity.

Lemma 3.6 ([JMR95, Lemma 6.1.2]). For all T > 0 and for s > (d + m)/2, the spaces
Es s ;’Sf, e"T and Ps 1 are all normed algebras. Furthermore, if U and V decomposes in
Psr =P @PGVT as U =US4U® and V = VS°+V* then the oscillating part of the profile
UV is gwen by UV ose and and its evanescent part by UV + UV 4 UV,

Moreover, for T > 0 and s > 0, the spaces Es 7 and P are Banach spaces.

Proof. The algebra properties for £ 7 and PS" arise immediately from the one of Hf (wr x T™).
The same holds for P2% since the set of trigonometric polynomials is stable under multiplication
Finally, this algebra property for H 7 (wr x T™) shows that if U belongs to PoT and V to ST
then the product UV belongs to P, so the space Py 7 is also an algebra.

As for them, the completeness properties are obvious. ]

3.3. Scalar products on the space of oscillating profiles. We now define three scalar
products that will be useful in the following, notably to obtain a priori estimates. This part
is adapted from [JMR95] to the framework of boundary value problems. We shall use a scalar
product with the time variable ¢ fixed (as in [JMR95], which is a priori adapted to the Cauchy
problem) as well as a scalar product with the space variable x4 fixed, more adapted to the initial
boundary problem.

For U,V two functions of wr x Ry x T™ x R4, we denote, when the formulas are licit, for
xqg > 0,

N
(3.12) (UIV)iy (za) := pim E/o UIV) L2 (pxrm) (Xds a) diba,
for0<t < T,

N
(3.13) UV)gu (t) := RLHEOO}—%/O (U1V) L2@a-1xr, xTm) (£ %a) diba-

and, if K is a domain of 27 bounded in the x4 direction,

R—+00

(3.14) (U| V) := lim R/ (UIV) 2 (e xtmy (Ya) dipa.

The first scalar product is suited to the study of incoming modes when the second one is for
the outgoing modes, and the last one will be used to prove the finite speed propagation of the
leading profile oscillating part.

If U and V' are trigonometric polynomials of

Z 0 1/}d Z ZU ,5 Zn-Gelfi/Jd’ Z 0 wd Z ZV 75 ln-Geigwd’

nezm ¢eR nezm ¢€R

o3 of the form?

3The sums in & are necessarily countable.
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then [Cor09, Theorem 3.4, Remark 4.17] ensure that the scalar products (U |V),, (z4) and
(U| V), are well-defined and satisfies, for z4 > 0,

(3.15) U1V @) = 0™ 3 (Une | Vi) 120y (@):

nez™ £e€R

and

(3.16) UV Z Z Une | Vae) 2
nezZm™ (eR

Indeed, for each function U of P, its trace with respect to 14 belongs to L2(IC x T™) for all

g = 0, and its trace with respect to x4,1q belongs to L?(wr x T™) for all x4,14 > 0. If U and
V' are moreover of compact support with respect to x4 and if s > 1, then the traces of U and V'
with respect to ¢,y belong to L2(R4™! x Ry x T™), and the same results from [Cor09] ensure
that the scalar product (U | V), (t) is well-defined and satisfy, for ¢t > 0,

(317) <U ’ V>out Z Z n,g ’ Vi 75 L2(RA-1xRy) ( )
nezZm {ER

In short, scalar products (3.12) and (3.14) (resp. (3.13)) are well-defined on the space of

profiles P%., s > 0 (resp. for profiles of P% with compact support with respect to x4 with

s = 1), and formulas (3.15), (3.16) and (3.17) are satisfied in this case.
The incoming scalar product (3.12) is used to prove the following result.

Lemma 3.7. For all T > 0, the spaces Pgp and PG are in direct sum.

Proof. Consider a profile U in Pg% NPy that writes, because it is an oscillating profile,
) = 3 Y Ugle) e,
nezZ™ £eR

the sum in £ being countable. The profile U also being evanescent, for all z; > 0, the function
Vg U(.,zq,.,%q) converges to zero in L?(wr x T™) as ¥g goes to infinity. Thus, for all 24 > 0,
we have

({UU)in (za) =0,
since the mean value (in terms of (3.12)) of a continuous function on Ry converging to zero at
infinity is zero. But, since U is an oscillating profile, we have

(U Uiy (xa) = 20)™ D> > 1 Unello, (@),

nezm ¢eR

so, for all n, &, the function Uy ¢(4) is zero in L?(wr x T™), and the profile U is therefore zero
as well. 0

4. ANSATZ AND MAIN RESULT

We seek to construct an approximate solution to (2.1) under the form of a formal series

uS*PP (2, 2" - (1 /e, ..., 2 /e, xq/€), where u®?PP is given by
(4.1) uSP(2,0,49) 1=y " Up(z,0,¢q),
k>1

with at least U; in Py for some s > 0. As for them, correctors (Uj)r>2 a priori exhibit
frequencies that may not be characteristic. The convergence of the associated series then relies on
a small divisor assumption which is different from the previously made small divisor assumption
6. Thus we only consider correctors as formal trigonometric series involving all frequencies in
the group (F) generated by the set F.

We are now in place to state the main result of this work. It is placed under Assumptions 1
to 7, as well as Assumption 8 that will be made further on. We denote by h an integer larger or
equal to (3 + a1)/2 where a; is the real number introduced in the small divisors Assumption 6.
Then we denote sg := h+ (d+m)/2.
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Theorem 4.1. Let s be an integer such that s > sg. Under previously listed assumptions, there
exists a time T > 0 such that system (5.11) described below and that governs the evolution of
the leading profile in the asymptotic expansion (4.1) admits a unique solution Uy in Ps .

We recall that we have considered a forcing term G in H*(R? x T™), zero for negative times
and of zero mean with respect to 8 in T™, but the infinite regularity assumption is made only for
simplicity, and the estimates, and thus the existence time 7', only depend on the H*(R? x T™)
norm of G. More precisely, the existence time 7" depends on the operator L(0, d,), the frequencies
on the boundary (i, ..., (n, the order of regularity s, and the H*(wp x T™) norm of the forcing
term G.

The formal WKB study shows that the function

2 elUi(z,2 - C1/e, ..., 2" - /e, za/e)

is formally an approximate solution to system (2.1).

Last two sections of the article are devoted to the proof of Theorem 4.1. In section 5 we start
by formally deriving the cascade of equations that must be verified by the amplitudes (Ug)x>1-
By resolving, first formally and then rigorously for a part of it (in section 6), a fast problem,
this cascade is triangularized and a system of equations for the leading profile is extracted from
it. Next, in section 6, after a discussion about the different types of resonances that appear,
the system is reduced to two decoupled systems for the oscillating and evanescent parts, the
one on the oscillating part involving only the incoming phases. The oscillating system is even
decoupled in a system for all resonant modes, and a system for each non-resonant mode. Then
a priori estimates are proved for the linearized system for the oscillating parts, leading to the
construction of solutions to these linearized systems. Such estimates prove in particular that
the solution to (5.11) is unique. An iterative scheme is then used to construct solutions to the
nonlinear systems, and the evanescent part is finally determined.

Unlike in [JMR95, Part 6], from which the following is mainly inspired, there is no symmetry
in the system, since it is not hyperbolic as a propagation system in the variable x4. This lack of
symmetry is a genuine obstacle to deal with the resonance terms (that are in infinite number)
in the a priori estimates. Assumption 8, concerning all resonances with the possible exception
of a finite number of them, allows to work around the problem and to obtain estimates for the
associated terms. Assumption 8 will be carefully verified for the Euler system.

5. FormMAL WKB sTUDY

5.1. Cascade of equations for the profiles. We seck to formally determine the equations
the sequence of profiles (Up,)n>1 must satisfy for the formal series z — u=?PP(z, 2’ - (1 /e,...,2" -
Cm/€,xq/e) given by (4.1) to be solution to system (2.1). In the following we wish for the
coefficient (a priori dependent on u%?*PP) in factor of the partial derivative with respect to x4 to
be the identity matrix, so that its differential is zero. The analogous property for the partial
derivative in time is crucial in [JMR95] from which we mainly draw our analysis. This choice
is justified here by the particular role of the variable x, in a priori estimates for the principal
profile. This is why we are interested from now on in the following equivalent system

L(u®?PP 9, ) us?PP = in Qp,
€app _ _ e
(5.1) Bu, ~y=¢g on wr,
€,app _
Uy = 0

where we have denoted
d—1
L(u,8.) == Aq(u) ™" L(u,8.) = Ao(u) 0 + > _ A;(u) 9; + a,
i=1

with A;(u) := Ag(u)~* Aj(u) for i = 0,...,d — 1, and Ag(u) := I. In the following we may use
the notation Jy := 0.
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5.1.1. WKB Cascade inside the domain. We are now able to write the equations verified by the
profiles Uy, k > 1, by formally replacing u*2PP by its formal expansion

L A

k>1
in system (5.1). First, we note that the following Taylor expansion is verified, for i = 0,...,d—1:
Ai(ueP) = Ai(0) + e dAi(0) - Uy + > e [ ). Uy + Gi_ 1]

k>2

where, for k > 2, G};fl only depends on Uy, ...,Ui_1. The operator E(uavapp, (9Z) thus writes

(5.2) L(u"™P,0,) = L(0,0:) + > e*Ly(Uk, 0.1),
k>1
with
B d-1 _ -1 A
Li(U,00) =Y dA0) - U1 0;, Li(Uy,00) = (dAZ-(O) U + G;H) &, Yk =2
i=0 1=0

For k > 2, despite the fact that only the Uy, dependency is indicated in the operators Ek(U k> O21),
these ones also depend on the profiles Uy, ...,U;_1, via the functions Gj,_,. The operator

Zl(Ul, 0,/) depends however only on Uj.
We see here the benefit of considering the modified operator L(u, d,): there is an x4 derivative

only in the leading operator E(O, 0,), and not in the other operators Ek(U &, 0,). Furthermore,
we verify that

(5.3) L(u®®*P 9,) [ua’app(z, 2 ey 2 /e ma)E)

~ 1o~ > 1
= [L(uf,app,az) us + - ZL(ue,app’ ) agjuevapp + gawduff,aplo
j=1

(2,2 - C1/e,..., 2" /e, q/e).

where, for j = 1,...,m, the symbol L(us?P, ;) is defined by 30— ¢! A;(u*"P) with ¢; =

(G ,...,Cd 1). Expansion (5.2) of the operator L(us*P, d,) leads to the analogous expansions
of the operators Z(ue’app, ¢)forj=1,...,m
(5-4) L(u™™P, () = L(0,) + Y e* L (U, ¢))
k>1
where
Ly (Uh, ;) - ZC]dA U, e (Ui, G;) - ZCJ(dA Uk+G§C_1), Vk > 2.

Thus, according to expansions (5.2), (5.3) and (5.4), the following asymptotic expansion holds
Leor®,0.)[u (2,2 1z, 2 G2, 7af)]

1=~ B m
= ~{ D2 L(0.6) 90, u P + Dyu P |+ L(0,0:) u” + 3 La(Ur, ) O, P
j=1

J=1

+) e {Lk Uk, 02) e’app+szﬂ(UkJrth)591U€’app}7

k>1 j=1
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where the right hand side is evaluated in (z,2-(1 /¢, ..., 2’-(n /€, 4/€). The operator L(u®?PP,0,)

applied to u®?PP(z, 2" - (1 /e,..., 2" - /e, x4/€) is therefore given by the formal series
(5.5)
E(ue,app, 8,2) |:u€,app(z, Z/'Cl/ea SO Z/'Cm/e’ xd/e)] = Z gk Wk(Z, ZI'C1/€, SO Z/'Cm/e’ xd/e)’
k>0

where, if the variables 6 and v, are substituted to (2'-(1 /¢, ..., 2"-(n/€) and z4/e, the amplitudes
(Wg)k>0 of the formal series (5.5) are given by

(5.62) Wo = { S L(0,¢5) 0, + %}Ul,
j=1
(5.6b) A= {ZE(O, CJ) 89j + 3¢d}UQ + {E(O, az) + Z fl(Ul, CJ) 3@J.}U17
Jj=1 J=1

and for k > 2

(5.6C) Wy == {ZE(O,Q)(?@]. + 3¢d}Uk+1 + {Z(O,BZ) + Zfl(Ul,Cj) 8.9j}Uk
J=1 J=1
k—1

+ {Lk 1(Uk—1, /)+Zzk—l+1(Uk—l+1aCj)86j}Ul-
=1 =1

Formulas (5.6a) and (5.6b) correspond to the analogous ones in [CGW11, (1.33), (1.46)] in the
case m = 1.

Thus, for the formal series (4.1) to be solution to (2.1), the formal series (5.5) must be zero,
or equivalently

Wi =0, Vk >0

We note that each equation W = 0 involves the fast operator
m

L(Dp, Dy,) =Y L(0,¢;) Do, + Dy,
7j=1

which is linear and has constant coefficients, as customary in weakly nonlinear geometric optics,
see for example [Raul2, Section 9.4]. The subject of the following part is to study this operator
in order to rewrite equations (5.6) in an equivalent manner. Before that the WKB cascades on
the boundary and at initial time are determined.

5.1.2. WKB cascade on the boundary. Since we want the formal series (4.1) to satisfy the bound-
ary condition

€app _ _ &
Bum 0 =¢€9,

the profiles (Uy)r>1 must verify, using variables (2/,0), the following boundary conditions

(BU1)jz4=0,09=0 = G
(BUk)|zg=0,p9=0 = 0, k> 2.

5.1.3. Initial conditions. In a similar manner, the profiles (Uy)r>1 must satisfy the following
initial conditions

(Uk)|t<0 — O, k‘ 2 1
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5.2. Resolution of the fast problem L(0y,0y,)U = H. In this part we seek to resolve in
the formal trigonometric series framework the equation

L(0p,0yp,) U = H,

and more precisely, to formally determine the kernel and range of the operator £(9p,0y,). We
follow, in a formal manner, the analysis of [Les07, Part 3]. Thus we consider U writing

Z 0 ¢d Z ZUOSC zn0 Zf¢'d+ Z UeV Z ’l/]) znG

nezZ™ £eR nezm

and H writing

(Z 0 wd Z ZHOSC Zl’l09 l§¢d+ Z Hev Z w) Zn@

nczZm ¢€R nczm

where, for all n in Z™, the sum in £ is countable. Then, by definition of the fast operator
L(0g, 0y, ), we get

L(g, 0y, ) U(2,0,00) = Y > iL(0,(n-¢,8)) USE(z) e elt s
nezZ™ £eR
£ 3 L0, (- ¢,0)) + 04, U () €,
neczm
where we recall that ¢ refers to the m-tuple of elements of R? given by ¢ = (Ci,...,Cm).

Therefore, the profile U is a solution to £(0g, 0y,) U = H if and only if, for all n in Z™ and for
all £ in R, we have

(5.7a) iL(0, (- ¢, €)) UE(2) = Hp% (=),

and

(5.7b) ((Z(0, (0-¢,0)) + 0y, ) US (2,160) = H (2, ).
For n in Z™ and for £ in R, equation (5.7a) admits a solution if and only if HY belongs to

the range of the matrix L( (n-¢,¢)), that is to say, according to Definition 2.6, the kernel
ker T(n.¢¢). According to Deﬁmtlon 2.6 of the partial inverse @), every solution is therefore of
the form

ng = Xng —1Qmee Aa(0) Hye,
with Xp ¢ an element of Im 7y, ¢ ¢), and thus satisfies

0oSsCc

Une = Tn¢.e) Ung — 1Qem¢e) Aal0) Hye.
As for it, the differential equation (5.7b) admits a formal solution for every n in Z™. For n = 0,
the solution is formally given by

+oo
US (z,%q) = — : H{'(z,s)ds,
d

and, for n in Z™ \ {0}, according to Duhamel’s principle, by

Yd
(5.8) UL (z,1hq) =eVAMOTIE (n- ¢) UL (2,0) + /0 eWa=DAMCTIE [ (- ¢) HEY (2,5) ds

+oo
— / e(Ya=s)AnC) (I —HOgn(n-¢)) Hy (2, 8) ds,
Ya
noting that iZ(O, (n-¢, 0)) = —A(n-¢). Indeed, according to Assumption 5, the frequency n-¢{
is not glancing and the projector II, ~(n- ) is thus well defined. The Duhamel’s principle then
applies separately to II¢.y (n-¢) Uty and (I — gy (n-¢)) Ugy . The first term of the right-hand
side of (5.8) is therefore well- deﬁned and the integral of the second one converges since, according
to Proposition 6.16 proved in appendix, the matrix e*4(<) HEN(n -¢) is bounded by a decaying
exponential for t > 0. However we do not know if the integral of the third term converges.
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Indeed, HE is only converging to zero at infinity, and the matrix etA®<) (1 — gy (n - ¢)) is
simply bounded for ¢t < 0, according to Proposition 6.16. The issue is essentially the same for
the integral defining Ug". The following result is deduced from this analysis.

Lemma 5.1 ([Les07, Theorem 2.14]). The equation L(0p,0yp,) U = H admits a solution in the

framework of formal trigonometric series if and only if E* H = 0, and every solution is of the
form

U=EU+QH,

where projectors E and E and operator Q are formally defined further on. In particular we
have

ker £(9p,0y,) =ImE and TIm L(dp,dy,) = ker Er.
If U is given by

Z 0 ¢d Z ZUOSC zn0 Z§¢d+ Z UeV Z ’l/)) znG

nezZm £€R nezm
then B U is deﬁned as
(5.9) (2,0,%a) == D> > Fnce) Unf(z) e ™ ele¥e,
nezZ™ £eR
EU as
(510) (Z 0 wd Z Zﬂ(nCﬁ Uosc ) in-6 ei§¢d
nezZ™ E€R
+ Z eVaAm-Q) 1 (CN( O U (2,0) e zn0
neZ™\{0}
and QU as
QU600 == 3 Y i Qe A0 USE() e ™ v — [T U (e, ds
neZm™ £€R d

Ya
+ Z </ e(iﬂd*S)A(“'C)HEN(n-C)Uﬁv(z,s)ds

neZ™\{0}
+o00 :

— / e(ba—s)An-C) (I -Tgn(n-¢)) UL (z,5) ds> etn?
d

Note that, for now, the operator Q and the projectors E and Ei are only formally defined.

The projectors E and E?, that are the only one involved in the leading profile equations, can be
defined in the space P, 7, and this result will constitute a part of the following section. However,
the operator Q cannot be rigorously defined in the functional framework used here (the issues
are the absence of some small divisor control - in the same manner as in [JMR95], as well as a
lack of exponential decay for the evanescent profiles).

5.3. System of equations satisfied by the leading profile. According to expressions (5.6a)
and (5.6b) of the amplitudes Wj and W7, and using the previous Lemma 5.1, we get the following
system of equations for the leading profile Uy, simply denoted from now on by U:

(5.11a) EU=U

(5.11b) E[E(o,@z)UJrZL(U, G) A U] =0
j=1

(511(3) B U‘xd:07¢d:0 = G

(5.11d) Uprco = 0.
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We note that the leading profile U; is polarized, in the sense that it satisfies equation (5.11a),
so according to Formula (5.10) defining projector E, only the characteristic frequencies occur in
its Fourier expansion. We shall see in the next section that the oscillating part U%° of profile
U satisfies the problem

(5.12a) EU> = U
~ [~ m ~
(5.12b) Ei [L(O, 0:) U + 3" Ly(U*,¢;) D, Uosc] —0
j=1

(5.12¢) B (U +U™), gm0 =G

(5.12d) Ujy<o = 0.

The question is to know whether or not boundary condition (5.12¢) determines on its own the
trace U™, _o- As already explained in [CGW11] and [CW17], the answer depends on the

existence of a resonance between two incoming frequencies that generates an outgoing frequency.
Such a resonance pattern is excluded by Assumption 7. In this case the boundary condition
(5.12¢) also determines the trace U“;V(FO’ bg=0? which, according to the polarization type condition,
immediately leads to the construction of the evanescent part of U.

6. CONSTRUCTION OF THE LEADING PROFILE

Now that the system that must be verified by the leading profile U has been formally deter-
mined, we are in position to construct a solution to it. We begin in a first part by a discussion
about the different types of resonances that may appear in the system. In particular, the tech-
nical assumption is made that the resonances for which the lack of symmetry is not controlled
are in finite number. This assumption is made to deal with the lack of symmetry in the reso-
nances terms compared to the case of [JMR95]. In a second part, the projectors appearing in
system (5.11) as well as some results of section 5 are made rigorous, using the small divisors
Assumption 6. Then we proceed to the three main steps of the proof, namely the decoupling
of system (5.11), derivation of energy estimates for the linearized systems and construction of
the solution. First step is achieved in section 6.3 and consists in reducing the system (5.11)
to a system for the evanescent part, a system for the oscillating incoming resonant part and a
system for each oscillating incoming non-resonant part. Writing equation (5.11b) in extension
with modes, we isolate the system satisfied by the mean value to show that it is zero. Then it
is proven, using an energy estimate on the oscillating outgoing part, that every outgoing mode
is zero. To obtain this estimate, we use a scalar product defined only for profiles with bounded
xg-support. Therefore we need to show beforehand that a solution to (5.11) propagates in the
normal direction with finite velocity. The proof of this result is postponed after the introduction
of the techniques used in it, in section 6.4. Finally, using the fact that incoming modes are zero,
the boundary condition (5.11c) can be decoupled for each evanescent and incoming oscillating
mode, which will conclude the decoupling of the system. The derivation of a priori estimates
without loss of derivatives is performed in sections 6.4 and 6.5, one for the resonant part and
one for each non-resonant part, namely Burgers type equations. Each non-resonant mode must
be treated separately to avoid a factor unbounded with respect to the frequency, but part 6.5
presents no additional difficulty since it reuses techniques displayed in the previous one. The
derivation of a priori estimates for the linearized oscillating resonant system is presented in sec-
tion 6.4, beginning by the L? estimate. It is obtained taking the incoming modes suited scalar
product between the linearized propagation equation and a modified profile. Four terms need to
be addressed, the transport and Burgers type (corresponding to self-interaction) ones are treated
classically (with an integration by part and using symmetry in the self-interaction terms), while
the two resonant ones are handled using the technical assumption on resonance terms. More
precisely this assumption asserts that these resonance terms (except for a finite number of them,
that are treated separately) are such that the lack of symmetry in it is controlled in a way that
the techniques used for the Burgers type terms can be adapted. The same method for energy
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estimates is used with a different scalar product to prove the finite speed propagation in this
section. Then the estimates for derivatives are obtained classically using commutator estimates.
Section 6.6 is devoted to construction of the solution. The oscillating part is constructed using
an usual procedure which is not detailed, and consists in proving existence of a linearized so-
lution with a finite difference scheme using the a priori estimates previously derived, and then
existence of the sought solution using an iterative scheme. Uniqueness is deduced from the a
priori estimates. As for the evanescent part, its expression is prescribed by a polarization type
condition, and we prove that the constructed profile belongs to the space of evanescent profiles.
It will achieve the proof of Theorem 4.1, and finally section 6.7 draws a conclusion and some
perspectives.

6.1. Resonance coefficient and additional assumption. The sets defined below permit to
gather the characteristic frequencies according to collinearity.

Definition 6.1. We consider the subset of Z™\ {0}, denoted by Byzm, constituted of all m-tuples
of coprime integers of which the first nonzero term is positive:

5 7M1\ 10 MmN ANy =1,
Z’"'_{(”l""’”m)e \{}HkG{O,...,m—l},nl,...,nk:O,nkJrl>0}'

One can verify that for alln of Z™\ {0}, there exists a unique element ny of Bym and a unique
nonzero integer A such that n = Ang.

Then we introduce the following notation for real characteristic frequencies lifted from fre-
quencies on the boundary.

Definition 6.2. Forn in Z™\ {0}, we denote by C(n) the finite set of real numbers & such that
the frequency (n - ¢, &) is real and characteristic, namely
Cn):={{cR[(n-(&eC}.

We also denote by Cin(n) (resp. Cout(n)) the set of real numbers & such that the frequency (n-¢, &)
is real, characteristic and incoming (resp. outgoing), namely

Cin(n) = {§(n-¢) |j€I(m-Q)}, Cou(n) ={§m-¢)[jeOm- ()},
with notations of Proposition 2.16.

We recall that according to Assumption 5, there is no glancing frequency in F, so the disjoint
union

C(n) = Cin(n) U Cout(n)
is satisfied for all n in Z™ \ {0}. All real characteristic frequencies have been considered here,
but there may also exist non-real characteristic frequencies lifted from n - ¢.

Remark 6.3. One can check that, according to Remark 2.17, the sets C, Cin and Coy; are homo-
geneous of degree 1. Thus, if n belongs to Z™ \ {0} and ¢ to C(n), and if ng in Bzm and A in Z*
are such that n = Ang, then there exists &y in C(ng) such that £ = X\ &.

We now introduce some notations for the resonances.

Definition 6.4. For n in Z™ \ {0} and & in C(n), we denote by E(n,&) the vector of the basis
Ei,...,En of CN given by (2.8) that generates the line ker L(0, (n - ¢, €)).

Remark 6.5. Note that for n in Z™ \ {0}, £ in C(n) and X in Z*, since the linear subspaces
kerL(O, (n-¢, 5)) and kerL(O, (An-¢, )\5)) are equal, we infer E(n, &) = E(An, \{), so the vector
E(n, &) is homogeneous of degree 0.

The following definition is based on [Raul2, Chapter 11].

Definition 6.6. Let n,, n, be two elements of Z™ \ {0}, and let (£y,&,) in C(ny) x C(ny) be
such that the frequency

(ny - ¢, &) + (g - ¢, &) =: (0 - ¢, &)
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is real and characteristic (i.e. such that there is a resonance). Then the resonance coefficient
I'((np,&p), (ng,&)) is defined by the equation

%(nr'47£'r) Ly (E(npa §p)ing - C) E(ng, &) = F((np’ &p), (ng, gq)) %(nr'47£7‘) En;,&).
This coefficient exists by definition of the projectors m, for k = 1,...,N and according to
Lemma 2.15.

Remark 6.7. 1) Since all quantities involved in the definition of I" are homogeneous of degree
0 or 1, the coefficient I' is homogeneous of degree 1, i.e. for all n,, n, in Z™ \ {0}, (&,,&,)
in C(np) x C(ng) such that the frequency (n, - ¢, &) + (ng - ¢, &;) is real characteristic (that
is such that there is a resonance) and for all A in Z*, we have

(6.1) F(()\np, A&p), (Ang, qu)) = )\F((np, &p), (ng, fq))-

By definition and for the same reason, we also have, for ng in Z™\ {0} and &y in C(ng), and
for )\1, )\2 in Z*,

(6.2) T'(A1(no,&0), A2(mo, £0)) = A2 T'((mno, &0), (1m0, &)

ii) Since according to Remark 2.7 the projectors 7, are bounded and the vectors E(n,¢) are
of norm 1, for all n in Z™ \ {0} and all £ in C(n), we have

|
I'((n,8), (n,8))| < Oz :
a ) Fince Em. )]
Therefore, according to the lower bound (2.26) of Lemma 2.22 and the small divisors As-
sumption 6, for all n in Z™ \ {0} and all £ in C(n), we have

(6.3) IT((0,€), (n,6))| < Cln|",

where h is an integer larger than (3 + a1)/2 with notation of Assumption 6.

iii) The quantity 7(n,.c¢,) L1 (E(np,gp),nq . C) E(ng,&;) being homogeneous of degree 1 with
respect to ng, the resonance coefficient P((np, &p), (ng, §q)) formally corresponds to a partial
derivative with respect to the fast tangential variables, applied to the profile associated with
the frequency (n, - ¢,&,).

The coefficients I" defined above shall appear in the computations to obtain a priori estimates
for system (5.11). In particular, when these coefficients present some symmetry property, the
associated resonance is easy to control in the a priori estimates. Thus we discriminate the
resonances satisfying this symmetry property from the others.

Definition 6.8. Fiz a constant Cy > 0. Let n, be in Bzm, and & in C(n,). We consider the set
of T-tuples (Ap, Ay, Ars p, g, &y, &g) With Ay, Ag, Ap in Z*, ny,ny in Bzm, (£p,&,) in C(ny,) xC(ny),
(np - ¢, &) and (ng - ¢, &) non collinear and \p, Ag, A, coprime numbers, that resonate to give
the resonance A, (n, - ,§) in the following way

)‘p (np . C,gp) + >‘q (nq . Cagq) = >\r (nr . Cagr)-
This set is written as the disjoint union
Rl(nra gr) (i R2(nra gr),
where the sets Ri(n,, &) and Ra(n,, &, ) are defined as follows.
i) The set Ri(n,,&) is constituted of 7-tuples (Ap, Ag, A, p,ny, &p, &) satisfying

(6.4) {F(()‘p np, Ap &p), (Ag gy A gq)) + F(()‘p np, Ap &p), (Arnp, — A, 5r)) { < CO{ (Apnp, Ap 5p){

where Cy > 0 is the constant which have been fixed in the beginning and which does not
depend on Ny, Ay, M\, Ny, Ny, 0, &, &, & These resonances are said to be of type 1.

ii) The 7-tuples (Ap, Ag, A\, Dy, g, &, &) which do not satisfy the previous property constitute
the set of type 2 resonances, denoted by Ro(n,,&,).

Remark 6.9. 1) Note that the sets Rq(n, &) and Ra(n, ) depend on the constant Cy > 0 fixed
at the beginning, although this dependence is not indicated.
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ii) According to Assumption 7, note that if the frequency (n-¢, &) is outgoing (resp. incoming),
then both sets Ri(n,¢&) and Ra(n,§) are constituted only of 7-tuples corresponding to
outgoing (resp. incoming) frequencies.

iii) Note that since the coefficients I" are not symmetrical, the type of a resonance

)‘p (np : C?gp) + )‘q (nq : Cagq) = )‘7’ (nr . Caé.r%

depends on the way it is written. However, since condition (6.4) is symmetrical in (g, 7),
the resonance

)‘p (np : C,gp) + >‘q (nq : Cagq) =\ (nr : Cagr),

is of type 1 if and only if the resonance

)‘p (np : C? gp) - )‘7’ (nT . C? g?") = _)‘q (nq ’ C? §Q)7

is of type 1.
iv) Also note that if a resonance of the form

)‘p (np : C,gp) + >‘q (nq : Cagq) =\ (nr : Cagr),

holds, then for k in Z*, the following resonance relation is also satisfied

kXAp(np-C.&p) + kA (ng- €, &) =k A (0, €, &)

This explains the choice made in Definition 6.8 to consider only 3-tuples (A, Ag, Ar) of
coprime integers and m-tuples n,, n, and n, of Bzm.

The previous definition leads to the last assumption of this work. It is made for technical
reasons, but, up to our knowledge, it is not a necessary assumption.

Assumption 8. There exists a constant Cy > 0 such that the sets R1(n, &) and Ra(n,§), for n
in Z™\ {0} and & in C(n), defined in Definition 6.8 satisfy the two following properties.

a) The sets of incoming resonances of type 2 and outgoing resonances of types 1 and 2

U Ram9),  |J (Ri(n,&URn,9)),
neBym neBym
£€Cin(n) £€Cout(n)
are finite sets.
b) For all incoming frequency (n,&) of Bzm X Cin(n) such that the set Ri(n, &) is nonempty,
the following lower bound holds

~ 1
(6.5) Tnce Em,€)| = o

Remark 6.10. i) The self-interaction between two collinear frequencies always constitute a
resonance, but these terms should not be an issue in the analysis, since they induce terms of
Burgers type, which are commonly treated in the estimates. However the resonances of type
2 are difficult to control, that is why a finiteness assumption is made on this set, whereas
property (6.4) satisfied by resonances of type 1 allows to treat an infinite number of them
(to the prize of a uniform control). Such an infinity of resonances appears irremediably in
Example 2.1 of compressible isentropic Euler equations in dimension 2. It constitute one
of the main additional difficulty addressed here in comparison to the monophase case of
[CGW11].

ii) We already know that for (n, &) in Bzm x C(n), the vector T.¢ ¢)E(n,§) is bounded, accord-
ing to Remark 2.7, and that it is allowed to go to zero but in a controlled way, according to
estimate (2.26) and Assumption 6. In the case of an infinite number of resonances, namely
for incoming resonances of type 1, we also need to make sure that these vectors do not go
to zero, for a technical reason explained below. This is why we assume the uniform lower
bound (6.5) of Assumption 8. This assumption excludes the possibility of the existence of
a sequence of frequencies (n,§) such that Ri(n, &) is nonempty, converging to the glancing
set G.
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According to Assumption 7, it has already been established that the sets of incoming and
outgoing frequencies 7™ and F°U defined in (3.2) and (3.3) do not resonate with each other.
This decomposition of the frequencies set in sets that do not resonate with each other is now to
be refined, which will allow to decouple the studied system according to these sets.

Definition 6.11. In this definition we confuse the frequency (n-¢,&) with the couple (n,§). Let
Co > 0 be the constant fized in Assumption 8. We denote by FOU the set of outgoing frequencies
(n,&) of Bzm X Cout(n) involved in resonances of type 1 or 2, namely such that R1(n,)UR2(n,§)
is nonempty. Then the following disjoint union holds

(6.6) {(n, &) € Bzm x Cou(n)} = Fl' U || {(m,8)},

(,8)€(Bzm XCout (m))\F L&

where the set involved in the disjoint union do not resonate with each other. The set Fii is

defined in a similar way for incoming frequencies, so that the following decomposition holds

(67) {(n7 §) € Bgm x Cin(n)} ‘FI'IQS |_| {(n7 5)} )

(n,€)€(Bgm X Cin(n))\ 8

where the set involved in the disjoint union do not resonate with each other.

Remark 6.12. In Assumption 8, the bound (6.5) a priori applies to couples (n,§) such that the
set R1(n, &) is nonempty. But since according to Assumption 8 there is only a finite number
of type 2 resonances, we can assume without loss of generality that this bound also applies to
couples (n, ) such that Ri(n, &) is empty but Ry(n,§) is not, namely to all elements of Flb.
Therefore for all (n, &) in FiL, the following bound holds

res?

(6.8) IT((0,8), (n,8))| < Clnl.

Note that the previous estimate differs from (6.3) by a linear control and not an algebraic control
of degree h.

Finally the projectors analogous to E and E?, selecting only the incoming resonant frequencies,
are defined, and we verify after that Assumption 8 for the Euler equations example considered
in this paper.

Definition 6.13. For all formal trigonometric series U writing

Z 0 T;Z)d Z ZUOSC in-Geifwd+ Z Urelv(z’¢d) ein-G’

nezZ™ R nezm

the series EZ U s defined as

(6.9) Eires U(z,0,1q) := Z Z T omo-c 7o) Usiey ey (2) €200 gf A0,
(n07£0)€]:;gs AEZ*

and E®. U as

res

(6.10) E;Iels U(z,0,v4) :== Z Z T(Ano-¢,\éo) Ug\)flco,kio (2) ¢t A0 iAo Ya
(n07£0)€]:rigs AEZ*

Ezxzample 6.14. We return to Example 2.1 of compressible isentropic Euler equations in dimension
2, for which we check the last assumption of this work, namely Assumption 8 about the control
of resonances. Recall the notations and results of Example 2.1 and those after, and notably the
analysis of the resonances made in Example 3.1, and consider a Mach number M satisfying the
previously made assumptions. Is has been shown that if M? is not an algebraic number of degree
less than 4 in Q[d], then the only resonances (except for the self-interactions) occurring are those
involving the linear frequency «s(¢), which are in infinite number, even with collinearity, and
between incoming frequencies. It will be shown that there exists a constant Cy > 0 such that
these resonances satisfy property (6.4) and such that all frequencies a3((p ) satisfy the lower
bound (6.5), proving that system (2.4) verifies Assumption 8. First we look for the coefficients
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I for this type of resonances. Consider (p,q) and (r,s) in Z?\ {0}. The aim is to determine the
coeflicient

P((p, Q), 53(@77(1)7 (n 8)7 53(4.7",5))

relative to the resonance
OZB(CZMI) + a3(CT‘,S) = O‘3(<p+r,q+s)a

denoted more briefly by P((p, q), (r, s)) Since, for ¢ in R?\ {0}, the real characteristic frequency
az(¢) = (7,1,&(C)) satisfies 7 = 12(n,£3(¢)), we obtain

E((p, Q)a 53(@?7(])) =Es (np,qa 53(Cp,q)), E((T‘, 5), 53((7’,3)) = E» (777’,3, 53(Cr,s)),
E((p + rq + S)a 53(<p+r,q+s)) — E2 (anrr,quSa 53(Cp+r,q+s)),

where Fy(n, €) is the vector of basis (2.8) of CV given in this example by

0
Ez(n,é“);\/ﬁ e |, o er\ (o).
-n

Thus the associated vector of basis (2.9) is given by

—Nvo
1 2 2
A —1 — Up—C% Rz .
Q(VO) E2(777 5) (ug . cg)\/m § wo ) (777 5) S \ {0}
—Nuo

Also computing the vectors Ei(n,€&) and E3(n,€) for (n,&) € R?\ {0}, it is determined that
the Projector m((pir.gts)-¢.e3(Cpingrs)) OCCUITING in the coefficient F((p, q), (r, s)) is given in this

example by %Z(Wp—l—r,Q-i-Sa 53(Cp+r7q+s)) where, for (777 5) in R? \ {0}7

2,2 2 2 2
—Uup Cy N —Up Vo n§ Ug Vo 1

mo(n, &) = w2 —cA) /vy 2ug(ud—c2) —nfug(u2—c?
wo(ug — ) (1 + €2) né&cs(ug—cg)/vo & uo (ug —cg) —n&wuo (ug — cp)
—n? ¢ ud/vo —néud ug n?

Thus the vector 7o (1, &) Ea(n, €) is given by ug A2 (Vo) ™! Ea(n, ), for (n, ) in R?\ {0}. It ensures
in particular that Assumption 8 is verified, since the following uniform lower bound holds

‘%aa(Cp,q)E((Z% q), 53(Cp7q)){ = {%2 (77177‘17 53(@241)) E (77p7q= 53(@241)) ‘
= |uo A2(Vo) ™" B2 (1p.0:€3(Cpa)) | = C | B2((p,0),63(Gp0)) | = C.

Returning to the determination of coefficients " ((p, q), (r, S)) , by computing differentials dﬁi(Vo),
we finally get

L1 (B2 (1p.gs &3(Gpa) )+ Crs) B (155 €3(Grs))

Vo 1ir,s/ [uo (uf — 5]

_ Tp.q s — Tr,s Tlp,g
2 2 /02 ]2 2 /.2
\/np,q + 73/ U \/77r,s + TR/ UG

Trys /5

77%9/(“3 - C%)
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The formula &3(¢) = —7/ug, for ¢ = (r,n) in R?\ {0} has been used here. Then we have

%2 (np+r7q+57 53(Cp+r7q+s)) z1 (E2 (np,qa 53(Cp,q)) ) Cr,s) E2 (777*,37 53(@",5))

Np+r,g-+s U0/ Uo
2
(Tp.q r.s = Tr,s Ip.a) (Tptrigts Trs + U Mpirigvs Nrs) 9 9\, 3
902 2 2 2 7,2 /.2 2 /212 2 9 Tptrg+s (Ug — €5)/up
ug (ug — CO)\/np,q + Tha/ UG \/777’,8 + 726/ ug (77p+r,q+s + Tp+r,q+s/u0)

Np+r,q+s

We deduce from the relation 7a(n, &) Ea(n,€) = ug A2(Vo) ™t Ea(n, €) the following formula for
the pursued coefficient I'((p, g), (r, s)):

_ 2
610 () = —— Dot Do) Optrgss e + tprgratre)
U \/np,q + Tpa/ U \/777’,8 + TR/ \/np+r,q+s + Torrgrs/ U

We now check estimate (6.4) with these coefficients. Let (p, q), (r,s) and (¢,w) be in Z?\ {0}
such that (p,q) + (r,s) + (t,w) = (0,0). One can verify, using the formulas 7, ; = ¢o (p + d¢) 1o,
Npg =P+ q)no, p+1r=—tand ¢+ s = —w, that we get

I'((p,q). (r,s))

(1=08)(ps — qr)((t + ow) (r + 6s) + M? (t + w) (r + s)) no 3
Vi + 0?2+ (p+60)2 /M2 \/(r + )2 + (r + 65)2/M2\/(t + w)? + (¢ + 6w)2/M? ug

Since ps — gr = —(pw — qt), we finally have
F((p, Q)a (T’ S)) + F((pa Q)’ (t’ w)) =0,

so estimate (6.4) is in particular trivially satisfied and therefore so is Assumption 8. Note that
in this example, the set Ut is empty and the set F is given by

Fin o ={a3(¢) |¢ € Fp}.

It concludes the analysis in this paper of the example of compressible isentropic Euler equations
in dimension 2, which, with the chosen parameters, satisfies all assumptions of this work.

Remark 6.15. Note that the coefficient I' determined above corresponds to the one in [Raul2,
(11.5.9)].

In the following subsection, some rigorous results on projectors E and E? will be proved, using
the small divisors Assumption 6.

6.2. Rigorous definition of projectors E, ii]vi, E and E-;;I;S This part follows [JMR95,

res

— . —~in
Section 6.2]. Before considering the projectors E, Ei, EX  and E‘ ., we state the following
controls over spectral projectors, that will be used to rigorously define the projectors E and
E2,. The proof of these controls uses notations and results from the one of Proposition 2.21,

and is therefore postponed after it, in Appendix A.

Proposition 6.16. Under Assumption 6, there exists a constant ¢y > 0 and a real number by
such that, for all ¢ in Fp \ {0}, the following estimates hold

(6.12a) A @)l <a e—crtlel™™ < ¢, vVt > 0,

(6.12b) A HEN(Q‘ <ep|¢fbr emertlel ™ Vit >0,

(6.12¢) A (1 - H@N(g))‘ <eal, vt < 0.
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We are now in position to rigorously define projectors E and E?. The result concerning the
oscillating part comes from [JMR95, Proposition 6.2.1] and [CGW11, Proposition 2.2], but the
proof is recalled here. The result concerning the evanescent part is simpler, and reduces to prove
that some series converges.

Lemma 6.17 ([JMR95, Proposition 6.2.1]). For all T > 0 and s > 0, the projectors Ei and
E defined by (5.9) and (5.10) on the space of trigonometric polynomials each admit a unique
extension from the space Por to itself. Moreover, for Ty > 0, their norm is uniformly bounded
with respect to T in ]0, Tp].

On an other hand, for T > 0 and s > 0, the projector E is well-defined from the space
Py 5,7 to the space Porp- Furthermore it is uniformly bounded with respect to s and T'. Recall
that by refers to the real number of Proposition 6 16

Finally, for T > 0 and s > 0, the projectors EZ os and EI. defined as (6.9) and (6.10) on the

space of trigonometric polynomials each admit a unique extension from the space P to itself.
Moreover, for Ty > 0, their norm is uniformly bounded with respect to T in |0, Tp).

Proof. First the oscillating case is investigated. We consider U a trigonometric polynomial

writing
UOSC(Z 0 wd Z ZUOSC in-G eiﬁwd’
nezZ™ (eR
where each sum in £ is finite, and we denote, for n € Z™,
(6.13) U (z,1q) ZUOSC igwd.

According to formula (5.10) for the projector E and since the projectors m, are zero for every
noncharacteristic frequency «, we obtain, for n € Z™,

EU(2,%a) = Y Tmee Uni(z)e'tv,
£eC(n)
so that, according to Remark 2.7 ensuring that the projectors 7Ta are uniformly bounded,
|E UOSC(Z T;Z)d <CN Z osc
¢eC(n)

using the fact that the cardinality of C(n) is at most N. On an other hand, according to (6.13),
for n in Z™ and £ in R, we have

1 (B .
— T el —i&Y
2 = Jim g [ URSGn) TE dy
so that, using Cauchy-Schwarz inequality,
1 R
EURCva)P < ON? lim 7 [ UG va)? dba

Then Fatou’s lemma is applied to the sum with respect to n in Z™ and the integration with
respect to 2’ in wr to get

Z HEUﬁSC(-,md,l/Jd)Hiz(w < CN? %gl}rrg—/ Z 1U(. xd7¢d)!!L2(wT dipg,
nezm nezm

thus
IBUCo 20,2 $)Zaorxm < ON? 8B 10t s Yl ia(opnam)
d
that is to say
IEU|g,, < VCN|Ullg,., -

The projector E thus admits a uniformly bounded unique extension from Poir to P The
result for the space P¢7 for s > 1 is obtained by observing that the projector E commutes with
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the partial derivatives with respect to 2’ and #. The same argument applies to the projector E?,
which concludes the proof relative to the oscillating part.
Concerning the evanescent part of E, it must be proved that if U®Y writing

Uev Z 0 wd Z Uev Z w ln-@
nezm

belongs to PV then EU® is in Por- By definition of the norm of & r and according to

s+[b11,17
the Parseval’s identity, we obtain

2
BUSE, = s Y S0+

zq>0,04>0 EZm\{O}l 0

Y S e UG O )

md>0”¢’d>0 nezm\{0} =0

2

Oy (n- ) UL(.,0)

+(UJT)

according to estimate (6.12b) of Proposition 6.16 and recalling the notations of this result. It
leads to the following estimate

[EU g, , < ClIU™ ¢

s+[by1,T "

We investigate now the convergence towards zero in H*(wp x T™) of the profile EU® (24, 1q),
for every fixed x4 > 0. Consider € > 0. Using the convergence of the following sum,

Z Z(l + |n|2)sfl |Il . C|2b1 ||U§V("xd’0)”§ﬂ(wﬂ 5
nezZ™\{0} I=0

which is bounded by C ||U®Y|2 g there exists M > 0 such that
s 11,

Do D (AP - P UL (24, 0)l[7 oy < €

[n|>M =0

Then we have

i 2
IBU @a i) | oprmy = 2 (1412 || O TGy (n- ) UL (,0) )
0<|n|<M 1=0 +lor
S 2
+ >0 > @+ n) Hewdv‘“n-OngN(n-c)U:;V(.,o)(Hl or)”
In[>M 1=0 =T

According to estimate (6.12b) of Proposition 6.16 and by construction of M, the second sum
of the right-hand side is less or equal to ¢} e. For the first one, according to the same estimate
(6.12b), we have

S Yy

0<|n|<M 1=0

2

Oy (n-¢)UL(.,0)

+(UJT)

S
Z Zc% (1+ n2)*n . ¢l e2a Ya [n-¢[ 701 HUﬁv("O)H?{i(w)'
0<|n|<M =0

The right-hand side is a finite sum of functions of ¥y converging to zero at infinity, so there
exists B > 0 such that for |¢4] > B, the right-hand side is less or equal to . We get finally

HE Uev(xd’wd)H?—IS(wa’Em) < (1 + C%)&,

for all ¢4 such that |¢)4| > B, and the aimed convergence follows. The profile E U®" thus satisfies
the condition of Definition 3.4 of the evanescent profiles of P¢¥, concluding the proof.

Concerning the projectors E and Ei. ress the proof is analogous to the one for the oscillating

part of E and E. O
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= : ——in

Now that the projectors E, E*, E%, and E. are well-defined, it can be proved that the
kernel in Py 7 of the fast operator £(0g,dy,) is actually given by the range of the projector E.

Definition 6.18. For s > 0 and T > 0, we denote by N1 the range in Pst of Psirpr
projected by E. We also denote NO% = Nsr NP} and N := N NPy

S

Lemma 6.19 ([JMR95, Lemma 6.2.3.]). The space N5 is the kernel in Ps of the operator
L(0p, 0y, )-

Proof. Since Ny r is equal to the kernel ker I — E in Pg 7, it must be shown that the equality of
kernels ker I — E = ker £(0p, 0yp,) holds in Py 1. Let U = U*° + U be in ker £(0p, 0y,), and

write ‘
U(z,0,0a) =U*(2,%a) + Y Un(z,¢a) ™,
neZ™\{0}
where Up decomposes in Psr = Pg% @ Pep as Un = U™ + URY for all n in Z™ \ {0}. Then one
gets the following differential equations,
Oy, U =0, and (—AMm-¢) 4+ 8y,) Un=0, VYneZ™\{0}.

Thus, on one hand, it follows U*(z,14) = U*(z), which therefore belongs to Pgr. On the

other hand, for every n in Z™, the amplitude U, admits the following expansion, according to
decomposition (2.25) of C into subspaces stable under the action of A(n - ¢),

Un=TIen(- Q) Un + TGN (- Q) Un+ > Tncie) Un,
£eC(n)

where, recalling the notations of Definition 2.20, II¢.y (n- () Uy (resp. HE;VL(n -¢) Un) belongs to
the stable (resp. unstable) elliptic component £ (n-¢) (resp. E$(n-¢)), and for £ = §;(n-¢) €
C(n), T(n.¢,¢) Un belongs to the subspace ker L(0, a;j(n-¢)) (recall that according to proposition
2.16, for j in Z(n - ¢), we have Eﬂ(n -¢) = ker L(O,aj(n . C)), and a similar result holds for j in
O(n-¢)). Using that A(n-¢) = —iE(O, n - () and the property of the projectors mn.¢ ¢), we get
the following differential equations for each part,

(6.14a) By, (Man(n-¢)Un) = A(n-€) (Man(n- ¢) Uy),
(6.14D) Oy, (MZX (- ¢) Un) = Am-¢) (TI5E (0 - ¢) Un),
(6.140) 811&1 (W(n-C,ﬁ) Un) =13 (ﬂ-(n-C,é) Un), V¢ € C(n)

Resolving equation (6.14a), one get

Ev (0 Q) Un(2,9a) = e AT (1 €) Un(2,0),
which goes to zero as ¥4 goes to infinity, so belongs to P In the same way, we get, with
(6.14b),
TIE (1 Q) Un(2,9a) = €A TIE (0 - €) Un (2, 0).
But since HE; (n - ¢) is the projector on the unstable elliptic component, if Hé’;& (n-¢)Un(z,0)
is nonzero then Hé’f&(n - ¢) Uy is unbounded, so we have

5y (n-¢) Un = 0.

Finally, (6.14c) gives, for £ in C(n),
Tn¢,e) Un(2,%a) = €Y mn.c ) Un(2,0),

which belongs to P2%. To summarize, U, = U™ + Uy is given by

US(2,%0) = Y Tmee) Un(2.0) €8V, U (2,40) = " A™O TS (- ¢) Un(2,0),
£€C(n)
so the equality EU = U clearly holds.
Conversely, if U® = EU®, it immediately leads to £(0p,0y,) U®" = 0. On an other hand,
supposing U = E U, we consider a sequence (US*°), of trigonometric polynomials converging
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in & p,1,r towards U, By continuity of the projector E, the sequence of trigonometric
polynomials (EUY¢), converges in & ¢ towards U°°. But one can check immediately that
these trigonometric polynomials satisfy £(0y,0y,) EUY* = 0, then passing to the limit yields
to L£(0p, 0yp,) U = 0. 0

Remark 6.20 In the proof above, it has been proven in particular that if U = U+ U*®" belongs
to NJ7 @ N7, then the profile U¢ writes

(6.15) U%(2,0,1q) =U"(2) + Z Z Uosc pind eigujd’
nezZm\{0} £€C(n
with, for n in Z™ \ {0} and £ in C(n), Tn.¢e) U = Ugsg, and the profile U®Y writes
(6.16) U (2,0,1q) = Z eVaA(n-C) H(%N (n-¢) U (z,0) oint
nezZm\{0}

The previous remark leads to the following result, which links the norm Cb(]Rid, L?(wr x T™))
of a profile of N and its incoming scalar product (3.12) with itself. This result will be used
in the following to deduce from a priori estimates on the scalar product a priori estimates on
the norm PZ%. It is analogous to [JMR95, Lemma 6.2.4], in a weaker form (because of a lack of

symmetry in our context).

Lemma 6.21. There exists a constant C' > 0 such that for every profile U%¢ of Ng%., we have,
fOT’ xTq 2 O;

C HUOSCHgb(de’LQ(waTm)) (wq) < (U™ UOSC>in (za) < HUOSCHgb(Rid,p(waTm)) (7q)-

Proof. The second inequality is obvious by definition of the scalar product (. |.);,, since we have

OSC OSC : 1 R 0OSC 0OSC
(U U™ () = lim /O TN 22 (g (s ) dipa < sUp U T2 erm) (s Yoa)-

»qa=0

On the other hand, according to Remark 6.20, if U°¢ belongs to ./\/ 0% then the profile writes

UOSC(Z707¢d) _ U*(Z) + Z Z Uosc eind elfi/ld’
neZ™\{0} £€C(n)
where, for n in Z™ \ {0} and ¢ in C(n), each amplitude satisfies U = mn.ce) Ug. The
Parseval’s identity then gives
2

[0 oy (@arti) = N0 ooy + D5 || 3 UgE(z) '€
neZm\{0} ||£€C(n) L2(wr)

Therefore, since for all n in Z™ \ {0}, the set C(n) is of cardinality at most N, we have

U By @as ) < I ooy + N S 3 U852 (@)
neZ™\{0} £€C(n)

C U | U™)yy (2a),

according to formula (3.15). The first inequality of Lemma 6.21 follows finally by passing to the
supremum in g = 0. ]

6.3. Reducing the system. It is shown in this part that in every solution to system (5.11)
there occur only incoming modes (in particular every solution is of zero mean), and every solution
is supported in a finite interval in x4. We also show that system (5.11) decouples according to
the oscillating and the evanescent part, and even, for the oscillating part, according to the set
Fin of resonant modes and each non resonant mode. More precisely, the following result is

proved. Recall that sq is given by sg = h + (d +m)/2 where h is an integer greater or equal to
(3 + a1)/2 occurring in estimate (6.3), with a; the real number of Assumption 6.



MULTIPHASE GEOMETRIC OPTICS FOR QUASILINEAR BOUNDARY VALUE PROBLEMS 41

Proposition 6.22. Consider T' > 0, and s > so. Every solution U in Ps 1 of system (5.11) is
such that its oscillating part U features only incoming modes. Furthermore, system (5.11) on
U=U*+U* in Ps1 is equivalent to the following decoupled systems, the first one involving
the resonant incoming modes,

(6.17a) E Ut = Upy
(6.17b) Ei. [Z(o, BrU%e + ZLl BrUSE, ¢;) D, ﬁTU;’;;] -
(6170) (U1%Ssc) |2q=0,14=0 = fll?essC
(6.17d) (Ui&) <0 = 0

then the system verified by each non resonant incoming mode, for (ng,&y) in (BZm X Cin(no)) \
]?Hl

res’

(6.18a) X (n0-¢.60)Sno.o + T (10, €0), (10, £0)) Sig 000 Sy = 0
(6.18b) (Snovfo)\xdzo = hng g
(6.18c¢) (Sno.c0) <o = Us
and finally the system for the evanescent part UV,

(6.19a) EU®Y =U%

(6.19b) U‘xd 0.4pg=0 = = H®,

where, if the solution U (occurring only incoming modes and being polarized) writes

U (2,0,%a0) = Y Y Oxnge(2) e 000 E(ng, &),
noEBym AEZ*
§0€Cin(n0)

where o\ ng.¢, are scalar functions, then the resonant part UZY is given by

USi(z,0,00) = Y Y Oamgiy(2) €00 0% B(ng, &),
(ng,&0)EFin, NEZ*
and the scalar component Sno e : Q1 x T — C for each non resonant direction (ng,&p) in
(BZm X Cin(n(])) \ res; is given by
Shng Eo z,0) Z Ox n07§0 MG’
AEZ*

where the function Br of g4, of class C*°, equals 1 on [0,V*T] and 0 on [2V*T, +00) (where V*
has been defined in Lemma 2.14), and where H3S, by ¢, for (ng, &) in (Bzm x Cin(ng)) \ Fis,
and H® are defined from G by the formulas

6200 HEC0) = Y 3 ) (Bl ) Gam () €477,
(1’10,50)6,/—‘1}25 AezZ*

Ang,\ -1 i
(6:200) hng,ey (+,0) i= > (™) (Ang - €) (Bs_amo¢)) ~ Gama(2)) | Elo, €0)) e,
ANEZ*

(6.20c)  HV(Z,0):= > T°n-¢) (Br_mo)
neZ™\{0}
where, fornin Z™\{0} and & in Cin(n), j(n,§) is the index such that § = & ¢)(n-C). Recall that

amplitudes Gy, of the function G have been defined by (2.3), and that projectors Eil, and EZS
have been introduced in Definition 6.13. Note that in these notations, solution U decomposes as

U(Z,Hﬂ/)d) U$5C(Zaea¢d) + Z Sno,fo(zan(] . 9+£0 T;Z)d) E(no’g()) + Uev(z,a,wd).

(nog0)€
(Bzm Xcin (no))\f;gs

71Gn(2’/) ein-G’
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To prove Theorem 4.1, it is therefore equivalent to prove that there exists solutions UgsS,
Shno.¢, and UV to systems (6.17), (6.18) and (6.19).

In this part dedicated to the proof of Proposition 6.22, we consider a solution U to (5.11)
sufficiently regular, and we start by showing that its mean value U* is zero, by extracting from
(5.11) a homogeneous linear hyperbolic system satisfied by it. To show that there is no outgoing
mode, the scalar product (3.13) for outgoing modes is used, which is defined for profiles of
compact support with respect to x4. Thus we must prove before that the considered solution
U is of compact support with respect to 4. Then the outgoing modes are isolated in equation
(5.11), deducing that they are zero. First the left term of equation (5.11b) is rewritten.

6.3.1. Rewriting the evolution equation. According to remark 6.20, since U satisfies the polar-
ization condition (5.11a), and according to Remark 6.20, the profile writes U = U + U®",
where

(6.21a) U%(2,0,94) = U*(2) + Z Z Uosc im0 i€ va
nezZ™\{0} £€C(n)
and
(6.21b) U™(2,0,0q) = Y eI (n- ) U (2,0) ™,
nezm\ {0}

with mp.¢ 6 Ung =Uy OSC for all n,&. Then U®FC is rewritten to take advantage of collinearities,
using notations of Part 6.1. Let n be in Z™ \ {0}, and ng in Bzm, A in Z* such that n = Any,
and let also £ be in C(n). Since the set C is homogeneous of degree 1, we have C(n) = AC(ny),
so there exists &y in C(ng) such that £ = A&y. By polarization of the profile U, the amplitude
UOSC belongs to the kernel of L( (n - C,f)), which is given according to Definition 6.4 by
Vect E(n,§) = Vect E(ng, ). One may thus write

OSC

nt (2) = 0o .6 (%) E(no, &),

where o) n, ¢, is a scalar function defined on 7. Since the profile U*¢ is assumed to be real,
coefficients o ng.¢, satisfy o_x ng.¢o = Tano,c, for all A, ng and &y. In this notation, the profile
U writes

U(2,0,00) =U*(2) + > > oampey(2) €207 e X0% E(ng, &).
noEBym AeZ*
£0€C(no)

Note that according to identity (3.17) and since the vectors E(ng,&p) are of norm 1, when it is
well-defined, the scalar product (U |U) . (t) is given in these notations by

(U [U) e (1) = @)™ [U*|[72ga-1xm,) () + 1™ Y D lloamesol72@itwr,) O
noEBym AEZL*
£0€C(no)

Recall that the scalar product (.|.),, is defined only for profiles with compact support in the
normal direction, but we will prove that every solution of (5.11) is indeed compactly supported
in the z4-direction before using this scalar product.

Since the projector Ei occurring in equation (5.11b) only acts on oscillating profiles, the
oscillating part of the term L(0,0,) U+ 37" L1(U, (;) 0p,U must be determined. On one hand,

the oscillating part of E(O, 0,) U is given by

L(0,0.) U = L(0,0:) U* + Y Y L(0,0.) oamp.ey € ™7 €204 E(ng, &).
noEBym A\EZ*
£0€C(no)

These two terms correspond to terms (6.23a) and (6.23b) of equation (6.23) below.
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On the other hand, according to Lemma 3.6 concerning the algebra properties of the space of
profiles P, 1, the oscillating part of the quadratic term Z;n:l L1(U, ;) Op, U is given by

(6.22) Z Ly(U*,¢) 0p,U = > > Li(U*iAng - ¢) E(1g,£0) 0amg,ge € 07 e A0V
j=1 noEBym AeZ*
&0€C(ng)

+ > Y LBy, &),idany - €) E(ng, &)

ny,na€Bzm £1€C(n1) A1, 2€Z*
£26C(n2)

OX1,n1,61 OXo,ng & e’ (Aam1tAznz)6 e’ (Aa&1at2) v

The first term of the right hand side of equation (6.22) corresponds to term (6.23c) of equation
(6.23) below. In the second term of the right hand side of equation (6.22), since the projectors
T appear in the projector E?, only the frequencies ((Alnl + Aong) - ¢, A& + )\252) that are
characteristic will be preserved.

i) If n; = ng, & = & and A\ = — g, the created frequency is zero, so it is characteristic. This
non oscillating term corresponds to term (6.23d) of equation (6.23) below.

i) If ny = no, & = & and A + Ay # 0, then the nonzero frequency obtained is given by
(A1 4+ A2) (n7 - ¢, &) which is characteristic. This is called self-interaction of the frequency
(n; - ¢, &) with itself, and constitutes term (6.23e) of equation (6.23).

iii) Finally, in the remaining cases, if the nonzero frequency obtained \; (n1-¢,&1)+ A2 (n2-¢, &2)
is characteristic, then it corresponds to a resonance in the sense of Definition 6.8. Namely
there exist Ao in Z*, ng in Bzm and & in C(ng) such that

A (-6 6) + A (ne2- ¢, &) = Ao (no - ¢, &),

thus there exists £ in Z* such that (A1, A2, Ag) = £ (Ap, Ag, Ar) where the 7-tuple (A, Ag, Ar,
n,, ng,&p, &) belongs to one of the sets Ri(ng, o) or Ra(ny, o). These resonances constitute
terms (6.23f) and (6.23g) of equation (6.23).
According to the expression of the projector Ei and since mo = Id, the term Ei [E(O, 0,)U +
> 521 L1(U, ) O, U] is thus given by

(6.23a) E[N(o 8.\ U + ZL (U, ¢;) 09, U| = £(0,0.)U

(6.23b) + Z Z R tno-¢.0) £(0,,) E(Ag, Aéo) 0 g, € 100 ¢ A0 ¥,
noEBym AEZ*
£0€C(no)

constituting the transport terms of the mean value and the oscillating part, then the terms of
resonances with the mean value as well as the resonances creating a zero frequency

(6.23¢c) + YD Fmpcio) LU i Ang - €) E(Ang, A0) 0 ng g, €07 e A0V
noEBym AeZ*
&0€C(no)

(6.23d) + >0 > Li(E(=Ang, —A&), i Ang - €) E(Ano, M) 0 no .60 T—Amo o
noEBym AEZ*
&0€C(np)

and finally the self-interaction term

(6.23¢) + > d " Fino-cié) L1(E(mo, M), i damg - €)
noEBym AEZL* A1, A\2EZ*
&0€C(np) A1+A2=A

i Ang-0 i\
E()\Ql’lO,)\QéO) O-)\l,no,fo J)\Q,n07§0 62 1o 62 gowda
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and the resonances of types 1 and 2 terms

(6.23f) + > > > Fing-c.éo) L1 (B, E0,6), ilAmg - §)

no€Bzm  (Ap,Ag,Ar,np,ng, LEL*
§0€C(n0) &p,64)ER1(n0,€0)

D 0 il
E(E)‘qn(b EAng) O-D\pvnpyfp O-D‘q»nqqu ettt réoa

(6.23g) + ) S Y Fmecqn) LiE@0y, 00,8), ilAny - €)

noEBzm  (Ap,Ag,Ar,np,ng, LEZ*

€0€C(n0) &,6¢)€R2(n0,£0)

E(D\qnq, 5)\q§q) Opp,&p Olrgng,Eq GM)\T no-0 GM)\T&) Va,

The homogeneity of degree zero of the projectors m, has been used here. In the following,
Definition 6.6 of coefficients I" will be used to rewrite the different terms of (6.23). In equation
(6.23), the vectors E(n, {) being homogeneous of degree 0, coefficients X, A1, A2, A, A; and £ may
or may not appear. They are indicated here because they will be useful in a computation below.
They may however be removed without any mention being made.

6.3.2. The mean value is zero. We prove now that the mean value U™ is zero, by ¢ extractlng the
system verified by it. According to equation (6.23), the mean value of the term E? ( (0,0,)U +
> LU, ¢) 9p,U) is a priori given by

(6.24) L(0,0.)U* + Z Z L1(E(nog, &), iAng - €) E(no,£0) 0 ng,c0 T—Ano g0

noEBym \eZ*

£0€C(no)
The change of variables A = —\ then shows that term (6.24) is actually zero. Indeed one can
compute

Z Z Li(E(ng,&),iAng - €) E(ny, &) OXngp,& —Angp,&
noEBym AEZ*
§0€C(no)

Z Z Li(Eno, &), —iAng - ) E(00,£0) - no,c0 TAno.c0
noEBym AEZ*
&0€C(nop)

— > > Li(B(no, &), idng - €) E(00,0) 0amg.co 7Aoo = 0
noEBym AeZ*
£0€C(no)
The second term of (6.24) being zero, the non oscillating terms of (6.23) are given by the
term L(0,0,) U* only. Thus, using system (5.11), we see that the mean value U* satisfies the
decoupled system

L(0,0,)U* =0,

BU?

lxg=0 —

=0,

U*

<0 =0
since G is of zero mean value. The mean value U™ therefore satisfies a boundary value problem
verifying the uniform Kreiss-Lopatinskii condition with a strictly hyperbolic operator L(0, d,).
According to [Kre70], the problem is thus well-posed so U* is zero on Q7.

At this point we should note that equation (6.23) can be decoupled between incoming and
outgoing modes, thanks to Assumption 7 and the nullity of terms (6.23a), (6.23c) and (6.23d).
The difficulty in decoupling the system now relies on decoupling the boundary condition, and
we use the fact that there is no outgoing mode to do it. In its turn the nullity of outgoing modes
relies on the nullity of the mean value.
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6.3.3. Finite speed propagation. It can be proved that if U is a smooth enough solution to (5.11),
then it is supported in a finite interval in 4. More precisely the following result is verified.

Lemma 6.23. Consider T' > 0 and s > so, and let U in Py be a solution to system (5.11).
Then its oscillating part U is zero outside the dihedron {(t,y,xq) € Qr |0 < x4 < V*t} (see
Figure 6).

The proof of this lemma uses techniques developed below, so it is postponed, in order to focus
on the derivation of a priori estimates. We use the fact that U travels at finite speed in the
normal direction, according to Lemma 2.14.

According to this result, in system (5.11) and the associated linearized systems, the profile
U®€ can be replaced by S U%€, where S is the function of CSO(RL) introduced in Proposition
6.22, equating 1 on [0, V*T] and 0 on [2V*T,+00). In the following, the scalar product (3.13)
suited for outgoing profiles can be used, since it is well-defined for profile of compact support
with respect to zq4.

6.3.4. There is no outgoing mode. The aim is now to determine the equations satisfied by the
outgoing modes. According to equation (6.23), since the mean value U* is zero, the following
equality holds

~ Ane-f i\ .
(6.25&) E E X(HO'C,&)) O \,ng,& e o et €0 ¥a W(HO'C,&)) E(n0,§0)
noEBym AEZL*
§OGCouc(n0)

(625b) + Z Z Z io_)\l,nmfo O-)\271’1()7§0 F(Al(n(]a 50)7 >‘2 (n0? 50))

noEBym  ANEZL* A1, 2EZ*
£O€Cout(n0) A1+A2=A

el Ang-0 eiAfo Ya 7~T(no~C,£o) E(no, 50)

(6.25¢)  + Z Z Z $00xy mpty Ty g D (O (0p, &), g (1, &4))

noEBzm  (Ap,Ag,Ar,np,ng,Ep,Ey) LEL*
£0€Cout(n0) €R4 (no,&0)UR2(no,&0)

GMATnO'G GM)""&) Yd %(no.c7§0) E(no, 50) =0.

The Lax Lemma 2.12 has been used here to rewrite the term (6.23b) as the term (6.25a), using

that, by definition, we have E(ng, &) = T(ny.¢,¢) £(n0,&o), and Definition 6.6 of coefficients I'

has also been used to rewrite the terms (6.23¢) and (6.23g) as (6.25b) and (6.25¢). Note that

according to Assumption 7, all modes U2 involved in equation (6.25) are outgoing modes, and

also that the equations are now scalar up7to a constant vector depending only on the directions.
Equation (6.25) is coupled to the initial condition

(6.26) (Un€) <o = 0, m € Z™\ {0}, ¢ € Cout(n).

We thus seck to solve the problem (6.25), (6.26). We will prove a priori estimates for this
purpose, using the scalar product (3.13). The decomposition (6.6) of Definition 6.11 will be
used, and the set FOU of outgoing frequencies involved in resonances will be treated separately,
which is finite according to Assumption 8.

Non resonant modes. First the modes that are not involved in resonances are investigated,
namely we consider ng in Bzm and &y in Cout (ng) such that (ng, &) does not belong to F2ut. The
sets R1(ng, &) and Ra(ng, &) are therefore empty, so, according to equation (6.25), we obtain

(6.27&) Z X(HO'C,&)) O no,&o et A0 i Ao Pa 7~T(“0'C,£O) E(no, 50)
AEZ*
(6.27b) + Z Z i A1 0,80 Tha,moo A2 L' (10, &0), (10, &0))
NEZ* A1 o €L*
A1+A2=A

et A0 oi Ao Ya %(no-C,éo) E(ng,&) = 0.
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Here we have used identity (6.2) to get the term (6.27b). Note that if, for z in Q7 and © in T,
we define
Sn0,£0 (Z, @) = Z O\ np,&o (Z) GMG,
AEZL*
then one can check that the real valued function Sy,
equation

oto satisfies the following scalar Burgers

X(no-¢.60)5n0.60 T L' (10, &0), (10, €0)) Snge090 Sno,e0 = 0,

that could be solved classically. Indeed, recall that )Nf(no_ggo), defined in Lemma 2.12, is given
by

-1 1
O +
Ot Th(no,&0) (R0 - 1, 60) ' Ot Th(no,&0) (M0 - 1, &0

If, for K = 1,...,m, we denote by n; the last d — 1 coordinates of (, then we have denoted
by n the m-tuple n := (m1,...,Mm), in a similar way than ¢. In this notation, for each ng, the
frequency ng - 1 is given by the d — 1 last coordinates of ng - ¢.

We choose however to explain on this easy example the techniques that shall be applied in
the following to equations that go beyond the scope of the mere Burgers equations.

We take the scalar product (.|.),,, of equality (6.27) with the quantity

X(DO'C,&J) = )VnTk(noﬁo)(nO -1,%o) - Vy + Dzy-

Z O\ no,& et Ano0-0 ;iAo Ya T (no-¢,60) £ (10, &0)

;110,80 — o
AEZ* {W(no.c’&)) E(ny, 50)‘
to obtain

(6.28a) Z <X(n0-c,go) OX,no,¢0
AEZ*

(6.28b) + Z Z iAo P((no, €0), (no, 50)) <U)\1,no,€0 O X2,n0,£0 ‘ UA,H0,£0>L2(Rd71 xRy) (t) =0.
AEZ* A\1,\2€EL*
Alt+A2=A

UA’HO’£O>L2(R‘1*1 R,) (t)

Note that the scalar product is well defined since U is of compact support with respect to z,.
An integration by parts shows that the transport term (6.28a) satisfies

2Re (6.28a) = ) -1

= OTh(no,&0) (D0 - 1,

2
- Z H‘D\,no,éo”[ﬁ(]gdfl) (t,0).
AEZ*

We have denoted by k(ng, &) the integer between 1 and N such that if (7,7,&) := (ng - ¢, &o),
then 7 = Tjn,.¢,) (1, &0)- It leads to the following equality

-1 d 2
p Z HUA,nmEoHL?(Rd—IxRJr) (t)
AEZ*

2
- Z ”‘7>\7n07€oHL2(Rd71) (t,0).
AEL*

£) 2 HU/\,no,goHi2(Rd—1 xRy) (t)

6.29 2Re (6.28a) =
( ) ( ) aka(no,fo)(no -n, 50)

Then the Burgers term (6.28b) is studied, and more precisely the following sums, that is S
given by
S = Z Z i A (O11n0,60 Tr2,no o | U>\,n07§0>L2(Rd—1 xR,) (t,za)-

NEZ* )\1,)\262*
A1+A2=A

and, for j = 1,2,
Sj = Z Z i A5 (OA1,n0,60 TA2,n0,60 |O')\7n07§0>L2(]Rd—1 xRy) (t,za),

AEZ* )\1,)\262*
A1+A2=A
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the term (6.28b) being given by I'((ng, &), (ng,&)) Sa. First, one can verify that S = S; + So.
But, on one hand, we have immediately S; = S3. On the other hand, the following equality
holds:

S = Z Z § A (07 no,€0 A0 ,6 | U>\2,n0,£O>L2(Rd*1 xRy) (t,za)
AEZ* N1, 2€L*
Al+HAe=A

then, with the consecutive changes of variables Ao = A1 + A9 and Ay = —Aq,

5= Z Z i A2 <U>\17n0,50 O)\a,n0,&0 ’ UA,D07£0>L2(]Rd71 xRy ) (ta xd)
ANEZ* A1, 2€L*
A2—A1=A

= Z Z i A2 {0-\1,n0,60 Trz,no.60 | O-)\7n07§0>L2(]Rd—1 xR) (t, za)
ANEZ* N1, 2€EL*
A2+A1=A

finally, since we have 0_), no.¢o = Ornno.g (the profile U being real), one gets

S = Z Z i A2 (O no,€0 Orz om0, | UA,D07€0>L2(]Rd*1 xRy) (t,zq)
ANEZ* A1, 2€L*
A2+A1=A

It follows from S = 25, that S = 0, so the term (6.28b) is zero. With equalities (6.28) and
(6.29), we thus obtain

d 2 2
n H‘D\,no,&oum RI-1xR (t) + 8£Tk(no,§o)(n0 -1,&o) Z Hak,nofoHL? Rd-1 (t,0) =0,
dt}\ ~ ( +) = R=1)

E * E *

and therefore, with the initial condition (6.26), for ¢t > 0, we get

t
2 2
> lNormocoll 72 g1, (t)+357k(n0,§o>(n0'777§o)/ >~ llormocoll72(ga1) (p,0) dp = 0.
AEZ* 0 xez

Since the quantity O¢Ty(n,,e)(mo - M, &o) is positive (the frequency (ng - ¢,§o) being outgoing),
we deduce that oy ¢, is zero for all A in Z*, and UAO;%,MO is therefore zero for ng in Bzm, & in
Cout(n9) such that Ra(ng,&p) and Ra(ng, &) are empty, and X in Z*.

Resonant modes. Outgoing modes involved in resonances are now investigated, namely the
couples (ng,&y) of the set FU that are coupled through equation (6.25), because of the reso-
nances, and therefore must be treated all together. From equation (6.25) is deduced the equation
for the resonant modes, involving, in addition to a transport and a Burgers terms, a resonant
one. There holds

(6.30a) S S Kk Ormoy €000 X0V L EB(ng, &)
(no,§0) EF Y AEZ*

(6.30b)  + Z Z Z i A2 02, mosé0 Thamoséo I (10, €0), (00, &0))

(ng,£0) EFLUE AEZ* N1, \2€L*
Alt+A2=A

i AN00 i Ao Tno-¢.&0) (1m0, o)

(6.30c)  + > > D Lo, mpe, Trgmegs T(Ap(0p,6), Ag(g, &)

(nngO)e]:;)el;;t (>‘Pv>‘q7)‘rvnl77nq7£177£q) Lez*
€R1(no,0)UR2(n0,80)

et Arn0-0 pibAr&o Y T (no-¢.£0) £(10,&0) = 0.
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Identities (6.1) and (6.2) have been used here. Two profiles constructed from the resonant modes
are defined here, that will be used in the following

U (2,0,00) == D D> Oampey(2) e 07 20V B(ng, &),
(no,&0) €Tt AEZ*
~7OZS§“° (2,0,9q) := Z Z O ng,& (2) e/ ol g AoV %(no'C,io) E(ny, &o).

(no,fo) €F R AEL”

res

Taking the scalar product (. |.),,, of equality (6.30) with the profile USse,. . one gets

Rout?
~ 2 /<
(6.31a) > ) Fmocs) Emo, &) <X(n0'C,£O) TAn0.60
(n0,£0) EFE AEL

6310) + > > > ixT((n0,&): (10,%)) [Fngc.co) Elno, &)|

(1’10 ,ﬁo)G}—o"'t ANEZ* N1, 2EL*

res

T\no,& >L2(Rd*1 R.) (t)

Al+HAo=A
{OA1,1m0,60 Tr2,m0,60 | ‘7>\7n07€0>L2(Rd*1 xRy) (t)
. ~ 2
(6.31c) + Z Z Z fo()\p(np,ép), )‘q(nqaéq)) {W(no(,&o) E(no,&])‘

(1n0,80)E€FLRE (Ap;Ag,Ar,np,ng,Ep,Eq) LEL*
€R1(n9,£0)UR2(ng,&0)

<O-D\pvnpv§p Otrgmg,éq { O-D\r7n07§0>L2(]Rdfl xRy) (t) =0.

The first two terms are treated in the same way as for the non resonant modes (see above), so
we obtain

= 2
T no-¢.c0) E(o, &0)|” d )
(6.32)  2Re (6.31a) = — d L ®
(no,go)zefroeust aETk(no,Eo)(no . 77,50) dt )\2* 0,80 11 L2(R xRy)

- Z Z ||U>\,n07§0||i2(]Rd*l) (t,O)

(no,80) EF" AEL™

d ~
<—C = (U R>t (1),

with C > 0, using that F2u is finite and that the group velocity Ot Thy(no,£0) (0 * M, 60) is pos-
itive. On an other hand, with the same techniques than for the non resonant modes, one
gets (6.31b) = 0. Finally the resonance term (6.31c) is investigated. Since the sets Fou' and

Uno.¢0)e ot (R1(no, &) URa(ng,&)) are finite, the following bound holds

~ 2

{P()‘p(npvfp%)‘q(nq’gq)){ ‘W(no-QEo) E(n07§0){ <G,
where the constant C' > 0 is independent of ny,,n,,n,,§,,&§ and &. Thus a term of the form
(f *g|g) is obtained in (6.31c), which is estimated using Cauchy-Schwarz and Young inequali-

ties, and the injection of L2(T™) into L'(T™), which gives the following estimate on the term
(6.31c):

(6.33) [2Re (6.31¢)] < C U5 e, , <~$§§ut

B ().
out

It follows from equations (6.30), (6.32) and (6.33) the differential inequality

E< osc, R>t () < CNUZSlls, . (T3 R>t (t)

The initial conditions (6.26) ensure that (ﬁOSC )|t=0 =0, so, for t > 0, we have

Rout
r70SC
Rout

2
70zSocm>out (t) = Z Z HU>‘7‘“O’50HLQ(Rd’IXRH (t) =0.

(no,fo) € F it AEL”

res

Thus, for all (ng, &) in F and A in Z*, and for all ¢ > 0, the function oy n, ¢, (¢, .) is zero,

res
therefore the same holds for the outgoing amplitude U3y’ Ay for all (ng,&) in F2U and X in

res
Z*
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In conclusion, it has been proven that for every profile U regular enough solution to system
(5.11), its mean value U* as well as each of its outgoing modes Uy%, n € Z™ \ {0}, § € Cout(n),
are zero.

6.3.5. Decoupling the system. Because of the algebra property of the space of profiles P, 7, and

since the projectors E and E? preserve the decomposition Ps 7 = P & PV, equations (5.11a)

and (5.11b) decoupled according to the oscillating and evanescent parts, and the same holds for
equation (5.11d). The evanescent part therefore satisfies the equation

E UeV — UeV
and the oscillating part the equations

E UOSC — UOSC

m
E [E(o, 0:) U™ + 3 Ly(U*,¢;) 0, U] —0.
j=1
The second equation may be rewritten as, using notations for U°° that have been already
introduced,

(634&) Z Z ‘SZ(HO'Cva) O\ no,& ei Ang-6 ei A0 Ya %(UO'QEO) E(no’ 50)
noEBym  AEZL*
£0€Cin(no)

(6.34b) + Z Z Z i X2 02, mosé0 Tramoséo I (10, €0), (00, &0))

noEBym  ANEZL* A1, 2€Z*
£0€Cin(no) Alt+A2=A

ot An0-0 iAo Yo %(no-C,io) E(no, 50)

(6.34c)  + > > > Lo, mpe, Trgmegs T(Ap(0p,6), A (g, &)

no€Bzm  (Ap,Ag,Ar,np,ng,&p,&q) LEL*
§0€Cin(n0) €R1(n0,£0)UR2(n0,&0)

et EArm0-0 (il A€o a %(no-C,ﬁo) E(n07 §O) =0.

This equation decouples according to the set FiL of resonant modes, and each of the non resonant

mode. For each mode (ng, &) in (Bzm x Cin(ng)) \ FiL, which is therefore such that the sets
Ri1(ng, &) and Ra(ng, &) are empty, we define

Sno g0 (7,0) 1= Z T no.60(2) e,
AEZ*

Then, according to equations (6.34a) and (6.34b), this function satisfies the following scalar
Burgers equation

)N((no-q,go)sno,go +T'((no0, &), (10, £0)) Sno,c0 96Sng,e0 = 0.

On an other hand the resonant modes of FL

v i Ang-0 1\ ~
DD Ximpcito) Oamogo €700 €20V T o) B, o)
(novgo)e}—ggs AEZ*

T Z Z Z i A2 00 ng,€0 Tha,mo .60 T (100, 0): (00, €0))

(no 750)6]:3215 AEZ* A\1,A2€EL*
Al +HA2=A

oI 000 i Ao Ya =

satisfy the independent equation

(no-¢,€0) (10, &0)
+ Z Z ieaé}‘pynpvfp Otxg.ng,éq F()‘P(npv Sp)7 )‘q(nqv &1))

(n07§0)6]:1‘1‘g5 ()‘P7>‘q7>‘r7npvnq7£P7£Q) Lezx
€R1(no,£0)URz2(no,80)

et £Arn0-0 pibAr&o v T (no-¢.£0) £(10,&0) =0,
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that may be rewritten, with already introduced notations (see Definition 6.13), as
—~—in
Elres Ugassc + Z Ll U;::Ssc’ CJ 69 Ul%ssc] =

Note that by assumption on the set FiL, all modes involved in this equation are part of the set
Fin . Furthermore it is clear that the polarization condition E U%¢ = U as well as the initial
condition decouple in the same way. Therefore, to conclude the proof of Proposition 6.22, it

must be shown that the boundary condition also decouples in this manner.

6.3.6. Determination of the trace on the boundary. It is possible to determine the traces on the
boundary (Ugy)|zy=0,64=0> (Sng.é0)zq=0 and Ul 0,440 from the boundary condition (5.11c)
using the fact that there are only incoming modes, which will prove the intended decoupling of
the system. According to polarization conditions (6.21a) and (6.21b), and since there are only
incoming frequencies, for n in Z™ \ {0}, boundary condition (5.11c) writes

(6.35) B[ Y e USEE,0) + Han(n- O U (2,0,0)] = Gu(2),
fecin( )

where the amplitudes Gy, have been defined with the formula (2.3). For all £ in Ciy(n), the term
Tn¢¢) Ung belongs to ker L(O, (n-¢, 5)) which is included in E_(n-¢) according to Proposition
2.16, since the frequency (n - ¢,€) is incoming. In the same way, according to the definition of
the projector TI.y(n - ¢), the term IIgy(n - ¢) Uy (2,0) belongs to the space £_(n - (). The
vector on which acts the matrix B in (6.35) therefore belongs to E_(n - ¢), and the matrix B
restricted to this subspace is invertible according to the uniform Kreiss-Lopatinskii condition
Assumption 3. It then follows by projecting on the spaces E’ (n-¢) and E¢ (n-¢) the following
boundary conditions

(6.36a) Tmc,e) Ung(2,0) = ij(n,g)(n Q) (Ble_m¢))  Gn(¥), €€ Cin(n),

(6.36b) Cx(m- QUL (2,0,0) =TI (n-€) (Bip_me)  Gnl2),

where, for £ in Ciy(n), j(n,§) is the index such that £ = £ ¢)(n - ¢). Therefore, according to
(6.36) and the polarization conditions (6.21a) and (6.21b), the profiles HosS and H®Y defined by

res
(6.20) are such that (Upsy) |z —0,p4—0 = Hres and Ul —0.44=0 = H. On an other hand, since,

according to (6.36a), we have, for all (ng, &) in (Bzm x Cin(ng)) \ Fi2

res?

i (Ang, -1
(O n0,60 ) |z4=0 £ (10, &0) = 7020 (A - ¢) (Big_(no-¢))  Gangcs

and since the vectors E(ng,{y) are of norm 1, the function hy, ¢, defined by formula (6.20b)
satisfies (Sng g0 )zg=0 = hng,¢o- We finally check that the boundary terms HZ5Y, hng ¢, and HV are
controlled in H*(wr) by G. On one hand, according to the uniform Kreiss-Lopatinskii condition
3, the inverse matrix (B Ei(n.g))*l is uniformly bounded, see Remark 2.8. On the other hand,

-1

according to Proposition 2.21, projectors Hj_(n’g)(n- ¢) and II¢ (n-¢) are uniformly bounded with
respect to n in Z™ \ {0}. According to formulas (2.3) and (6.20) and the Parseval’s identity, the
sought control in L?(wr) is ensured. The control in H*(wy x T™) for all s > 0 follows, using
that the quantities H{(n’g)(n -¢) (B|E,(n-g))_1 and II¢ (n - ¢) (B\E,(n.c))_l do not depend on 2’
in wy. Therefore we obtain

(6.37)
2 2 2
HerssCHHS(wTX’]Tm) + Z tho,ioHHs(waT) + HHeVHHS(wTXTm) <C HGHHS(wX’]Tm) )
(no.€0)€
(Bzm xCin(1n0))\Fids

where the positive constant C' does not depend on T" or s. This completes the proof of Proposition
6.22.



MULTIPHASE GEOMETRIC OPTICS FOR QUASILINEAR BOUNDARY VALUE PROBLEMS 51

6.4. A priori estimate on the linearized system for the oscillating resonant part.
According to Proposition 6.22, the study may be narrowed down to the one of systems (6.17),
(6.18) and (6.19). This part deals with the first one, and we will prove a priori estimates on the
associated linearized system, which will be used to show the convergence of an iterative scheme.
Recall that sg is given by so = h + (d + m)/2 where h is an integer greater than (3 + a1)/2,
occurring in estimate (6.3), whith a; the real number of Assumption 6.

Proposition 6.24. Consider s > sq and let Uy be in P, Vs in NOSC both involving only

incoming resonant modes, and F in P, satisfying the system

(6.38a) E Ul = Uy
(6.38b) B [2(0,6.) prUes +ZL1 (BrVse, &) 00, rUE| = B Feze
(6.38¢) (US5) jpympyo = HE
(6.38d) (Ures) <o = 0,

where H*C is defined by equation (6.20a). Then the profile U%S satisfies the a priori estimate

res

* 2 *
(6.39) IUEIZ, . < Cr eV TGl ey + VT COVT | F0|2,

where C(V) :== C1(1 + ||V£§C||557T), with C1 > 0 a positive constant depending only on the

operator L(0,0,) and of s. Recall that the real number V*, which bounds the group velocities v,
has been defined in Lemma 2.14.

Consider from now on an integer s > sg.

6.4.1. Rewriting the linearized oscillating system. In system (6.38) which is the linearization of
system (6.17) around V,25¢ in o1, & source term FU in P has been added, which will be
useful to deduce from the L? estimate the higher order estlmates, as well as in the iterative
schemes used to construct solutions to the linearized system (6.38) and to system (6.17). To
simplify the equations, the function Sp will be omitted in the following.

The analysis conducted in the previous subsection is now reproduced to rewrite the left term
of equality (6.38b). Since the profile U%S satisfies the polarization condition (6.38a) and involves
only incoming modes, according to Remark 6.20, it writes

(6.40) Usi(z,0,1q) = Z Z UO;%,)\&) eiAn0-0 i g
(n(),f()) J:tlgs AeZ*

with URHe Ao = T(Amo¢6) Uf\’ffo)\fo for all ng, {p, A. In the same way, since V25° is in N7 with
only incoming resonant modes, we have

(6:41) VEG G = Y Y Vi g (el
(ng,&o)EFIn, A\EZL*

with VII® e = T(mo-¢.0é0) Vangag, for all mo, §o, A. Once again, for (ng, &) in FiI and X in Z*,
since the profiles U and V' are polarized, we write

U;\);CO )\50( ) UA,nO,éo(z) E(n07 50)7

V,\Orslg,xgo( ) = WX,np,&o (2) E(HOa £o)-

Note that according to identity (3.15), the scalar product (Ugs | U%s),, (xq) is given in this
notation by

U 105 ) i (a) = 2m)™ 2 Y loamosoll iz (@a)-

(no 760)6]:;25 AezZ*
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is applied to the source term F2° one can assume without loss of

—~in
. . i
Since the projector E?, g res 1

generality that the latter writes
FX(z00a)= Y Y Fangg(z)e™? v

(no,80)EFig, AEL*

We then denote, for (ng, &) in Fi& and \ in Z*, by fano, the scalar function of {27 such that

res

T (no-¢.60) Fno.o = Fano.co Tno-¢,60) £(10,60)

n

—~i
so that E*.  F{%¢ writes

es — res

—~—in - i .
Bl Fad(n0,00) = Y D fanee(2)e™ eV 0, ¢ ) B0, ).
(no,60)EF5, AL
According to estimate (6.5) of Assumption 8, there exists a positive constant C such that for
all (ng,&p) in Fjoy and all A in Z*, we have

res
(6'42) ||f)\,n0,§0 ||L2(QT) <C HFA,no,{o ||L2(QT) .

In this notation, the resonant incoming modes satisfy the following coupled equation, con-
n

3 7 0sC
necting the source term E? F

(6.43a) ST Punog(z) el e Xova g, e Elng, &)
(n07§0)6_7'-i“ ANEZ*

res

with the sum of a transport term, corresponding to E(O, 0,) UZE,

(6.43b) = Z Z X(n0~C,§0) O \,ng,&o ei Ang- ei Ao va %(no.c7§0) E(no, 50),
(no,80)EFigs AEL*

a self-interaction term,

(6.43c) + Z Z Z i A2 W1 no,€0 Tra,no,go L' (10, £0), (1o, &0))

(no,&0) EFIL AEZ* \1,A2€Z*
Al+HA2e=A\

e AN0-0 i Ao Yy %(no_“o) E(ng, &),

and resonance terms of type 1,

(6.43d) + Z Z Z i 0win, mp €y Torgmy.éa D (Ap(p, &)y Ag(1g, &)

(no,ﬁo)EJ'}iQS (>‘Pv)‘Q7)‘7"7nP7nQ7 Lez>
£p,§q)E€R1(n0,80)

eiw\rno.e ez‘Z)\rﬁo v 7~T(no-C,50) E(HOa 50),

and of type 2,

(6.436) + E E E Z‘gwg)\wnp,gp Otrgng,éq F()\p(np, §p), )\q(nq, §q))
(no,fo)ej:ggs (>‘P7)‘q7)‘T7nP7nq7 lez>
€p-€q)ER2(n0,80)

oHEAM00 i € A€o Y T (no-¢.¢0) £ (10, &)

Note that in terms (6.43c), (6.43d) and (6.43e), factors A2 I'((no, &), (no, &) and T'(Ap(n,, &p),
Ag(ng, fq)) imply that something like a derivative with respect to 6 is applied to U. To obtain
estimates without loss of derivatives, one therefore needs the 8 derivative to apply to the coeffi-
cient V,25¢, which is the whole point of the following paragraph. Terms (6.43c) and (6.43¢) are

treated in the same way as the corresponding terms for the outgoing modes, whereas Assumption
8 is used to treat term (6.43d) of resonances of type 1.
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6.4.2. L? estimate. This subsection is devoted to the proof of the following lemma.

Lemma 6.25. Consider s > so and T > 0, and let UZS be in PY7, FIE in Pop and ViEE
in N%, only involving resonant incoming modes, satisfying system (6.38). Then the following

estimate holds for xq > 0,
d 0osc 0osc 0SC 0SC 0sC osc 0sC
(6:44) o= (U | Ui (0) < C AR | Y (2) £ C (1 1Vl ) (US| VR ().

Proof. Consider the modified profile Uose given by

res

i Ang-0 i T (no-¢,&) £ (10, o)
Ugassc(za 0,%a) == Z Z O’)\,no,go(z) et An00 iAo Pa__ (mo CEO)E .
(no £0)EFin, AEZ* T (np-¢.,60) E(M0,&0)]

res

Note that despite the factor |7(n,.¢,¢,) £(n0, £0)| ™! that could present a problem, the profile Uose

res

is well defined, since the set FI satisfies the property (6.5) ensuring that these factors are

uniformly lower bounded. They have been introduced to balance the factors [7(n,.¢,¢) £(n0,0)|

which will occur in the estimate. These factors may not be uniformly bounded with respect to

(ng, &o) varying in the (potentially infinite) set of directions (ng,&y) of Bzm X Cin(ng) such that
R1(ng, &) URa(ng, &) is empty, justifying the choice to treat them separately below.

Taking the double of the real part of the scalar product (3.12) of equality (6.43) with the

profile U&SSC, one gets an equality, with on one side the term

res

2Re < s e

U)o

which is estimated in the following way:

2he (B F | 02) ()| = |2 (P |05, (o)
0sc 0sC 1/2 osc osc 1/2
C<Fres Fres >in ( )<Ures Ures>.n (xd)
(6.45) C({Fe | Fre din (2a) + C (U | Ui )in (%a),

where it has been denoted

. ) . T ¢,&0) E(n(], 50)
FO° . (2,0,1q) : P g (2) € 2m070 i Mo va 0 ;
FG ey gzi* o€y T <.y E@m0,0)|

and

U0 ¢ (2:0,00) == > Oanggy(2) €200 Mo (o ¢.60) E (10, &0)
np, 5 ~ b
) AeZ* |7 (no-¢.¢0) E(00, &0)]

so that the profile U2 is such that its scalar product with itself equals the one of U E)S(C) €) with

res

itself, and according to estimate (6.42), the scalar product of Fo¢ with itself is bounded, up to

res
a positive multiplicative constant, by the one of F%° with itself. Since the lower bound ( 5) is
in general not verified by the non resonant modes, the analogue of estimate (6.45) seems false,
explaining why these modes cannot be treated in the same way as the resonant modes in this
subsection, which leads us to go back to scalar equations for the first ones.
Now the right hand side terms of the equality obtained by taking the double of the real part
of the scalar product of equality (6.43) with Ufessc are investigated. The analysis of the terms

corresponding to terms (6.43b), (6.43c) and (6.43e) is analogous to the one made for the outgoing
modes.



54 CORENTIN KILQUE

Concerning the transport term (6.43b), identity (3.15) and an integration by parts lead to

res res res

emt Y X

n
(ng,€o)EFIn, AeZ* f kno,&o( 0N,

(6.46) 2Re<643b ‘U"SC>_ (za) = d (Ures | Ures din ()

£) HU)\,HO,&)H%%Rd*l) (T).

Note that since all modes are incoming here, the quantity —0e7y(n,.¢,)(10-n, &o) is positive for all
(ng, &o), which will allow us to omit the second term on the right of the equality in the estimates
below.

For the self-interaction term (6.43c) one can compute,

((6.430) U>n (za)
(6.47a)
= (277)m Z Z Z (V) F((no, 50)7 (n07 50)) <w>\1,n07£0 O X2,n0,&0 ‘ UA,no,£0>L2(wT) (wd)

(no,£0)EFiB, AEL* A1, A2€L"
A1+Ao=)

= (2m)™ Z Z Z iA F((HO, €0), (no, 50)) <W>\1,n07§0 O X2,n0,&0 | O-)\7n0,§0>L2(wT) (a)

(no,£0)EFiB, AEL* A1, A2€L"
A1 +Ao=)\

—om™ Y D D T ((1m0,40), (10,€0)) (@ mo.o Tasnoséo | OAn0,60) 12 (wp) (Td)-

(no,ﬁo) .7:'“ AEZ* A1 ,A\2€ZL*
)\1+)\2 A

But with already detailed computations, one gets (6.47b) = —(6.47a), so

res

- (277) Z Z Z (2N F((n()? 50)7 (n07 50)) <w)\1,n0,§0 O X2,n0,&0 ‘ UA,DO,£0>L2(¢UT) (xd)

(no,£0)EFID, AEZ* A1,A2€Z"
A1+A2=A

Note that this term differs from (6.47a) because of the coefficient A; instead of Ay, which makes
the derivatives with respect to 6 apply on the coefficient V. 2:¢ instead of on the unknown UZ%S.
Upper bound (6.8) therefore leads to

2Re ((6.430) | U2s)  (wa) =

res

<C Z Z Z [A1no| ‘(W)q,n()@ OX2,m0,&0 | J)\7no,§o>L2(wT) (xq)] -

(no,&0)EFIB, ANEZ* M1, \2€Z*
>\1+>\2 A

‘2Re< (6.43c) ‘UOSC>. (md)(

The term on the right of the equality is of the form (fg|g), so we get
U&Ssc>. (l’d)‘ SOV lle, o Ures | Ures )in (za)-
For term (6.43e) of type 2 resonances, we write

<643e (U°>n @)= 3 S ST (A, ) A (g, &)

(no,&0)€FiL, (Ap,Ag,Armp,ng, LEL*
§p,€q)ER2(n0,80)

(6.48) ‘2 Re <(6.43c)

<wz>\p7np7§p O'Z)\q,nq,gq { UZ)‘T7nT7£7‘>L2(wT) (xd)

Then the following upper bound is derived, for all (Ay, Ay, A\r, 1, 14,8y, &) € Ra(np, &p) with
ng € Bzm, & € Cin(ng) (which constitutes a finite set, see Assumption 8),

‘F()‘p(npafp),)‘q(nqafq))‘ < Oyl Iny, &,
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where the constant C' > 0 is independent of n,, n4,ng,&,,&; and . Once again, with this
bound, the derivative with respect to 6 no longer apply on U5 but only on V,25¢. The following
estimate is thus deduced:

(6.49) ‘2 Re <(6.43e)

Ufessc>. (wd)(<0\|‘4‘é§cllgﬂ (Ures | Ures )in (2a)-

Finally term (6.43d) of type 1 resonances is investigated, which is treated following [Raul2,
Chapter 11]. Once again the aim is to have a derivative applying totally on V,23°. First the set

on which the sum (6.43d) is taken is parameterized in a different way. The set R; of type 1
incoming resonant 6-tuples is defined as

(g)‘p npag)‘p gpyg)‘q ng, le Z*, ng € BZm, 50 € Cin(n(]),
g)‘q gqa —{ )‘T no, -4 >‘7‘ 50) (>‘pa )‘qa )‘T, np) nq’ gp’ gq) € Rl (n(]a 50)

Note that if (n,,§,,n4,&4,0,,&,) is in Ry, then ny, +ny+n, =0, and &, + &, + & = 0. We
also see that, according to remark 6.9, a 6-tuple (ny, &y, ng, &y, 0y, &) is in Ry if and only if the
symmetrical 6-tuple (n,, &, n,, &, n4,&,) is in Ry. According to identity (6.1), we have

(6.43d) = Z Z Z FWony iy 6y T g T (EAp1p, EApEp) s (PAgIg, LAGE,))

(n07fo)e]:;gs ()‘Pv)‘%)‘?“vnpvnl]v tez>
5@76‘1)67?’1 (n0760)
ot OArn0-0 i o Ya 5

Ry =

(OArno-C,00E0) B (A0, L&)

- Z iwnpvfp Tng,&q F((np’ gp)a (nQa gq))e_inr.e e_i& v 7~T(nr~C,§r) E(nr’ gr)

(np,&p,ng,&q,
nrygr)ERl

If nin Z™\ {0} and & in C(n) write as (n,&) = A (ng, &) with ng € Bzm, £ € C(ng) and A € Z*,
we have denoted

Ong = Oxmnocor  aNd  Wng 1= WA ng o-
Therefore we have

<(6'43d ‘ Ugassc>in (xd) = Z Z.F((np, gp)’ (nqa gq)) <Wnp,§p Ong,&, ‘ U—nr,—§T>L2(wT) (xd)

(np,&p,ng,&q,
nrvgr)ERl

= Z ir((np7§p)7 (nqqu))<w*npﬁ€p 0—n,,—&

(nP7£P7n(J7£q7
nrvgr)ERl

= Z _Z.P((nmgp)v (n7"7§7’))<wnp7§p Unqvﬁq | U*nr7*5r>L2(wT)(xd)'

(nP7£P7n(J7£q7
n?"ng)ERI

Ong,&q >L2(wT) (xd)

We have used here the fact that wy, ¢, = w_n, —¢,, the profile V¢ being real, a change of

variables (np, n,,ng, &, &, &,) = —(np,ng, 0., &p, &y, &), the fact that — Ry = Ry and the identity
(6.1). Thus we obtain

2Re< (6.43d) ‘U°> D

= Z i{r((nzn gp)a (nq7 gq)) + F((nzn 51))7 (n,, fr))} <wnp,£p Ong,t, U*ﬂr,*£T>L2(wT) (zq).

(nP7£P7HQ7£Q7
nrvg'r)eRl

Using the uniform estimate (6.4) given by Assumption 8, one obtains

2Re ((6.430) |U2) @) <C D0 100 6)l [(mpty gy | 0 meo ) ooy (@)

(nP7£P7HQ7£Q7
nrvfr)ERl

(6.50) <OV, , (U 1 URS)in (a)-

Rin
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Only the profiles V,25¢ and U appear in the estimate since only frequencies of L occur in
Ri.

Equations (6.43) and (6.46) and estimates (6.45), (6.48), (6.49) and (6.50) finally lead to

(6.51) <1 (U | U () < € R | B () + C (1+ [V, ) (U8 | U35 )
which is the expected differential inequality. O

6.4.3. Proof of Lemma 6.23. All requisite techniques to show Lemma 6.23 have now been devel-
oped, so the proof is given here. It follows [BGS07, Section 1.3.1]. Recall that at this stage, we
have considered a solution U to (5.11) regular enough, and we have shown that its mean value
is zero.

Proof (Lemma 6.23). It has been shown that if U is a solution to (5.11), then, with already
introduced notations, we have

(6.52a) Z Z X(no-C,io) T\ no.go i An0-0 i Ao Y %(no-C,ﬁo) E(ng, &)
noEBym \EZ*
£0€C(no)

(6.52b) + Y > D> iAo im0 Orame T((10,0), (1o, &)

noEBym ANEZ* \1,\2€EZL*
£0€C(nop) A1+A2=X

i An0-0 iAo P %(no_“o) E(no7§0)

(6.52¢) + Y > Y 1006 Termg &,

no€Bzm (ApsAg;Ar,np,mg, tezr
§0€C(no) &,,£4)ER1(n0,£0)UR2 (no,&0)

F(Ap(np’ gp)’ )‘q(nq’ gq)) e Ao gt EArEo %(HOC,&)) E(ng, &) =0.

Let us point out that despite formula (6.52) looks like formula (6.34), the former only uses the
fact that the mean Value U* is zero, and involves both incoming and outgoing modes.

For 0 <ty < 7T and xd = 0, con81der the domain (g, xd) bounded with respect to x4, given
by

K(to,zg) == {(t,y,q) € Qr |Vt <zg <aJ+V(to—t), 0< t < to},

see Figure 6. Let us prove that U is zero on the upper boundary of this domain, namely for
t =ty and V*ty < zg < xg, which suffices to prove that U€ is zero outside {0 < z4 < V*t} for
all ¢ in [0,T]. Take the scalar product (3.14) of expression (6.52) with the modified profile

- Z Z 8§Tk(n0,£o) (no -, 50) O \,ng,& ei Ano-0 ei Ao Pa 7?(1’10(,50) E(n(]a 50)7
noEBym AeZ*
£o€C(no)
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to obtain, according to (3.16),
(6.53a)

~ 2
Z Z <X(n0'C,§o) Oxmo,80 {O-A7n07§0>L2(lC(to7mg)) {W(nO'Cva) E(no,&]){
noEBym AEZ*
&0€C(no)

(6.53b)
+ > > > i)\QF((HOagO)a(nO,gO))<O-)\1,no,§00')\2,n0,§0|0')\,n0,§0>L2(K(t0,x2))

noEBym AEZ* A1, \2€ZL*
&o€C(nop) A1+A2=A
~ 2
( - 857—’?(“0750)(110 n 50)) ‘ﬂ(no-Cvﬁo) E(ny, 50)‘
(6.53c)
+ Z Z Z iﬁf()\p(np, &p), Aq(ng, Sq)) ( - 8£Tk(no,§o)(n0 -, 50))

noEBym (ApsAg,Arnp,ng, Lez*
€0€C(n0) &p,£4)€R1 (n0,£0)UR2(n0,0)

~ 2
<U£)\p7np7£p O-Z)\q,l’lq,ﬁq ‘ U>‘7n07£0>L2(’C(t0,mg)) |7T(1’10-C,£0) E(n07 50)‘ = 0.

Term (6.53a) is obtained by noting that, with the notations of Definition 2.10 and Lemma 2.12,

we have ((— 0¢7i(n,€)) Xo = X,. First term (6.53a) is investigated. According to Green’s
formula, for all ny in Bzm, & in C(ng) and A in Z*, we obtain

, 2
2Re (X(ng-¢.€0) Thmoiéo | Tanoo) 1211 a0)) = 2 RE / (7 + i - V(ng-¢.60)) [0Am0 60| S,
d aK(to,Ig)
where the notation v, has been introduced in Definition 2.10, 7 := (n, ;) is the outward

normal vector associated with 9K (tp,2Y), and dS is the surface measure. The vector 7 is
given (see Figure 6), for the upper boundary by 7 = (1,0,...,0), for the lower boundary by
n=(-1,0,...,0), for the left boundary by 7 = (V*,0,...,0,—1)/4/1 + (V*)? and for the right
boundary by 7 = (V*,0,...,0,1)/4/1 + (V*)2. Thus we get

2Re (X(ng-¢.60) Oamoo | TAmo.80) 12 (k(t0,0%))

=2 |oxm0.60 | T2 (-1 xt0,0p) (F0) = 2 [19m0.0 172 (Ra-1 x0,097) (©)
2 / 9
S —— V*—aTkn no-’r],go) ’O’)\,m7 ’ ds
T+ (V*)2 (b ). 0<t<to) ( ETk( 0750)( ) 0,¢0

2
.
L+ (V*)? J{(ty.a%+V=(to—1),0<t<to }

Then note that on one hand we have HaA,no,goHiQ(Rd,lxR” (0) = 0 according to the initial

(V* + aﬁTk(no,ﬁo)(no " 50)) |O-)\7n07§0 |2 ds.

condition (5.11d), and on the other hand, according to Lemma 2.14, the quantities (V* —
Ot Th(no,0) (M0 * 7, §0)) and (V* + Ot Th(no,£0) (0 * 7, §0)) are non-negative. Therefore,

~ 2
(6.54)  2Re(6532) 22 D D llonmosollTagmi-1xvesg 00 (00) [Fimo-c.c0) B0, 0)] "
noEBym AeZ*
§0€C(no)

As for them, terms (6.53b) and (6.53c) are treated the same way as before. For the self-
interaction term (6.53b), it is proved in the same manner than term (6.28b) that it satisfies

2Re (6.53b) = 0.

For the resonance term (6.53c), the same techniques as for terms (6.49) and (6.50) are used.
According to Lemma 2.14, the group velocities ( — Ot Th(no ) (N0° M, {0)) can be uniformly bounded
to obtain

0SC ~ 2
(6.55)  [2Re (6.53c)| < C|U™g, . Z Z\|J)\7n0,§0\|iz(,€(t07$g)) |7 (n-¢.60) E(m0,&0)|” -
noEBym \eZ*
§0€C(no)
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ALS

FIGURE 6. Propagation zone.

Noting that

Z ZHJ)\H(),E()HLQ (K(t0,29)) |7T(n0¢§0 n0,§0)|

ngEBym A\eZ*
§0€C(no)

~ 2
/ > 3 onme et erat v o (O o) Eo. )|

noEBym AeZ*
§0€C(no)

using equations (6.53), (6.54) and (6.55) and according to the Grénwall’s inequality, it follows
2 ~ 2
Z Z ||U>\,n07§0HLQ(Rd—lx[V*to,xg}) (to) |7T(n0'47€0) E(ny, 50)‘ =0.

noEBym \eZ*
§0€C(no)

Therefore, for all ng in Bzm, & in C(ng) and X in Z*, the function o) n, ¢, is zero on {t = to,

Vity < zg < xg}, so the profile U is also zero in this set, concluding the proof of the
Lemma. ]

6.4.4. Estimating the derivatives. Returning to the proof of the a priori estimate, Proposition
6.24 is proved here using estimate (6.44) of Lemma 6.25. Consider a multi-index o of N4+™ such

that || < s. Since the operator 0 ' p commutes with the projectors El and Ei.

the profile

res ?

res

0% ,U¢ satisfies a system of the form (6.38), with 0% ,G as boundary term, and E’reS [(92‘, oF o +

Fa] as source term, where Fy, is the following commutator
Fo = [Zm Vi, ;) Dy 02 | U,

Thus, according to estimate (6.44) and applying the triangle inequality, we get

d
(6.56)  —— (0% oUres’ | 02 Urey )y, (wa) < C (02 B35 |02 03 )y, (wa) + C (Foc | Fa i ()

oy res
+C (14 Vil ) (05 gUsm | 02 URES),, (2a).
Note that according to Lemma 6.21 we have
(Fa | FOé>in (za) < |!FaHgb(R$d7L2(waTm)) (zq),
and in the same way

(080 5 | 02,0 P )y ) < 10201, s g mmy (@)
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On an other hand, according to the algebra property of H*(wp x T™) (since s > (d+m)/2+1)
and the commutator estimate [BGS07, Proposition C.13], we obtain

2 2 2
‘|FaHCb(R+,L2(wT><’Em)) (zq) < C ||‘/r(4)32CHCb(R+7HS(wT><’]I‘m)) (za) HU;)essc||cb(R+7HS(wT><’]1‘m)) (za)
2 2

< CIViEllg, o 10w ey e i (o xTmy) (Td)-

Finally, by definition of the H*(wzp x T™) norm and according to Lemma 6.21, we get

OSC (63 0OSC 2
(6.57) 107Ny s ooy () = D 109,005 o, s 12(0p xrmy) (F)

la|<s

SO Y (020U | 029U, (wa)-

|lal<s

Therefore, by summing equations (6.56) for |a| < s, one gets

d « osc o osc osc (|2
(6'58) d—.%'d Z < z/,GUres {az/,GUres >in (xd) <C HFres ||Cb(R:/,_d7HS(WTXTm)) (xd)

|lal<s

2
O (1 IVEIZ, ) D (096U | 02 URS), (2a).

la|<s

Thus, according to Gronwall’s inequality,

(659) 3 (08 US| 0 yUSS), (wa) < CV% 37 (95 US| 95 4USS), (0)
lorf<s lorf<s

Tq
+ / eC(V)(a:d—le) HFosc
0

2 ! !
res ch(ij_des(wTXTm)) (xd) dmda

where C(V) = C(1 + HV‘)“HiT). The trace on the boundary UZS is therefore given by

res res

= H where HEY is determined by equation (6.20a). Remark 2.8, Propo-

0osc
( res ) |zq=0,4=0 res res
sition 2.21 and Lemma 6.21 ensure that, for |o| < s,

(6.60) (02 pUres’ | 0% gUres )y, (0) < [0 pUSES = |02 g Hyes

2 2
O 2y ) res | 2 pcmy

< 0|02 oG,

wp XTm) *

It thus follows, with (6.57), (6.59) and (6.60),

(6.61) |lUee

2 T 2
res ch(R:/,_d7Hs(wT><Tm)) (xd) < C@C(V) d HGHHS(wTXTm)

T4
c ~] 2
+/0 C(V)(@a—zy) HFrOeSSCch(RId7Hs(waTm)) (

xl)) dxl).
Because of the function S in equation (6.38b), it is possible to bound x4 by 2V*T then to pass
to the upper bound with respect to x4 in estimate (6.61) to obtain the required estimate (6.39),
concluding the proof of Proposition 6.24.

6.5. A priori estimate for the linearized Burgers equations. We prove now a priori esti-
mates for the linearized Burgers equations (6.18), corresponding to the non-resonant incoming
modes. These a priori estimates will be used to prove the existence of solution to these Burgers
equations. However the estimates will have to be summed with respect to (ng,&p), so we wish
for constants independent of (ng,&p). This part is devoted to the proof of the following result.
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Proposition 6.26. Consider (ng, &) € (Bzm x Cin(ng)) \ Fits, s > so and let Sy o, Whag,eo and

Fop g, be in C(RY , H5(wp x T)) of zero mean, satisfying the scalar boundary value problem

Tq)
(6.62a) X(no.g,gO)Sno,go + T (10, &0), (00, 0)) W 6090 Sn0.60 = Fo o
(662b) (Sl’lo,ﬁo) ‘xd:(] = hno,&)
(6.62c) (Sno.o) jp<o = 05

where hy, ¢, is defined by equation (6.20b). Then the function Sy, ¢, satisfies the a priori esti-
mate

2
(6.63) HSrlofo Hc(Rjd7HS(waT))

C(W) VT 2 s C(W)V*T 2
<Cie (W) ||hn0,£0HHS(wT><11‘m) + VT W) HFH(LfO||C(R:d,Hs(wTX’]I‘)) )

where C(W) := C1(1+ [|[Wny ¢ Hg(R+ Ho(Qp xT)) ), with Cy > 0 a constant depending only on the
Id7

operator L(0,0,) and of s, but not on ng,&y. Recall that the real number V*, bounding the group
velocities v, has been defined in Lemma 2.14.

First the L?(wr x T) estimate, analogous to estimate (6.44) for resonant modes, is investigated,
and equation (6.62a) is rewritten. Write Sy Whe.go and Fy, ¢, in C(R} HS(wT x T)) as

0,807

g’
IO iNO
S g0 (2, 0) Z Oxno(2) €77, Whgg(2,0) Z W, o, (2) €77
AEZ* AEZ*
zA@
Froe0(2,0) Z Fano.o (2 )
AEZ*

With o ng.¢0s Wang,go A fi ngg scalar functions on Qp. Then equation (6.62a) writes

(6.64a)
Z anog(2) € A0 A0 — X(np-¢,60) Z TAmo,80 ez>\97
AEZ* AEZ*
(6.64b) +T((no, &), (M0,£0)) D D 1 A2w 0.6 Trznoo € -
NEZ* )\1,)\262*
A1+A2=A

Recall that the vector field X, (no-¢,60)» defined in Lemma 2.12, is given by

= -1 1
Xm O + VT ng-n,&) - Vy+0:,.
(068 = e ko) (M0 1:€0) DT ) (M0 - 1,€0) kl 60) (0 1, 80) - Vy + Or,

By taking the double of the real part of the L?(wr x T) scalar product of equality (6.64) with

the function Sy, ¢,, one obtains an equality, with on one side of it the term

2Re (Fy, 80 | Sno £0>L2(waT) (xa),

which is estimated in a similar manner than for the resonant incoming frequencies:

(6.65) |2Re <Fn07§0 | Sno7£o>L2(wTer) (zq)| < C HFno,foHp(wTer) (wq) +C HSno,Son(waT) (za)-

One may note here the interest of having reduced the equations to scalar Burgers equations
for the non-resonant modes, since the coefficients ’%(no(,&o) E(ng, &)|~! no longer appear, these
ones being not uniformly bounded for the non resonant modes (ng, &p).

We now focus on the other side of the equality obtained by taking the double of the real part
of the scalar product of equation (6.64) with the profile Sy, ¢,. The analysis of terms (6.64a)
and (6.64b) is analogous to the one made for the outgoing non-resonant modes.
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Concerning the transport term (6.64a), according to identity (3.15) and using an integration
by parts, we obtain

d

(6:66) 2Re ((6:643) | S o) g2 o) (7a) = 7 ISl 20y ) (@)
1

- 8£Tk(no7£o)(n0 -1, 60)

Note that since (np,&p) is an incoming mode, the quantity —0¢Ty(ng,¢.) (0 * M, &0) is positive,
allowing to omit the second term on the right hand side of the equality in the estimates.

For the self-interaction term (6.64b), with computations analogous to the ones used for the
incoming resonant modes, we obtain

2 Re ((6.610) | Smg o) 20 1) (7) =
—@m)™ > > i ((mo, &), (100,40)) (Warno. Trsinogo | OAn0,60) 12 (wp) (Td)-

ANEZ* N\1,\2E€EL*
A1+A2=A

HSno,ﬁoH;(Rdfl xT) (T)

Therefore, using the upper bound (6.3), we get
2Re {(6:64D) | S &) 12y ) (7|

h
<C Z Z |A1no| ‘(W)\l,novfo Orz,n0,0 | J)\7n0,§o>L2(wT) (za)|-

ANEZ* N1 ,)\2 S/
A1+A2=A

Here the order of regularity must be taken down to h since we wish for an upper bound indepen-
dent of ng, in the purpose of summing the inequality with respect to ng. An upper bound of the
form C(ng)|)\1| instead of C|A1ng|" could be obtained, but where the constant C(ng) depends
on ng, and may be arbitrarily large since we consider modes ng close to the glancing set. The
right hand side of the equality being of the form (fg|g), the following inequality holds

(6.67)  {2Re ((6:64b) [ Sno.g0) 2wy xm) (Ta)| < CNWa ol 15 o)) 19000l 12 ey (%)

using Sobolev inequality, s being such that s > h+ (d+m)/2. Using equations (6.64) and (6.66)
and estimates (6.65) and (6.67), it finally follows the differential inequality

d
(6.68) d—xd HSn07£0HL2(UJTXT) (¥a)

< C 1P ol 2 pcry @) + € (14 1Wan o llogt, arsorxny ) 100,60l 2upocny (@)

To obtain the required H*(wr x T) estimate, we use commutators estimates analogous to the
one for resonant incoming modes, which we do not detail here. Finally we obtain the sought
estimate (6.63).

The a priori estimates (6.44) and (6.63) (for s = 0) as well as the equivalence property of
Proposition 6.22 ensure the uniqueness of the solution to (5.11).

6.6. Construction of a solution.

6.6.1. Construction of an oscillating solution to the linearized system for the resonant incoming
modes. Thanks to the a priori estimate (6.39) of Proposition 6.24 on the linearized system (6.38),
a solution to this system can be constructed, proving the following result.

Proposition 6.27. Consider s > sg and T > 0, and let V2 be a profile of N;Sji inwvolving

res

only resonant incoming modes, F&S be in P and G be in H® (wp x T™). Then there exists a

solution Uy in Py to system (6.38), involving only resonant incoming modes, that moreover

satisfies the following estimate

2 : 2 K :
HUOSCHE&T < Cl 6C(V)V T HGHHS(wTX']I‘m) L VAT eC(V)V HFOSCHESj ’

res res
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res
the boundary frequencies (i, ...,(m, and on s.

where C(V') := C1(1 + ||V°SCH55T), with Cy a positive constant depending only on L(0,0,), on

The proof of such a result using an a priori estimate of the form (6.39) is detailed in [JMR95,
Theorem 6.3.3]. Its main ideas are recalled here.
The uniqueness of the solution follows directly from the a priori estimate (6.39). Concerning

the existence, a finite difference scheme is used. Since the operators 9y, for j = 1,...,m,
are skew-symmetric, skew-symmetric finite difference operators must be considered. Denoting
€1,...,emn the canonical basis of R™, we define, for every function U of Q7 x T™ x Ry,

5;1U(27071/}d) = (U(z70 + heﬂ) B U(z,@ - hej)/Qh’

for j =1,...,m and h > 0. The proof then consists in showing that there exists, for h > 0, a
unique solution Up®¢ to the regularized system

(6.69a) Ei U™ = Ui
6.69b Ein osc N Vosc 5hUosc _ E Fosc
( : ) res + Z 1 res ’CJ - res
(6.69¢) (UR™) jpumopymo = Hres
(6.69d) (UF) o = 0,

and that this solution satisfies the estimate uniform with respect to A > 0,

2 C * 2 C *
JUR<IZ,, < CreCOV T G2y + VT COVT B2

res

where C(V) := C1(1 + HVOSCHgST), with C; > 0 a constant depending only on the operator

res
L(0,0,), on the boundary frequencies (i,...,(n, and on s. This uniform estimate allows to
extract a sequence (Up*°), weakly converging towards Uy in & . Passing to the limit in
system (6.69) leads to the result of Proposition 6.27.

6.6.2. Construction of an oscillating solution to systems (6.17) and (6.18). This part is devoted
to the following result, constituting a part of the result of Theorem 4.1.

Proposition 6.28. Consider s > sq, and G in H*®(R? x T™), zero for negative times t. There
exists a time T > 0, depending only on the operator L(0,0,), on the boundary frequencies
Clye s Cms on the H3(R® x T™) norm of G and on s, such that system (6.17) and, for every
(ng, &) in (Bzm x Cin(ng)) \ Fi1, system (6.18), admzt solutions USs and Snyg, in Pt and

res
C(R4, H*(wp x T)), where the functz’ons Sno.eo are of zero mean. Furthermore, if we denote, for
(Il(),fo) in (BZm X Cin(no)) \ res’

Sng Eo z,0) Z Ox nmfo MG’

0,80

AEZ*
then the profile U%¢ defined, for (z,0,1q) in Qp x T x Ry, by
(6.70) U%(2,0,10q) := U%(2,0,1q) + > D Oamo(2) €00 0% B(ng, &),
(no,f0)€  ACZ”
(Bzm X Cin(10))\Fres

belongs to the space Por-

It is classical to deduce from an existence result of a solution to a linearized system with an
estimate of the form (6.39), the existence of a solution to the original system. The main ideas
of the method described in [BGS07, Théoreme 10.1] are recalled here.
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First system (6.17) is investigated, and the following iterative scheme is considered:

(6.71a) En UG = USS
—~—in —~ m ~
(6.71b) Ei [L(o, 9.) BrUSH + Z Ly(BrUS*, ¢;) Do, Br Sicl] =0
j=1
(6710) (US—Sf—Cl) |£q=0,14=0 = erssc
(6.71d) ( ;’icl)‘t@ =0,

initialized with U§™°(., x4, .,¢q) = HZS, for all z4,14 in R4. Proposition 6.27 ensures that the

res?

sequence (US*), is well defined in o7~ Lhen the proof consists in showing that the sequence

(U2%°), is bounded in high norm, and contracting in low norm, in order to deduce its weak
convergence in the Banach space Pg7.
Bound in high norm. According to estimate (6.39), we have, for v > 0,

(6.72) U0

2 C(Uese * 2
g, , < Cre®TYG

UJTXTm) ?

where C(U2*¢) = Cy (1 + HUSSCHES .. ). If the time T > 0 is chosen sufficiently small so that
exp {C’l (1+2C HGH%S(waTm) ) V*T] <2,

then an induction argument shows that (Up™), is bounded in &1 by vV2C1 [|Gl gs(ypxrm)-
Indeed, the initial step is obvious, up to assuming C; > 1/2. On an other hand, assuming
HUSSCHSS,T < V20, HGHHS(wa’]I‘m) for some v > 0, according to (6.72) and the assumption on
T, we obtain

vz, < Crexp [Cr(1+ U2, ) VT IG e ey
< Chrexp [Cl (1 +2C, HGH%IS(UJTXT"L) ) V*T] HGH%TS(wTXTm)
<20 HGH?{s(waTm)’

which is the expected estimate.
Contraction in low norm. Denote, for v > 1, W2*¢ := U — U2, that satisfies the system

(6.73a) Ep Wi = Wit
—~in r~ mo_ —~in
(6.73D) Bl yes [ L0, 02) BrWS + 30 L (BrUS*, ) 0, Br W | = Byes Frin
j=1

(6.73c) ( Sicl)\xdzo,wdzo =0
(6.73d) (W251) o = 0
where F) 11 is given by

m ~ ~

Fo1 ::Z (L1(BrU, ) — La(BrUS™, ¢;5)) 0, BrUS.
j=1

According to estimate (6.39) applied to system (6.73) for s = 0, the following inequality holds

[wesallz, , < VT ecwEvT

1”20’T FV‘HHEO,T :

First note that by assumption on T, and since the sequence (U2*), is bounded in &1 by
V20 Gl grs g xTmy> We have, for v > 0,

(6.74) CUPIWVT 9.
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Now the & 7 norm of F, 1 is estimated. Thanks to the product estimate and the choice of the
index s, we have

0,7

2 . T osc T osc 2 osc |2
1F1l3, . <C Y |[(EaBrU, ) = TaBruz, o) | 101, , -
Jj=1

According to the mean value inequality, and since the sequence (U2*), is bounded in & 7, one
then obtains

2 2 2
(6.75) 1Ev1llg, » < ClIWllg, 1 NGl rs @opxerm) -
Therefore, according to estimates (6.74) and (6.75), we get

2 2 2
W12, < OVT Gy IWEIE,

wT xTm

For T' > 0 small enough, the sequence (US*), is therefore convergent in &y 7.
Thus the sequence (US*¢), is a Cauchy sequence in the Banach space Por, and therefore
converges to a function U of Py%. It is possible to show, with arguments that will not be

recalled here, that UgL is actually in P and satisfies system (6.17), see [BGS07, Theorem
10.1] for similar results.

The proof of the existence of a solution to (6.18) is identical, and is not detailed here. It relies
on a result of existence of a solution to the linearized system (6.62), analogous to Proposition
6.27, that has not been spelled out. One may however note that the existence time 1" is indeed
independent of (ng, &), since the constants in estimate (6.63) are independent of (ng, &), and
since according to estimate (6.37), each boundary term hy, ¢, is controlled in H*(wr x T) by
C|Gl s (g xcm), uniformly with respect to (no, {o).

Finally, it is shown that the profile U defined by (6.70) actually belongs to P¢%. Indeed,
according to Lemma 6.21, we have

HUOSCHZ‘&T < C sup Z <83,9U05c { 82‘,,9U05c>in (xd)

a>0 lal<s

< Csup Y (9% U | 0% pUss),, (xa)
Z‘d>0 Ia‘<s ) ) m

+ C sup Z Z HO’>\7nO7£0H2HS(wT) (xd)

24>0 (no,fo)e  A€Z*
(Bzm Xcin(no))\}—;gs

5 2
<SCIENe,, +C XL ISmsolle, rewrsmy)
(no,60)e
(Bzm Xcin(no))\}—;gs
so that, using the a priori estimates (6.39) and (6.63) as well as the boundary term estimates
(6.37), one gets
(6.76)
2 2 2 :
107Nz, < CNGN b orxrmy +C 3 Wmoollzsgupscr) < CICHars o xrmy
(nog0)€
(Bzm Xcin (no))\f;gs

6.6.3. Determination of the evanescent part and conclusion. To conclude as to the proof of
Theorem 4.1, it must be proved that there exists a solution U®Y in P to system (6.19), where
the parameters s and 7" are those given in Proposition 6.28.

The polarization condition (6.19a) results, according to Remark 6.20, to

U (2,0,1q) = Z eta An-€) Moy (- ¢) U (2,0) ot
nezZm™\{0}

The traces (Iy (n - ¢) Uﬁ")l py—o for min Z™ \ {0} must therefore be determined to find the
profile U®Y. The boundary condition (6.19b) gives the double trace on the boundary, for n in
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zm\ {0},
US(+/,0,0) = Man (n - Q) US'(+,0,0) = I (0~ ¢) (Bip_m)) ~ Gn(2).

Then this trace is lifted with respect to x4 using a function x of C§°(Ry), equaling 1 in 0.
Namely we set

U(z040) = Y x(aa) AP (n-¢) (Bip_(ng)  Gal2) ™.
nezm\{0}

Note that, by construction, the profile U®¥ satisfies the polarization condition (6.19a) as well as
the boundary condition (6.19b). It must be now verified that it belongs to the space of evanescent
profiles P, First we note that the profile U®" belongs to L™ (R;ﬁd X R;Zd, HS (wp xT™)). Indeed,
on one hand, the functions Gy, being zero for negative times ¢, the profile U®" is zero for negative
times . On the other hand, since the function x is bounded, the inverse map (B‘Ei(n_o)_l is

uniformly bounded according to remark 2.8, and the terms e¥A®<) 1€ (n-¢) are also uniformly
bounded according to estimate (6.12a) of Proposition 6.16, for x4, 14 > 0, the following estimate
holds:

(6.77) U s g rmy @ a) C > NGl o gy = CIG s gty -
nczZm\{0}

From now on we denote, for n in Z™ \ {0},
U (2,%a) = x(2q) e O T (- €) (Bip_nec))

so that U™ (2,0,%a) = X nezm (03 Un' (25 %d) em?,
Then it is proven that the profile UV is continuous with respect to (z4,14) in Ry x Ry with
values in H®(wyp x T™). Consider (29,19) in Ry x R, and € > 0. There holds, for x4, g > 0,

HUeV(xd’wd) - Uev(x?l,wg)HHs(wTXTm) < HUeV(xd’qbd) - Uev(x3’¢d)HHs(wTXTm)
+ U (@l a) = U @ D s gy

and we seek to estimate the two terms on the right hand side of the inequality. For the first one,
according to estimate (6.12a) of Proposition (6.16) and Remark 2.8, for ¢y > 0, we get

HUeV(xd7wd) - Uev(x(c)hwd)HHs(wTXTm) < C {X(md) - X(x(c)l)‘ HG”HS(wTX’]I‘m) :

By continuity of x, there exists therefore §; > 0, depending only on ¢, such that for all x4 such
that |z4 — 29| < 61 and for all 14 > 0, we have

HUeV(l“d,%) - Uev(x3’¢d)“HS(waTm) <&

For the second one, we denote by M an integer such that

Z G e™? < e.

‘1’1|>M Hs(wTX’]I‘m)

'Ga(2)),

Thus, for ¥4 > 0,
U (23, va) — Uev(mg7¢2)|’HS(wTXTm)

(6.78a) <| > U8y, 28 va) — US (y,25,49)] €™

0<|n|<M Hs (wp xT™)
(6.78b) + Z (U (y, 25, a) — U (y, 25, 93)] €™

n[>M H (wp xTm)

The sum in term (6.78a) being finite and the functions USY being continuous with respect to
Ya , there exists d2 > 0 such that for all ¢4 such that [1hg — 19| < d2, we have (6.78a) < e. On
an other hand, according to estimate (6.12a), Remark 2.8 and since y is bounded, we have, by
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construction of M, for all ¢g > 0, (6.78b) < Ce where C' > 0 does not depend on ¢. It is then
possible to conclude: for all (z4,14) such that |(xg, 1) — (23,49)| < min(dy, d2), we have

|U (@a, ) = U (20,90 | o g wermy < 2+ O,

showing the required continuity.

Finally, with similar arguments as above for the continuity property, it is possible to show
that the profile U®Y converges towards zero in the space C(Rjd, H*(wp X ']I'm)) when 14 goes to
infinity (so in particular in H*(wp x T™) for every fixed z4).

All points of Definition 3.4 of evanescent profiles have therefore been verified, so it has been

proven that the profile U¢Y belongs to the space T of evanescent profiles.

Remark 6.29. It has been shown in the previous paragraph, in estimate (6.76), that the oscil-
lating part U is controlled in & 7 by the H*(wr x T™) norm of the boundary term G. On
an other hand, according to estimate (6.77), the evanescent part U¢" is also controlled by the
H?(wr x T™) norm of G. Thus the leading profile U satisfies

1Ullp, » < ClIG gregomcrmy -

6.7. Conclusion and perspectives. It has therefore been proven that for s > h + (d +m)/2,
there exists a time 7" > 0 small enough such that systems (6.17), (6.18) and (6.19) admit
solutions Uy, Sngg and U in PO%, C(Ry, H*(wr x T)) and PgY. According to Proposition

6.22, the profile U = U + U*®" (where U is defined from Uy and Sp, ¢, by equation (6.70))
is therefore a solution in P 7 to system (5.11). It concludes the proof of Theorem 4.1.

Estimate (6.39) is not tame since the norm of V°* in the estimate depends on the regularity
index s. Therefore, it is a priori not possible to obtain the existence of a solution U of infinite
regularity considering a boundary term G infinitely regular, since without a tame estimate, the
existence time 7" a priori depends on the considered index s. It has been chosen not to attempt
to keep the estimates tame until the end for the sake of simplicity, for example in estimate (6.44),
but it is however conceivable to achieve this more precise statement in further work.

Possible extensions of the result of this article to less restrictive assumptions are now discussed.
It seems reasonable to consider a similar result under the assumption that the system under study
is hyperbolic with constant multiplicity, and not strictly hyperbolic (Assumption 2). Similarly,
Assumption 7 could be removed to allow outgoing frequencies to exist within the domain. It is a
situation of this type which is considered in [CGW11]. But in this case it is no longer possible to
determine beforehand the traces of incoming modes, as done in Proposition 6.22. This may also
open the way to an infinite number of resonances with outgoing phases, which complicates the
functional framework. The weakening of the uniform Kreiss-Lopatinskii condition Assumption 3
shall be discussed in a future work. Concerning the glancing frequencies, Assumption 4 stating
that all glancing frequencies are of order 2 seems to be crucial, see [Wil00]. Likewise, it seems
difficult to do without Assumption 5 ensuring that no glancing frequencies are created on the
boundary.

Finally, this work raises the question of the justification of the geometric optic expansion that
has been constructed, namely to prove that the function

2 eU(z,2 -G/, ..., 2" (/e q/€)

is indeed a good approximation on a fixed time interval of the exact solution to (2.1) as € goes
to zero. To do so, two main methods are practicable. As conducted in [Wil96], if there exists
a solution on a time interval independent on the parameter €, it is conceivable to show that
this exact solution and the function defined above draw near each other when & goes to 0, see
[JMRO5] and [CGW11]. The problem is that in this work we do not have an exact solution
on a fixed time interval. An other strategy relies on using a large number of corrector profiles,
which we do not dispose either here (constructing correctors relies on small divisor accurate
controls for noncharacteristic modes, which goes even further beyond Assumption 6). Both of
these points (getting an existence time of the exact solution independent of epsilon and building
a large number of correctors) do not seem to be within our reach for the moment, but will be
the topics of future studies.
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APPENDIX A. ADDITIONAL PROOFS

A.1. Proof of Proposition 2.21. We detail here the proof of Proposition 2.21, omitted at
first because of its length.

Recall that, for ¢ in Zg, the projectors IL;((), for j in G(¢)UZ((), are defined as the projectors
from E_(¢) on E’(¢) according to decomposition (2.23), and that II¢(¢) is defined as the

projector from E_(() on the elliptic stable component E° ({) = @jep(C)EZ(C) according to the
same decomposition. Proposition 2.21 then reads as follows.

Proposition A.1 ([Wil96]). Under assumption 2 and 4, for ( € Eqy the projectors H{(C) for g
in G(Q) UZ(C), and the projectors 11¢ (¢) are uniformly bounded with respect to ¢ in Zg.

Proof. In all the proof we indistinctly denote by e every analytic function which, evaluated in a
particular point a precised below, is nonzero, and which is therefore nonzero in a neighborhood
of the point a. Since the projectors II7 (¢), j € G(¢) UZ(¢) and II¢ (¢) are homogeneous of
degree 0 with respect to ¢, the claim is proved locally in ¥g, and the result follows from the
compactness of the sphere . The study is therefore reduced locally in a neighborhood of every
point of Xg.

Consider ¢ = (r,n) € ¥g. We are interested in the behavior, on a neighborhood of ¢ in

Yo, of the projectors I (¢), j € G(¢) UZ(¢) and TI¢ (¢), and therefore in the behavior, in
a neighborhood of ¢, of the eigenvalues of A((). According to Proposition 2.9 there exists a
neighborhood V of ¢ in ¥, an integer L > 0, and a regular basis C"V in which the matrix .A(¢)
is a block diagonal matrix of the form

(A1) diag (A-(C), A+ (), AL(C); - -, AL(Q)),

where the block A_(¢) (resp. A4(()), eventually of size zero, is of negative definite (resp.
positive definite) real part, and where the blocks A4;(() are of type 44i) or iv) with the notations
of Proposition 2.9. According to this proposition, the eigenvalues associated with the blocks of
type #ii) remain imaginary for ( € ¥ in a neighborhood of ¢ and therefore do not contribute to
the elliptic parts of the stable and unstable subspaces. However, the eigenvalues of the blocks of
type i) may have a nonzero real part in a neighborhood of ¢ and thus contribute to the elliptic

parts. Thus, in a neighborhood of ¢ in ¥, the elliptic part @jep(C)Ei(C) writes as the direct
sum of the stable subspace for A(¢) associated with the block A_(¢) and of the generalized
eigenspaces associated with the potential eigenvalues of negative real part of the blocks A;(¢)
of type ). The detailed description of these eigenspaces constitutes the central point of the
analysis below.

In the basis adapted to decomposition (A.1), which is analytic with respect to ( € g, we
consider the first vectors associated with the block A_(¢) and the aim is to complete this set of
vectors into an analytic basis of the stable subspace E_({). The purpose is to construct, in a
neighborhood of {, a determination, continuous with respect to {, of the stable eigenvectors of
A(Q) associated with the blocks A;(¢) of type 44i) and iv) (which are therefore imaginary in ()
and to deduce from that the existence of a linearly independent set of generalized eigenvectors
continuously depending on (. To this end, the analyis of [Mét00] is followed.

Let i éj be an imaginary eigenvalue of A(() of algebraic multiplicity n;. By definition of A(()
and with the notations of Assumption 2, there exists a unique index k; between 1 and N such
that

T = Tk, (ﬂa éj)

Two cases may occur, depending on the cancellation of the quantity a;—?(ﬁ, §]) In the first
case we shall see that there exists a continuous extension of the eigenvalue iéj which remains
imaginary for ( € Y in a neighborhood of ¢, and that there exists a regular projector on the
associated subspace. In the second case, the eigenvalue z'éj is degenerate (i.e. is not semisim-

ple) and extends to a continuous eigenvalue 7 &;, which, depending on the position of ¢ in the
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neighborhood of ¢, may become of nonzero real part, or imaginary and simple, or even remains
imaginary and degenerate.

First suppose that
Oy,

oe &) 70

that is (7,7, §j) is incoming or outgoing. According to Assumption 2, for (¢,€¢) in R4\ {0},

we have
(A2) det (A(¢) —i€I) = det(A4(0)) 1" det L(0, (¢, €)) = (7 — 7;(n,€)) e(¢, 6),

OTk..
where e((, §]) % 0. Since ;—?(ﬁ, §j) # 0, according to the Weierstrass preparation theorem

[Hor90], there exists a unique real analytic function &; defined in a neighborhood of ¢ in ¥
satisfying £;(¢) = §j and such that in a neighborhood of (¢, §j) in g x R we have

(A.3) T =7 (n,€) = (€ = &(Q)) e(¢,6),
where e(g,éj) # 0. Thus, in a neighborhood of (¢, §j) in g x R we have

det (A(¢) —i€l) = (£ = &(Q)) e(¢,6),
where e(, éj) # 0, so in a neighborhood of ¢ in ¥, i;(() is an eigenvalue (analytic with respect
to ) of A(() of algebraic multiplicity 1. On an other hand, according to identity (A.3), we have
T =Tk, (n,fj(g)), thus
A(Q) iy (0,€5(C)) = i 65(C) i, (0, €5(C))-

In a neighborhood of ¢ in X, 7&;(¢) is therefore an eigenvalue of A(() of geometric multiplicity
1, thus simple. Furthermore the projector m; (77,@(()) is analytic with respect to ¢ and is a
projector on the eigenspace of A(() associated with i£;(¢). Thus, in the block decomposition
(A.1), there is a unique scalar block among the blocks 4;(¢) corresponding to the eigenvalue

i&;(¢). In the incoming case, we then obtain associated eigenvectors depending analyticly on
¢ € Yo in a neighborhood of ¢, contributing to the stable subspace E_(().

827—k

oty . )
If now 8—?(@ §J) = 0, then, according to Assumption 4, we have Tj(ﬁ, §]) # 0 and in that
case we say that éj is glancing. Thus there exists a function e defined in a neighborhood of éj

with e(éj) # 0 such that for £ close to éj’ we have

T~ Tk (ﬁ? 5) = (§ - §])2 6(5)
We deduce, according to (A.2) that for £ close to §j,

. 2
det (A(Q) — i€T) = (€ — £,)%e(&),
where e({.) # 0. The algebraic multiplicity n; of the eigenvalue iéj is therefore equal to 2

whereas its geometric multiplicity equals 1 since
ker (A(Q) =i, I) =ker L(0, (¢,€))) = Immy,; (n,€ ),

and since the projector (1, éj) is of rank 1. The aim is therefore to find a basis of the
generalized eigenspace associated with ¢ § ., which is of dimension 2. By definition of the analytic
function 7, and of the projector my,, we have, for £ close to §j,

L(0, 7, (1, ), 1, €) 7k, (1, €) = 0,

Differentiating this equation with respect to £ and evaluating in £ = éj’ one gets, since Ty, (n, éj) =
T?

Oemi; (1:€;) 0L (0,2, m, &) may (n, &) + 0L (0,2, € ) iy (m, € ) + (0,71, € ) O (m, € ) = 0,
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that is to say, according to the expression of L(O, (1,m, {)) and using g7y, (n, §j) =0

A4(0) i (1, g) +iA,(0)(A(Q) — i€,) 75 (. ) = 0.
Denoting Py := 7y, (1, §]) and P, := (77 { ) we obtain
(A4) (A(Q )P = P,
We then denote by E; a nonzero vector of the linear line ITm 7y, (1, éj) Equation (A.4) thus
leads to
(A.5) (A(©) —i§,) P, E; = iE;.

One can then verify that (Ej,ﬂlﬂj) is a family of linearly independent vectors and that it
therefore forms a basis of the generalized eigenspace associated with zéj In this basis, according
o (A.5), the operator A(() restricted to the generalized eigenspace associated with i §j is given
by the following matrix:
€ q
(A.6) Q) = BJ ,
zéj

We have therefore obtained a triangularization of the matrix A(() restricted to the generalized
eigenspace associated with i§j, and we seek to extend this structure in a neighborhood of ¢ and

to study the behavior of the stable eigenvalues of the matrix A(() restricted to the generalized
eigenspace associated with i¢  in a neighborhood of ¢. In [Mét00] and using a result of [Ral71],

it is proved that there exists a linearly independent set of vectors E;)(C ),E}(C), analytic with
respect to ¢ € ¥ in a neighborhood of ¢, generating a subspace F;(¢) which is stable under A((),
such that E?(g) =E; and E]1 (¢) = P E; and such that the restriction of A(() to the subspace
F;(¢) is given by

§j +q(¢) 1
QQ(C) §

J

where ¢1(¢) = ¢2(¢) = 0 and where aq? 2(¢) # 0. Among the blocks A;(¢) of the block diagonal-
ization (A.1) of the matrix A({) in a nelghborhood of ¢, there is therefore a 2 x 2 block given
by Q(Q).

The aim is now to study the eigenvalues of the 2 x 2 block Q(¢) above and to find a continuous
determination of the stable eigenvalue in a neighborhood of ¢ in ¥ (and not only in Xg), namely
the Laplace parameter v is allowed to be positive. First the expression of the characteristic
polynomial of Q(() is investigated. It is of degree 2, allowing to obtain an explicit formula for
the eigenvalues of Q(¢). According to (A.2), in a neighborhood of (¢, §j), we have

det (A(C) —i€l) = (1 — i, (1,€)) e, 6).

On an other hand, according to the Weierstrass preparation theorem and since J¢y; (n, §]) =0

(A7) Q) =

and agmj (n, éj) # 0, there exists a couple of functions (fo, f1), analytic with respect to ¢,
satisfying fo(¢) = f1(¢) = 0 and such that for (¢,&) close to (¢, éj)’

(A8) ™= 71, (1,6) = (€ = (26, + f1(0) €+ € + [6(Q)) (¢, ©),
where e(§,§j) # 0. Thus

det (A(Q) — i€1) = (€2 = (26, + Fi(Q) € + €+ fo(0)) (¢, &),
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where e((, §j) # 0. But according to the block decomposition of A(¢) we have

det (A(¢) — i€) = det (Q(¢) — i€I) e(¢,€),
where e(g,éj) # 0 so that

€ — (26, + 11(O) €+ €+ fo(¢) = det (Q() — i€T) e((,€),

where e((, §]) # 0. Since according to (A.7) the £ polynomial given by det (Q(¢) — i£I) is of
degree 2 and of leading coefficient —1, we obtain

det (Q() — ie1) = — (€2 = (2¢, + H1(Q)) £+ € + fo(0)).

By identification, according to (A.7), we get fi = ¢ and fp = §j q1 — q2-
The interest is now made on the behavior of the eigenvalues of Q((), and therefore on the
roots of the polynomial £2 — (2§j + fl(C)) £ —i—é? + fo(¢), for ¢ in a neighborhood of ¢ in ¥. The

Puiseux expansion theory ensure that for v > 0 small, the eigenvalues of Q(¢) with ¢ = (z—iv,7n)
admit an expansion of the form

£(¢) = §j + 12 y2 4 O(v),

where the coefficients a2 are obtained resolving

of 9 = i(0-fo(¢) = 0-Hi(Q)E)).

But since fi = ¢; and fy = §j q1 — g2, we have

arfO(C) - arfl(C) éj = - TQQ(C) # 0,

so that Ima; 2 = +c where ¢ > 0. Thus for v > 0, Q(z — iv,7) admits a unique stable
eigenvalue £; () (namely such that Im£; (¢) > 0) and a unique unstable eigenvalue §;F(C ) (such
that Im fj(() < 0). It is deduced that for ¢ in a neighborhood of ¢ in ¥\ Xg, Q(¢) admits a
unique stable eigenvalue denoted by &;(¢). We then seek to continuously extend the eigenvalue
&; for v = 0, that is to say we are interested in the root &2 — (2§j + f1(Q)) £ + §§ + fo(¢) that
extends &;(() to a neighborhood of { in ¥. The behavior of this extension {; shall then depends
on the sign of the discriminant (reaf when ¢ is real) A;(Q) := 4§j f1(O) + f1(¢)? — 4fo(¢) which
has been represented in Figure 7.

FIGURE 7. Sign of the discriminant A;(¢) in a neighborhood of ¢.

When the discriminant A;(() of this polynomial is negative, the eigenvalue £;(¢) is necessarily
given by

§(Q) =

since it must be of non-negative imaginary part. When the discriminant A;(¢) is zero, &;(() is

given by
B 26, + f1(€)
= f.

)

26, + A1(O) + iy [4fo(Q) = 4, £1(O) = hi(O)?
2

&(Q)
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The location of the discriminant roots may even be made precise, since it satisfies 0;A;(¢) =
4((97]"1 () §j — (9Tf0(§)) % 0, so according to the implicit functions theorem, there exists an
analytic function Tjg defined in a neighborhood of n which parameterizes in a neighborhood of ¢

in 3¢ the set of the discriminant’s roots, see Figure 7. Finally, when the discriminant A;(() is
positive, we must determine which one of the real roots

26, + 1(Q) % 1€, 11O + [1(Q? = 4£o(0)
5 )
continuously extends the stable eigenvalue &;(¢) when v = 0. If &;(() refers to the sought
eigenvalue until v = 0, and if we denote ¢ = (0,7) := (7 —7,7), since §;(¢) is real when v =0
and Im &;(¢) > 0 when v > 0, we have necessarily
0Im¢;
Olmo ‘«/:0 h
so that according to the Cauchy-Riemann equations, we must have
8T(Re §j) ly=0 < 0.
Thus, if 07 fo(¢) — 97 f1(¢) §j > 0, the real root

26+ A1(0) + /48, A + (O = 4/6(Q)

2
is the one that continuously extends the stable eigenvalue £;(¢) when v = 0, and in the other
case, the other root must be chosen. We have therefore obtained a continuous determination
of the stable eigenvalue £;(¢) of the matrix Q(¢) in a neighborhood of (. Note now that an
eigenvector of the matrix B

(A.9)

)

£+ a(¢) 1
QQ(C) §

J

associated with the eigenvalue &;(¢) writes (1, 5.?395 > One thus gets, using the linearly
J >j

independent vectors E;)(C),Ejl((), an eigenvector A(() associated with the stable eigenvalue

i€;(¢) continuous with respect to ¢,
In a nutshell, in a neighborhood of ¢ in ¥y, the degenerate imaginary eigenvalue iéj contin-

uously extends in a stable eigenvalue i§;(¢) of which the behavior depends on the sign of the
discriminant A;(¢) in the neighborhood of ¢, which has been figured in Figure 7. If A;(() is
negative, then i &;(() is of negative real part so the eigenvalue i£;(C) contributes to the elliptic
part of the stable subspace E_((). If A;({) is positive, then i£;(¢) is a simple imaginary eigen-
value of A(() so it contributes to a subspace E' (¢) with [ in Z(¢). Finally if A;(¢) is zero, the
eigenvalue ¢ &;(¢) remains imaginary and degenerate so it contributes to a subspace E' (¢) with
l'in G(Q).

We denote now by iél, I =1,...,r the real incoming eigenvalues and by P& l=r+1,...,r+
g the glancing eigenvalues of the matrix A((). Using the notations of the beginning of the
proof, we have found continuous extensions i&;, | = 1,...,r + g, of these eigenvalues in a
neighborhood of ¢. Therefore, a continuous determination of the stable eigenvalues of the blocks
A1 (¢), ..., AL(C) has been determined, as well as a continuous basis of the stable subspace E_(()
constituted of generalized eigenvectors of the matrix A_(¢) and of eigenvectors of the matrix
A(() associated with the eigenvalues ¢ §;(¢) for I = 1,...,7 + ¢g. Then we denote by ﬁe_(C) the
analytic projector from F_({) to the stable subspace associated with the elliptic block A_(¢),

and, forl =1,...,7+g, ﬁl_(C) the continuous projector from E_(¢) to the eigenspace associated

4Since &;(¢) is a root of the polynomial £ — (2§j + ¢ (C)) &+ §j + équ (¢) — ¢2(¢), according to fi = ¢1 and

fo = équ — g2, we have éj‘éggﬁ)éj =&;(¢) — éj — q1(¢). Thus the following limit holds &ﬁé@gj

— 0, and the
¢—¢

considered eigenvector continuously depends on ¢ in a neighborhood of ¢
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with i &(¢). Since these projectors are continuous with respect to ¢ in a neighborhood of ¢, they
can be assumed to be bounded on this neighborhood.
If I =1,...,r, the eigenvalue i §(¢) is imaginary and simple in a neighborhood of ¢, so, for all

¢, the projector ﬁl,(C) contributes to a projector II”_({) for some j (depending on () in Z(¢). If
l=r+1,...,r+ g, then, depending on the sign of A;, the eigenvalue i £;({) may be imaginary
and simple, or imaginary and degenerate, or even of nonzero real part, so depending on where
¢ is in a neighborhood of ¢, the projector TT' (¢) contributes to T1¢ (¢) (when A; < 0), to II7_(¢)
for some j in G(¢) (when A; = 0) or to IIY (¢) for some j in Z(¢) (when A; > 0). As for it, the
projector II¢ (¢) always contributes to II¢ (¢).

We seek now to explicitly describe the projectors 11 (¢) and II7_(¢) for j € Z(¢) U G(¢). To
simplify the notations, we assume that among the imaginary eigenvalues 7 § i’ there is only one of
them which is glancing, namely that ¢ = 1. The expressions of the sought projectors depend on
whether the eigenvalue i §,41(() is incoming, glancing, or of negative real part, and therefore on
where is ¢ in the neighborhood of (, see Figure 7. If { belongs to the area of the neighborhood
of ¢ where A, 1(¢) > 0, then the eigenvalue i &, (¢) is incoming, so Z(¢) is of cardinality r + 1
and G(¢) is empty. In this case, for all index j in Z(¢), we have

I (¢) =TI (¢),
for some [ between 1 and r + 1, and

I (¢) = II°.(¢).
If ¢ is, in the neighborhood of (, on the hypersurface defined by A,;1 = 0, then i&,.1(¢) is

glancing and in that case Z(¢) is of cardinality r and G(¢) is if cardinality 1. We have therefore,
for j in Z((),

I (¢) = (),
for some [ between 1 and r, for the index j of G({),

I (¢) = T2 (),
and N
112 (¢) = I.(C).
Finally, if ¢ belongs to the area of the neighborhood of ¢ where A;(¢) < 0, then i&,41(¢) is of
negative real part so it contributes to the elliptic part E_(¢). Thus Z(() is of cardinality r, G({)

is empty and the extension of the degenerate eigenvalue i§,;1(¢) contributes to the elliptic part.
In this case, for all index j in Z(¢), we have

I (¢) = TIL(¢),
for some [ between 1 and r, and
I (¢) = TE(¢) 4+ TI=7().
Therefore, since the projectors G €),l=1,...,74+1 and ﬁe_(C ) are bounded uniformly with
respect to ¢ in a neighborhood of ¢, we deduce that the projectors II° (¢) and II’ (¢) for j €
Z(¢) UG(¢) are bounded uniformly with respect to ¢ in a neighborhood of ¢, which concludes
the proof of Proposition 2.21.

In the general case where there are multiple glancing eigenvalues 7, (namely when g > 1),
the projectors I1¢ (¢) and H];(C) for j € Z({) U G(() can still be expressed using the projectors
It (¢),1=1,...,7r+gand II° (¢). Since the expression of II° (¢) will be needed in the proof of
Proposition 6.16 below, it is given here. For ¢ in a neighborhood of ¢ in ¥y, we have

r+g

(A.10) e (¢) = + > a0 I (Q)

j=r+1
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A.2. Proof of Lemma 2.22. The following proof of Lemma 2.22 uses results and notations
from the previous one, and is therefore given now. First we recall the statement of Lemma 2.22.

Lemma A.2. There exists a positive constant C > 0 such that, if the real frequency o = (1,1,§)
in R\ {0} is characteristic, and if k between 1 and N is such that T = 14(n,€), then we have

dist ((T, n), Q) 1/2
(7, m)[1/2
Using Lemma 2.15, we therefore obtain the following estimate
dist ((7’, n), g) 1/2
|(7,m)[1/2
Proof. The interest is made at first in the first equality, which is proved using the homogeneity

of degree zero of 0:7(n,{) and of degree one of the distance. The analysis is therefore made on
the sphere ¥g, and we denote, for ¢ in X,

(A.11) o Ex(n,€)| = C

1 if sp(A(¢)) NiR =0,

m =
#(0) r(r}nn |8£Tk (n,&; (C))‘ otherwise,

j€

Z(QuUO(¢)

where sp(A((¢)) refers to the spectrum of the matrix A((), and where the notations k; and &;(()
has been introduced in Proposition 2.16. Using the compactness of the sphere Y, it will be

proved that m, satisfies
(A.12) my(¢) = Cdist(¢,G)'?,

for all ( in Xg, where C' > 0 is a suitable fixed constant. We thus consider ¢ := (z,7) in X,
and we show that there exists a neighborhood V of ¢ in which the previous equality (A 2) is
satisfied.

We recall the results obtained in the proof of Proposition 2.21, in which a continuous deter-
mination of the eigenvalues of A(¢) for ¢ in a neighborhood of  has been determined. The
previous proof focused on describing the stable eigenvalues, but it can be immediately extended
to all eigenvalues of A(¢). Denote by iéj the imaginary eigenvalues of A((). If the imaginary
eigenvalue iéj is not glancing, the proof of Proposition 2.21 yields to a continuous extension
i&;(¢) in a neighborhood of ¢, which is an eigenvalue of A((). If iéj is glancing, then we obtain,
in a neighborhood of ¢, two continuous eigenvalues i{;(() and i{f(g“ ) extending i§j, which
are possibly equal (when they are glancing). Finally, the block structure (see Proposition 2.9)
and Proposition 2.21 provide a basis of C"V in which the matrix A(¢) is, in a neighborhood of
¢, block diagonal, with a block A4 (¢) with eigenvalues of nonzero real part, and scalar blocks
corresponding to the eigenvalues i&j(¢). Three cases are then to be investigated.

o All eigenvalues of A4 (() are of nonzero real part in a neighborhood of (, so they don’t

contribute to mgy((). -

o If z'éj is imaginary and O¢7y; (ﬁ, &;(T, ﬁ)) # 0, namely if the real characteristic frequency

a;(¢) is incoming or outgoing, then it has been proven that the eigenvalue i§;(¢) is still
incoming or outgoing in a neighborhood of ¢. Furthermore, according to equation (A.3)

differentiated with respect to ¢ and evaluated in & = £;(¢), for ¢ in a neighborhood of ¢, we
have

Detiy (m,65(Q)) = —e(n.&(C)),

where e is an analytic function nonzero in ¢, which is therefore lower bounded in a neigh-

borhood of (g, & (Q)) Thus, for ¢ in a neighborhood of ¢, we have

|0eme; (1,45(0))| = €,
with C > 0.
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o Finally, if ¢ §j is glancing, namely if z'éj is imaginary and 8§Tkj (ﬁ, §j) = 0, then 1 §j is
extended by two eigenvalues z&f((), of which the behavior depends on where ( is in the
neighborhood of ¢, see Figure 7. Denote by Aj(¢) the discriminant of the characteristic
polynomial of the 2 x 2 block associated with the glancing eigenvalue. If { is such that
A;(¢) < 0, then the two eigenvalues ifji (¢) are of nonzero real part, so they do not contribute
to mg(Q). If Aj(¢) = 0, then & (¢) = {f(() and the characteristic frequency (g,g}(g)) is
glancing, so equality (A.12) is immediately satisfied. Finally, if A;(¢) > 0, then the two
distinct eigenvalues i§f(§) are imaginary, and contributes to mg4(¢). According to the
relation (A.8), differentiate with respect to { and evaluated in £ = 5;((), we have, for
¢ = (7,7m) in a neighborhood of (,

where e is an analytic function, nonzero in (¢, §J) According to expression (A.9) of the

roots 5%((), we obtain

Oemi; (1,65 (Q)) = £4/A5(Q) e(¢, €7 (0))-
But, according to the proof of Proposition 2.21 above, one may write, for ( = (7,7) in a

neighborhood of ¢,

Aj(C) = (T =TI(m)) e(€),
where e is an analytic function, nonzero in ¢, and where the function 7']5’ parameterizes the
surface of the zeros of A;. We finally infer

/ /
0emi, (1.6 ©)] > C[r =] " = ¢l - (.0)| > cai (6,0),
g

since the frequency (Tj (n), 77) is glancing by construction of 7';-7 . The same arguments apply
to i€ (€)-
Up to reducing the constant C, we have therefore proved the existence of a neighborhood V
in which equality (A.12) is satisfied. The result follows from the compactness of ¥y and by
homogeneity.

The second inequality of Lemma 2.22 is obtained immediately using the result of Lemma
2.15. O

A.3. Proof of Proposition 6.16. The following proof also comes after the one of Proposition
2.21.

We recall that I1¢ (¢) is the projector from E_(() on the elliptic stable component E€ (¢) =
D ep) B (¢) according to decomposition (2.23) and that, when ¢ is not glancing, Iy (¢) is
the projection from C¥ on the stable elliptic component E¢ (¢) according decomposition (2.25).
The statement of Proposition 6.16 reads as follows.

Proposition A.3. Under Assumption 6, there exists a constant ¢c1 > 0 and a real number by
such that, for all ¢ in Fp \ {0}, the following estimates hold

(A.13a) eAOTIE (O] < ep et Loy, vt >0,
(A.13b) A HEN(C)‘ Cep |l eertl™ vt > 0,
(A.13¢) et (1 - H%N(g))‘ e lClr, vt < 0.

Proof. The homogeneity of degree 1 of the matrix A(¢) and of degree zero of the projectors
I1¢ (¢) and IIZ.y (¢), and the compactness of the unit ball ¥ are used, and we therefore work in
a neighborhood of every point ¢ of 3. The result is then extended to a finite conic covering of
Ep. Since the projector II¢.y (¢) is defined only for ¢ non glancing, for inequalities (A.13b) and
(A.13c) where it occurs, we are only interested in the points of the neighborhood of ¢ which are
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not glancing. Thus we consider a point ¢ of ¥y and we come back to the notations of the proof
of Proposition 2.21. B

The interest is first made on the first estimate (A.13a). In the proof of Proposition 2.21, we
have constructed, in a neighborhood of ¢, a continuous basis of E_({) associated with a regular
change-of-basis matrix 7'(¢) in which the matrix A(¢) restricted to E_(() is the following block
diagonal matrix of size p X p

A-() 0
i§1(C)Iw1
0 i£r+g(<)1wy+g
constituted of a block A_(() of negative definite real part, of diagonal blocks i&;(() L, j =
1,...,r associated with the incoming eigenvalues éj and of diagonal blocks i&;(()L,,, j = 7 +
1,...,7 4 g associated with the eigenvalues §j which are glancing in ¢. In that case, according

to expression (A.10) of the projector 11 (¢) in a neighborhood of ¢ in Xg, the linear map

A TIC (¢) from E_(C) to itself is given, in the basis associated with the matrix T'(¢), by the
following p x p block diagonal matrix

A= (0)

eitérs1(C) ]lAr+1(C)<O Iwr+1

eit§r+g(<) ]IAT+Q(C)<0 Iwrﬂ?

On one hand, the block A_(() is of negative definite real part, uniformly with respect to (. On
the other hand, one can check that

Imé&4i(C) = |A,1(0)[V/?/2,

for il =1,...,9, where A, ;({) refers to the discriminant of the characteristic polynomial asso-
ciated with the glancing eigenvalue & + defined in the proof of Proposition 2.21 and is depicted
in Figure 7. But one can write, in a neighborhood of ¢ in ¥,

A;(Q) = [r =7} (m)]e(0),

with e(¢) # 0, where we recall that Tjg parameterizes in ¥y the surface of cancellation of A;. It
yields to the following estimate on Aj,

(A.14) 12O = Clr = ri(n)| = C|¢ = (r](n),n)| = C dist(¢, ).

Since the matrix T is regular, and therefore uniformly bounded with respect to ¢ in a neighbor-
hood of ¢ in Xy, according to (A.14), we get

(A.15) ‘ewo e (C)( < CeCdist(CO 2t

We consider now ¢ in a conic neighborhood of ¢ in Z¢ with ¢ = A{* where A = |¢| € R and (*
is in a neighborhood of ¢ in 3. Then, by homogeneity and using (A.15) and Assumption 6, we
obtain

< Ce—()dist(g*,g)l/2 At

‘em(c‘) He—(ﬁ)‘ _ ‘e)\tA(g*) e (¢)

_ s * 1/2y1/2 _ +1)/2
— Ce Cdist(AC*,G)1/2 A th'e C|¢|er+D) t
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Finally the inequality extends to the whole space Zy by compactness of Yy, yielding to the
required inequality (A.13a) for all ¢ in F \ {0}.

Concerning estimate (A.13b), note that, for ¢ > 0 and for ¢ non glancing,
e MO MEn (¢) = O (O TEn (),

where Iy (¢) is the projector from CV to the stable subspace E_(¢) according to decomposition
(2.25), defined for ¢ non glancing. The aim is therefore to control the projector Il y(¢), and
then use inequality (A.13a) to conclude. We still work in a neighborhood of ¢ in Xy and, to
simplify the notations, we assume that A(¢) admits a unique glancing eigenvalue §g of algebraic
multiplicity 2.

Applying the arguments of the proof of Proposition 2.21 to the unstable part E*((), one
obtain an analytic basis

Er(¢), .- En(¢)

of CV associated with a change-of-basis matrix f((), analytic in a neighborhood of ¢ in X,
such that in this basis, the linear map A(() writes

T(¢) ™ AQ) T(C) = diag (A-(C), A1(€), Q(C), A+ (C), A2(C)),

where A_(() is of negative definite real part, A;(¢) is the diagonal block associated with the in-
coming eigenvalues, A4 (¢) is of positive definite real part, As(() is the diagonal block associated
with the outgoing eigenvalues, and the unique 2 x 2 block Q((), associated with the glancing
eigenvalue §g, writes

a1
Q) =i ,
() ¢

2g
where ¢1(¢) = g2(¢) = 0 and 2(¢) # 0.

We want now to construct, using the basis E1,..., Ey, a new basis Fi,..., Fy adapted to
the decomposition

CY =E_() & E+(¢)

for ¢ non glancing. If E1((), ..., E,—1(¢) are the p — 1 first vectors corresponding to the blocks
A_(¢) and A;(C) of the basis of CV associated with T'(¢), we set, for j =1,...,p— 1, F;(¢) :=
E;(¢). Note that (F1(¢), ..., Fp—1(¢)) is therefore a set of linearly independent vectors of E_(().
We set as well F;(¢) := E;(¢) for j =p+2,...,N, where E,;2((), ..., En(C) are the vectors of
the basis of C"V defined by T'(¢) associated with the blocks A, (¢) and A3(¢), constituting a set
of linearly independent vectors of E (().

The two vectors F,(¢) and F,;1(() are now to be determined, which are the stable and
unstable eigenvectors of A(() associated with the block Q(¢). If £-(¢), &+ (¢) are the two stable
and unstable eigenvalues (equal for ¢ glancing) associated with the glancing eigenvalue §g, then

the stable and unstable eigenvectors of A(() associated with £_({) and &1 ({) are given by

q2(¢ q2(¢
Q) = B+ — 2B, B = B0+~ 5,00,
£, GRS
Indeed, an eigenvector of the matrix T(¢)~' A(¢) T(¢) associated with the eigenvalue &4 (¢) is
given by (0,...,0,1, ﬁ,(), ...,0). Note that when ( is glancing, namely when {_({) =
=g

§+(€) and g2(¢) = 0, we have F,(¢) = Fp41(C) = Ep(C).

The change-of-basis matrix from the canonical basis of CV to the basis Fy,..., Fy is therefore
given by the product of the matrix 7'(¢) and the block diagonal matrix

P(¢) = diag | Ip—1, 32(¢) 22(¢) AN—p-1
0§ &0 -§
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Thus the projector Iy writes

_ I, 0 -1 -1
ey =T(¢) P(C) 0 o Q) T(C)

The matrix 7'(¢) is analytic and therefore bounded as well as its inverse in a neighborhood of
fIé()C_)ég and £+q(2<()4_)§g are bounded in a neighborhood

of ¢, the matrix P(¢) and ‘com P(¢) are bounded. The determinant det P(¢) shall now be
estimated. Since ¢_(¢) and &, (¢) are the two (possibly equal) roots of the polynomial &2 —

(2§g +q(0) &+ §§ + §gQ1(C) — q2(¢), we obtain
(-0 =€) (6O~ €,) = <),

¢. Since it has already been proven that £

so that
det P(¢) =

22(¢) (6-(¢) = &+(Q)
(6-(0) =€) (6+(O) =¢&,)
It yields to

| det P(Q)] = [Ay(O'? = Cdist(¢. 6)"/2,

according to estimate (A.14). The control (A.13b) follows in the same way as the one of (A.13a)
using estimate (A.13a) and Assumption 6.

Finally, for estimate (A.13c), taking back the notations and the results of the previous point,
the matrix e*¢) (I — I¢5 (¢)) can be written as

otAC) (I -1 (Q)) =

et.Al(C) 0
TE) P! U (050 PO T(Q)
O etA+(<)

et.AQ(C)

Note that the eigenvalues of the matrices A;((), A2(¢) and of the matrix Q(¢) when Ay (¢) > 0,
are imaginary, and that the matrix A4 ({) is of positive definite real part uniformly with respect
to . Thus, using the estimate on the change-of-basis matrix P(¢{)~! proved above, one may
conclude as for estimate (A.13c). O
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