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Abstract

Reaction-diffusion equations are one of the most common mathemat-
ical models in the natural sciences and are used to model systems that
combine reactions with diffusive motion. However, rather than normal
diffusion, anomalous subdiffusion is observed in many systems and is es-
pecially prevalent in cell biology. What are the reaction-subdiffusion equa-
tions describing a system that involves first-order reactions and subdiffu-
sive motion? In this paper, we answer this question. We derive fractional
reaction-subdiffusion equations describing an arbitrary number of molec-
ular species which react at first-order rates and move subdiffusively with
general space-dependent diffusivities and drifts. Importantly, different
species may have different diffusivities and drifts, which contrasts previ-
ous approaches to this question which assume that each species has the
same movement dynamics. We derive the equations by combining results
on time-dependent fractional Fokker-Planck equations with methods of
analyzing stochastically switching evolution equations. Furthermore, we
construct the stochastic description of individual molecules whose deter-
ministic concentrations follow these reaction-subdiffusion equations. This
stochastic description involves subordinating a diffusion process whose
dynamics are controlled by a subordinated Markov jump process. We
illustrate our results in several examples and show that solutions of the
reaction-subdiffusion equations agree with stochastic simulations of indi-
vidual molecules.

1 Introduction

Reaction-diffusion equations are a fundamental class of mathematical models
which are used in many areas of science. Such equations describe systems that
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combine reactions with undirected spatial movement modeled by diffusion. The
equations specify the continuous spatiotemporal evolution of molecules in differ-
ent discrete states. Depending on the application, the “molecules” in different
“states” could model, for example, morphogens of different types [41], proteins
in different conformations [4,42], cells in different cancer stages [10,29], frequen-
cies of different genes in a population [16], different cell types in wound heal-
ing [8,38], different enzymes in blood clotting [9], different animal species [5,15],
animals or humans in different disease states [31], etc.

A system of n ≥ 1 reaction-diffusion equations in d-dimensional space takes
the following form,

∂

∂t
p = K∆p + f(p), x ∈ Rd, t > 0. (1)

Here, p = p(x, t) = (pi(x, t))
n−1
i=0 denotes an n-dimensional vector whose ith

component, pi(x, t), denotes the concentration of molecules in discrete state
i ∈ {0, . . . , n − 1} at position x ∈ Rd at time t ≥ 0. The first term in the
righthand side of (1) describes movement by diffusion, where

K = diag(K0,K1, . . . ,Kn−1) =


K0 0 . . . 0
0 K1 . . . 0
...

...
. . .

...
0 0 . . . Kn−1

 ∈ Rn×n (2)

is the diagonal matrix whose ith diagonal entry, Ki > 0, is the diffusion co-
efficient of molecules in state i. The second term in the righthand side of (1)
describes reactions, whereby the concentrations in the various states can grow
or decay. If the reactions are first-order, then the reaction term is the linear
function,

f(p) = Rp, (3)

where R ∈ Rn×n is a matrix of reaction rates. Furthermore, nonlinear reaction
terms are often replaced by a linearization of the form (3) in order to study
the stability of steady-states. Indeed, analyzing spatial patterns in reaction-
diffusion systems involving chemical states with distinct diffusion coefficients
remains an active area of research nearly seven decades after Alan Turing’s
seminal work [19,27,41].

From the perspective of a single molecule, a signature of diffusion is a mean-
squared displacement that grows linearly in time. That is, if X(t) ∈ Rd denotes
the position of a diffusing molecule at time t ≥ 0, then

E
[
‖X(t)−X(0)‖2

]
∝ t. (4)

If the mean-squared displacement deviates from the linear growth in (4), then
the motion is called anomalous diffusion. If the mean-squared displacement of
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the position of a molecule Y (t) ∈ Rd grows according to the sublinear power
law,

E
[
‖Y (t)− Y (0)‖2

]
∝ tα, α ∈ (0, 1),

then the motion is called subdiffusion. Subdiffusion has been observed in many
systems [1, 17,34,39] and is especially prevalent in cell biology [12,14].

A common model of subdiffusion is a fractional diffusion equation [30],

∂

∂t
q = K∆ 0D

1−α
t q, x ∈ Rd, t > 0,

where K > 0 is the (generalized) diffusion coefficient or diffusivity (with di-
mension [K] = (length)2(time)−α) and 0D

1−α
t denotes the Riemann-Liouville

time-fractional derivative [35] defined by

0D
1−α
t q(x, t) =

∂

∂t

∫ t

0

1

Γ(α)(t− t′)1−α q(x, t
′) dt′, α ∈ (0, 1). (5)

In contrast to normal diffusion, reactions cannot be incorporated into subdiffu-
sion equations by merely adding in reaction terms. Indeed, though one might
posit the following reaction-subdiffusion equation to describe molecules that
subdiffuse with diffusivity K > 0 and degrade at rate λ > 0,

∂

∂t
q = K∆ 0D

1−α
t q − λq, x ∈ Rd, t > 0, (6)

this equation leads to the unphysical result of a negative concentration, q < 0
[13].

What is the analog of the classical reaction-diffusion equations in (1) with
first-order reactions for the case of subdiffusion? In this paper, we answer this
question. We derive the following reaction-subdiffusion equations,

∂

∂t
q = K∆eRt 0D

1−α
t (e−Rtq) +Rq, x ∈ Rd, t > 0, (7)

where q = q(x, t) = (qi(x, t))
n−1
i=0 is the vector of molecular concentrations, K

is the diagonal matrix in (2) where Ki is the diffusivity of molecules in state
i, R ∈ Rn×n is the reaction-rate matrix as in (3), and e±Rt is the matrix
exponential.

Importantly, (7) allows different molecular species to have different diffu-
sivities. Previous derivations of reaction-subdiffusion equations with first-order
reactions have assumed that all molecular species have the same diffusivity (i.e.
Ki = Kj for all i, j) [13, 20, 22, 37, 40]. For the case that different species have
different diffusivities, a set of reaction-subdiffusion equations that differ from
(7) were posited in the review paper [32] but were not derived. The equations
in (7) were posited in [43] without derivation. See the Discussion section below
for more details.
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In addition, we derive evolution equations for the case that (i) each molecular
species moves with their own space-dependent diffusivity and space-dependent
drift and (ii) the subdiffusion is described by a more general fractional derivative
than (5). These equations have the same form as (7), except K∆ is replaced
by an operator with Fokker-Planck operators along the diagonal and 0D

1−α
t

is replaced by a more general fractional operator (see (28) for a precise state-
ment). We obtain these results by combining results on time-dependent frac-
tional Fokker-Planck equations [6, 26] with methods of analyzing stochastically
switching evolution equations [3, 21,24].

Furthermore, we find the stochastic description of individual molecules whose
deterministic concentrations follow these reaction-subdiffusion equations. To
construct this stochastic representation, we first subordinate a Markov jump
process according to a Lévy subordinator. We then define a diffusion process
whose drift and diffusivity switch according to this subordinated jump process.
Subordinating this diffusion process according to the inverse of the Lévy subor-
dinator finally yields the subdiffusing and reacting stochastic process.

The rest of the paper is organized as follows. We begin in section 2 by re-
viewing some previous results on subdiffusion equations and their stochastic rep-
resentation. In section 3, we derive the reaction-subdiffusion equations. In sec-
tion 4, we find the corresponding stochastic description of individual molecules.
In section 5, we illustrate our results in several examples and show the agree-
ment between solutions of the reaction-subdiffusion equations and stochastic
simulations of individual subdiffusing and reacting molecules. We conclude by
discussing relations to prior work, including (i) previous approaches to finding
reaction-subdiffusion equations with first-order reactions and (ii) the so-called
subdiffusion-limited model of reaction-subdiffusion.

2 Preliminaries

We begin by reviewing some results about stochastic representations of sub-
diffusive processes modeled by fractional Fokker-Planck equations. Let Y =
{Y (t)}t≥0 be the position of a d-dimensional subdiffusive molecule with d ≥ 1.
Let q(x, t) be the probability density that Y (t) = x ∈ Rd,

q(x, t) dx = P(Y (t) = dx).

Suppose that this density satisfies the fractional Fokker-Planck equation,

∂

∂t
q = LDq, y ∈ Rd, t > 0, (8)

where L is the time-dependent forward Fokker-Planck operator,

Lf := −
d∑
l=1

∂

∂xl

[
bl(x, t)f

]
+

1

2

d∑
l=1

d∑
k=1

∂2

∂xl∂xk

[(
σ(x, t)σ(x, t)>

)
l,k
f
]
, (9)
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where the drift and diffusivity depend on space and time,

b(x, t) : Rd × [0,∞) 7→ Rd, σ(x, t) : Rd × [0,∞) 7→ Rd×m, (10)

and D is fractional time derivative,

(Dq)(x, t) :=
∂

∂t

∫ t

0

M(t− t′)q(x, t′) dt′, (11)

for some memory kernel M(t). Note that D is the Riemann-Liouville fractional
derivative 0D

1−α
t in (5) if the memory kernel is

M(t) = (Γ(α)t1−α)−1 for α ∈ (0, 1). (12)

The subdiffusive process Y whose probability density satisfies (8) can be
written as a random time change of a diffusive process satisfying an Itô stochas-
tic differential equation. Specifically, let T = {T (s)}s≥0 be a driftless Lévy
subordinator, meaning T is a one-dimensional, nondecreasing pure jump Lévy
process with T (0) = 0 [2,36]. Let Φ(λ) denote the Laplace exponent of T , which
means

E[e−λT (s)] = e−sΦ(λ), Φ(λ) =

∫ ∞
0

(1− e−λz) ν(dz), for all s, λ ≥ 0, (13)

where ν is the Lévy measure of T . Let S = {S(t)}t≥0 be the inverse subordina-
tor,

S(t) := inf{s > 0 : T (s) > t}. (14)

Let X = {X(s)}s≥0 be a d-dimensional diffusion process satisfying the Itô
stochastic differential equation,

dX(s) = b(X(s), T (s)) ds+ σ(X(s), T (s)) dW (s), (15)

where {W (s)}s≥0 ∈ Rm is a standard Brownian motion independent of T . Note
that T (s), W (s), and X(s) are indexed by the “internal time” s ≥ 0, which is
not real, physical time, and in fact has dimension [s] = [Φ(t)]−1, where t is a
physical time.

We then define the subdiffusive process Y as a random time change of X,

Y (t) := X(S(t)), t ≥ 0. (16)

If the Laplace transform of the memory kernel M in (11) is the reciprocal of the
Laplace exponent of T in (13),

M̂(λ) :=

∫ ∞
0

e−λtM(t) dt =
1

Φ(λ)
=

−1

lnE[e−λT (1)]
, λ > 0, (17)

and the probability density of Y in (16) exists, then it satisfies the fractional
Fokker-Planck equation in (8) under some mild assumptions on the coefficients
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b(x, t) and σ(x, t) (see Theorem 2.1 in [6] for a precise statement). Note that for
the Riemann-Liouville fractional derivative 0D

1−α
t in (5) with memory kernel

M in (12), T is an α-stable subordinator with Φ(λ) = λα.
Importantly, note that L in (9) is the forward Fokker-Planck operator cor-

responding to (15), except that the time arguments of b(x, t) and σ(x, t) in (15)
are evaluated at t = T (s). The fact that time-dependent drift and diffusivity
(b(x, t) and σ(x, t)) are incorporated into the subdiffusive process Y (t) by in-
cluding them in the dynamics of the diffusive process X(s) with time argument
t = T (s) plays an important role in our construction in section 4 below.

3 Fractional reaction-subdiffusion equations

In this section, we derive fractional reaction-subdiffusion equations describing a
population of molecules that (i) stochastically transition (react) between discrete
states and (ii) subdiffuse with dynamics that depend on the discrete state. To
derive these equations, we first consider the fractional Fokker-Planck equation of
a single molecule given a fixed realization of the discrete stochastic transitions.
We then average over paths of the discrete transition process to arrive at the
fractional reaction-subdiffusion equations.

3.1 Setup

To describe the discrete state of a single molecule, let J = {J(t)}t≥0 be a
continuous-time Markov jump process on the finite state space {0, . . . , n − 1}
with infinitesimal generatorR> ∈ Rn×n [33] (the superscript denotes transpose).
Recall that this means Ri,j ≥ 0 is the rate that J jumps from j to i for i 6= j
and the diagonal entries are chosen so that R has zero column sums.

To describe the J-dependent, subdiffusive dynamics of this single molecule,
suppose that the probability density of its position follows a fractional Fokker-
Planck equation with drift and diffusivity that depend on J . Specifically, for
each realization of J , suppose that the probability density q(x, t) of the position
of the molecule satisfies the following fractional Fokker-Planck equation away
from jump times of J ,

∂

∂t
q = LJ(t)Dq, x ∈ Rd, t > 0, (18)

where {Lj}nj=1 are n time-independent forward Fokker-Planck operators,

Ljf := −
d∑
l=1

∂

∂xl

[
bl(x, j)f

]
+

1

2

d∑
l=1

d∑
k=1

∂2

∂xl∂xk

[(
σ(x, j)σ(x, j)>

)
l,k
f
]
, (19)

where the drift and diffusivity depend on x ∈ Rd and j ∈ {0, . . . , n− 1},

b(x, j) : Rd × {0, . . . , n− 1} 7→ Rd, σ(x, j) : Rd × {0, . . . , n− 1} 7→ Rd×m.
(20)
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Note that (18) is a stochastic fractional Fokker-Planck equation, since it
depends on the stochastic path of the jump process J = {J(t)}t≥0. In particular,
the sources of randomness in the problem are (i) the subdiffusive process (which
as in section 2, is generated by a subordinator T and a Brownian motion W )
and (ii) the jump process J . Equation (18) has averaged out the stochasticity
stemming from the subdiffusive process and retained the stochasticity from the
jump process. Equation (18) is similar to the randomly switching parabolic
equations studied in [3, 21,24].

The stochastic fractional Fokker-Planck equation in (18) is analogous to the
time-dependent fractional Fokker-Planck equation in (8). The key distinction
between (8) and (18) is that the time-dependence of the drift and diffusivity
in (8) are given deterministic functions (b and σ in (10)), whereas the time-
dependence of the drift and diffusivity in (18) stems from the stochastic path of
the jump process J . Nevertheless, given a realization of J , (18) has exactly the
same form as (8), except that the drift and diffusivity in (18) are discontinuous
in time when J jumps and are constant in time otherwise.

3.2 Derivation of reaction-subdiffusion equations

To derive the fractional reaction-subdiffusion equations corresponding to (18),
we average over paths of J . Toward this end, define the deterministic vector-
valued function q(x, t) = (qi(x, t))

n−1
i=0 ∈ Rn, where the ith component is

qi(x, t) := E[q(x, t)1{J(t)=i}], i ∈ {0, . . . , n− 1},
where 1{A} denotes the indicator function on an event A, meaning 1{A} = 1
if A occurs and 1{A} = 0 otherwise. Since q(x, t) is the density of Y (t) given
a realization of J , it follows that qi(x, t) is the density of the joint process
(Y (t), J(t)),

P(Y (t) = dx, J(t) = i) = E[1{J(t)=i}E[1{Y (t)=dx} | J ]] = E[1{J(t)=i}q(x, t) dx]

= qi(x, t) dx.

If ei ∈ Rn denotes the standard basis vector with a 1 in its ith component and
zeros elsewhere, then observe that we may write q as

q(x, t) = (qi(x, t))
n−1
i=0 = E[q(x, t)eJ(t)] ∈ Rn.

To derive evolution equations for q, define

u(x, t′, t) := E[q(x, t′)eJ(t)], x ∈ Rd, 0 < t′ ≤ t.
Since q(x, t) = u(x, t, t), the multivariable chain rule implies

∂

∂t
q(x, t) =

∂

∂t′
u(x, t′, t)

∣∣∣
t′=t

+
∂

∂t
u(x, t′, t)

∣∣∣
t′=t

. (21)

Hence, it remains to compute the t′ and t derivatives of u. The following lemma
computes the t derivative of u. The proof uses only that (i) q(x, t′) depends
on the path of J only up to time t′ and (ii) J is a Markov jump process with
generator R>.
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Lemma 1. We have that

u(x, t′, t) = eR(t−t′)u(x, t′, t′), x ∈ Rd, 0 < t′ ≤ t, (22)

and therefore

∂

∂t
u(x, t′, t) = Ru(x, t′, t), x ∈ Rd, 0 < t′ ≤ t. (23)

Proof of Lemma 1. Let Ft′ denote the filtration generated by J(t′). Hence,

E[q(x, t′)eJ(t)] = E[E[q(x, t′)eJ(t) | Ft′ ]] = E[q(x, t′)E[eJ(t) | Ft′ ]], 0 < t′ ≤ t,
(24)

where the first equality is the tower property of conditional expectation (see
Theorem 4.1.13 in [7]) and the second equality uses that q(x, t′) depends on J
up to time t′ (and uses Theorem 4.1.14 in [7]). Since J is a Markov jump process
with generator R>, the following almost sure equality is immediate [33],

E[eJ(t) | Ft′ ] = eR(t−t′)eJ(t′). (25)

Combining (24) and (25) yields (22). Differentiating (22) with respect to t yields
(23) to complete the proof.

In light of (21) and (23), it remains only to compute the t′ derivative of
u. Assuming that (i) q satisfies (18) away from jump times of J and (ii) q is
sufficiently regular to interchange expectation with the time derivative, space
derivatives, and the fractional time derivative, then we have that for 0 < t′ ≤ t,

∂

∂t′
u(x, t′, t) =

∂

∂t′
E[q(x, t′)eJ(t)] = E

[ ∂
∂t′

q(x, t′)eJ(t)

]
= E[LJ(t)Dt′q(x, t′)eJ(t)]

= E[diag(L0, . . . ,Ln−1)Dt′q(x, t′)eJ(t)]

= diag(L0, . . . ,Ln−1)Dt′E[q(x, t′)eJ(t)]

= diag(L0, . . . ,Ln−1)Dt′u(x, t′, t),

(26)

where Dt′ denotes that the fractional operator is acting on t′. In (26), we used
the following identity,

LJ(t)Dt′q(x, t′)eJ(t) = diag(L0, . . . ,Ln−1)Dt′q(x, t′)eJ(t).

Combining (26) with (22) in Lemma 1 implies that for 0 < t′ ≤ t,

∂

∂t′
u(x, t′, t) = diag(L0, . . . ,Ln−1)Dt′

(
eR(t−t′)u(x, t′, t′)

)
= diag(L0, . . . ,Ln−1)eRtDt′

(
e−Rt

′
u(x, t′, t′)

)
.

(27)
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Finally, combining (21) with (23) in Lemma 1 and (27) yields the following
reaction-subdiffusion equations,

∂

∂t
q = diag(L0, . . . ,Ln−1)eRtD(e−Rtq) +Rq, x ∈ Rd, t > 0. (28)

In the special case that the memory kernel isM(t) = (Γ(α)t1−α)−1 for α ∈ (0, 1),
the fractional operator is the Riemann-Liouville operator, D = 0D

1−α
t in (5). If

we further take the forward Fokker-Planck operators to be

Lj = Kj∆ for j ∈ {0, . . . , n− 1},

corresponding to spatially constant diffusivity and zero drift, then (28) becomes

∂

∂t
q = diag(K0,K1, . . . ,Kn−1)∆eRt 0D

1−α
t (e−Rtq) +Rq, x ∈ Rd, t > 0.

(29)

Equation (29) answers the question posed in the Introduction section as to
the analog of the classical reaction-diffusion equations in (1) for the case of
subdiffusion with first-order reactions.

To derive (28), we assumed in (26) that we could interchange expectation E
with ∂

∂t′ , Li, and Dt′ . The following theorem merely gives sufficient conditions
to ensure the validity of these manipulations in (26). Given the derivation
above, the proof follows from standard results on interchanging expectation
with differentiation (see, for example, Theorem A.5.3 in [7]) and the theorems
of Fubini and Tonelli.

Theorem 2. Assume that for each realization of J = {J(t)}t≥0, the function
q satisfies (18) at all times at which J is continuous. Assume that Dq(x, t)
is continuous in t and twice continuously differentiable in x, and assume there
exists a deterministic function C : Rd× (0,∞)→ R that is bounded on compact
subsets such that if x ∈ Rd, t > 0, k, l ∈ {1, . . . , d}, and β is a multi-index with
|β| ≤ 2, then

|q(x, t)|+
∣∣∣ ∂|β|

∂xβ1

k ∂x
β2

l

Dq(x, t)
∣∣∣ ≤ C(x, t) with probability one. (30)

Assume that for each j ∈ {0, . . . , n − 1}, the drift and diffusivity in (20) are
twice continuously differentiable in x with bounded derivatives of order ≤ 2.

The reaction-subdiffusion equations in (28) hold.

4 Stochastic representation

In this section, we construct and analyze the randomly switching subdiffusive
process Y = {Y (t)}t≥0 corresponding to the fractional reaction-subdiffusion
equations in (28) in section 3. In particular, we want to construct and study a
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subdiffusive process whose drift and diffusivity at time t ≥ 0 depend on the state
of a Markov jump process. This problem can be cast into the framework in sec-
tion 2 above, which considered a subdiffusive process with time-dependent drift
and diffusivity. The main difference in this section is that the time-dependence
of the drift and diffusivity is controlled by the Markov jump process.

4.1 Probabilistic construction

Let J = {J(t)}t≥0 be a continuous-time Markov jump process on the finite
state space {0, . . . , n − 1} with infinitesimal generator R> as in section 3. Let
T = {T (s)}s≥0 be a driftless Lévy subordinator with inverse S = {S(t)}t≥0 as
in section 2. Define the jump process I = {I(s)}s≥0 as a random time change
of {J(t)}t≥0,

I(s) := J(T (s)), s ≥ 0. (31)

We prove below that I is in fact a Markov jump process with a different generator
than J . Suppose X = {X(s)}s≥0 satisfies the following stochastic differential
equation that switches according to I,

dX(s) = b(X(s), I(s)) ds+ σ(X(s), I(s)) dW (s), s ≥ 0, (32)

where W = {W (s)}s≥0 ∈ Rm is a standard Brownian motion independent of T
and J (and therefore I). The coefficients in (32) are as in (20), and we assume
that they are bounded by a linear function in x and are Lipschitz continuous
in x to ensure that there exists a unique solution {X(s)}s≥0 to (32) for almost
every realization of {I(s)}s≥0 [28]. We then define Y as a random time change
of X,

Y (t) := X(S(t)), t ≥ 0. (33)

We now make some comments about the construction of Y in (33). First,
to compare to the construction in section 2 above, define

b(x, t) := b(x, J(t)), σ(x, t) := σ(x, J(t)). (34)

Then, upon noting the definition of I(s) in (31), the stochastic differential equa-
tion in (32) is identical to (15), and therefore Y in (33) is just as in (16).

Second, we describe how Y in (33) connects to the stochastic fractional
Fokker-Planck equation in (18). Fix a realization of the jump process J . We
cannot apply Theorem 2.1 in [6] to conclude that the density of Y in (33)
satisfies (18) because the coefficients in (34) will in general be discontinuous
in time (since J is a jump process). However, for this fixed realization of J ,
we can define coefficients bε(x, t) and σε(x, t) which are smooth in time and
converge pointwise as ε → 0 to the coefficients in (34) for each x ∈ Rd and
every t ≥ 0. We then define Xε = {Xε(s)}s≥0 as in (32), but with the smooth
coefficients bε and σε, and we further define Yε(t) = Xε(S(t)) analogously to
(33). Then, assuming bε and σε are Lipschitz in space, bounded, and σεσ

>
ε is
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positive definite, Theorem 2.1 in [6] implies that if the density qε(x, t) of Yε(t)
exists, then it satisfies the following fractional Fokker-Planck equation,

∂

∂t
qε = LεDqε, x ∈ Rd, t > 0,

where Lε is in (9) but with coefficients bε and σε. Taking ε→ 0, the coefficients
in the differential operator Lε converge pointwise to the coefficients in LJ(t) in
(18) and Yε(t) converges almost surely to Y (t) in (33).

We therefore conclude, on at least a formal level, that the stochastic frac-
tional Fokker-Planck equation in (18) describes the process Y in (33) given a
realization of J . Furthermore, in light of section 3, the reaction-subdiffusion
equations in (28) describe the probability density of the two-component process
(Y, J).

4.2 Analysis of internal process (X, I)

In our construction above, Y is a random time change of X and I is a random
time change of J . Though we are ultimately interested in the process (Y, J), it
can be useful to study the internal process (X, I) in order to understand (Y, J).

Theorem 3. Let J = {J(t)}t≥0 be a time-homogeneous, continuous-time Markov
jump process on {0, . . . , n − 1} with infinitesimal generator R> ∈ Rn×n. Let
T = {T (s)}s≥0 be any independent Lévy subordinator (not necessarily drift-
less). Then the process I = {I(s)}s≥0 = {J(T (s))}s≥0 is a time-homogeneous,
continuous-time Markov jump process on {0, . . . , n− 1}.

Furthermore, if ρ ∈ Rn is an invariant distribution of J , then ρ is an in-
variant distribution of I. If R is diagonalizable with all real eigenvalues, which
means R = −PΛP−1 where Λ is a real diagonal matrix, then the generator of
I is (R̃)>, where

R̃ := −PΦ(Λ)P−1,

where Φ(Λ) is obtained by applying the Laplace exponent Φ of T entrywise to Λ.

Proof of Theorem 3. For an arbitrary N ≥ 0, let 0 ≤ t0 ≤ t1 ≤ · · · ≤ tN+1 be
an arbitrary sequence of times, and let i0, i1, . . . , iN+1 be an arbitrary sequence
of states in {0, . . . , n− 1}. Theorem 2.8.2 in [33] implies that

P(J(tN+1) = iN+1 | J(t0) = i0, . . . , J(tN ) = iN ) = P(J(tN+1) = iN+1 | J(tN ) = iN )

=
(
eR
>(tN+1−tN )

)
iN ,iN+1

,

where (eR
>(tN+1−tN ))iN ,iN+1

denotes the entry in the (iN )th row and (iN+1)st

column of the matrix exponential eR
>(tN+1−tN ). Since I(s) := J(T (s)) for s ≥ 0,

J and T = {T (s)}s≥0 are independent, and T is almost surely nondecreasing,
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it follows that

P(I(sN+1) = iN+1 | I(s0) = i0, . . . , I(sN ) = iN )

= P(J(T (sN+1)) = iN+1 | J(T (s0)) = i0, . . . , J(T (sN )) = iN )

= P(J(T (sN+1)) = iN+1 | J(T (sN )) = iN )

= P(I(sN+1) = iN+1 | I(sN ) = iN ),

=
(
E[eR

>(T (sN+1)−T (sN ))]
)
iN ,iN+1

.

(35)

If F (s) := E[eR
>T (s)], then F (0) is the identity matrix In ∈ Rn×n. Furthermore,

the almost sure right-continuity of T and the Lebesgue dominated convergence
theorem ensure that lims→0+ ‖F (s) − In‖ = 0. In addition, since T has inde-
pendent and identically distributed increments, we have that

F (s)F (s′) = E[eR
>T (s)]E[eR

>T (s′)] = E[eR
>(T (s+s′)−T (s′))]E[eR

>T (s′)]

= E[eR
>T (s+s′)] = F (s+ s′), for any s, s′ ≥ 0.

Therefore, F is a uniformly continuous semigroup on the finite-dimensional
space Rn, and thus there exists a matrix R̃ ∈ Rn×n such that

F (s) = E[eR
>T (s)] = eR̃

>s, s ≥ 0. (36)

Now, (35) ensures that every row of F (s) is a distribution on Rn, and there-

fore Theorem 2.1.2 in [33] implies that R̃> has nonnegative off-diagonal entries
and zero row sums. Therefore, Theorem 2.8.2 in [33] implies that I is a time-
homogeneous, continuous-time Markov jump process on {0, . . . , n − 1} with

infinitesimal generator R̃> ∈ Rn×n.
Suppose ρ ∈ Rn is an invariant distribution of J , which means that if

P(J(0) = i) = ρi for all i ∈ {0, . . . , n − 1}, then P(J(t) = i) = ρi for
all t ≥ 0. Since J and T are independent, it follows immediately that if
P(I(0) = i) = P(J(0) = i) = ρi for all i ∈ {0, . . . , n − 1}, then P(I(s) =
i) = P(J(T (s)) = i) = ρi for all s ≥ 0. Hence, ρ is an invariant distribution of
I.

Finally, suppose R = −PΛP−1 where Λ is a real diagonal matrix, and thus
the entries of Λ are nonnegative [33]. Then, (36) implies that

eR̃s = E[eRT (s)] = PE[e−Λt]P−1 = Pe−sΦ(Λ)P−1, s ≥ 0,

since T has Laplace exponent Φ. Therefore, R̃ = −PΦ(Λ)P−1.

Since Theorem 3 ensures that I is Markovian, X satisfies a so-called “stochas-
tic differential equation with Markovian switching,” which is a well-studied pro-
cess (see, for example, the book by Mao and Yuan [28]). An interesting im-
plication of the analysis above is that the network jump structure of I can be
quite different from J . That is, J may not be able to jump directly from some
state i to some other state j (i.e. Rj,i = 0), but I might (i.e. R̃j,i > 0). To illus-
trate, suppose that J is irreducible, which means that J may eventually reach

12



any state j starting from any other state i (though it may not be able to jump
directly from i to j). Then, it is necessarily the case that I may jump directly

from i to j (i.e. R̃j,i > 0), as long as the Lévy subordinator T has nonzero Lévy
measure (ν in (13)).

To see this, note that the irreducibility of J means that with strictly positive
probability, J(t′) = i and J(t) = j for 0 < t′ < t for any i, j ∈ {0, . . . , n − 1}.
Now, since I(s) := J(T (s)), it follows that I may jump directly from i to j
since it may “skip” the states visited by J between states i and j because T (s)
is discontinuous in s. We illustrate this in some examples in sections 5.4 and
5.5.

4.3 Inverse subordinator evaluated at an exponential time

Another implication of Theorem 3 is a general result that states that if we eval-
uate an inverse Lévy subordinator at an independent, exponentially distributed
time with rate λ > 0, then we obtain an exponentially distributed random vari-
able with rate Φ(λ), where Φ is the Laplace exponent of the Lévy subordinator.
This generalizes Lemma 1 in [23]. The following corollary states this result
precisely.

Corollary 4. Let T = {T (s)}s≥0 be any Lévy subordinator (not necessarily
driftless) with inverse S = {S(t)}t≥0 as in (14). If τ is an independent expo-
nential random variable with rate λ > 0, then

P(S(τ) ≤ t) = 1− e−Φ(λ)t, for all t ≥ 0,

where Φ(λ) denotes the Laplace exponent of T . That is, S(τ) is exponentially
distributed with rate Φ(λ) > 0 as long as Φ(λ) > 0 (the case Φ(λ) = 0 is the
trivial case that T (s) = 0 and S(t) =∞ for all s, t > 0).

Proof of Corollary 4. Suppose Φ(λ) > 0 since the result is immediate in the
trivial case that Φ(λ) = 0. Suppose J = {J(t)}t≥0 is a two-state Markov jump
process that jumps irreversibly from state 0 to state 1 at rate λ > 0. Hence,

R =

(
−λ 0
λ 0

)
= −PΛP−1, Λ =

(
0 0
0 λ

)
, P =

(
0 −1
1 1

)
, (37)

and thus Theorem 3 implies that the generator of I(s) := J(T (s)) is R̃>, where

R̃ = −PΦ(Λ)P−1 =

(
−Φ(λ) 0
Φ(λ) 0

)
. (38)

If J jumps at time τ , then τ is exponentially distributed with rate λ. Hence, I
jumps at time S(τ), which must be exponentially distributed with rate Φ(λ) by
(38).
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5 Examples and numerical simulation

In this section, we illustrate our results in several examples and compare so-
lutions of the reaction-subdiffusion equations derived in section 3 to stochastic
simulations of the process constructed in section 4.

5.1 n-state pure subdiffusion in Rd

Consider a population of molecules in n ≥ 1 states that react according to the
reaction-rate matrix R ∈ Rn×n. Suppose molecules in state i subdiffuse in Rd
with (generalized) diffusivity Ki > 0. If q = q(x, t) = (qi(x, t))

n−1
i=0 is the vector

of their concentrations, then (28) implies that

∂

∂t
q = K∆eRtD(e−Rtq) +Rq, x ∈ Rd, t > 0, (39)

where K = diag(K0,K1, . . . ,Kn−1) is the diagonal matrix of diffusivities and D
is the fractional operator in (11) with memory kernel M(t) that describes the
subdiffusion (in the case of the Riemann-Liouville operator D = 0D

1−α
t in (5),

the memory kernel is M(t) = (Γ(α)t1−α)−1 for α ∈ (0, 1)).
Suppose that the reaction rate matrix R is diagonalizable with R = −PΛP−1

where Λ is a diagonal real matrix. In this case, (39) can be written as

∂

∂t
q = K∆Pe−ΛtD(e+ΛtP−1q) +Rq, x ∈ Rd, t > 0. (40)

If we denote the Laplace transform of a function f(t) by

f̂(s) :=

∫ ∞
0

e−stf(t) dt,

then taking the Laplace transform of (40) yields

−q(x, 0) = KPMP−1∆q̂(x, s) + (R− sIn)q̂(x, s), s > 0, (41)

where In ∈ Rn×n denotes the identity matrix and M = M(s) is the diagonal
matrix,

M := (sIn + Λ)M̂(sIn + Λ),

where M̂(sIn+Λ) is obtained by applying the Laplace transform of the memory
kernel M of D to the entries of sIn + Λ (M can also be written in terms of the
Laplace exponent of an associated Lévy subordinator, see (17)). In obtaining

(41), we used that êλtf(t)(s) = f̂(s − λ). Since s > 0 and Kj > 0 for all j, K
and M are invertible and we can rewrite (41) as

−PM−1P−1K−1q(x, 0) = ∆q̂(x, s) + PM−1P−1K−1(R− sIn)q̂(x, s). (42)
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Suppose that we can diagonalize the matrix multiplying q̂(x, s) in (40) so that

PM−1P−1K−1(R− sIn) = −V DV −1,

where D = D(s) = diag(D0(s), . . . , Dn−1(s)) is a diagonal matrix with strictly
positive diagonal entries. Defining w := V −1q, it then follows from (42) that

−V −1PM−1P−1K−1q(x, 0) = ∆ŵ(x, s)−Dŵ(x, s). (43)

Now, the Green’s function G(x, y; γ) for the modified Helmholtz equation,

−δ(x− y) = ∆xG(x, y; γ)− γG(x, y; γ), x, y ∈ Rd,

for γ > 0 in any space dimension d ≥ 1 is

G(x, y; γ) = (2π)−d/2
( r√

γ

)1−d/2
K1−d/2 (r

√
γ) =


e−r
√
γ/(2
√
γ) if d = 1,

K0(r
√
γ)/(2π) if d = 2,

e−r
√
γ/(4πr) if d = 3,

where r := ‖x− y‖ > 0 and Km(z) denotes the modified Bessel function of the
second kind. Therefore, each component of (43) can be solved in terms of G,
and thus we obtain that the solution of the Laplace space equation (41) is

q̂(x, s) = V

∫
Rd

G(x, y;D)V −1PM−1P−1K−1q(y, 0) dy, x ∈ Rd, s > 0,

(44)

where G(x, y;D) denotes the Green’s matrix,

G(x, y;D) := diag(G(x, y;D0(s)), . . . , G(x, y;Dn−1(s))).

5.2 Two-state irreversible pure subdiffusion in Rd

In the setup of section 5.1, suppose molecules irreversibly switch from state 0
to state 1 at rate λ > 0,

0
λ→ 1.

In this case, (28) implies that

∂

∂t
q = K∆eRtD(e−Rtq) +Rq, x ∈ Rd, t > 0,

=

(
K0 0
0 K1

)(
e−λt 0

1− e−λt 1

)
D
(

eλt 0
1− eλt 1

)
∆

(
q0

q1

)
+

(
−λ 0
λ 0

)(
q0

q1

)
.

Multiplying the matrices out yields

∂
∂tq0 = K0e

−λtD(eλt∆q0)− λq0,

∂
∂tq1 = K1(1− e−λt)D(eλt∆q0) +K1D((1− eλt)∆q0) +K1D∆q1 + λq0.

(45)
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Figure 1: Agreement between reaction-subdiffusion equations and stochastic
simulations for the example in section 5.2. The square markers are the deter-
ministic solutions of the reaction-subdiffusion equations and the solid curves are
the empirical probability densities obtained from stochastic simulations. Left:
The total density q0(x, t)+q1(x, t) of molecules in either discrete state. Right:
The density q1(x, t) of molecules in state 1. See the text for more details.

By diagonalizing R ∈ R2×2 as in (37), it is straightforward to obtain the explicit,
exact solution for (45) in Laplace space by applying the formula in (44).

In Figure 1, we plot the solution to (45) (square markers) by numerically
inverting the exact Laplace space solution given in (44). In Figure 1, we also
plot the empirical probability densities (solid curves) of stochastic simulations
of individual molecules using the stochastic representation developed in sec-
tion 4. This figure shows excellent agreement between solutions of the reaction-
subdiffusion equations and the corresponding stochastic simulations. Details of
the stochastic simulation method are given in section 5.6 below. In Figure 1, we
take d = 1, λ = 1, K0 = 1, K1 = 1/2, and D is the Riemann-Liouville operator
D = 0D

1−α
t with α = 1/2. Also, we assume that all the molecules start at the

origin in state 0, which can be written in terms of the Dirac delta function,
q(x, 0) = (δ(x), 0)>.

5.3 Two-state reversible pure subdiffusion in Rd

In the setup of section 5.1, suppose molecules switch reversibly between states
0 and 1,

0
λ0



λ1

1, (46)
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Figure 2: Agreement between reaction-subdiffusion equations and stochastic
simulations for the example in section 5.3. The square markers are the deter-
ministic solutions of the reaction-subdiffusion equations and the solid curves are
the empirical probability densities obtained from stochastic simulations. Left:
The total density q0(x, t)+q1(x, t) of molecules in either discrete state. Right:
The density q1(x, t) of molecules in state 1. See the text for more details.

where λi > 0 is the rate of leaving state i ∈ {0, 1}. In this case, (28) implies
that

∂

∂t
q = K∆eRtD(e−Rtq) +Rq, x ∈ Rd, t > 0,

=

(
K0 0
0 K1

)(
ρ0 + ρ1e

−λt ρ0 − ρ0e
−λt

ρ1 − ρ1e
−λt ρ1 + ρ0e

−λt

)
D
(
ρ0 + ρ1e

λt ρ0 − ρ0e
λt

ρ1 − ρ1e
λt ρ1 + ρ0e

λt

)(
∆q0

∆q1

)
+

(
−λ0 λ1

λ0 −λ1

)(
q0

q1

)
,

(47)

where λ := λ0 + λ1 and ρ = (ρ0, ρ1)> = (λ1/λ, λ0/λ)> ∈ R2 is the invariant
distribution of (46). By diagonalizing the reaction rate matrix R, it is straight-
forward to obtain the exact solution of (47) in Laplace space by applying the
formula in (44).

In Figure 2, we plot the solution to (47) (square markers) by numerically
inverting the exact Laplace space solution given in (44). In Figure 2, we also
plot the empirical probability densities (solid curves) of stochastic simulations
of individual molecules (again, using the stochastic representation developed
in section 4). This figure shows excellent agreement between solutions of the
reaction-subdiffusion equations and the corresponding stochastic simulations.
In Figure 2, we take d = 1, λ0 = 1, λ1 = 2, K0 = 1, K1 = 1/2, and D is
the Riemann-Liouville operator D = 0D

1−α
t with α = 3/4. We take the initial

condition q(x, 0) = δ(x)ρ ∈ R2, which means that all the molecules start at
the origin and the fraction of molecules in either discrete state is given by the
invariant distribution of the two-state Markov process in (46).
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t = time

S(t)
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Y (t)

Figure 3: Stochastic realizations of the stochastic processes described in sec-
tion 5.4. The vertical axes are shifted and scaled for visualization. See the text
in section 5.4 for more details.

5.4 A stochastic realization

In Figure 3, we plot a sample realization of the stochastic processes underlying
the example in section 5.3 above. In particular, in the left panel of Figure 3, we
plot the subordinator T (s), the Markov jump process I(s) := J(T (s)), where
J is the jump process that jumps according to (46), and the normal diffusion
process X(s) whose diffusivity is KI(s). That is, the diffusivity of X randomly
switches between K0 and K1 according to I. In the right panel of Figure 3, we
plot the inverse subordinator S(t) (defined in (14)), the jump process J(t), and
the reaction-subdiffusion process Y (t) := X(S(t)). In this plot, T is an α-stable
subordinator with α = 0.8.

There are several things to notice from Figure 3. First, since S is the inverse
of T , the graph of S is obtained from the graph of T by merely reversing the
horizontal and vertical axes. Therefore, jumps of T correspond to flat periods, or
“pauses” of S. For example, the gray shaded regions in the two panels highlight
a jump of T and the corresponding pause of S.

Second, notice that the path of X is much more variable when I(s) = 1
compared to when I(s) = 0. This reflects the fact that we take K1/K0 = 100
in this plot. Similarly, the path of Y is much more variable when J(t) = 1
compared to when J(t), except when S is paused.

Third, notice in the gray region of the right panel that J jumps from 1 to
0 and then back from 0 to 1. These two jumps of J occur during a pause of
S (the gray region in the right panel), which corresponds to a jump of T (the
gray region in the left panel). Therefore, the process I(s) := J(T (s)) “skips”
these jumps of J . Indeed, notice that the path of I in the left panel has only
two visits to state 0 whereas the path of J in the right panel has three visits to
state 0.

Finally, the fact that J can jump during a pause of S reflects the assump-
tion of first-order reaction rates in the reaction-subdiffusion equations in this
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paper. In particular, the reactions are unaffected by the factors which cause the
subdiffusion. This is a key distinction between reaction-subdiffusion equations
with first-order reaction rates (sometimes called “activation-limited” [32]) and
the so-called “subdiffusion-limited” model [23, 32]. See the Discussion section
for more on how our results compare to the subdiffusion-limited model.

5.5 I(s) := J(T (s)) can have a different jump network than
J(t)

Suppose J = {J(t)}t≥0 is a 3-state Markov process on {0, 1, 2} that jumps
according to

0
aλ→ 1, 1

λ→ 2, 2
λ→ 0,

for some rate λ > 0 and some constant a > 4. Importantly, J cannot jump
directly from 0 to 2, from 1 to 0, or from 2 to 1. It is straightforward to
diagonalize the transition rate matrix of J as

R =

−aλ 0 λ
aλ −λ 0
0 λ −λ

 = −PΛP−1,

where Λ and P are real matrices and Λ is diagonal. We omit the formulas of
Λ and P for brevity, but we note that a > 4 ensures that Λ and P are real.
If T = {T (s)}s≥0 is an independent Lévy subordinator with Laplace exponent
Φ(λ), then Theorem 3 implies that time changed process I = {I(s)}s≥0 :=
{J(T (s))}s≥0 is a Markov jump process with transition rate matrix given by

R̃ = −PΦ(Λ)P−1. Importantly, the structure of the transition matrix R̃ of I
is different from the structure of the transition matrix R of J . In particular,
as long as the Laplace exponent Φ of T is not linear (which would correspond

to the trivial subordinator T (s) = bs for some b ≥ 0), R̃ will generally have
all nonzero entries, which implies that I will allow jumps between states i and
j 6= i for any i, j ∈ {0, 1, 2}. This reflects the fact that I may “skip” states
visited by J since T is discontinuous if Φ is nonlinear.

5.6 Stochastic simulation method

We now describe how the stochastic representation found in section 4 can be used
to numerically simulate stochastic paths of subdiffusing and reacting molecules
whose deterministic concentrations satisfy the reaction-subdiffusion equations
in (28). This is the stochastic simulation method used in the sections above.

We first use the Gillespie algorithm [11] to simulate statistically exact paths
of J . We then simulate T on a discrete time grid {sk}k for sk = k∆s for some
∆s > 0. In the examples above, T is an α-stable subordinator with α ∈ (0, 1)
and we follow the method of Magdziarz et al. [25] to simulate T . In particular,
T is exactly simulated on the discrete grid {sk}k according to

T (sk+1) = T (sk) + (∆s)1/αΘk, k ≥ 0,
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where T (s0) = T (0) = 0 and {Θk}k∈N is an independent and identically dis-
tributed sequence of realizations of

Θ =
sin(α(V + π/2)

(cos(V ))1/α

(
cos(V − α(V + π/2))

E

) 1−α
α

,

where V is uniformly distributed on (−π/2, π/2) and E is an independent unit
rate exponential random variable. See [6] for simulation methods when T is not
an α-stable subordinator.

Having obtained J = {J(t)}t and {T (sk)}k, we immediately obtain I on the
discrete time grid {sk}k via I(sk) := J(T (sk)). We then approximate X in (32)
on {sk}k via the Euler-Maruyama method [18].

Next, having obtained {T (sk)}k, we approximate the inverse S in (14) on a
discrete time grid {tm}m with tm = m∆t for some ∆t > 0. In particular, we
follow [25] and set S(tm) = sk where k is the unique index such that T (sk−1) <
tm ≤ T (sk). Finally, we obtain Y on the discrete time grid {tm}m via linear
interpolation,

Y (tm) =
(S(tm)− sk
sk+1 − sk

)
X(sk+1) +

(sk+1 − S(tm)

sk+1 − sk

)
X(sk), m ≥ 1,

where k is the largest index such that sk ≤ S(tm) ≤ sk+1.
In the stochastic simulations in sections 5.2 and 5.3, we take ∆s = ∆t =

t10−3 where t is either 1, 5, or 25 in Figures 1 and 2. Each empirical probability
density plotted in these figures is the result of 3× 106 independent trials.

6 Discussion

In this paper, we derived reaction-subdiffusion equations for molecular species
which react at first-order rates and subdiffuse in Rd according to a fractional
Fokker-Planck equation with general space-dependent diffusivities and space-
dependent drifts and a time-fractional operator involving a general memory
kernel. If the reaction rate matrix R ∈ Rn×n describes the reactions, species
i ∈ {0, . . . , n − 1} subdiffuses with (generalized) diffusivity Ki > 0, and the
time-fractional operator is the Reimann-Liouville fractional derivative, then the
reaction-subdiffusion equations for the vector of molecular concentrations q =
q(x, t) = (qi(x, t))

n−1
i=0 are

∂

∂t
q = K∆eRt 0D

1−α
t (e−Rtq) +Rq, x ∈ Rd, t > 0, (48)

where K = diag(K0, . . . ,Kn−1) is the diagonal matrix of diffusivities. We ob-
tained these equations by using results on time-dependent fractional Fokker-
Planck equations [6, 26] and applying methods which were developed to study
randomly switching parabolic equations [3, 21, 24]. In addition, we found the
stochastic representation of individual molecules whose deterministic concentra-
tions satisfy the reaction-subdiffusion equations. We illustrated our results in
several examples and compared solutions of the reaction-subdiffusion equations
to stochastic simulations of individual molecules.
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6.1 State-independent dynamics

Our analysis allows different molecular species to have different movement dy-
namics (i.e. different diffusivities, or more generally, different space-dependent
diffusivities and drifts). Previous derivations of reaction-subdiffusion equations
with first-order reactions assume that all the molecular species have the same
movement dynamics (typically the same constant diffusivity and zero drift).
This began with [40], in which reaction-subdiffusion equations were derived for
an irreversible reaction between two molecular species which subdiffuse in one
dimension. Using different approaches, [13] and [37] derived equivalent equa-
tions. These results were generalized in [20] to allow reversible reactions between
any number of molecular species which subdiffuse in one dimension (again, as-
suming all species have the same diffusivity). These works employed various
mathematical methods in their derivations, such as the theory of continuous-
time random walks, asymptotic expansions, Laplace transforms, Fourier trans-
forms, and Tauberian theorems. However, if all the molecular species have the
same movement dynamics, it was recently proven that the reaction-subdiffusion
equations are an immediate consequence of the probabilistic independence of
the spatial position and molecular species type [22].

6.2 Previous work on state-dependent dynamics

We are not aware of any previous works that derive reaction-subdiffusion equa-
tions with first-order reactions for molecular species with different movement dy-
namics. For the case of species-dependent movement dynamics, certain reaction-
subdiffusion equations were claimed in the review [32] and a different set of
reaction-subdiffusion equations were later claimed in [43]. Specifically, for the
scenario corresponding to (48), the following reaction-subdiffusion equations
were claimed in equation (3.5) in [32],

∂

∂t
q = ∆eRtK 0D

1−α
t (e−Rtq) +Rq. (49)

It was claimed in [32] that (49) can be derived from the continuous-time random
walk model, but no derivation was given. We note that (49) differs from (48)
since eRt and K do not typically commute. A more recent paper [43] claimed
that (48) can be derived from the continuous-time random walk model, but no
derivation was given.

6.3 Comparison to subdiffusion-limited model

In this paper, we assumed that reactions occur at first-order rates. This is
sometimes called the activation-limited model [32]. Activation-limited models
are appropriate when the instantaneous reaction rates are unaffected by the
factors causing subdiffusion.

An alternative model is the subdiffusion-limited model, which assumes that
the physical factors that slow down the diffusion also slow down the reactions
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in the same way [23, 32]. In the case of subdiffusion-limited reactions, the
reaction-subdiffusion equations are obtained by applying the fractional operator
to both the diffusion and the reaction terms in the corresponding reaction-
diffusion equation [32]. For example, the subdiffusion-limited analog to the
activation-limited equations in (48) is

∂

∂t
q = 0D

1−α
t

(
K∆q +Rq

)
, x ∈ Rd, t > 0. (50)

We now compare the stochastic description of molecules in the subdiffusion-
limited model in (50) (using the results of [23]) to the stochastic description of
molecules in the activation-limited model in (48) that we found in section 4.
Beginning with the subdiffusion-limited model in (50), let T = {T (s)}s≥0 be
an α-stable subordinator with inverse S = {S(t)}t≥0. Let I = {I(s)}s≥0 be
a Markov jump process on {0, . . . , n − 1} with generator R> ∈ Rn×n that is
independent of T . Suppose X = {X(s)}s≥0 satisfies the I-dependent stochastic
differential equation,

dX(s) =
√

2KI(s) dW (s),

where W = {W (s)}s≥0 is a standard d-dimensional Brownian motion indepen-
dent of T and I. That is, X is a normal diffusion process that diffuses with
diffusivity Ki > 0 when I(s) = i. Define J = {J(t)}t≥0 as the random time
change of I,

J(t) := I(S(t)), t ≥ 0,

and define the subdiffusion process Y = {Y (t)}t≥0 as the random time change
of X,

Y (t) := X(S(t)), t ≥ 0.

The joint density of (Y (t), J(t)) satisfies the subdiffusion-limited model in (50)
[23].

Using our results in section 4, we now give the stochastic description of the
activation-limited model in (48). Let T and S be as above and let J = {J(t)}t≥0

be a Markov jump process on {0, . . . , n− 1} with generator R> ∈ Rn×n that is
independent of T . Define I = {I(s)}s≥0 as the random time change of J ,

I(s) := J(T (s)), s ≥ 0.

Suppose X = {X(s)}s≥0 satisfies the I-dependent stochastic differential equa-
tion,

dX(s) =
√

2KI(s) dW (s),

where W = {W (s)}s≥0 is a standard d-dimensional Brownian motion indepen-
dent of T and J . Finally, define the subdiffusion process Y = {Y (t)}t≥0 as the
random time change of X,

Y (t) := X(S(t)), t ≥ 0.
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We now describe the subtle difference between these two constructions which
ultimately underlies the difference between the subdiffusion-limited equations
in (50) and the activation-limited equations in (48). Notice that by Theorem 3,
I and I are both Markov jump processes (though with different generators).
Notice further that X and X are both normal diffusion processes whose diffu-
sivities switch according to the paths of I and I, respectively. In addition, the
subdiffusion processes Y and Y are obtained by respectively subordinating X
and X according to S. The key difference is that in the subdiffusion-limited
construction, I and X are independent of T and S, whereas J depends on T
and S. In contrast, in the activation-limited construction, J is independent of T
and S, whereas I and X depend on T and S. In particular, J is a time change
of I, but I is a time change of J . Furthermore, while J is a Markov process, J
is in general not Markovian. For example, the times between jumps of J have
a Mittag-Leffler distribution if T is an α-stable subordinator [23].
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