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ADDITIVE SCHWARZ METHODS FOR SERENDIPITY ELEMENTS∗

JORGE MARCHENA-MENENDEZ† AND ROBERT C. KIRBY‡

Abstract. While solving Partial Differential Equations (PDEs) with Finite Element Methods
(FEM), serendipity elements allow us to obtain the same order of accuracy as rectangular tensor-
product elements with many fewer degrees of freedom (DoFs). To realize the possible computational
savings, we develop some additive Schwarz methods (ASM) based on solving local patch problems.
Adapting arguments from Pavarino for the tensor-product case, we prove that patch smoothers give
conditioning estimates independent of the polynomial degree for a model problem. We also combine
this with a low-order global operator to give an optimal two-grid method, with conditioning estimates
independent of the mesh size and polynomial degree. The theory holds for serendipity elements in two
and three dimensions, and can be extended to multigrid algorithms. Numerical experiments using
Firedrake and PETSc confirm this theory and demonstrate efficiency relative to standard elements.

Key words. Serendipity elements, Finite Element Method, Additive Schwarz methods, Fire-
drake, Multigrid methods.
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1. Introduction. A very popular method for solving Partial Differential Equa-
tions (PDEs) is the known Finite Element Method (FEM). These methods approxi-
mate solutions in finite-dimensional spaces consisting of piecewise polynomials or other
suitable functions defined over some subdivision of the domain into simple shapes. Of
current research interest is the serendipity space Sk, which contains all of standard
polynomials of total degree k (hence denoted by Pk), with enough additional polyno-
mials to enforce C0 continuity on quadrilaterals. This gives the same order of accuracy
as tensor product spaces Qk with a much smaller approximating space, which may
save time and resources when solving the PDEs with FEM.

An important and general reference on the study on serendipity elements is the
paper by Arnold and Awanou [3]. Recently, Gillette et al. [11] expanded the the-
ory beyond H1 elements to differential forms. The full convergence theory for these
elements requires rectangular or at least affinely-mapped quadrilateral/hexahedral el-
ements. Curvilinear mapping can degrade the order of convergence for serendipity
elements [4] in particular cases, although triggering this pathology seems quite subtle,
and we include some computational results on a general quadrangulation. Serendip-
ity spaces that guarantee full accuracy on general quadrilaterals are known [2], but
these spaces include some rational functions. Our analysis in does not cover this case,
although it is a possible extension.

While using higher-degree polynomials can lead to very accurate solutions, it
is also important to consider the impact that they have on solving the resulting
algebraic systems. In particular, both the size of the system and its condition number
can increase dramatically as the degree increases. In a multigrid framework, classical
smoothers like Jacobi iteration degrade or even fail as the degree increases. In order
to obtain solvers that are uniform in the polynomial degree, we turn to the class
of additive Schwarz methods. Pavarino [15] develops such techniques for high-order
discretizations on classicalQk elements. Here, one uses small, overlapping subdomains
consisting of cells sharing each vertex in the mesh. An additive Schwarz preconditioner
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then approximates the inverse of the finite element operator by the sum of the inverses
of these restrictions to patches, hence called a patch smoother. Pavarino (by a rather
lengthy technical argument) gives estimates for these methods that are in fact uniform
in the polynomial degree. In order to obtain a preconditioner that is also uniform
in the mesh parameter h, one can either include the lowest order Q1 space over the
original mesh in the subspace decomposition or else use the patch smoother on each
level of a multigrid hierarchy. Similar estimates for simplicial Pk elements are given
in [18], but neither analysis directly covers the case of serendipity elements. However,
the reduced cardinality of the Sk space relative to Qk suggests that such additive
Schwarz methods could be a very powerful tool to combine with serendipity elements.
We refer the reader to references such as [5, 17], noting that for some problems,
multigrid requires patch-based Schwarz smoothers even for low-order discretizations.

In this paper, we provide the missing technical justification of these additive
Schwarz methods in the context of serendipity spaces and explore their practical
properties. Section 2 contains a description of the model problem and its variational
formulation and approximation spaces. Then, section 3 presents the resulting precon-
ditioners and their analysis. subsection 3.2 provides the key theoretical developments
of the paper. By a judicious use of the Ritz projection [19, 20], we are able to ex-
tend Pavarino’s technical results from the Qk spaces to serendipity elements. This
allows us to prove that the patch smoother behaves uniformly in the degree k. Results
for the patch smoother itself allow us to give optimal estimates both for a two-level
additive Schwarz and a multigrid method. Section 4 provides a suite of numerical
experiments obtained using the Firedrake project [16], and then we offer concluding
remarks in section 5.

2. Serendipity Elements. We consider a model problem for linear, self-adjoint,
second order elliptic problems on a bounded Lipschitz region Ω ⊂ R

n with n = 2, 3.
We consider the following example with Dirichlet boundary conditions imposed

on ΓD, a closed subset of ∂Ω with positive measure, and homogeneous Neumann
conditions on the rest of the boundary ΓN. Our techniques can be readily adapted to
other boundary conditions. The boundary value problem is















−∆u = f in Ω,

u = u0 on ΓD,

∂u

∂n
= g on ΓN.

We suppose that f and u0 satisfy standard regularity assumptions and that u0 =
0. Define the subspace H1

D(Ω) =
{

v ∈ H1(Ω) : v|ΓD
= 0

}

≡ V and affinely shifted set

H1
D,u0

(Ω) =
{

v ∈ H1(Ω) : v|ΓD
= u0

}

≡ VD. The variational form of our problem is
to find u∗ ∈ VD such that

a (u∗, v) = F (v), ∀v ∈ V,(2.1)

where

a(u, v) =

∫

Ω

∇u · ∇vdx and F (v) =

∫

Ω

fvdx+

∫

ΓN

gvds.

Although our theory is worked out for scalar coercive problems such as (2.1),
it generalizes readily to symmetric coercive vector-valued problems such as planar
elasticity [6]. This problem determines the elastic deformation u of a reference domain
Ω subject to some loading function f . Let λ and µ be the Lamé constants. For some
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vector displacement field u, ε(u) = 1
2

(

∇u +∇uT
)

is the symmetric gradient. The
plane stress associated with u is

σ(u) = λtr(ε(u))I + 2µε(u).

Here, we take V to be the subspace of (H1(Ω))2 with functions vanishing on
the Dirichlet boundary. With these definitions, the variational problem for elastic
displacement is to find u in V such that

(2.2) a(u, v) = (f, v), v ∈ V,

where

(2.3) a(u, v) =

∫

Ω

σ(u) : ε(v)dx =

∫

Ω

2µǫ(u) : ǫ(v) + λdiv(u) div(v)dx.

As in [18], the theory and practice of the additive Schwarz method carries over
directly into this problem.

We let Th>0 denote a decomposition of Ω into rectangles (or, more generally,
quadrilaterals) of size h such that intersection of the closures of any two distinct
elements is empty or else contains either a single vertex or an entire edge. Over each
single mesh entity K, we define Pk(K) to be the space of polynomials over K of total
degree no greater than k. This space has dimension of

(2.4) dimPk(K) =

(

k + n

n

)

=

{

(k+1)(k+2)
2 n = 2,

(k+1)(k+2)(k+3)
6 n = 3.

We also let Qk(K) be the set of polynomials of degree k in each variable separately.
The dimensions of these spaces satisfy:

(2.5) dimQk(K) = (k + 1)n .

Our main interest here is the serendipity space [3], which includes all of Pk(K)
and hence offer optimal approximation properties, but has much lower dimensionality
than Qk(K). Hence, they offer comparable accuracy to standard methods, but at a
lower cost. When n = 2, the local serendipity space is defined by:

(2.6) Sk(K) = Pk(K) + span{xky, xyk},

for each k ≥ 2. This has dimension of dimPk(K) + 2 = 1
2 (k

2 − k+1). For k = 1, the
serendipity space Sk(K) is taken to coincide with Q1(K). Members of the space may
be parameterized by their vertex values, moments of degree k − 1 along each edge,
and for k ≥ 4, moments against Pk−4(K) as depicted in Figure 1 for degrees 2 and 3.

Following [3], the generalization of (2.6) to higher spatial dimensions uses the
notion of superlinear degree. A monomial in n variables may be written as p = Πn

i=1x
αi

i

for integers αi ≥ 0, and then the superlinear degree is given by the sum of each αi

that is at least 2:

(2.7) deg2(p) =

n
∑

i=1

αi>1

αi.

Then, the serendipity space of degree k is defined as all monomials with super-
linear degree at most k:

(2.8) Sk(K) = {p ∈ Qk(K) : deg2(p) ≤ k}.
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Fig. 1: Canonical degrees of freedom for S2(K) (left) and S3(K) (right).

n = 2 n = 3
k: 1 2 3 4 5

dimPk 3 6 10 15 21
dimSk 4 8 12 17 23
dimQk 4 9 16 25 36

k: 1 2 3 4 5
dimPk 4 10 20 35 56
dimSk 8 20 32 50 74
dimQk 8 27 64 125 216

Table 1: Dimension of local polynomial spaces in two and three variables.

This definition coincides with that given in (2.6). In three variables, the space S2

is P2 together with the span of:

{xyz, x2y, x2z, x2yz, xy2, y2z, xy2z, xz2, yz2, xyz2},

and dimS2(K) = 20. While larger than dimP2(K) = 10, it still is smaller than
dimQ2(K) = 27.

The dimension of the general serendipity spaces does not admit a simple formula
in more than two dimensions, but it is shown in [3] to be

(2.9) dimSk(K) =

min(n,⌊k/2⌋)
∑

d=0

2n−d

(

n

d

)(

k − d

d

)

.

The global finite element space based on serendipity elements is

(2.10) Vh,k =
{

v ∈ C0(Ω) : v|K ∈ Sk(K) for each K ∈ Th
}

.

By means of the inner product (., .) defined as the one of L2(V ), the bilinear form
a in (2.1) induces an operator Ah,k : Vh,k → V ′

h,k by

(2.11) (Ah,ku, v) = a(u, v),

where the duality pairing is that between Vh,k and its dual inherited from the inclusion
Vh,k →֒ H1

0 (Ω).



ADDITIVE SCHWARZ METHODS FOR SERENDIPITY ELEMENTS 5

3. Developing iterative methods. In this paper, we consider optimal precon-
ditioners for serendipity finite element discretizations of our model problem. These are
based on additive Schwarz or subspace decomposition techniques that approximate
the inverse of an operator by restricting that operator to a collection of subspaces and
summing the inverses of those restrictions. In our case, we rely primarily on subspaces
consisting of patches of cells sharing a common vertex in a finite element mesh. Such
techniques are useful to obtain degree-independence for Qk and Pk spaces [15, 18],
and are also required for defining multigrid smoothers in H(div) and H(curl), even
for low-order spaces [5, 8]. We define these smoothers, which give degree-independent
conditioning estimates for serendipity spaces, in subsection 3.1. In order to obtain a
preconditioner that is also independent of the mesh spacing, we can include a low-
order subspace on the original mesh, as described in subsection 3.2. Alternatively, we
can use the patch smoother on each level of a geometric multigrid hierarchy, as we
describe in subsection 3.3.

The cost of building and solving these local patch problems is the dominant cost
in the algorithms we consider. Since they solve finite element operators over a (very
small) mesh, the local systems contain sparsity, but they are small enough that storing
and working with dense matrices may be preferable in practice. In either case, using
Sk rather than Qk elements can greatly reduce the size of these local problems and
hence prove favorable for run-time.

3.1. Patch smoothers. We let {vi}
N
i=1 denote the set of interior vertices of the

mesh, i.e. those vertices that do not belong to any boundary edges of the mesh, and
let Ωi denote the set of mesh cells of which vi is a member of the closure. Typically,
this will consist of a patch of 4 rectangles in 2D or 8 boxes in 3D (see Figure 2).

Ωi1 Ωi2

Ωi3 Ωi4

•
i

Fig. 2: Example of patch cells in 2D (left) and 3D (right).

Associated with each vertex, we define a localized space Vi ⊂ H1
0 (Ω) of serendipity

elements on each K ∈ Th, but vanishing outside of Ωi:

(3.1) Vi =
{

v ∈ Vh,k : supp(v) ⊆ Ωi
}

.

Note that these patch-based subspaces are labeled using subscripts. Later, in sub-
section 3.3, we will also introduce function spaces based on a mesh hierarchy, and
we shall label those with superscripts instead. Examples of vertex patch spaces are
shown in Figure 2. These pictures highlight the considerable reduction in dimension-
ality that serendipity elements afford. We can also include a comparison to patch
sizes for simplicial cells with Pk elements, since rectangular cells can always be so
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tesselated. While Pk will have fewer degrees of freedom per cell than either Sk or Qk,
simplicial meshes have many more cells sharing a vertex than do quad/hex meshes.
While quad meshes typically have 4 cells sharing a vertex and hex meshes 8, triangu-
lar meshes will have 6-7 triangles sharing a vertex and tetrahedral meshes more like
20-30. Figure 4 shows that, with some representative choices, simplex meshes can
offer smaller patch sizes than Qk elements but not as small as Sk. We plot the patch
size as a function of degree in Figure 4.

(a) 2D S3 elements (b) 2D Q3 elements

(c) 3D S3 elements (d) 3D Q3 elements

Fig. 3: Patch cells and DoFs for in a typical patches using S3 and Q3 elements in 2D
are shown in (a) and (b). Note that in 2D each Q3 patch has 25 internal degrees of
freedom versus 9 for each S3 patch. Subfigures (c) and (d) show that the reduction
is even greater in 3D, going from 125 down to only 13.

Since Vi ⊂ Vh,k for each i, the natural lifting operator Ri : Vi → Vh,k is trivial,
although its adjoint shall appear in defining certain local operators. We also use the
standard norms and inner products available on Vh,k on its subspaces as needed.

The patch spaces induce a decomposition of the global space:

(3.2) Vh,k =

N
∑

i=1

RiVi =

N
∑

i=1

Vi.

On each localized subspace, we define the restricted operators Ai on Vi via a
Galerkin approach:

(3.3) Ai = (Ri)
TAhRi,

where (·)T denotes the adjoint with respect to the L2 inner product.
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(a) 2D patches, with 4 cells and 4 internal
edges per quadilateral patch. For com-
parison, we include triangular Pk patches
assuming 6 cells and edges in each patch.
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Pk patch
Sk patch

Qk patch

(b) 3D patches with 8 cells, 12 internal
faces, and 6 internal edges per hexahe-
dral patch. For comparison, we include
Pk patches with 24 cells, 36 internal faces,
and 14 edges per patch.

Fig. 4: Number of DoFs in various element patches as a function of polynomial order k
after imposing Dirichlet boundary conditions. The Pk patches correspond to typical
patches in a simplicial mesh, while Qk and Sk correspond to regular patches in a
quad/hex mesh.

We now define a preconditioning operator Ch,k as follows. Let dh,k ∈ Vh,k be
given. Then, on each patch, we let wi ∈ Vi be the solution to the variational problem

(3.4) ai(wi, vi) = (dh,k, vi), ∀vi ∈ Vi.

We then define wh,k ∈ Vh,k by summation:

(3.5) wh,k =

N
∑

i=1

Riwi =

N
∑

i=1

wi.

Now, we let Ch,k be the mapping sending wh,k to dh,k. Its inverse is directly com-
putable by solving local variational problems on each vertex patch and summing the
liftings of the results. Equivalently, we can write

(3.6) C−1
h,k =

N
∑

i=1

RiA
−1
i (Ri)

T .

Among many options in the literature for analyzing such additive Schwarz me-
thods, we follow Schöberl [17]. We note that our setting – using patches of the original
mesh to deal with high polynomial degree – naturally leads to a Galerkin formulation
with nested subspaces and hence a simpler analysis than required in some contexts.

Theorem 3.1 ([17, Additive Schwarz Lemma]). Let us define the splitting norm

|||uh,k|||
2 := inf

uh,k=
∑

ui∈Vi

Riui

N
∑

i=1

(Aiui, ui)
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on Vh,k. It is equal to the norm ‖uh,k‖Ch,k
:= (Ch,kuh,k, uh,k)

1/2
h,k generated by the

additive Schwarz preconditioner (3.6), i.e. there holds

|||uh,k||| = ‖uh,k‖Ch,k
∀uh,k ∈ Vh,k.

At several points in our analysis, we will use the Ritz projection [19, 20], which is
orthogonal projection with respect to the H1

0 inner product. As we use the projection
in a few different contexts, we include the following general result:

Proposition 3.2. Let a be a symmetric coercive bilinear form on H1
0 (K), and

V ,W be subspaces of H1
0 (K). Let Π be the a-orthogonal or Ritz projection from V

onto W with respect to a, such that

a(Πu, v) = a(u, v), v ∈ W , u ∈ V .

Then
(1) Π is H1 stable, i.e., there is a constant C1 independent of the mesh size and

the polynomial degree such that ||Πu||H1 ≤ C1||u||H1 for all u in V.

(2) Let V be a space with mesh size h, then ‖u − Πu‖2L2 ≤ h2C2 ‖u‖
2
H1 for all u

in V with C2 independent of the mesh size and the polynomial degree.

In order to verify the conditions for the additive Schwarz theory hold for serendi-
pity spaces, we will adapt some arguments from Pavarino [15] for the tensor-product
case. Since u 7→ ‖∇u‖ is a seminorm on Sk and Qk, we define the quotient spaces
Q̂k = Qk/Q0 and Ŝk = Sk/Q0 on which it is a norm. Pavarino defines the uniformly
bounded interpolation operator for tensor product spaces:

(3.7) Tk : Q̂k+1

(

[−1, 1]2
)

→ Q̂k

(

[−1, 1]2
)

,

that interpolates its input at the tensor product of roots of the polynomial Lk+1(x) =
∫ x

−1
Lk(s)ds, where Lk(s) is the Legendre polynomial of degree k. The essential feature

is that the operator has H1 stability estimates independent of the polynomial degree.
While the serendipity space is contained in the tensor-product space, Pavarino’s op-
erator Tk is well-defined. However, for f ∈ Ŝk+1, the resulting Tk(f) need only lie in
Q̂k and not necessarily in Ŝk. In order to obtain spectral bounds for the precondi-
tioner (3.6), we provide an interpolation operator from Ŝk+1

(

[−1, 1]2
)

to Ŝk

(

[−1, 1]2
)

.

Lemma 3.3. The interpolation operator Ψk : Ŝk+1

(

[−1, 1]2
)

→ Ŝk

(

[−1, 1]2
)

, de-

fined as Ψk = Πk ◦ Tk ◦ I|Sk+1
, where Πk : Q̂k

(

[−1, 1]2
)

→ Ŝk

(

[−1, 1]2
)

is the Ritz

projection and I|Sk+1
: Ŝk+1

(

[−1, 1]2
)

→ Q̂k+1

(

[−1, 1]2
)

is the natural embedding, is
uniformly bounded in the ‖ · ‖H1 norm, i.e.

(3.8) ‖Ψk(f)‖H1 ≤ Ĉ‖f‖H1 , ∀f ∈ Ŝk+1

(

[−1, 1]2
)

.

Proof. Let û = Tk ◦ I|Sk+1
(u) with u ∈ Ŝk+1

(

[−1, 1]2
)

. Since û ∈ Q̂k

(

[−1, 1]2
)

,

then û ∈ H1
0

(

[−1, 1]2
)

.

Since the Ritz projecton is H1 stable in H1
0

(

[−1, 1]2
)

(Proposition 3.2 (1)), for

Πk : Q̂k

(

[−1, 1]2
)

→ Ŝk

(

[−1, 1]2
)

we have,

||Πkû||H1 ≤ C1||û||H1 .

Furthermore, for ū = I|Sk+1
(u), notice that, ū ∈ Q̂k+1

(

[−1, 1]2
)

. Then, since the
interpolation operator Tk is uniformly bounded (see proof in [15])

‖Tk(ū)‖H1 ≤ C2‖ū‖H1.
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Thus,

||Ψk(u)||H1 = ||Πkû||H1 ≤ C1||û||H1 = C1||Tk(ū)||H1 ≤ C1 · C2‖ū‖H1 = Ĉ||u||H1 ,

for all u ∈ Ŝk+1.

From now on we will write A ≤ B where A and B are two positive definite
matrices whenever B − A is positive semi-definite, and a � b will mean that there
exists a constant c independent of a, b, the discretization parameter H , and the
polynomial degree k, such that a ≤ cb. Moreover, moving forward we consider that
all the constant are independent of the mesh size and the polynomial degree unless
otherwise stated.

Theorem 3.4. The additive Schwarz preconditioner Ch,k defined in (3.6) satisfies
the spectral bounds H2Ch,k � Ah � Ch,k, where H = diam(Ωi).

Proof. Each point is covered by no more than 2n subdomains Ωi where n = (2, 3)
is the number of dimensions, thence we can apply Lemma 3.2 (Finite Overlap) in [17]
and obtain the upper bound Ah ≤ c2Ch,k.

In order to obtain the lower bound, for each uh,k ∈ Vh,k, we need a representation

uh,k =
∑N

i=1 ui, where ui ∈ Vi, such that

(3.9)

N
∑

i=1

||ui||Ah
≤ C2

0 ||uh,k||Ah
, ∀uh,k ∈ Vh,k.

Using the operator Tk (3.7), Pavarino [15] proves that indeed there is a represen-

tation for uh,k over
∑N

i=1 RiVi of the form (3.9) for quadrilateral spaces. Following the
same guideline presented in his work, we can obtain this representation for a function
defined over serendipity spaces instead. For this purpose, we will use the operator
Ψk : Ŝk+1

(

[−1, 1]2
)

→ Ŝk

(

[−1, 1]2
)

obtained in our Lemma 3.3.
We now take the construction of a partition of unity {ψi} , ψi ∈ C∞(Ω) given

by Pavarino [15] which is such that suppψi ⊆ Ωi and ‖∇ψi‖L∞
� H−1, and define,

ui = Ψk(ψiuh,k).
Since Ψk is linear

N
∑

i=1

ui =

N
∑

i=1

Ψk (ψiuh,k) = Ψk(uh,k) = uh,k,

and so

(3.10) ‖ui‖
2
Ah

� ‖ui‖
2
H1 = ‖Ψk (ψiuh)‖

2
H1 .

By Lemma 3.3 it follows that,

(3.11) ‖Ψk (ψiuh)‖
2
H1 � ‖ψiuh‖

2
H1 � H−2 ‖uh‖

2
L2(Ωi) + ‖∇uh‖

2
L2(Ωi) ,

where we also applied [17, Lemma 2.6] to the last inequality. Therefore,

(3.12)

N
∑

i=1

‖ui‖
2
Ah

�

N
∑

i=1

[

H−2 ‖uh‖
2
L2(Ωi) + ‖∇uh‖

2
L2(Ωi)

]

� H−2 ‖uh‖
2
L2 + ‖∇uh‖

2
L2 � H−2 ‖uh‖

2
H1 � H−2 ‖uh‖

2
Ah
.
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We obtained a representation as (3.9) with C2
0 = H−2c−1

1 , with c1 independent
from H . Moreover, by the Additive Schwarz Lemma we have

(3.13)

‖uh,k‖
2
Ch,k

= inf
uh,k=

∑

ui∈Vi

Riui

M
∑

i=1

(Aiui, ui) ≤

N
∑

i=1

(Aiui, ui)

=

N
∑

i=1

(

RT
i AhRiui, ui

)

=

N
∑

i=1

||ui||
2
Ah

≤ H2ch,k||uh,k||
2
Ah
,

where we used (3.12) for the last inequality.

As a remark, since H = diam(Ωi), we also have H = 2h.

3.2. Additive Schwarz with a low-order space. Theorem 3.4 shows that a
patch smoother provides conditioning estimates independent of the polynomial de-
gree, but leaves the condition number scaling like H−2 ∼ h−2. To also eliminate the
dependence on the mesh size, we include a global low-order space in the decomposi-
tion (3.2):

(3.14) V0 = {v ∈ Vh,k : v|K ∈ Q1(K), K ∈ Th} .

There is also a natural inclusion operator R0 : V0 → Vh,k since V0 is a subspace of
Vh,k.

We can edit our subspace decomposition to include this space, so that

(3.15) Vh,k = R0V0 +
N
∑

i=1

RiVi = V0 +
N
∑

i=1

Vi =
N
∑

i=0

Vi.

V0 is defined on the entire mesh, but it includes only lowest-order functions and
so plays the role of a “coarse grid” space. We define a0 : V0 × V0 → R:

(3.16) a0(u0, v0) = a(R0u0, R0v0),

and associated operator A0 on V0 via a Galerkin approach

(3.17) A0 = (R0)
TAhR0.

As before, this new decomposition can also be used to define an additive Schwarz
preconditioner:

(3.18) C−1
h,k = R0A

−1
0 (R0)

T +

N
∑

i=1

RiA
−1
i (Ri)

T .

That is, an application of this preconditioner requires solving a local problem on each
patch together with solving a global system on the Q1 subspace.

Lemma 3.5. [17, Optimal two level preconditioner] Assume the following state-
ments are true:

(1) The overlap of local spaces is bounded by NO.
(2) There exists a continuous interpolation operator I0 : Vh,k → V0, i.e.

(3.19) ‖I0uh,k‖Ah
≤ cI ‖uh,k‖Ah

∀uh,k ∈ Vh,k
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(3) The local splitting of the difference uf := uh − I0uh is stable, i. e.

(3.20) inf
uf=

∑
ui

ui∈Vi
i=1,...,N

∑

‖ui‖
2
Ah

≤ cL ‖uh‖
2
Ah

Then the two level preconditioner fulfills the optimal spectral bounds

c1Ch,k ≤ Ah ≤ c2Ch,k

with
c1 :=

(

c2I + cL
)−1

c2 := (1 +NO)

Theorem 3.6. The two level preconditioner Ch,k (3.18) satisfies optimal spectral
bounds: Ch,k � Ah � Ch,k, with both bounds independent of h and k.

Proof. We just need to verify the conditions given in Lemma 3.5.
As we mentioned before, the number of overlapping cells is bounded by 4 in 2D

and by 8 in 3D. Moreover, since we have V0 ⊂ Vh,k, the continuity of the lifting/natural
inclusion operator R0, is trivial.

In addition, let I0 : Vh,k → V0 be the Ritz projection with respect to the bilinear
form a(·, ·), so that

a (I0u, v) = a(u, v), ∀v ∈ V0, for u ∈ Vh,k.

Once again, we will use it only to prove the existence of bounds, and we do not propose
to use it during computations.

The properties of I0 and the bilinear form give that

‖I0uh,k‖
2
Ah

= a(I0uh,k, I0uh,k) = a(uh,k, I0uh,k) ≤ ‖uh,k‖Ah
‖I0uh,k‖Ah

,

so that
‖I0uh,k‖Ah

≤ ‖uh,k‖Ah
∀uh,k ∈ Vh,k.

Hence, I0 is bounded in the energy norm independent of the polynomial degree or
mesh parameter of Vh,k.

Furthermore,

(3.21) ‖uf‖
2
L2 = ‖uh,k − I0uh,k‖

2
L2 � H2 ‖uh,k‖

2
H1 ,

where the last inequality comes from Proposition 3.2 (2). Then, we follow,

(3.22) ‖uf‖
2
H1 = ‖uh,k − I0uh,k‖

2
H1 ≤ 2(‖uh,k‖

2
H1 + ‖I0uh,k‖

2
H1) � ‖uh,k‖

2
H1 ,

where in the last step we used the H1 stability of the Ritz projection as given in
Proposition 3.2 (1).

Now we define uf,i = Ψk(ψiuf ) and proceeding as in the proof of the lower bound
in Theorem 3.4 we get

N
∑

i=1

‖uf,i‖
2
Ah

� H−2 ‖uf‖
2
L2 + ‖∇uf‖

2
L2 � H−2H2 ‖uh,k‖

2
H1 + ‖uf‖

2
H1 � ‖uh,k‖

2
H1 .

Finally, we can say

(3.23) inf
uf=

∑
ui

ui∈Vi
i=1,...,N

∑

‖ui‖
2
Ah

≤

N
∑

i=1

||uf,i||
2
Ah

� ‖uh,k‖
2
Ah
.
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3.3. Multigrid algorithms with patch smoothers. Including a global but
low-order approximating space in the additive Schwarz decomposition is one approach
to obtaining an optimal-order algorithm. On the other hand, one may define a coarse
space by geometrically coarsening the finite element mesh without changing the poly-
nomial degree of the space – a multigrid method. In this section, we prove that
applying the additive Schwarz patch smoother (3.6) on each level of a V-cycle pro-
vides a contraction factor independent of the mesh size and polynomial degree. By
contrast, such estimates do not hold for classical pointwise smoothers such as damped
Jacobi. Here, we follow the approach [8], which applies the same abstract setting to
the different use case of patch-smooted problems in H(div).

Abstractly, we posit a sequence of nested spaces (in practice, obtained through a
mesh hierarchy) given by

V 1 ⊂ V 2 ⊂ . . . ⊂ V L = Vk,h,

recalling that we are using superscripts here rather than the subscripts in our patch-
based space decompositions.

Define Al : V l → V l by
(

Alv, w
)

= a(v, w) for all v, w ∈ V l.

Now, to prove the optimality of solvers using multigrid methods we shall apply the
following theorem introduced in [8]. Let Πl : V L → V l be the orthogonal/Ritz
projection with respect to the bilinear form a. Also, suppose that we are given for
each l > 1 a linear operator Dl : V l → V l, which is the “smoother” and is intended
to behave like an approximation to (Al)−1. Finally, we use the standard V-cycle
multigrid algorithm by applying the smoother Dl as defined in [8] with operators
Θl : V l → V l beginning with Θ1 = (A1)−1. Given these conditions the theorem is
stated as follows.

Theorem 3.7. Suppose that for each level 2 ≤ l ≤ L we have a preconditioner
Dl : V l → V l, which is scaled such that Al ≤ Dl, is symmetric with respect to the L2

inner product and positive semidefinite, and satisfies the conditions

A
([

I − (Dl)Al
]

v, v
)

≥ 0 for all v ∈ V l,(3.24)

and

(

(Dl)−1
[

I −Πl−1
]

v,
[

I −Πl−1
]

v
)

≤ αA
([

I −Πl−1
]

v,
[

I −Πl−1
]

v
)

for all v ∈ V l,

(3.25)

where α is some constant. Then

0 ≤ A
([

I −ΘlAl
]

v, v
)

≤ δA(v, v) for all v ∈ V l

where δ = α/(α + 2m). Moreover, the error operator I −ΘLAL is a positive definite
contraction on V L whose operator norm relative to the A inner product is bounded by
δ. Also, the eigenvalues of ΘLAL belong to the interval [1− δ, 1].

We can use a patch smoother of the form (3.6) on each level l (after suitable
scaling) to obtain degree-independent multigrid estimates. We decompose each V l

into patches as in subsection 3.1, which leads to

(3.26) V l
h,k =

Nl
∑

i=1

Rl
iV

l
i =

N
∑

i=1

V l
i ,
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and then construct preconditioner (3.6) resulting in,

(3.27) Dl = C−1
hl,kl

=

Nl
∑

i=1

Rl
i(A

l
i)

−1(Rl
i)

T ,

where Rl
i : V

l
i → V l

h,k is the lifting operator at level l. Furthermore, notice that

Πl
i = Rl

i(A
l
i)

−1(Rl
i)

TA

is the A(., .)-orthogonal or Ritz projection to Rl
iV

l
i [17]. Thus, we can rewrite (3.27)

as proposed in [8],

(3.28) Dl = η

Nl
∑

i=1

Πl
i(A

l)−1,

where η is the scaling factor.
We can also define Πl : V L → V l

Πl =

Nl
∑

i=1

Πl
i.

Theorem 3.8. The hypotheses of Theorem 3.7 are satisfied by the patch smoother
(3.27).

Proof. The proof for the first hypothesis is exactly the one given in [8], and so is
omitted.

The second hypothesis reduces to showing that for v =
(

I −Πl−1
)

u, u ∈ V l, we

can decompose v as
∑Nl

i vi with vi ∈ V l
i such that

Nl
∑

i=1

A (vi, vi) ≤ cA(v, v).(3.29)

Since we are reducing the analysis to the nested case this follows immediately from
(3.23). Notice that all we need to prove is that v =

(

I −Πl−1
)

u is in V l. We know
that u ∈ V l, thus Iu ∈ V l and Πl−1u ∈ V l−1 ⊂ V l, so v ∈ V l. Decomposing
vi = Ψk(ψiv) and proceeding as in the proof of the lower bound in Theorem 3.6 we
get

(3.30)

Nl
∑

i=1

||vi||
2
A � ‖v‖

2
A .

Therefore, the hypotheses of Theorem 3.7 are satisfied.

4. Numerical Results. We have conducted a simple set of numerical expe-
riments illustrating our theory using Firedrake [16], an automated system for finite
element methods. Recent work [7] in the Firedrake project has enabled a wide class
of serendipity elements. We use these elements plus many solver features available
through the rich interface to PETSc [12] to conduct our investigation. This includes
a kind of two-way interface via petsc4py allowing PETSc extensions to import Fire-
drake, and also includes an integration of FIredrake with PETSc’s multigrid functio-
nality [12, 14].



14 J. MARCHENA-MENENDEZ, R. C. KIRBY

Fig. 5: Coarse unstructured mesh with 96 vertices and 120 quadrilaterals.

We test our methods on the Poisson problem in two and three dimensions and
planar elasticity. Our experiments were run on a Dell Precision Workstation with
dual 14-core Xeon E5-2697 CPUs running at 2.60GHz and 256GB of RAM. The full
Firedrake code stack supports distributed memory parallelism. Since the software
components for forming and solving patch problems are designed for parallelism [9],
and Firedrake-based implementations using patch smoothers for other problems are
known to scale well across many nodes [1, 10]. Therefore, we focus on the algorith-
mic performance of the additive Schwarz and multigrid methods rather than parallel
scaling issues. However, we do use multiple workstation cores to accelerate our com-
putations.

Firedrake’s solver infrastructure has expedited the implementation of our me-
thods. In each case we use conjugate gradient iteration with a relative stopping tole-
rance of 10−12 with our various preconditioners. The two-level Schwarz method (3.18)
was applied via Firedrake’s P1PC preconditioner. This class uses the Firedrake bilinear
form to generate code for building the small patch problems and the low-order global
problem and then sets up user-configurable solvers to be used for each, which are then
solved during run-time. We solve the local patch problems using Firedrake’s ASMStarPC,
which uses connectivity information from the underlying PETSc DMPLEX [13] to
algebraically extract degrees of freedom for the patches and interface to PETSc’s
existing additive Schwarz infrastructure. Because Firedrake does not support general
hexahedral meshes, only extruded quadrilateral meshes, we had to adapt this class to
identify the patches for our three-dimensional calculations. Various matrix formats
(dense or sparse) and PETSc solvers are available for the subproblems, and we have
found that direct factorization on dense matrices offers the best performance for the
patches. On the global low-order space we used a fairly standard geometric multigrid
algorithm – two iterations of Jacobi with Chebyshev acceleration on each level and a
sparse direct method (MUMPS) on the coarsest mesh. We can also apply the multigrid
functionality direction the high-order discretization, using two sweeps of the ASMStarPC

on each level with a direct solver on the coarse grid, as analyzed in subsection 3.3.
For the Poisson problem in 2D, we chose Ω to be a 3× 3 square with a 1.5× 1.5

square excluded from the center, as shown in Figure 5, and we perform numerical ex-
periments on uniform refinements of this. We chose Dirichlet boundary conditions and
forcing function f(x, y) such that the true solution is u(x, y) = exy sin(3πx) sin(4πy).
We approximated the problem with both Sk and Qk elements with k = 2, 3, 4 on
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Fig. 6: Number of degrees of freedom in Sk and Qk on regular meshes.
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Fig. 7: Iteration counts for ASM and MG-preconditioned conjugate gradients for the
2D Poisson problem.

uniform refinements of the base mesh. We measured the L2 error of each result, and
observed optimal-order convergence rates for both serendipity and tensor-product el-
ements.

Figure 7 plots the iteration counts obtained using additive Schwarz and multigrid
preconditioners for both element families. Both methods vary only slightly among
meshes and discretization spaces, consistent with the theory we have developed.

In order to assess our timing results, consider Figure 6a, which plots the size of
each approximating space on a regular N × N mesh (the same trends hold for our
unstructured mesh). We see the ordering

dimS2 < dimQ2 < dimS3 < dimS4 < dimQ3 < dimQ4.

and S4 and Q3 are particularly close. Consequently, we might hope for 2D serendipity
elements to provide a higher order of accuracy than tensor-product elements for a
similar run-time. Figure 8 plots the time needed to construct the preconditioners and
solve the resulting linear system using 16 workstation cores. Figure 8a and Figure 8d
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Fig. 8: Solver time for 2D Poisson on unstructured mesh. The first plots give the time
to set up the ASM or MG preconditioner in PETSc. The middle column gives the
time to solve the system using preconditioned conjugate gradients. The final column
gives the sum of the first two.

reveal a nontrivial O(1) overhead, notably worse for Sk elements than Qk. Because
the Qk bases are interpolatory at given points, Firedrake is able to optimize transfer
operations, but there may be additional issues as well. At any rate, after about 104

vertices (divided over 16 cores), the preconditioner setup and system solve scale well
with the number of vertices.

The ASM-preconditioned solver seems to demonstrate reduced run-time for Sk

over Qk elements, in line with our hopes, at least asymptotically. Considering just
the solve phase, we see that S2 gives a modest win over Q2, and the gain is larger
at higher degree. Moreover, the solve times for S3 and Q2, are comparable, as are
S4 and Q3. So for similar run time, serendipity elements with ASM preconditioners
seem to deliver one higher order of accuracy than tensor-product elements.

For multigrid, however, the picture is somewhat ambiguous. On meshes we con-
sider, multigrid for Qk elements outperforms that for Sk spaces for degrees 2 and
3. This seems to be due to fast grid transfer operations available for Qk elements
compensating for the larger patch spaces. However, in all of these cases, the ASM-
preconditioned iteration seems to give better overall performance than multigrid and
indeed reflects the kinds of benefits we hope to obtain from serendipity spaces.

Since Firedrake does not yet support proper hexahedral meshes, we test our
solvers in three dimensions for the Poisson problem on the unit cube, choosing Dirich-
let boundary conditions and forcing function to match a known smooth solution. As
in 2D, we approximate the solution with Qk and Sk of degrees 2, 3, and 4. We begin
with an initial 4× 4× 4 coarse mesh and uniformly refine it, reporting simulations on
an N×N×N mesh with N = 8, 16, 32, 64. Again, we partition the mesh over 16 cores
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Fig. 9: Iteration counts for ASM and MG-preconditioned conjugate gradients for the
3D Poisson problem.

of the workstation. We remark that Firedrake distributes extruded meshes according
in a two-dimensional fashion, so that all cells in a vertical column appear on the same
processor. This does not appear to be a major limitation in our particular situation.

The solver configuration for three dimensions is nearly identical to that for two
dimensions, other than that we modified the ASMStarPC class to properly identify
patches on extruded meshes. Figure 9 shows only mild variation of the conjugate
gradient iteration count for the various discretizations. As with the two-dimensional
case, Figure 10a and Figure 10d also show a considerable overhead in the setup phase
for the preconditioners. Moreover, the overall cost to set up the ASM preconditioner
seems much higher than that for multigrid. However, Figure 10b and Figure 10e show
that the reverse is true for solving the linear system. Figure 10c and Figure 10f show
that the total cost for setup plus a single solve is somewhat cheaper for the ASM-
preconditioned method, so we recommend the additive Schwarz method, especially
when the system must be solved repeatedly. In Figure 10b, we do see a small win for
S2 elements over Q2. We also observe that the cost of serendipity elements tends to
track a lower-order Qk element, despite giving a higher order of accuracy – S3 costs
about the same Q2 and S4 about the same as Q3. These relative run times seem to
be in accordance with Figure 6b.

We also test our preconditioners on the planar elasticty problem (2.2). We con-
sider a cantilever beam with Ω = [0, 25] × [0, 1], posing homogeneous Dirichlet (no-
displacement) boundary conditions on the left end (x = 0) and no-stress boundary
conditions on the rest of the boundary. The forcing function is taken to be a constant
downward force of the form f(x, y) = (0,−g). We divided Ω into a 125 × 5 mesh
of squares and performed a sequence of uniform refinements to estabish a multigrid
hierarchy. All runs are partitioned over 24 cores of the workstation. Although the
problem is only run in 2D, the vector-valued nature of the problem makes larger patch
problems and hence accentuates the gains obtained by reducing the basis size. Hence
one may hope to see a nice gain from serendipity elements.

The iteration counts for both additive Schwarz and multigrid methods shown in
Figure 11 are also in line with the theory, quite comparable to the results above for
the Laplace operator. Timing results are showin in Figure 12. Again, we see some
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Fig. 10: Solver time for 3D Poisson. The first plots give the time to set up the
ASM or MG preconditioner in PETSc. The middle column gives the solver time for
preconditioned CG, and the final column sums the first two.

overhead in setting up the preconditioners, especially the ASM ones. However, once
the ASM preconditioners are set up, there is a clear win in solution time for serendipity
elements, with Sk outperforming Qk for each k. Moreover, S4 turns out to be cheaper
than Q3. Although the multigrid algorithm for serendipity elements is not yet as
performant as we would like (again, inter-grid transfers are much slower than for
Qk elements), on finer meshes additive Schwarz does give some clear advantages for
serendipity, and we see that S3 is only slightly more expensive than Q2 and that S4

is somewhat cheaper than Q3 in total run time.

5. Conclusions. We have extended the additive Schwarz theory for tensor-
product methods to serendipity, proving the existence of optimal bounds for the pre-
conditioners resulting from applying additive Schwarz methods with a low order global
system and patch smoothers. These methods lead to preconditioned methods with
iteration counts that are robust with respect to both the mesh size and polynomial
degree, as confirmed both in theory and numerical examples. However, our analysis
does not currently extend to the rational serendipity elements in [2] that guarantee
full accuracy in unstructured geometry. Moreover, although we have promising algo-
rithmic results with Firedrake, it is likely that additional code optimizations are still
possible. Finally, although the formulation of our method for nonsymmetric prob-
lems is straightforward, our analysis heavily uses both symmetry and coercivity, so a
theoretical justification will require additional work.
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Fig. 11: Iteration counts for ASM and MG-preconditioned conjugate gradients for the
planar elasticity problem.
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