
Active learning of tree tensor networks using optimal
least-squares

Cécile Haberstich∗ Anthony Nouy† Guillaume Perrin‡

Abstract

In this paper, we propose new learning algorithms for approximating high-dimensional
functions using tree tensor networks in a least-squares setting. Given a dimension tree
or architecture of the tensor network, we provide an algorithm that generates a sequence
of nested tensor subspaces based on a generalization of principal component analysis for
multivariate functions. An optimal least-squares method is used for computing projec-
tions onto the generated tensor subspaces, using samples generated from a distribution
depending on the previously generated subspaces. We provide an error bound in expec-
tation for the obtained approximation. Practical strategies are proposed for adapting the
feature spaces and ranks to achieve a prescribed error. Also, we propose an algorithm that
progressively constructs the dimension tree by suitable pairings of variables, that allows to
further reduce the number of samples necessary to reach that error. Numerical examples
illustrate the performance of the proposed algorithms and show that stable approxima-
tions are obtained with a number of samples close to the number of free parameters of
the estimated tensor networks.

Keywords— high-dimensional approximation, tree-based tensor formats, principal com-
ponent analysis, adaptive strategies, active learning with weighted least-squares

1 Introduction

The approximation of high-dimensional functions raises many challenges. Especially for uncer-
tainty quantification problems where a function represents a model depending on a potentially
high number of parameters. Such problems require many evaluations of the functions which is
intractable when the model is costly to evaluate. A solution is then to construct a surrogate
model which amounts in approximating the relation between an output random variable Y and
input random variables representing the parameters X = (X1, . . . , Xd) using samples of (X, Y).

When the dimension d is high, using approximation tools adapted to standard regularity
classes (e.g. splines for isotropic Sobolev or Besov regularity) leads to a complexity of the
approximation methods which grows exponentially with the dimension d. This is the so-called
curse of dimensionality. To expect a good approximation in a context where the number of
evaluations of a function has to be moderate, we have to assume that the functions present
some low-dimensional structures. Exploiting these structures of the function usually requires
particular approximation tools, which may be application dependent. An approximation tool
that achieve good performances for many classes of functions is the class of tree tensor networks

∗CEA, DAM, DIF, F-91297 Arpajon France
†Centrale Nantes, LMJL (UMR CNRS 6629)
‡COSYS, Université Gustave Eiffel, 77420 Champs-sur-Marne, France

1

ar
X

iv
:2

10
4.

13
43

6v
1

 [
m

at
h.

N
A

]
 2

7
A

pr
 2

02
1

or functions in tree-based tensor format. Given a partition tree T over D := {1, . . . , d} and a
tuple r = (rα)α∈D of integers, a tree based tensor format T Tr (V) is defined as the set of functions
in some finite-dimensional tensor space V (or feature tensor space) whose α-ranks are bounded
by rα. A function u ∈ T Tr (V) therefore admits for each α ∈ T a finite-rank representation

v(x) =
rα∑
i=1

vαi (xα)wα
c

i (xαc), (1)

where the vαi and wα
c

i are functions of complementary groups of variables. It admits a multi-
linear parametrization with parameters forming a tree network of low-order tensors, hence the
name tree tensor networks. Also, it has been identified with a particular class of deep neu-
ral networks (more precisely sum-product networks or arithmetic circuits) [7]. For a detailed
introduction to tree tensor networks, we refer the reader to the monograph [16] and surveys
[1, 9, 26, 5].

Several algorithms for constructing approximations in tree-based tensor formats using points
evaluations of functions have already been proposed. On the one hand, there are learning ap-
proaches that use random and unstructured evaluations of the functions [25, 11, 17]. These
algorithms are yet mainly based on heuristics and lack of theoretical guarantees. On the other
hand, there are (fewer) algorithms that use adaptive and structured evaluations of functions.
Among them, we can distinguish extensions of (adaptive) cross approximation to higher-order
tensor (see [20] for the Tucker format, or [24] and [3] for tree-based tensor formats) from ex-
tensions of the singular value decomposition (SVD) to higher-order tensors (see [19], [10] and
[23]). Among higher-order singular value decomposition (HOSVD) approaches, the method
from [23] is of particular interest, the principle is to construct a hierarchy of optimal subspaces
that results in a final tensor product space in which the function u is projected. Under strong
assumptions on the estimation error made in the determination of subspaces, the author in [23]
shows that with a number of evaluations scaling as the complexity (i.e. the number of param-
eters) of the tree-based tensor format, the approximation is quasi-optimal but with constants
depending on some projection operators which are not properly quantified. Devising learning
algorithms coming with theoretical guarantees remains an open challenge.

In this work we propose an algorithm adapted from [23] that constructs an approximation
of u in tree-based tensor format, using adaptive and structured sampling, with near-optimality
results under some assumptions on the function and the number of samples. Also we propose
heuristic strategies for obtaining an approximation with a desired precision and near-optimal
complexity. Given a tree T , and using a leaves-to-root approach, the algorithm constructs,
thanks to a series of principal component analyses (PCA), low-dimensional subspaces of func-
tions of groups of variables associated with each node of the tree. More precisely, for each node
of the tree α ∈ T \ {D}, we construct the α-principal subspace of an oblique projection of
u (that is to say an approximation of the α-principal subspace of u). For the projection, we
use the boosted optimal weighted least-squares projection [13]. Using this strategy the error
has several contributions: a discretization error (due to the use of a finite-dimensional feature
space V), a truncation error (due to the finite ranks r) and an estimation error (due to the
limited number of samples). We propose a (partially) heuristic adaptive algorithm that controls
simultaneously the discretization, truncation and estimation errors.

The above algorithm works for an arbitrary but fixed dimension partition tree T . However
the ranks and therefore the number of evaluations n necessary to reach a given precision may
strongly depend on the chosen tree T . Choosing the tree which minimizes the number of eval-
uations n for a given accuracy is a combinatorial optimization problem, that is intractable in

2

practice. In [11] and [12], the authors propose a stochastic algorithm that explores a reason-
able number of dimension trees with the same arity. The key idea is to favour the exploration
of trees yielding low ranks for a given precision. In [2], the authors propose a deterministic
strategy that constructs a dimension tree in a leaves-to-root approach by successive pairing
of nodes. The pairings are chosen in order to minimize a certain cost functional based on
estimated α-ranks. The selected tree can be used to compute the approximation of u. The
number of function’s evaluations used to estimate the α-ranks adds up to the number of eval-
uations necessary to compute the approximation. In this paper, we propose a new approach
that progressively constructs a dimension tree by suitable pairings of variables (using stochas-
tic optimization) and estimate the principal subspaces associated with the newly selected nodes.

The outline of the paper is as follows. In Section 2, we first present the notion of principle
component analysis for multivariate functions with the definition of α-principal subspaces. We
then propose a strategy to estimate these spaces relying on an approximation with a particular
oblique projection and an adaptive statistical estimation. In Section 3, we present and analyze
the algorithm for learning a tree tensor network given a fixed dimension tree. In Section 4, we
present the constructive approach for selecting a dimension tree. Finally, Section 5 demonstrates
the efficiency of the proposed algorithms on numerical examples.

2 Principal component analysis of multivariate functions

For d > 1, let X = X1 × . . .× Xd be a product set in Rd, and µ = µ1 ⊗ . . .⊗ µd be a product
measure on X . The Hilbert space of real-valued square-integrable functions defined on X is
denoted by L2

µ(X). Let || · ||L2
µ(X) be the natural norm in L2

µ(X), defined by

‖v‖2
L2
µ

=

∫
X
v(x)2dµ(x), v ∈ L2

µ(X). (2)

For each x = (x1, . . . , xd) ∈ X and each non-empty subset α of D, we write xα = (xν)ν∈α,
µα = ⊗ν∈αµν , and Xα =×ν∈αXν . Up to a reordering of the variables x1, . . . , xd, a function u
defined on X can be identified with a bivariate function u(xα, xαc) defined in Xα ×Xαc , where
αc = D \ α.

The α-rank of u, denoted by rankα(u), is the canonical rank of u(xα, xαc), that is the
minimal integer such that for some functions fαk ∈ L2

µα(Xα), and fα
c

k ∈ L2
µαc

(Xαc)

u(x) =

rankα(u)∑
k=1

fαk (xα)fα
c

k (xαc). (3)

For a mα-dimensional subspace Vα ⊂ L2
µα(Xα), we denote by PVα the orthogonal projection

from L2
µα(Xα) to Vα, and by PUα the orthogonal projection from L2

µ(X) to Vα⊗L2
µαc

(Xαc), such
that for all xαc ∈ Xαc , (PUαu)(·, xαc) = PUαu(·, xαc).

From now on, for the sake of clarity and when there is no ambiguity, we will denote
L2
µ := L2

µ(X), the norm ‖v‖ := ‖v‖L2
µ(X) and the associated inner product (·, ·) := (·, ·)L2

µ(X).

Also, we let L2
µα := L2

µα(Xα).

3

2.1 α-principal subspaces

Let α ⊂ D and u be a function in L2
µ with rankα(u) ∈ N∪{+∞}. For each α ⊂ D, the function

u admits the following singular value decomposition

u(x) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc). (4)

Here, σα1 ≥ . . . ≥ σαrankα(u) are the α-singular values, which are assumed to be sorted in decreas-

ing order, and vαk ∈ L2
µα and vα

c

k ∈ L2
µαc

are respectively the left and right normalized singular
functions, such that ‖vαk ‖L2

µα
= ‖vαck ‖L2

µαc
= 1. For rα ≤ rankα(u), the truncated singular value

decomposition of u up to the rank rα is then given by

urα(x) =
rα∑
k=1

σαk v
α
k (xα)vα

c

k (xαc). (5)

The rα dominant left singular functions {vαk }
rα
k=1 are called the α-principal components of

u, while the linear span of these rα functions, denoted by Uα, is called the α-principal subspace
of u. The function urα = PUαu is the best approximation of u with α-rank rα, i.e. it satisfies

‖u− PUαu‖ = min
v∈L2

µ

rankα(v)≤rα

‖u− v‖ = min
Wα⊂L2

µα
dim(Wα)=rα

‖u− PWαu‖ := eαrα(u). (6)

Approximation of the α-principal subspaces. In practice, we do not directly determine
the α-principal subspaces of u, but an approximation of Uα is searched in a certain finite-
dimensional subspace of L2

µα , denoted Vα. Noting mα := dim(Vα) ≥ rα, this approximation can
be obtained by solving

min
dim(Wα)=rα
Wα⊂Vα

‖u− PWαu‖2 = min
dim(Wα)=rα
Wα⊂Vα

‖u− PVαu‖2 + ‖PVαu− PWαu‖2. (7)

If Wα ⊂ Vα, PWα = PWαPVα , and solving Equation (7) is equivalent to solving

min
dim(Wα)=rα
Wα⊂L2

µα

‖PVαu− PWαPVαu‖2
L2
µ
,

whose solution is the α-principal subspace of PVαu.
Since the orthogonal projection is usually not computable, PVα is replaced by an oblique pro-
jection QVα from L2

µα onto Vα ⊗ L2
µαc

. An approximate α-principal subspace is then obtained
by solving

min
dim(Wα)=rα
Wα⊂L2

µα

‖QVαu− PWαQVαu‖2
L2
µ
, (8)

whose solution U?
α is the α-principal subspace of QVαu. For each Vα, QVα may be a sample-

based projection. In the case where the samples used to define QVα are random, it is important
to notice that the quantity ‖QVαu− PU?αQVαu‖2

L2
µ

is thus a random variable.

2.2 Choice of the oblique projection

Here, we consider for QVα the boosted least-squares projection presented in [13], whose main
characteristics are now recalled.

4

Let {ϕαj }mαj=1 be an orthonormal basis of a mα-dimensional space Vα ⊂ L2
µα , and ρα be the

measure defined by

dρα(xα) = wα(xα)−1dµα(xα), wα(xα)−1 =
1

mα

mα∑
j=1

ϕαj (xα)2. (9)

The function wα(xα)−1 is the density of ρα with respect to the reference measure µα. As it is
invariant by rotation of {ϕαj }mαj=1, ρα does not depend on the chosen orthonormal basis but only
on Vα. For all fα ∈ L2

µα , the boosted optimal weighted least-squares projection of fα on Vα,
denoted QVα , is defined by

QVαf
α = arg min

gα∈Vα
‖fα − gα‖xzαα ,

with xzαα := {xiα}zαi=1 a set of zα points in Xα and ‖ · ‖xzαα the following discrete semi-norm

‖fα‖2
xzαα

=
1

zα

zα∑
i=1

wα(xiα)fα(xiα)2.

An important aspect of the boosted least-squares projection is the fact that the chosen points
x1
α, . . . , x

zα
α are realizations of dependent random variables whose measure is related to the

measure ρα from Equation Equation (9). To select these zα points in Xα, we draw M times a
nα-sample according to the product measure ρ⊗nαα and select in this collection of M samples
the one minimizing a stability criterion (based on the empirical Gram matrix). We resample in
this way, until a stability condition is verified. In a second time, we remove from this selected
sample as many points as possible while maintaining the stability condition and guaranteeing
a resulting number of samples zα higher than nα,min = prnα, with pr a constant independent
of mα. For more details on the sampling procedure, see [13]. This sampling procedure allows
us to ensure in expectation the stability of the projection. More precisely, [13, Theorem 3.6]
states that for any fα ∈ L2

µα and a fixed space Vα,

E(‖fα −QVαf
α‖2) ≤ (1 + γ) ‖fα − PVαfα‖2, (10)

with γ a constant that depends on M and pr, γ = (1 − δ)−1(1 − ηM)−1M . In the case where
Vα is random, we can prove that

E(‖fα −QVαf
α‖2) ≤ (1 + γ)E(‖fα − PVαfα‖2). (11)

By extension, the oblique projection QVα from L2
µ to Vα ⊗ L2

µαc
such that (QVαu)(·, xαc) =

QVαu(·, xαc) is called a boosted weighted least-squares projection. Given some condition on
the number of samples nα, the following lemma and theorem provide a stability result of the
projection QVα (their proofs are given in Appendix E.1 and E.3).

Lemma 2.1. Let QVα be the boosted least-squares projection verifying Equation Equation (11)
for all fα ∈ L2

µα. Let η and δ be two constants, such that 0 < η, δ < 1. If nα ≥ (−δ + (1 +
δ) log(1 + δ))mα log(2mαη

−1), then for all u ∈ L2
µ, it holds

E(‖QVαu‖2) ≤ 2 (1 + γ) ‖u‖2, with γ defined by (1− δ)−1(1− ηM)−1M.

We deduce the following quasi-optimality result when approximating the principal subspaces
of u by those of QVαu.

Theorem 2.2. Under the same hypotheses and notations as in Lemma 2.1, for all u ∈ L2
µ,

E(‖QVαu− PU?αQVαu‖
2) ≤ 2 (1 + γ) eαrα(u)2, (12)

where eαrα(u) = ‖u−PUαu‖ and ‖QVαu−PU?αQVαu‖ are respectively the minimal reconstruction
errors of u and QVαu associated to the α-principal subspaces Uα and U?

α defined in Equations
Equation (6) and Equation (8) respectively.

5

2.3 Estimation of the α-principal subspaces

2.3.1 Accuracy of the empirical α-principal subspaces

Let Xαc be a random vector associated with the measure µαc . Hence, the approximation U?
α

of the α-principal subspace, which is solution of Equation Equation (8), is equivalently defined
as the solution of

min
dim(U?α)=rα

E
(
‖QVαu(·, Xαc)− PU?αQVαu(·, Xαc)‖2

L2
µα

)
,

where QVαu(·, Xαc) is now a function-valued random variable. An estimation of U?
α, denoted

Û?
α, can then be obtained using zαc independent and identically distributed (i.i.d) samples of

Xαc , noted {xlαc}
zαc
l=1, and by solving

min
dim(Û?α)=rα

1

zαc

zαc∑
l=1

‖QVαu(·, xlαc)− PÛ?αQVαu(·, xlαc)‖2
L2
µα(Xα)

. (13)

See Appendix A for the practical solution of Equation (13).

Remark 2.3. The determination of Û?
α depends on the samples {xlαc}

zαc
l=1 but also on the pro-

jection QVα and thus on the samples {xiα}zαi=1.

Remark 2.4. An interesting question is to compare the behavior of the reconstruction error
‖QVαu−PÛ?αQVαu‖ associated with the empirical subspace Û?

α with the minimal reconstruction
error ‖QVαu−PU?αQVαu‖ associated with U?

α. In [22], the authors derive high-probability bounds
for the reconstruction error of empirical principal subspaces under strong assumptions on the
function u, that are hardly verified in practice. Also, in [6], the authors show that in the case
where the minimal reconstruction error eαrα(u) has a certain algebraic decay, the same rate of
convergence can be obtained for the reconstruction error of the empirical subspaces if the number
of samples zαc is chosen sufficiently high, but this condition seems to be pessimistic in many
practical cases. A major difficulty to obtain a similar result in our setting comes from the
fact that we consider the α-principal subspaces of QVαu, not of u. Choosing a sample-based
projection QVα where the samples are not deterministic but randomly drawn from a certain
measure implies that QVα is random and depends on samples of the function u, which makes
tricky the interpretability of the hypotheses made on u. For these reasons, in the next section,
we propose an adaptive strategy to estimate the empirical α-principal subspaces Û?

α with a given
tolerance in order to choose a small number of samples zαc.

2.3.2 Adaptive estimation of the α-principal subspaces

For a given number of samples zαc , the reconstruction error of the empirical α-principal
subspace Û?

α is estimated by leave-one-out cross validation. While this error is greater than

the desired tolerance ε, we increase the dimension of Û?
α. If for dim(Û?

α) = zαc , the tolerance
is not reached, we increase the number of samples zαc and again estimate the leave-one-out
error. We start from zαc = 1 and impose an upper bound, zαc ≤ kPCAmα, where kPCA ∈ N? is
a sampling factor. This procedure, presented in Appendix A in Algorithm 4, provides in many
experiments a small number of samples zαc to get the desired accuracy.

3 Learning tree tensor networks using PCA

In this section, we present an algorithm that constructs an approximation of a function u ∈ L2
µ

in tree-based tensor format. After briefly recalling the definition of tree tensor networks, we
present in detail the algorithm we propose, and then show to what extent it is possible to bound
the error of the resulting approximation.

6

3.1 Dimension partition tree

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

Figure 1: Dimension partition tree over {1, . . . , 6} with its leaves represented in gray

A dimension partition tree T over D = {1, . . . , d} is a collection of subsets in D having the
following properties:

• D is the root of the tree T ,

• a node α ∈ T is a non empty subset of D, whose cardinality is denoted by #α,

• for each node α ∈ T , the set of sons S(α) of α is either empty (for #α = 1) or forms a
partition of α with #S(α) ≥ 2.

The nodes α such that S(α) = ∅ are the leaves of the tree T and the set containing all leaves
is denoted L(T). As an illustration, Fig. 1 shows a particular dimension partition tree, with
d = 6, and

T = {{1}, {2}, {3}, {4}, {5}, {6}, {2, 3}, {1, 2, 3}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}}. (14)

For a node α, l(α) denotes the level of the node α in the tree T . It is defined recursively from
the root to the leaves, such that l(D) = 0 and if β ∈ S(α), l(β) = l(α) + 1. The maximum
level of the nodes in T is the depth of the tree: depth(T) = maxα∈T l(α).

3.2 Tree tensor networks

For T a dimension tree over D, we define the T -rank of a function v, rankT (v), as the tuple
rankT (v) = {rankα(v)}α∈T . Then, we define an approximation format, T Tr (V) which is the set
of functions in some subspace V ⊂ L2

µ with T -rank bounded by r = (rα)α∈T ,

T Tr (V) = {v ∈ V : rankT (v) ≤ r} =
⋂
α∈T
{v ∈ V : rankα(v) ≤ rα}. (15)

Elements of T Tr (V) are tree tensor networks. A function v ∈ T Tr (V) can be written under the
form (4)

v(x) =

rankα(v)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc), for each α ∈ T

7

3.3 Description of the algorithm

For a given dimension tree T , the algorithm we propose to determine the parameters of a
tree tensor network approximation of u? relies on a leaf-to-root exploration of T , a sequential
estimation of α-principal subspaces (see Appendix A for more details), and a final least-squares
projection of u on a product of subspaces.

The first step of the algorithm consists in computing estimations Û?
α of α-principal subspace

of u for each node of the tree α ∈ T \ {D}. As explained in Section 2.1, each subspace Û?
α is

searched in a finite-dimensional subspace Vα. Depending on the position of the node α, two
cases are distinguished. On the one hand, for a leaf node α ∈ L(T) = {{1}, . . . , {d}}, Vα is a
given finite dimensional space in L2

µα(Xα) (e.g. splines, wavelets, polynomials, ...). On the other

hand, for an internal node α /∈ L(T), Vα is chosen equal to ⊗β∈S(α)Û
?
β , that is to the tensor

product space of the approximated α-principal subspaces of the sons of α. A each subspace Û?
β

is a statistical estimation based on evaluations of u at randomly chosen points in X , Vα is a
random space.

The second step of the algorithm is the projection of the function u on the tensor product
space formed by the α-principal subspaces of the sons of the root of the tree, S(D), that is to
say

u? = QVDu where VD =
⊗

α∈S(D)

Û?
α, (16)

with QVD a boosted optimal least-squares projection. The final approximation is in T Tr (V)

with r = (rα)α∈T and rα = dim(Ûα), α ∈ T \ {D} and V =
⊗d

ν=1 Vν . A synthetic description
of this procedure is summarized in Algorithm 1.

Algorithm 1 Construction of a tree tensor network approximation

Inputs: dimension tree T , function to approximate u, measure µ, finite-dimensional spaces
Vν for ν ∈ L(T), desired tolerance ε.

Outputs: approximation u? in T Tr (V)
for α ∈ T going by decreasing level do
if α /∈ L(T) then

Set Vα =
⊗

β∈S(α) Û
?
β

end if
Compute Û?

α ⊂ Vα, the estimation of the α-principal subspaces with relative reconstruction
error ε, thanks to Algorithm 4 (see Appendix A for a detailed description of this algorithm).

end for
Set VD =

⊗
α∈S(D) Û

?
α.

Compute u? = QVDu.

Remark 3.1. In practice, the boosted optimal weighted least-squares projection requires sam-
pling from the optimal measure from Equation (9), whose expression depends on the position of
the node α in the tree (see Appendix C for explicit expressions of these optimal measures).

3.4 Error analysis

The following lemma provides a first error bound for the error of approximation without any
assumption on the reconstruction error of the empirical α-principal subspace Û?

α.

8

Lemma 3.2. Assume that for all α ∈ T , QVα is the boosted optimal weighted least-squares
projection verifying the assumptions from Theorem 2.2.
The error of approximation is bounded in expectation as follows,

E(‖u− u?‖2) ≤
∑

α∈T\D
(2C1)l(α)E(‖QVαu− PÛ?αQVαu‖

2) +
∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dismα (u)2,

where C1 := 2(γ+ 1), with γ defined in Theorem 2.2 depending on the boosted optimal weighted
least-squares projection QVα, ‖QVαu−PÛ?αQVαu‖

2 is the reconstruction error associated to Û?
α,

and eα,dismα (u) = ‖u−PVαu‖L2
µ

is the error of discretization due to the use of a finite-dimensional
space Vα for the leaf α.

Making further assumptions on the reconstruction error of the empirical α-principal sub-
space Û?

α, we deduce the theorem hereafter.

Theorem 3.3. Assume that for all α ∈ T , QVα is the boosted optimal weighted least-squares
projection verifying the assumptions from Theorem 2.2.
Assume that for all α ∈ T \D, the empirical α-principal subspaces of QVαu solutions of Equation

Equation (13), denoted Û?
α, are such that the reconstruction errors verify

E(‖QVαu− PÛ?αQVαu‖
2|QVαu) ≤ C2E(‖QVαu− PU?αQVαu‖

2|QVαu), (17)

where ‖QVαu−PU?αQVαu‖2 is the reconstruction error associated with the α-principal subspace
of U?

α solution of Equation Equation (8). Then the error of approximation is bounded in expec-
tation as follows:

E(‖u− u?‖2) ≤ C1C2

∑
α∈T\D

(2C1)l(α)eαrα(u)2 +
∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dismα (u)2, (18)

where C1 and eα,dismα (u) are defined in Lemma 3.2.

In the upper bound from Equation (18), the first term is related to the error in the estimation
of the principal components, while the second term comes from the discretization error due to
the introduction of feature spaces. Assumption Equation (17) is related to the discussion from
section 2.3. From Equation (18), noting that for all α, eαrα(u) and eα,dismα (u) are bounded by the
best approximation error in T Tr (V), we deduce a quasi-optimality result in expectation

E(‖u− u?‖2) ≤ C̃ min
v∈T Tr (V)

‖u− v‖2,

with constant C̃ depending on C1, C2 and the dimension tree.

4 Tree adaptation

The choice of the tree may have a significant impact on the complexity required to reach a
certain precision. Several numerical illustrations that underline this issue are presented in [11]
or [15].

In this section, we propose a strategy to find a tree T with the objective of reducing the
number of evaluations necessary to get a certain accuracy. Other strategies that aims at per-
forming tree optimization are presented in [15] and compared on numerical examples. The
proposed strategy includes the tree optimization inside the algorithm for the construction of
the approximation (Algorithm 1 presented in Section 3). As it will be explained in Section

9

5.1, the number of evaluations n necessary to get a desired accuracy ε using this algorithm is
related to the storage complexity, defined by

S(r, T) =
∑

α/∈L(T)

rα
∏

β∈S(α)

rβ +
∑

α∈L(T)

rαmα, (19)

with r = r(ε) the ranks for achieving the precision ε. For a given precision ε, as the storage
complexity associated to the leaves nodes

∑
α∈L(T) rα(ε)mα is independent of the choice of the

tree, minimizing S(r(ε), T) amounts at minimizing the following cost function

C(r(ε), T) =
∑

α/∈L(T)

rα(ε)
∏

β∈S(α)

rβ(ε). (20)

Hence, to minimize C(r(ε), T), it seems interesting to look for a strategy which reduces the
α-ranks rα, for all interior nodes α ∈ T \ L(T).

At this point, we can list two major difficulties for this objective. First, as the number of
possible trees T scales exponentially in the dimension d, finding the best tree is a combinatorial
problem. Secondly, for each considered tree T , the α-ranks (rα(ε))α∈T\L(T) to reach a precision
ε are a priori unknown, and need to be estimated using evaluations of u. It is then obvious that
an exhaustive search for the best dimension tree is completely unrealistic from a computational
point of view in the context of costly evaluations.

To circumvent some of these difficulties, we propose to progressively construct a dimension
partition tree by suitable pairings of variables. By pairing variables from the leaves to the root,
we indeed reduce sharply the number of possible trees (and thus the number of α-ranks to
be evaluated). However the number of remaining pairings of variables to explore may remain
large, this is why we also propose a stochastic strategy, that will select randomly a reduced
number of pairings but preferentially the ones with low α-ranks.

4.1 Estimation of α-ranks

Performing tree optimization requires the estimations of α-ranks rα(ε) for reaching a preci-
sion ε. These estimations require evaluations of the function u, and this cost (denoted noptim)
should be reasonable compared to the number n of evaluations required for constructing the
approximation for a given tree.

To estimate these α-ranks, a strategy based on an adaptive cross approximation technique
[4] is proposed in [2]. Inspired by this work, we propose in the following a strategy based on
leave-one-out cross validation to estimate the α-ranks rα(ε) to achieve an empirical relative
error ε. To do this, we consider the matrix of the evaluations of u, Bα = {u(xlα, x

k
αc) : 1 ≤

l ≤ zα, 1 ≤ k ≤ zαc}, where {xlα}zαl=1 are i.i.d samples of Xα and {xkαc}
zαc
k=1 are i.i.d samples of

Xαc . We introduce Bα
\i, the matrix Bα without the column i, which admits a singular value

decomposition

Bα
\i =

∑
k≥1

σ\i,kα v\i,kα (v
\i,k
αc)T , (21)

where σ
\i,k
α are the singular values sorted in decreasing order, v

\i,k
α and v

\i,k
αc are respectively the

left and right singular vectors of Bα
\i. For all r ∈ {1, . . . ,min(zα, zαc)}, let V α

\i,r be the matrix

whose columns are (vα\i,1, . . . ,v
α
\i,r). The rank rα(ε) is then estimated as the minimal integer

such that
1

zαc

zαc∑
i=1

‖Bα
i − V α

\i,rα(ε)(V
α
\i,rα(ε))

TBα
i ‖2

2 ≤ ε2 1

zαc

zαc∑
i=1

‖Bα
i ‖2

2, (22)

10

where Bα
i denotes the ith column of Bα.

Remark 4.1. Estimating the α-ranks yielding a small precision ε may require many evalua-
tions. It is important to underline that to perform tree optimization we do not need to know the
exact value of rα(ε) but we want to have an estimation enough accurate to detect whether rα(ε)
is high or not. Therefore, rα is estimated with a coarse precision. For the sake of conciseness,
the whole strategy is described in Appendix D with the Algorithm 6.

4.2 Leaves-to-root construction of the tree with stochastic optimiza-
tions

In this section, we present the new strategy that progressively constructs a dimension par-
tition tree by suitable pairings of variables, where these pairings are stochastically explored.

Let Λ = {α1 . . . , αl} be a partition of D = {1, . . . , d}. When l = #Λ is even, we consider
J (Λ) the set of all partitions of Λ where each element has a cardinal equal to two. Each
partition Γ ∈ J (Λ) thus contains l

2
elements. When #Λ is odd, we consider the set J (Λ) =⋃

α∈Λ

⋃
Λ∈J (Γ\α){{α} ∪ Γ}. Among all partitions of J (Λ), the aim is to find the one, noted Γ,

which minimizes
Cl(Γ) =

∑
β∈Γ

rβ(ε)
∏
α∈Λ
α⊂β

rα(ε). (23)

In practice, computing the function Cl(Γ) for all Γ ∈ J (Λ) requires a lot of α-ranks estima-
tions and it is therefore not affordable. To minimize Cl(Γ), we propose a stochastic algorithm
which finds a partition Γ associated to a minimal cost function Cl(Γ) among a limited set of
partitions. The principle is to compare a current partition Γ of J (Λ) with a new one Γ? ob-
tained from Γ by permuting two nodes selected according to a probability distribution defined
hereafter, and to accept Γ? if Cl(Γ?) < Cl(Γ).

To select a potentially interesting permutation, we propose to choose the first node ν1 in Λ
according to the distribution

P(ν1 = α) ∝ rPΓ(α)(ε)
γ1 , where PΓ(α) is the parent of α in Γ . (24)

A higher γ1 increases the probability to select a node ν1 whose parent in Γ has a high rank.
Once the node ν1 is selected, we consider the set Λ\({ν1}∪{νb1}), where νb1 is the second element
of the pair formed with ν1 (in the case ν1 is a singleton νb1 = ∅), that is to say PΓ(ν1) = ν1 ∪ νb1.
Then, we propose to draw the second node ν2 in Λ \ ({ν1}∪{νb1}) according to the distribution

P(ν2 = α|ν1) ∝ rPΓ(α)
(ε)γ2 , where α ∈ Λ \ ({ν1} ∪ {νb1}). (25)

Again, a higher γ2 increases the probability to select a node ν2 whose parent in Γ has a high
rank. If the permutation of the two nodes ν1 and ν2 decreases the cost function, then the two
nodes are permuted. nP successive random permutations of the nodes are performed according
to this distribution. The last partition Γ is the one associated to the lowest cost function
Cl(Γ) among all the visited partitions. A synthetic description of this strategy for selecting a
dimension tree adapted to u can be found in Algorithm 2.

Then, the overall strategy that constructs the tree during the tree tensor network approxi-
mation of u is given in Algorithm 3.

11

Algorithm 2 Optimization of nodes pairing

Inputs: function to approximate u, partition Λ of D, maximal number of iterations nP , γ1,
γ2.

Outputs: Γ
Choose randomly Γ ∈ J (Λ).
Calculate Cl(Γ) according to Eq. Equation (23), with estimation of the α-ranks using Algo-
rithm 6.
for k = 1, . . . , nP do

Γ? ← Γ
Draw ν1 according to the distribution (24) and then ν2 according to the distribution (25).

Calculate Cl(Γ?) according to Equation (23), with estimation of the α-ranks using Algo-
rithm 6.
if Cl(Γ?) ≤ Cl(Γ) then

Γ← Γ?

end if
end for

Algorithm 3 Adaptive construction of the tree with local optimization

Inputs: function to approximate u, measure µ, approximation spaces Vα, α ∈ L(T), tolerance
ε, parameters relative to the rank estimation εc, nα, nαc .

Outputs: the dimension tree T and the approximation u?

Set Λ = {{1}, . . . , {d}} and T = Λ
while #Λ > 1 do
for α ∈ Λ do
if α /∈ L(T) then

Set Vα =
⊗

β∈S(α) Û
?
β

end if
Compute the estimation Û?

α of the α-principal subspace of QVαu with relative recon-
struction error ε, using Algorithm 4.

end for
Determine a partition Γ of D by pairing elements of Λ thanks to Algorithm 2.
Set T ← T ∪ Γ and Λ← Γ

end while
Set VD =

⊗
α∈S(D) Û

?
α

Compute u? = QVDu
Set T = T ∪D.

Remark 4.2. The efficiency of our strategy will be compared on numerical examples to the
one from [2], where the tree T is adaptively constructed (with local deterministic optimization)
during the algorithm 1 from Section 3.

The strategy proposed in [2] constructs a tree in a leaves-to-root strategy by successive clus-
terings of disjoint subsets of D = {1, . . . d}. p is the number of elements gathered at the same
time (which corresponds to the tree’s arity) and it can be chosen to limit the number of possi-
bilities which are explored. The clustering criterion is based on an estimation of the α-ranks.
The authors explain that when p > 3 the computational cost for the adaptive part is much more
higher than the cost necessary to compute the approximation in the tree tensor network. As we
only consider pairings, in our strategy, we set p = 2 in all the numerical examples.

12

5 Numerical examples

This section aims at showing the efficiency of the following three contributions:

• Replacing a non-controlled projection (for example empirical interpolation as in [21])
by the boosted least-squares projection from [13], for which we can provide an explicit
bound for the approximation error in expectation. We choose the same parameters for
this projection in all the numerical examples: M = 100, δ = 0.9 and η = 0.01. The
maximal proportion of samples to be removed pr is chosen equal to mα

nα
, implying that

points are removed while the stability condition is verified.

• Using the adaptive strategy for the determination of the spaces Vα in the leaves (described
in Algorithm 5), thanks to the adaptive boosted least-squares strategy from [14].

• Using the adaptive strategy for the estimation of the α-principal components presented in
Algorithm 4. In this whole numerical part, the sampling factor kPCA is always taken equal
to 3, which is an arbitrary choice. When the principal components are not adaptively
chosen, we simply take zαc = mα (using notations from Algorithm 4).

To illustrate the efficiency of the strategies, we assess the quality of the approximation u?

of a function u ∈ L2
µ by estimating the error of approximation by

ε(u?) =

(
1

ntest

∑
x∈xtest

(u(x)− u?(x))2

)1/2

,

where the elements of xtest are ntest i.i.d. realizations of X ∼ µ. In practice, we choose
ntest = 1000. To study the robustness of the methods, we compute 10 times the approximations,
draw 10 different test samples xtest and compute empirical confidence intervals of level 10%
and 90% for the errors of approximation.

5.1 Complexity analysis

The total number of evaluations necessary to build the approximation in tree tensor network
using Algorithm 1 depends on zα and zαc . zα is the number of samples used to build the
projection, and zαc is the number of samples used to estimate the α-principal subspaces. For
each node α ∈ T \{D}, the number of samples Nα needed to estimate the α−principal subspace
is in O(zαzαc). In addition, if the stability conditions of Theorem 3.3 are verified, zcα scales in
O(mα log(mα)). Assuming that zα scales in O(rα), it comes

n =
∑
α∈T

Nα = O

(∑
α∈T

mα log(mα)rα

)
= O(

∑
α∈L(T)

mαrα +
∑

α/∈L(T)

rα
∏

β∈S(α)

rβ) up to log factors

= O(S(T, r)), up to log factors,

where S(T, r) is the storage complexity of the tree tensor network T Tr (V), r = {rα}α∈T , and
m = {mα}α∈L(T).

13

5.2 Heuristics used in practice

According to Lemma 3.2, the error of approximation is bounded in expectation by

E(‖u− u?‖2) ≤
∑

α∈T\{D}
(2C1)l(α)E(‖QVαu− PÛ?αQVαu‖

2) +
∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dismα (u)2.

The term E(‖QVαu − PÛ?αQVαu‖
2) includes the error due to the truncation and estimation of

the α-principal subspaces. The term eα,dismα (u) is the discretization error made in the leaves,
which comes from the introduction of finite-dimensional subspaces. These two contributions
are amplified by constants depending on the boosted least-squares projection and the chosen
tree. In the proposed adaptive strategies, if we want to obtain a certain precision ε for the
approximation, it is important to take these constants into account. Assuming that we want
to reach a final error with precision ε, according to Lemma 3.2 the following assumptions are
a priori needed:

• For all α ∈ T \D, the term E(‖QVαu− PÛ?αQVαu‖
2) is controlled with Algorithm 4 with

prescribed tolerance ε2
pca, i.e.

E(‖QVαu− PÛ?αQVαu‖
2) ≤ ε2

pca :=
ε2

(2C1)l(α)(#T − 1)
,

where #T is the number of nodes in the tree.

• For all α ∈ L(T), the term eα,dismα (u) is controlled with Algorithm 5, using for all α ∈ L(T)

eα,dismα (u)2 ≤ ε2
dis :=

ε2

1
2
(2C1)l(α)+1d

.

Thus, under all these assumptions, we should get the desired accuracy for E(‖u − u?‖2). In
practice, the discretization errors eα,dismα (u) can be controlled by adapting the spaces Vα, using
the adaptive boosted optimal least-squares strategy described in [13], for the construction of a
sequence of boosted least-squares projections adapted to the sequence of spaces. For polyno-
mial approximation, the sequence of nested subspaces is simply constructed by increasing the
polynomial degree one by one. For wavelet approximation, it can be defined by increasing the
resolution. The difficulty is that we have to perform this strategy for each sample QVαu(·, xkαc)
of the function-valued random variable QVαu(·, Xαc). More details about this strategy can be
found in Appendix B. However, for small values of ε, the constants εpca and εdis are likely to
be very small. Indeed when choosing the boosted least-squares projection, the constant C1

defined in Lemma 3.2 may be high, particularly if the number of repetitions M is high or the
proportion pr of removed points is large, and the impact of a high value for C1 will be all the
more important as l(α) will be high (this will be particularly the case when using deep trees).
Hence, very low values for εpca and εdis will result in very high rank specifications and the need
to introduce high-dimensional spaces in the leaves.
Most often, such specifications tend to strongly underestimate the accuracy of the approxima-
tion. To better adapt the number of samples needed for a given error specification, the following
heuristic choices are rather considered:

• We replace the constant C1 = 2(1 +pr(1− δ)−1(1−ηM)−1M) by C1 = 2(1 + (1− δ)−1(1−
η)−1), which corresponds to the boosted optimal weighted least-squares projection from
Theorem 2.2, with no repetition (M = 1) and no subsampling (pr = 1). In [13], we
observed on all the examples (without noise) that these two choices give comparable
accuracy for the error of approximation. This leads us to take the value C1 = (1 −
δ−1)(1− η−1) even when there are repetitions and subsampling.

14

• When l(α) ≥ 3, we replace l(α) by 3 in the expressions of εdis and εpca. (In the examples
from Sections 5.3 and 5.4 the depth of the tree is lower or equal to 3 so that this heuristic
does not apply but we have observed on some examples that taking l(α) = 1 is not enough
to control the precision). It only applies in examples from Section 5.5.

5.3 Adaptive determination of the approximation spaces in the leaves

The discretization error made in the leaves depends on the approximation spaces we choose.
In this section we focus on polynomial spaces and we use the adaptive strategy presented in
Algorithm 5 to select the polynomial degree p that achieves the desired discretization error εdis.

To emphasize the importance of spaces adaptation, we consider the Henon-Heiles potential
(see [18] for more details about this function) defined on X = R8 (d = 8) equipped with the
standard Gaussian measure µ:

u(x1, . . . , xd) =
1

2

d∑
i=1

x2
i + σ?

d−1∑
i=1

(xix
2
i+1 − x3

i) +
σ?

16

d−1∑
i=1

(x2
i + x2

i+1)2,

with σ? = 0.2. For this function, there is no discretization error for p ≥ 4, which allows a better
interpretation of the results. Polynomial spaces Vν = Pp(Xν), ν ∈ D, are then considered for
the approximation.

Without basis adaptation With basis adaptation
p = 15 p = 4

S n S n S n
Interpolation [761; 761] [1097; 1097] [431; 431] [591; 591] [461; 461] [717; 717]

Boosted Least-squares [761; 761] [1108; 1109] [431; 431] [591; 591] [461; 461] [719; 720]

Table 1: Comparison of the number of samples n without and with basis adaptation necessary
to get an approximation error ε = 10−14, using respectively interpolation with magic points and
boosted least-squares projections. The α-principal components are estimated with zαc = mα.

Table 1 compares the storage complexity S, the number of evaluations n in three cases. In
the first two cases, there is no basis adaptation and we use respectively p = 15 and p = 4 such
that in both cases there is no discretization error. In the third case, there is an adaptation of
the basis (thanks to Algorithm 5) with maximal polynomial degree p = 15. We observe for this
example that the adaptive basis strategy is able to select a polynomial degree p = 5 for each
leaf of the tree, which is close to optimal, the overestimation of p being explained by the choice
of the stopping criterion of the algorithm (see Algorithm 5).

5.4 Adaptive estimation of the α-principal subspaces

To underline the importance of the adaptive estimation of the α-principal subspaces, we now
consider the following Anisotropic function, in dimension d = 6 :

u(x) =
1

(10 + 2x1 + x3 + 2x4 − x5)2
(26)

defined on X = [−1, 1]d equipped with the uniform measure.
We also consider polynomial spaces Vν = Pp(Xν) for the approximation, with p chosen adap-
tively. We construct the approximation in a tree-based tensor format with a balanced binary

15

log(ε) log(ε(u?)) log(
√

E(ε(u?)2)) S n
-2 [-1.8; -0.8] -1.4 [66; 70] [468; 492]
-3 [-2.1; -1.6] -1.9 [111; 132] [586; 650]
-4 [-3.0; -2.3] -2.7 [160; 201] [715; 833]
-5 [-3.5; -3.1] -3.3 [250; 284] [944; 1080]
-6 [-4.5; -3.2] -3.8 [343; 400] [1194; 1449]
-7 [-5.2; -4.1] -4.7 [590; 700] [1597; 1999]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u?)) log(
√

E(ε(u?)2)) S n
-2 [-1.7; -0.7] -1.3 [53; 74] [180; 204]
-3 [-2.3; -1.6] -1.9 [105; 153] [241; 292]
-4 [-3.2; -1.8] -2.5 [175; 211] [313; 361]
-5 [-4.1; -3] -3.6 [251; 365] [416; 533]
-6 [-4.7; -3.8] -4.2 [385; 490] [545; 655]
-7 [-5.7; -4.1] -4.8 [680; 875] [702; 895]

(b) With adaptive estimation of the principal components.

Table 2: Anisotropic function. Approximation using interpolation as projections with a pre-
scribed tolerance for each α ∈ T , εpca = ε for the estimation of the principal components.
Confidence intervals for relative error ε(u?), storage complexity S, number of evaluations n.

log(ε) log(ε(u?)) log(
√

E(ε(u?)2)) S n
-2 [-3.3; -2.1] -2.8 [164; 185] [708; 781]
-3 [-3.7; -2.9] -3.3 [202; 263] [814; 1046]
-4 [-4.8; -3.4] -4.1 [333; 364] [1137; 1348]
-5 [-5.3; -4.1] -4.7 [450; 488] [1707; 1852]
-6 [-6.4; -4.6] -5.5 [566; 681] [2012; 2657]
-7 [-6.7; -5.4] -6 [855; 965] [2658; 3243]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u?)) log(
√

E(ε(u?)2)) S n
-2 [-3.2; -1.7] -2.4 [129; 205] [269; 357]
-3 [-3.9; -2.5] -3.2 [240; 391] [395; 556]
-4 [-4.5; -3.3] -3.9 [399; 540] [557; 717]
-5 [-5.6; -4.3] -4.9 [526; 843] [705; 1042]
-6 [-6.3; -4.9] -5.5 [758; 1025] [959; 1223]
-7 [-7.3; -5.8] -6.5 [1070; 1461] [1124; 1520]

(b) With adaptive estimation of the principal components.

Table 3: Anisotropic function. Approximation using interpolation as projections with a bal-
anced binary tree, with a prescribed tolerance for each α ∈ T , ε2

pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T−1)

for the estimation of the principal components. Confidence intervals for relative error ε(u?),
storage complexity S, number of evaluations n.

tree using Algorithm 1.

The results are summarized in Tables 2, 3 and 4b. In Table 2, we first note that choosing
εpca = ε and using interpolation does not provide an approximation error that is lower than
ε. In this case, we also see that the adaptive strategy for the estimation of the principal
components performs better in average (in the sense that the obtained approximation error is
lower) than in the non adaptive case, and this with fewer evaluations. Table 3 then shows that

16

log(ε) log(ε(u?)) log(
√

E(ε(u?)2)) S n
-2 [-3.7; -2.3] -3.2 [213; 232] [759; 819]
-3 [-3.8; -2.8] -3.3 [253; 292] [837; 944]
-4 [-5.0; -3.4] -4.2 [321; 408] [981; 1275]
-5 [-5.1; -4.3] -4.6 [426; 507] [1353; 1692]
-6 [-5.8; -4.9] -5.4 [551; 656] [1823; 2329]
-7 [-6.7; -5.3] -6.0 [735; 875] [2851; 3791]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u?)) log(
√

E(ε(u?)2)) S n
-2 [-3.6; -2.3] -3 [193; 270] [328; 403]
-3 [-5.0; -3.3] -4.1 [309; 430] [455; 579]
-4 [-4.9; -3.8] -4.4 [385; 531] [534; 697]
-5 [-6.2; -4.4] -5.3 [588; 805] [751; 985]
-6 [-6.7; -5.5] -6.1 [827; 1268] [1028; 1503]
-7 [-7.7; -6.2] -7.0 [1203; 1861] [1463; 2230]

(b) With adaptive estimation of the principal components.

Table 4: Anisotropic function. Approximation using boosted least-squares as projec-
tions with a balanced binary tree, with a prescribed tolerance for each α ∈ T ε2

pca =
ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T−1)
for the estimation of the principal components. Confidence intervals

for relative error ε(u?), storage complexity S, number of evaluations n.

for each α ∈ T , choosing ε2
pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T−1)
and using interpolation does not

provide a controlled approximation error for the small values of ε (i.e log(ε) lower than −4),
both when the principal components are adaptively determined or not. However, using the
adaptive strategy strongly reduces the number of samples. Finally, Table 4 shows that for each
α ∈ T , choosing ε2

pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T−1)
and using the boosted optimal weighted

least-squares projection (even with M = 100 repetitions and subsampling) provides this time
a controlled approximation error. What is also very interesting is that the adaptive strategy
for principal components estimation strongly reduces the number of samples necessary to reach
the desired accuracy.

5.5 Adaptive approximation of the tree

In this section, we want to illustrate the efficiency of the proposed strategy for tree optimization.
To this end, we focus on two numerical examples, for which the optimal dimension tree is known:

• A sum of bivariate functions with separated variables defined by

u(x) = g(x1, x2) + g(x3, x4) + . . .+ g(xd−1, xd), (27)

where we consider X = [−1, 1]d, equipped with the uniform measure and g(xν , xν+1) =∑3
i=0 x

i
νx

i
ν+1.

• A sum of trivariate functions with interlaced variables defined by

u(x) = g(x1, x2, x3) + g(x2, x3, x4) + . . .+ g(xd−3, xd−2, xd−1) + g(xd−2, xd−1, xd), (28)

where we consider X = [−1, 1]d, equipped with the uniform measure and g(xν , xν+1, xν+2) =∑2
i=0 x

i
νx

i
ν+1x

i
ν+2. We consider V =

⊗d
ν=1 P3(X ν), so that there is no discretization error.

17

We denote by s-LO the proposed leaves-to-root strategy with stochastic local optimizations
and by bg-LO the strategy proposed in [2] where the optimization criterion is a rank ratio.
These strategies are also compared with a random tree RT (with arity two) and a random
balanced tree referred to as RBT. In these two last cases, the overall number of evaluations of
the function is dedicated to the computation of the approximation, such that noptim = 0 and
n = ntotal.

log(ε(u?)) S n ntotal
[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]

s-LO [-14.9; -14.7; -14.0] [340; 529; 1360] [468; 689; 1552] [1243; 1699; 2752]
bg-LO [-15; -14.7; -14.5] [354; 376; 445] [485; 512; 574] [3239; 3372; 3611]
RBT [-14.4; -14.3; -13.9] [696; 925; 2198] [858; 1150; 2432] [858; 1150; 2432]
RT [-14.6; -14.3; -14.1] [971; 1763; 2471] [1166; 1987; 2745] [1166; 1987; 2745]

Table 5: Sum of bivariate functions defined by Equation (27) with d = 8. Approximation with
a prescribed tolerance ε = 10−14, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles
for relative error log(ε(u?)), number of evaluations n, for the s-LO strategy γ = 6 and the
maximal number of iterations nP = 2d.

log(ε(u?)) S n ntotal
[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]

s-LO [-14.4; -14.1; -13.7] [949; 2011; 4167] [1259; 2394; 4717] [3874; 4979; 7802]
bg-LO [-14.7; -14.5; -14.2] [692; 729; 882] [956; 993; 1165] [11336; 11869; 12773]
RBT [-14.0; -13.8; -13.2] [7476; 10888; 14837] [8148; 11657; 15651] [8148; 11657; 15651]
RT [-14.0; -13.7; -12.7] [5033; 11320; 36456] [5600; 12154; 37635] [5600; 12154; 37635]

Table 6: Sum of bivariate functions defined by Equation (27) with d = 16. Approximation with
a prescribed tolerance ε = 10−14, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles
for relative error log(ε(u?)), number of evaluations n, for the s-LO strategy γ = 6 and the
maximal number of iterations nP = 2d.

log(ε(u?)) S n ntotal
[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]

s-LO [-14.2; -13.9; -13.6] [2395; 5773; 8183] [3035; 6685; 9177] [7225; 12185; 15842]
bg-LO [-14.3; -13.6; -13] [1940; 5565; 11961] [2505; 6374; 13041] [25855; 31594; 38246]
RBT [-13.6; -13; -12.5] [16001; 22079; 46982] [17305; 23634; 48815] [17305; 23634; 48815]
RT [-13.7; -12.9; -12.2] [15100; 22745; 32182] [16418; 24269; 33793] [16418; 24269; 33793]

Table 7: Sum of bivariate functions defined by Equation (27) with d = 24. Approximation with
a prescribed tolerance ε = 10−13, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles
for relative error log(ε(u?)), number of evaluations n, for the s-LO strategy γ = 6 and the
maximal number of iterations nP = 2d.

The results associated with the bivariate function are summarized in Tables 5, 6 and 7.
Focusing on d = 8, Table 5 shows that both optimization strategies decrease the number of
evaluations n necessary to compute the approximation with precision ε compared to a random
tree RT or a random balanced tree RBT. However the total number of evaluations (includ-
ing the evaluations used for the tree search) is in average slightly greater than the cost of
a random tree RT. This is due to the fact that the input space dimension is small and the
α-ranks (even chosen randomly) remain moderate. The results are quite different if we are

18

interested in higher dimensional functions. For instance, if we focus on d = 16, Table 6 shows
that both optimization strategies decrease the number of evaluations n necessary to compute
the approximation with precision ε compared to a random tree RT or a random balanced tree
RBT. But this time, for all the optimization strategies, the 90th quantile of the total number
of evaluations ntotal is lower than the cost of a random tree RT or a random balanced tree
RBT. In this case, the s-LO strategy is the most efficient method as it decreases the three
quantiles compared to the random trees. The interest of using optimization strategies when the
dimension increases is all the more underlined when choosing d = 24, as it is done in Table 7.
In that case, the number of evaluations n necessary to compute the approximation is once again
strongly reduced. And for both optimization methods the 90th quantile of the number of total
evaluations is much lower than with a random tree RT or a random balanced tree RBT. We
also notice that for this example, the bg-LO method recovers the best tree, but the additional
cost used to evaluate the α-ranks for the optimization, which appears in ntotal, is this time not
competitive for the 10th and 50th quantiles. On the contrary, the local stochastic strategy we
propose performs particularly well as the 90th quantile of the number of evaluations is lower
than the 10th quantile of the number of evaluations necessary for a random tree RT and RBT.

log(ε(u?)) S n ntotal
[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]

s-LO [-14.3; -13.9; -13.7] [7733; 10812; 12189] [8376; 11574; 12977] [12211; 15487; 16987]
bg-LO [-14.3; -14.1; -14] [2204; 8267; 13762] [2665; 9076; 14755] [26450; 34031; 39490]
RBT [-14; -13.8; -13.4] [10647; 12420; 19681] [11392; 13235; 20673] [11392; 13235; 20673]
RT [-14.2; -13.8; -13.3] [9063; 12262; 23263] [9817; 13164; 24406] [9817; 13164; 24406]

Table 8: Sum of trivariate functions defined by Equation (28) with d = 19. Approximation with
a prescribed tolerance ε = 10−14, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles
for relative error log(ε(u?)), number of evaluations n, for the s-LO strategy γ = 6 and the
maximal number of iterations nP = 2d.

The results associated with the sum of trivariate functions are summarized in Table 8. In
line with the results associated with the sum of bivariate functions, we notice again in this
table that the different optimization strategies allow us to decrease the number of evaluations
n necessary to compute the approximation with precision ε compared to a random tree RT
or a random balanced tree RBT. But the total number of evaluations for the deterministic
optimization strategies is higher than the cost of a random tree. This is due to the fact that
whatever the tree is, the α-ranks (even chosen randomly) remain moderate, such that the
additional cost due to the α-ranks estimations may not be useful. However with the stochastic
strategy, the total number of evaluations is decreased compared to a random tree.

6 Conclusions

In this paper, we have proposed an algorithm to construct the approximation of a function u in
tree tensor format T Tr (V) with V =

⊗d
ν=1 Vν some background approximation space possibly

selected adaptively. Using adaptive strategies for the control of the discretization error, the
control of the α-ranks and the estimation of the principal components we are able to provide
a controlled approximation of the function u, assuming we have a sufficiently high number
of evaluations. The theoritical criteria used to control the approximation appear to be very
pessimistic for two reasons:

• As underlined in [13], the constant of quasi-optimality C1 of the boosted least-squares
projection is loose compared to what we observe in practice.

19

• The proof of Theorem 3.3 leads to a bound with the constant C1 to the power of the
depth of the tree.

On the studied examples, these theoretical bounds turn out to be pessimistic. However, as this
bound has been etablished for any function from L2

µ, some functions may indeed verify this
bound (we have just not found them yet).

In this work, we proposed several optimization strategies for choosing a dimension parti-
tion tree T , which is adapted to the function we want to approximate, in the sense that the
ranks of the approximation remain small to get a certain accuracy. The deterministic strategy
from the literature explore a large number of trees and are able to recover really good trees
to reach low ranks. However this exploration is often too expensive compared to the number
of evaluations necessary for the approximation of the function. In the presented cases, using
these strategies may sometimes lead to an overall number of samples which is smaller to the one
required by random trees with high α-ranks. But this is not always the case, and the number
of evaluations associated to the selection of the dimension tree may be very high.

The presented stochastic strategy (with a few exploration steps) is more competitive re-
garding the number of evaluations for the estimations of the ranks. However this strategies
involves several numerical (and heuristics) parameters, which need to be tuned. Furthermore,
if the choices made for these examples are working relatively well we do not claim that this will
be efficient for any function.

Appendix

A Estimation of the α-principal subspaces

We here present the practical aspects for estimating the α-principal subspaces of QVαu. Let
(ϕαj)mαj=1 be an orthonormal basis of Vα. Then QVαu(·, xlα) can be written QVαu(·, xlαc) =∑mα

j=1 a
jl
αϕ

α
j (·) where the coefficients ajlα depend on the samples {xiα}zαi=1 in Xα used to define

the projection QVα . Therefore, solving the Equation (13) requires evaluating the function u
on a product grid {(xiα, xlαc) : 1 ≤ i ≤ zα, 1 ≤ l ≤ zαc}, where the samples (xiα, x

l
αc) are not

i.i.d.. We denote by Aα ∈ Rmα×zαc the matrix formed with the coefficients (ailα). The truncated
singular value decomposition of Aα is Aα

rα =
∑rα

k=1 σ
k
αv

k
α(vkαc)

T where vkα = (vkiα)1≤i≤mα ∈ Rmα

and vkαc = (vklαc)1≤l≤zαc ∈ Rzαc , and the σ1
α ≥ σkα ≥ . . . σrαα are the singular values, which are

assumed to be sorted in decreasing order.
The solution of Equation (13) is the subspace spanned by the functions vαk (·) =

∑mα
j=1 v

kj
α ϕ

α
j (·),

for 1 ≤ k ≤ rα. Letting V α
rα = (v1

α, . . . ,v
rα
α), we have

zαc∑
l=1

‖QVαu(·, xlαc)− PÛ?αQVαu(·, xlαc)‖2
L2
µα

= ‖Aα
rα − V α

rα(V α
rα)TAα

rα‖
2
F =

∑
k>rα

(σkα)2.

The rank rα can be chosen such that
∑

k>rα
(σkα)2 ≤ ε2

∑
k≥1(σkα)2 implying that

1

zαc

zαc∑
l=1

‖QVαu(·, xlαc)− PÛ?αQVαu(·, xlαc)‖2
L2
µα
≤ ε2

zαc

zαc∑
l=1

‖QVαu(·, xlαc)‖2
L2
µα
.

We describe in Algorithm 4 a procedure that adapts both the rank rα and the number of samples
zαc to estimate a subspace Û?

α that yields a reconstruction error with a prescribed precision.

20

Algorithm 4 Adaptive algorithm for the estimation of the α-principal components of a
function-valued random variable Xαc 7→ QVαu(·, Xαc) with prescribed tolerance ε

Inputs: desired tolerance ε, random variable u(·, Xαc), approximation space Vα, (ϕj)
mα
j=1 an

orthonormal basis of Vα, oblique projection QVα and sampling factor kPCA.
Outputs: V α

r matrix of singular vectors of Aα

Set zαc = 1
Compute the vector Aα corresponding to the coefficients of one realization QVαu(·, Xαc) in
the orthonormal basis of Vα.
Set E =∞
while E > ε and zαc ≤ kPCA dim(Vα) do

Update zαc ← zαc + 1
Update Aα = [Aα,aα], with aα the vector corresponding to the coefficients of one realiza-
tion of QVαu(·, Xαc) in the orthonormal basis of Vα.
Set r = 0
while E > ε or r ≤ zαc do

Update r ← r + 1
Compute E the leave-one-out cross validation error,
for l = 1, . . . , zαc do

Determine the matrix V α
\l,r of r main left singular vectors of Aα

\l, which is Aα without

its lth column.
end for
Set

E =

∑zαc
l=1 ‖Aα

l − V α
\l,r(V

α
\l,r)

TAα
l ‖2

2∑zαc
l=1 ‖Aα

l ‖2
2

. (29)

end while
end while
Determine the matrix V α

r of r left singular vectors of Aα.

B Adaptive determination of feature spaces Vα

We present in Algorithm 5 an adaptive procedure for the selection of approximation (or feature)
spaces Vα, α ∈ L(T), from a sequence of candidate spaces.

Algorithm 5 Algorithm for adaptive approximation of u(·, xkαc).
Inputs: desired tolerance εdis, a sequence of nested approximation spaces (V j

α)j≥1.
Outputs: aα the vector corresponding to the coefficients of the kth realization of QV jα

u(·, xkαc)
in the orthonormal basis of V j

α , with j depending on the desired tolerance ε.
Set E =∞
while E > εdis do

Compute the coefficients aα of the boosted least-squares projection QV jα
u(·, xkαc) in the

orthonormal basis of V j
α

Set E =
aαp√∑p
i=1(aαi)2

Set j = j + 1
end while

21

C Explicit expressions of the optimal measure

The boosted optimal weighted least-squares projection, on which our learning algorithm is
based, relies on the generation of samples associated with the optimal measure defined by Eq.
(9). In this section, we make explicit the expression of this optimal measure, in the case where
α is a leaf of the tree or an interior node.

• When α ∈ L(T) is a leaf node, Vα is a given approximation space of univariate functions,
such that sampling only implies one-dimensional distributions. One can then rely on
standard simulation methods such as rejection sampling, inverse transform sampling or
slice sampling techniques, see [8].

• When α /∈ L(T), Vα = ⊗β∈SÛ?
β . For each β, we let {ψβkβ}

rβ
kβ=1 be a basis of Û?

β . The prod-

uct basis of Vα is denoted by {ϕαiα}
mα
iα=1, where mα =

∏
β∈S(α) rβ and for iα = 1, . . . ,mα,

ϕαiα(xα) =
∏

β∈S(α) ψ
β
kβ

(xβ), for iα ≡ (kβ)β∈S(α). The sampling measure given by Equation

Equation (9) is such that

wα(xα)−1 =
1

mα

mα∑
iα=1

ϕαiα(xα)2 =
∏

β∈S(α)

1

rβ

∑
1≤kβ≤rβ

ψβkβ(xβ)2

and using the product structure of µα, we have

dρα(xα) =
∏

β∈S(α)

dρβ(xβ) with dρβ(xβ) =
1

rβ

rβ∑
kβ=1

ψβkβ(xβ)2dµβ(xβ).

As for each β ∈ S(α), dρβ(xβ) can be written in tree tensor networks format, its marginal
distributions can be efficiently computed. Then sampling from ρβ can be efficiently done
through sequential sampling. The interested reader is referred to [15] for some implemen-
tation details.

D Estimation of the α-ranks of a function u to perform

tree adaptation.

We present here the algorithm that estimates α-ranks for tree adaptation. The strategy is
described in Section 4.1.

E Proofs

E.1 Proof of the Lemma 2.1

Proof. First, let us show that the assumption eq. (11) implies that for all u ∈ L2
µ, E(‖u −

QVαu‖2) ≤ (1 + γ)E(‖u− PVαu‖2), with γ = pr(1− δ)−1(1− ηM)−1M .

The function u has a representation u(x) =
∑rankα(u)

k=1 uαk (xα)uα
c

k (xαc) with {uαk} an orthogonal
family of functions.

22

Algorithm 6 Determination of the ranks rα(ε) of a function u

Inputs: coarse tolerance ε, function u, tuple α, product measure µ, nα and nαc
Outputs: rα and cost = zαzαc

Generate zα i.i.d samples {xiα}zαi=1 from the measure µα
Generate zαc = 1 sample {xlαc}

zαc
l=1 from the measure µαc

Evaluate the function u on the grid {(xiα, x
j
αc) : 1 ≤ i ≤ zα, 1 ≤ l ≤ zαc} and set Bα =

(u(xiα, x
l
αc))

Set r = 0 and E(r) =∞
while E(r) > εc and zαc ≤ nαc do

Set zαc ← zαc + 1
Sample {xzαcαc } from the measure µαc
Update Bα = [Bα, bα], with bα the vector corresponding to the evaluations of u on the
grid {(xiα, x

zαc
αc) : 1 ≤ l ≤ zα}

while (E(r) > ε and r < min(nα, zαc)) do
Set r ← r + 1
for l = 1, . . . , zαc do

Determine the matrix V α
\l,r of r left singular vectors of Bα

\l.
end for
Set

E(r)2 =

∑zαc
l=1 ‖Bα

l − V α
\l,r(V

α
\l,r)

TBα
l ‖2

2∑zαc
l=1 ‖Bα

l ‖2
2

(30)

end while
end while
Set rα = min{1 ≤ k ≤ r : E(k) ≤ εc}

Then

‖u−QVαu‖2 = ‖
rankα(u)∑
k=1

uαk ⊗ uα
c

k −QVα

rankα(u)∑
k=1

uαk ⊗ uα
c

k

 ‖2

=

rankα(u)∑
k=1

‖(uαk −QVαu
α
k)⊗ uαck ‖2

=

rankα(u)∑
k=1

‖uαk −QVαu
α
k‖2

L2
µα
‖uαck ‖2

L2
µαc
.

When rankα(u) =∞, the series
∑rankα(u)

k=1 uαk ⊗ uα
c

k −QVα(uαk ⊗ uα
c

k) is convergent by definition
of u.
By hypothesis on projection QVα we have E(‖uαk −QVαu

α
k‖2) ≤ (1 + γ)E(‖uαk −PVαuαk‖2). Then

E(‖u−QVαu‖2) ≤
rankα(u)∑
k=1

(1 + γ)E(‖uαk − PVαuαk‖2)‖uαck ‖2

=

rankα(u)∑
k=1

(1 + γ)E(‖uαk ⊗ uα
c

k − (PVαu
α
k)⊗ uαck ‖2)

= (1 + γ)E(‖u− PVαu‖2).

23

Now, thanks to the Pythagorean equality, we have E(‖u − QVαu‖2) = E(‖u − PVαu‖2) +
E(‖QVαu− PVαu‖2), and then

E(‖u− PVαu‖2) + E(‖QVαu− PVαu‖2) ≤ (1 + γ)E(‖u− PVαu‖2),which implies

E(‖QVαu− PVαu‖2) ≤ γE(‖u− PVαu‖2).

Using the triangular inequality ‖QVαu‖2 ≤ 2‖QVαu− PVαu‖2 + 2‖PVαu‖2, we get

E(‖QVαu‖2) ≤ 2γE(‖u− PVαu‖2) + 2E(‖PVαu‖2) ≤ 2(γ + 1)‖u‖2,

which ends the proof.

E.2 Proof of the Theorem 2.2

Proof. By definition, for all v ∈ L2
µ with rankα(v) ≤ rα,

‖QVαu− PU?αQVαu‖ = min
rankα(v)≤rα

‖QVαu− v‖.

If we choose in particular v = QVαPUαu, where Uα is the α-principal subspace of u, defined in
Equation Equation (6), it comes

‖QVαu− PU?αQVαu‖ ≤ ‖QVαu−QVαPUαu‖ = ‖QVα(u− PUαu)‖.

Taking the expectation and using Lemma 2.1 it comes,

E(‖QVαu− PU?αQVαu‖
2) ≤ E(‖QVα(u− PUαu)‖2) ≤ C1e

α
rα(u)2.

E.3 Proof of the Theorem 3.3

We start a preliminary results given by Lemma E.1, which is necessary for the proof of Lemma
3.2. Then, the Theorem 3.3 is deduced by making further assumptions on the reconstruction
error of the empirical α-principal subspace Û?

α.

Lemma E.1. For α an interior node of a tree T such that Vα =
⊗

β∈S(α) Û
?
β we have

‖u− PVαu‖2 ≤
∑

β∈S(α)

‖u− PÛ?βu‖
2

Proof. Let γ be an element of S(α), we have:

‖u− PVαu‖2 = ‖u−
∏

β∈S(α)

PÛ?βu‖
2

= ‖u− PÛ?γu‖
2 + ‖PÛ?γu− PÛ?γ

∏
β∈S(α)\γ

PÛ?βu‖
2

≤ ‖u− PÛ?γu‖
2 + ‖u−

∏
β∈S(α)\γ

PÛ?βu‖
2.

Proceeding recursively, we obtain the desired result.

Proof of Lemma 3.2.

24

Proof. The final approximation u? is defined by u? = QVDu.
For each α ∈ T , thanks to the properties of QVα we have from Lemma 3.2

E(‖u−QVαu‖2) ≤ C1E(‖u− PVαu‖2)

where C1 is the constant associated to the boosted least-squares projection.
If α ∈ L(T), then Vα is a given deterministic space and E(‖u− PVα‖2) = ‖u− PVα‖2.

If α /∈ L(T), then Vα =
⊗

β∈S(α) Û
?
β and from Lemma E.1,

E(‖u− PVαu‖2) ≤
∑

β∈S(α)

E(‖u− PÛ?βu‖
2).

Using the triangular inequality, we can write

‖u− PÛ?βu‖ = ‖u−QVβu+QVβu− PÛ?βQVβu+ PÛ?βQVβu− PÛ?βu‖

≤ ‖u−QVβu+ PÛ?βQVβu− PÛ?βu‖+ ‖QVβu− PÛ?βQVβu‖

≤ ‖(id− PÛ?β)(u−QVβu)‖+ ‖QVβu− PÛ?βQVβu‖

so that,
‖u− PÛ?βu‖

2 ≤ 2‖u−QVβu‖2 + 2‖QVβu− PÛ?βQVβu‖
2

Using the equation (E.3) and taking the expectation, it comes

E(‖u− PVαu‖2) ≤
∑

β∈S(α)

2E(‖u−QVβu‖2) + 2E(‖QVβu− PÛ?βQVβu‖
2)

The term E(‖QVβu−PÛ?βQVβu‖
2) is the error due to the principal component analysis. To deal

with the term E(‖u − QVβu‖2), we distinguish the case where β is a leaf or not. If β is not a
leaf, we proceed recursively using Theorem E.1 and the triangular inequality. Going through
all nodes, we obtain

E(‖u− u?‖2) ≤
∑

α∈T\D
(2C1)l(α)E(‖QVαu− PÛ?αQVαu‖

2) +
∑

α∈L(T)

1

2
(2C1)l(α)+1‖u− PVαu‖2.

The Theorem 3.3 is deduced by making further assumptions on the reconstruction error
of the empirical α-principal subspace Û?

α. More precisely, we assume that we have for all
α ∈ T \ {D}

E(‖QVαu− PÛ?αQVαu‖
2|QVαu) ≤ C2E(‖QVαu− PU?αQVαu‖

2|QVαu), (31)

where ‖QVαu−PU?αQVαu‖2 is the reconstruction error associated with the α-principal subspace
of U?

α solution of Equation Equation (8).

Proof. Taking the expectation in Equation (31), we have for all α ∈ T \ {D}.
E(E(‖QVαu− PÛ?αQVαu‖

2|QVαu)) ≤ C2E(E(‖QVαu− PU?αQVαu‖
2|QVαu)),

which yields
E(‖QVαu− PÛ?αQVαu‖

2) ≤ C2E(‖QVαu− PU?αQVαu‖
2).

Besides, the term E(‖QVαu− PU?αQVαu‖2) can be bounded thanks to Theorem 2.2, such that

E(‖QVαu− PÛ?αQVαu‖
2) ≤ C2C1e

α
rα(u)2.

Using this bound and theorem 3.2, it comes

E(‖u− u?‖2) ≤ C1C2

∑
α∈T\D

(2C1)l(α)eαrα(u)2 +
∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dismα (u)2,

which ends the proof.

25

References

[1] M. Bachmayr and R. Schneider and A. Uschmajew. Tensor Networks and Hierarchical
Tensors for the Solution of High-Dimensional Partial Differential Equations. Foundations
of Computational Mathematics, Vol. 16, pp. 1423-1472. (2016).

[2] J. Ballani and L. Grasedyck. Tree Adaptive Approximation in the Hierarchical Tensor
Format. SIAM J. Sci. Comput., Vol. 36 , pp. A1415–A1431, (2014).

[3] J. Ballani and L. Grasedyck and M. Kluge. Black box approximation of tensors in hierar-
chical Tucker format. Linear Algebra and its Applications, Vol. 438, pp. 639–657, (2013).

[4] M. Bebendorf. Approximation of boundary element matrices. Numerische Mathematik, Vol.
86, No. 5, pp. 565–589, (2000).

[5] Cichocki, A. and Lee, N. and Oseledets, I. and Phan, A.-H. and Zhao, Q. and Mandic, D.
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank
tensor decompositions Foundations and Trends in Machine Learning, Vol. 9, pp. 249-429,
(2016).

[6] A. Cohen and A. Nouy and G Keryacharian and D. Picard. Optimal linear approximation
and recovery. Running notes, (2020)

[7] N. Cohen and O. Sharir and A. Shashua. On the expressive power of deep learning: A
tensor analysis. JMLR: Workshop and Conference Proceedings, Vol. 49, pp. 1-31, (2016).

[8] L. Devroye. Non-Uniform Random Variate Generation. Springer, (1985).

[9] A. Falco and W. Hackbusch and A. Nouy. Tree-based tensor formats. SeMA Journal., Vol.
16, pp. 1-15 (2018)

[10] L. Grasedyck. Hierarchical Singular Value Decomposition of Tensors SIAM J. Matrix
Analysis Applications Vol. 31, pp. 2029-2054 (2010)

[11] E. Grelier and A. Nouy and M. Chevreuil. Learning with tree-based tensor formats
arXiv:1811.04455 (2018)

[12] E. Grelier, and A. Nouy and R. Lebrun. Learning high-dimensional probability distribu-
tions using tree tensor networks. arXiv:1912.07913 (2019)

[13] C. Haberstich and A. Nouy and G. Perrin. Boosted Optimal weighted least-squares meth-
ods. arXiv:1912.07075 (2020)

[14] C. Haberstich and A. Nouy and G. Perrin. Hierarchical Singular Value Decomposition of
Tensors In preparation (2021)

[15] C. Haberstich. Adaptive approximation of high-dimensional functions with tree tensor
networks for Uncertainty Quantification, Ph.D Thesis, Centrale Nantes, 2020. Ph.D Thesis,
Centrale Nantes (2020)

[16] W. Hackbusch. Hierarchical Tensor Representation Tensor Spaces and Numerical Tensor
Calculus Springer International Publishing Vol. 31, pp. 387-451 (2019)

[17] M. Hashemizadeh and J. Miller and M. Liu and G. Rabusseau. Adaptive Tensor Learning
with Tensor Networks. arXiv:2008.05437 (2020)

26

http://arxiv.org/abs/1811.04455
http://arxiv.org/abs/1912.07913
http://arxiv.org/abs/1912.07075
http://arxiv.org/abs/2008.05437

[18] D. Kressner and M.Steinlechner and A.Uschmajew. Low-rank tensor methods with sub-
space correction for symmetric eigenvalue problems. SIAM J. Sci. Comput. Vol. 36, No. 5,
pp. A2346–A2368 (2014)

[19] Lieven. De Lathauwer, B. De Moor, and J. Vandewalle. A Multilinear Singular Value
Decomposition. SIAM J. Matrix. Anal. Appl. Vol. 21, No. 4, pp. 1253-1278 (2000)

[20] T.H. Luu and Y. Maday and M. Guillo and P. Guérin. A new method for reconstruction
of cross-sections using Tucker decomposition https://hal.archives-ouvertes.fr/hal-01485419
(2017)

[21] Y. Maday, and N.C. Nguyen, and A. Patera, and G. Pau. A general multipurpose inter-
polation procedure: the magic points. Communications on Pure and Applied Analysis, Vol.
8, No. 1 , pp. 383-404 (2009)

[22] C. Milbradt and M. Wahl., High-probability bounds for the reconstruction error of PCA
Statistics and Probability Letters, Vol. 161 (2020)

[23] A. Nouy. Higher-order principal component analysis for the approximation of tensors in
tree-based low rank formats. Numerische Mathematik, Vol. 141 (2019), pp. 743–789

[24] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimensional arrays
Linear Algebra and its Applications, Vol. 432, (2010), pp. 70-88

[25] E. Stoudenmire, and D. Schwab. Supervised Learning with Quantum-Inspired Tensor
Networks arXiv:1605.05775, (2016).

[26] A. Nouy. Low-Rank Tensor Methods for Model Order Reduction. In R. Ghanem, D. Hig-
don, H. Owhadi (Eds), Handbook of Uncertainty Quantification. Handbook of Uncertainty
Quantification, Springer International Publishing Cham, (2017), pp. 857-882

27

http://arxiv.org/abs/1605.05775

	1 Introduction
	2 Principal component analysis of multivariate functions
	2.1 -principal subspaces
	2.2 Choice of the oblique projection
	2.3 Estimation of the -principal subspaces
	2.3.1 Accuracy of the empirical -principal subspaces
	2.3.2 Adaptive estimation of the -principal subspaces

	3 Learning tree tensor networks using PCA
	3.1 Dimension partition tree
	3.2 Tree tensor networks
	3.3 Description of the algorithm
	3.4 Error analysis

	4 Tree adaptation
	4.1 Estimation of -ranks
	4.2 Leaves-to-root construction of the tree with stochastic optimizations

	5 Numerical examples
	5.1 Complexity analysis
	5.2 Heuristics used in practice
	5.3 Adaptive determination of the approximation spaces in the leaves
	5.4 Adaptive estimation of the -principal subspaces
	5.5 Adaptive approximation of the tree

	6 Conclusions
	A Estimation of the -principal subspaces
	B Adaptive determination of feature spaces V
	C Explicit expressions of the optimal measure
	D Estimation of the -ranks of a function u to perform tree adaptation.
	E Proofs
	E.1 Proof of the Lemma 2.1
	E.2 Proof of the Theorem 2.2
	E.3 Proof of the Theorem 3.3

