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Abstract
We consider two-dimensional Schrédinger equations with honeycomb potentials and slow
time-periodic forcing of the form:

i (t,x) = H () = (H® + 2icA(et) - V), H® = —A +V(x).

The unforced Hamiltonian, H?, is known to generically have Dirac (conical) points in its
band spectrum. The evolution under H®(t) of band limited Dirac wave-packets (spectrally
localized near the Dirac point) is well-approximated on large time scales (t < ¢ 21) by an
effective time-periodic Dirac equation with a gap in its quasi-energy spectrum. This quasi-
energy gap is typical of many reduced models of time-periodic (Floquet) materials and plays
a role in conclusions drawn about the full system: conduction vs. insulation, topological vs.
non-topological bands. Much is unknown about nature of the quasi-energy spectrum of the
original time-periodic Schrodinger equation, and it is believed that no such quasi-energy gap
occurs. In this paper, we explain how to transfer quasi-energy gap information about the
effective Dirac dynamics to conclusions about the full Schrédinger dynamics. We introduce
the notion of an effective quasi-energy gap, and establish its existence in the Schrédinger
model. In the current setting, an effective quasi-energy gap is an interval of quasi-energies
which does not support modes with large spectral projection onto band-limited Dirac wave-
packets. The notion of effective quasi-energy gap is a physically relevant relaxation of the
strict notion of quasi-energy spectral gap; if a system is tuned to drive or measure at momenta
and energies near the Dirac point of H°, then the resulting modes in the effective quasi-energy
gap will only be weakly excited and detected.

1 Introduction

In this paper we study time-dependent Schrédinger equations of the form:
i = (H* + W(t,x,—iV)) ¥, H’=-A+V(x). (1.1)

Here, the potential, V' (x), models a two-dimensional medium with the symmetries of a honeycomb
tiling of the plane. Such honeycomb lattice potentials, V, are real-valued, so that H? is self-adjoint
and periodic with respect to the equilateral triangular lattice in R?; see Section 2 for a detailed
discussion. We assume that the operator W (T,x,—iV) is Tpe-periodic with respect to T', A-
periodic with respect to x, and self-adjoint with domain which is a subset of the domain of HY for
each T. Naturally occurring and engineered material systems governed by models such as (1.1)
are referred to as Flogquet materials [34, 48, 51]. See Section 1.1, where we discuss two physical
settings, in condensed matter physics and in photonics, where the class of models (1.1) arises.

Many of the important properties of graphene and related 2D materials are intimately related
to Dirac points (conical band degeneracies) in the band structure of H®. The goal of this paper
is to explore, in the context of (1.1), the effects of time-periodic driving on the dynamics of wave
packets which are spectrally concentrated near Dirac points.
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1.1 2D materials, honeycomb structures and Dirac points

Two-dimensional materials are of great current interest in fundamental and applied science. The
paradigm is graphene, a macroscopic single atomic layer of carbon atoms, centered on the vertices
of a honeycomb lattice [49]. Single electron models of graphene, both the tight-binding (discrete)
[64] and the continuum Schrédinger operator with a continuum honeycomb lattice potential H® =
—A + V [21], have conical degeneracies at distinguished quasi-momentum in the band structure.
These Dirac points arise due to the symmetries of the honeycomb Schrédinger operator. The
envelope of a wave-packet, which is spectrally concentrated near a Dirac point, evolves according
to a two-dimensional Dirac equation on large time scales [22]. Due to the zero density of states at
the Dirac energy, graphene is referred to as a semi-metal.

For time-independent Hamiltonians, opening a gap in the spectrum by breaking spatial symme-
tries can be leveraged to induce states with desired localization properties and energies in the gap.
Spatially localized defect perturbations of such “gapped Hamiltonians” give rise to defect modes
which are pinned to the location of the defect [24, 25, 33, 37], while line-defects in the direction of
periodic lattice vector of the bulk vector give rise to edge states, which are plane-wave like in the
direction of the line-defect and which decay transverse to it; see e.g., [11, 18, 27, 45, 38]. For line
defects in systems which break C (Hamiltonians that do not commute with complex conjugation)
the induced bulk energy gap is filled with energy spectrum; see e.g., [12, 13, 14, 44], a phenomena
which can be explained by non-trivial topological indices; see, for example, [39, 62].
Time-periodic driving is another mechanism for breaking symmetries of the bulk and opening spec-
tral gaps, and the corresponding topological indices are typically defined in systems with gapped
quasi-energy spectrum [3, 48, 57, 56]. !

The class of time-periodically driven PDEs (1.1) arises in physical settings, such as:

(a) the modeling of a graphene sheet, excited by a time-varying electric field [53, 65]. Here,
H® = —A + V is a single-electron Hamiltonian for graphene and time-dependence in H (t)
models the excitation of the graphene sheet by an external electro-magnetic field. In this
work, we consider a vector potential which is space-independent, and which by Maxwell’s
equations, induces a homogeneous time-periodic electric field; see [40].

(b) the propagation of light in a hexagonal array of helically coiled optical fiber waveguides
[51, 54]. Here, the Schrodinger equation describes the propagation in the time-like longitu-
dinal direction of a continuous-wave (CW) laser beam propagating through a hexagonal or
triangular transverse array of optical fiber waveguides. Beginning with Maxwell’s equations,
under the nearly monochromatic and paraxial approximations, one obtains (1.1) for the lon-
gitudinal evolution of the slowly varying envelope of the classical electric field. Suppose the
fibers are longitudinally coiled. Then, in a rotating coordinate frame, we obtain (1.1), where
V models the uncoiled fiber-array, and the time-periodic perturbation, W, captures effect of
periodic coiling.

Other fields in which time-periodic modulations are applied to spatially periodic materials
include acoustics, plasmonics, and mechanical metamaterials; see, e.g., [26, 47, 66] and references
therein. In both settings (a) and (b) the operator W (T, x,—iV), while self-adjoint, does not
commute with C and hence (1.1) does not have time-reversal symmetry. As in the case of time-
independent (autonomous) Hamiltonians, this is a source of topological phenomena. Such physical
systems are therefore called Floquet topological insulators. Time-periodic Hamiltonians modeling
Floquet materials have many interesting phenomena, even more varied than their time-invariant
analogues.

1.2 Hamiltonians for Floquet materials and the monodromy operator
Consider a general non-autonomous Hamiltonian system id,Z = H(t)Z, where for each ¢:

H(t + tper) = H(t) and H(t) is a self-adjoint operator acting in the Hilbert space, H.

LAn exception is the case of mobility gaps in strongly disordered discrete systems [58].



Denote by U(t) the unitary evolution operator which maps the data Z(t = 0) = Zy € H to
the solution Z(t) = U(t)Zy € H for some ¢t = 0. The dynamics are characterized by operator,
M = U(tper), since Z(ntper) = M"Zp, for all n = 0. M is called the monodromy operator,
and since U(t) is unitary, its spectrum is constrained to the unit circle in C. For A € spec(M)

we write A = e and call iu (modulo 27i) the associated Floquet exponent. If MZ, = ei“ZM,

then p,(t) = eiitpuértU(t)ZM is tper-periodic and satisfies the eigenvalue problem for the Floguet
Hamiltonian

KOp(t) = (i~ H(t) ) p(t) = —p(t). (12)
per
Thus, e € spec(M) if and only if tp% is in the spectrum of K acting in L?(S';#). The quantity

tp% is called a quasi-energy. For autonomous Schrédinger operators (H (¢) independent of ¢) the

quasi-energies coincide with the eigenvalues of Hy, modulo 27Z/tper.

1.3 What this article is about

We focus on the evolution of wave-packets of the special case of (1.1) with
W(t,x,—iV) = 2icA(et) -V, 0<e«1 (1.3)

where A(T) : [0,Tper) — R? is continuous, x-independent, and Tpe,— periodic. Hence, (1.1)
becomes

i0(t,x) = HE(t)y, He(t) = —A+V(x)+ 2icA(et) - V . (1.4)

where V' is taken to be a honeycomb lattice potential; see Section 2. For € # 0, the operator
He(t) is self-adjoint but does not commute with C. Since 0 < ¢ « 1, we are focusing on the
regime of a slowly varying time-periodic perturbation. To the best of our knowledge, the only
previous analytical study of the slow time-periodic regime for (1.4) is in [2]. This study focuses
on the tight-binding regime for the bulk potential, and provides asymptotic analyses of linear and
nonlinear edge modes in the regime where interactions with “higher bands” can be neglected. Our
analysis makes no restrictive assumptions on the asymptotic regime of the bulk Hamiltonian and
our study focuses on consequences of time-forcing induced interactions of the “Dirac bands” with
bands which are distant from the Dirac point. The case of rapidly varying time-forcing is studied,
for example, in [4, 30, 52].

Denote the solution of the initial value problem for (1.4) with data v(0,-) = 1y € H*(R?),
5 =0, by

G = US(t)o ot v () = U o) (a, 1),

For generic honeycomb lattice potentials, V', there exist bands (of the unperturbed (¢ = 0) Hamil-
tonian Hy) which touch at Dirac points: quasi-momentum / energy pairs (kp, Fp) at which exactly
two dispersion surfaces touch conically; see the discussion in Section 2.

By exploiting the multi-scale character of (1.4), we derive a homogenized, time-periodically
forced effective Dirac Hamiltonian, I)(T), which governs the evolution of Dirac wave-packets en-
velopes. On a closed and invariant subspace of the Hilbert space, the monodromy (unitary)
operator Mp g, associated with I(T) has a gap, i.e., an arc on S* with no spectrum. This closed
and invariant subspace corresponds, in the H¢(¢) (un-approximated) dynamics, to the physically
interesting situation of band-limited Dirac wave-packets, i.e. those built from Floquet-Bloch modes
of H®, whose energies and quasi-momentum components are near a Dirac point.

We prove (Theorem 5.1) that any L?(R?) wave-packet comprised of modes within the Floquet
multiplier (quasi-energy) gap of the effective Hamiltonian, ID(T), is dominated by spectral compo-
nents with corresponding energies and quasi-momenta bounded away from the Dirac energy, Ep.
Such wave-packets therefore spatially oscillate on different length-scales from the Dirac modes.
We call the arc in S* of such Floquet exponents, and the corresponding quasi-energy interval,
an effective spectral gap. This is a relaxation of the usual notion of spectral gap. The nature




of the spectrum in the effective gap, and of M¢ in general, is a difficult open problem; see the
discussion in Section 1.4. We conjecture that the spectrum of the monodromy operator of H®(t)
covers the entire unit circle in C. Without relying on detailed information of the spectral measure,
Theorem 5.1 provides information on the modes associated with the effective gap.

From a physical perspective, there are two main implications of Theorem 5.1, which justify
the term “effective gap”. We discuss this in terms of the static band structure (H® = —A + V),
assumed to have well-separated bands. One may think in terms of the system’s inputs and out-
puts at some finite time. Consider a measuring device with sensitivity tuned to a neighborhood
of the Dirac energy, Fp. If the parametrically forced system generates a mode with quasi-energy
inside the effective gap, since it consists mainly of energies (with respect to H") far from the Dirac
energy (Theorem 5.1), this mode will only be very weakly detected. On the other hand, in terms
of input excitations to the system, suppose the initial excitation is a Dirac wave-packet, whose
energy-spectrum is localized near a Dirac point (Proposition 4.3). Because of the approximation
of the Schrodinger evolution by the effective Dirac equation (Theorem 3.2), on the time-scale of
the forcing period, such a mode will remain energetically localized near a Dirac point. Therefore,
modes with quasi-energy in the effective gap, which are dominated by components from distant
energies (Theorem 5.1), can only be very weakly excited. Summarizing: if the system is energeti-
cally tuned to the Dirac point, either on the input or output side, then it will effectively behave as
an insulator, with only weak excitations inside the effective gap. Theorem 5.1 goes further than
that; it provides quantitative information on the size of these excitations.

There are several steps along the way to proving Theorem 5.1.

1. Theorem 3.2: The time-evolution (1.4) for wave packet initial data, which are spectrally
concentrated about a Dirac point, so-called Dirac wave packets (see (3.1) and Section 4),
is governed by a time-dependent effective Dirac equation, for time scales of order O(=2%);
Proposition 4.3.

2. Corollary 3.3: The time scale of validity of the effective Dirac equation is much larger
than the period of temporal forcing, Tpcrsfl. Hence, we can approximate the monodromy
operator for (1.4), M€, which acts in L?(R?) in terms of an effective monodromy operator
Mpj, acting on L?(R?; C?).

3. Proposition 3.5: We prove that when acting on an invariant subspace of band-limited initial
data, Mp;, has a quasi-energy gap. See Figure 3.

4. The separation of scales in the dynamical system (1.4) allows application of a homogenization
/ averaging lemma (Lemma 4.5) to “carry back” the spectral gap of the effective Dirac
monodromy operator, Mpj,, to an effective gap of M*=.

1.4 Previous works and remarks

Spectral theory of parametrically forced Hamiltonians. Since H¢(t) is invariant un-
der translations in A, Floquet-Bloch theory [41] reduces the spectral properties of the Floquet
Hamiltonian K (see (1.2)) in the space L?(S; L?(R?)) to its action on the family of subspaces
L%(SY; LE), where L denotes the space of k— pseudo-periodic functions on R? and k € B, the
Brillouin zone associated with A:

L*(SY; L*(R?)) spectrum of L = Union over k € B of the L?*(S'; L}) spectra of K

Spectral problems of this latter type, which correspond to time-periodically forced wave equations
on the spatial torus, have been explored in the deep technical works [6, 5, 16, 23, 35, 46]. These
results focus on establishing the existence of point spectra of K(¢) under strong growth assumptions
on the eigenvalue spectrum of the unforced wave equation. The nature of the L?(S?; Li) spectrum
of K when these growth conditions are violated is an open problem [46].

The nature of the L?(S'; L?(R?)) spectrum of K and the corresponding L?(S*; L?(R?)) spec-
trum (a subset of S) of the monodromy operator are also open problems. That we can expect the



latter to cover the unit circle can be understood, heuristically, via the mechanism physicists refer
to as band folding. This intuition is based on high-energy asymptotics of the unforced problem:;
for any fixed k € B, the high quasi-energy bands (via Weyl asymptotics) are approximated by
the eigenvalues of —A on L?(R?/A), modulo 27Z/Tyer, which for typical Tpe, are dense in S'; see
Figure 1. Certainly the union over all k € B would be expected to be dense as well. We justify this

argument in the context of our parametrically forced effective Dirac operator, I)(T), in Remark
3.6 and Section 10.

Spectral gaps in other reduced models. Effective (approximate) models are often used
to provide analytically or computationally tractible precise descriptions in specified asymptotic
regimes. One class consists of homogenized operators, such as our effective Dirac operator, is at the
center of this work; see Section 8 and [22]. Another class consists of spatially discrete and periodic
in time tight-binding effective models of crystalline Floquet materials, derived for example, via
Magnus (high-frequency) expansion [7, 8], governing low-lying mode-amplitudes of the unforced
problem. Here, K acts in ZQ(S%W; H), where H = [2(G; CV) with G being a translation invariant
spatial lattice and N the number of degrees of freedom per unit cell. The system has N Floquet-
exponents bands defined over the Brillouin zone (graphs of the map from k to the eigenvalues of
the monodromy over L). For the case of graphene H = [?(H;C?), where H denotes the set of
honeycomb vertices in R? and N = 2 is the number of carbon atoms per unit cell. Such models can
exhibit a spectral gap on the unit circle in the spectrum of their monodromy operator [1, 49, 54].

The significance of gaps. As in the case of time-independent Hamiltonians, continuous spectra
of quasi-energies are associated with energy propagation (“conduction”) and spectral gaps with
non-propagation (“insulation”). In the Floquet systems which arise in condensed-matter physics,
Kubo-type formulae, analogous to the autonomous case, are used to quantify conductance [10, 50,
63, 4]. For Floquet systems, topological indices, closely related to the Kubo formula, have been
rigorously defined if there is a spectral gap; see, for example, [28] and [57].

1.5 Structure of the paper

The remainder of the paper is organized as follows: In Section 2 we review relevant preliminaries
in Floquet-Bloch and the spectral theory of honeycomb potentials. In Section 3 we present the
results on the approximation of the dynamics governed by the Schrédinger Hamiltonian, H¢(t), in
terms of the effective Dirac Hamiltonian, /(7). We also discuss the quasi-energy gap property of
the Dirac dynamics on the space of band-limited functions. In Section 4 we discuss the properties
of Dirac wavepackets. In Section 5 we present the effective gap result (Theorem 5.1), the main
result of this paper. We present the proofs of the main results in the subsequent sections; the proof
of the main result in Section 6, of the homogenization / averaging lemma (Lemma 4.5) in Section
7, the derivation and proof of validity of the effective Dirac dynamics (Theorem 3.2) in Section 8,
and of the spectral characterization of Dirac wave-packets (Proposition 4.3) in Section 9. Finally,
in Section 10 we use a WKB expansion to justify Remark 3.6, which states that the effective Dirac
Hamiltonian, I)(T'), has no quasi-energy gap .

1.6 Notation and conventions

e Triangular lattice: A = Zv, @ Zv,, where
vy = ( 1/2 ) vy = “1)2) (1.5)

Here, Q = R2 denotes the fundamental cell; see left panel of Fig. 2.

o A* = 7k, @ Zk, is the dual lattice, where
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Figure 1: Band folding heuristics. Top left: Schematic of the band spectrum of HY. Lowest
two bands touch conically at a Dirac point. Top right: Quasi-energy spectrum of H°, viewed as

Tper time-periodic. The dispersion curve Ey(k) > 27/Tper. Modulo (27/Tpe,) the k — Ey(k) is

translated to the quasi-energy range [0, 27/T}e], and the spectrum fills in. Middle: For a fixed
k € B, we mark Ey(k),...,E(k). Bottom: The points {E}(k) mod(2m/Tper)}p>1 are expected
to be dense in the quasi-energy range [0, 27/ Tper |-

The Brillouin zone, B < (Ry)* = R, is the dual fundamental cell.

e kp = K, K’ are the vertices of the Brillouin zone K = (1/3)(k; — ko) and K’ = —K; see
right panel of Figure 2.

e The Pauli matrices are

(28) (07 e (b%) e

e V(x) is a honeycomb lattice potential; see Section 2.2.

o C (S%per; R?), with S%per = R/(TperZ) is the space of R?— vector-valued continuous functions,
which are T}, periodic.

e x(|s| < a) = the indicator function of the set {s: |s| < a}.



e For f e L?(R?), the Fourier transform is denoted by

fie) = 71010 = [ ¥ px0ax.

1 . N
(V] <o) = gz [ e xl < ) fterde.
(V] < L(B) = (V] < )+ f < RY) = (f € PR : supnf) © Ba(0)).

e The spectrum of an operator, L, is denoted spec(L).

e Let H(t) be a self-adjoint time-dependent Hamiltonian. For the Schrédinger equation i), =
H(t)y, ¥(0) = 1o, we denote the unitary flow map by U(t), i.e. ¥(t) = U(t)i. If t — H(t)
is Tper periodic, then we denote the monodromy operator by M = U(Tpe). For the right
hand side of (1.4), we denote the flow by U¢ and the monodromy by M¢®.

e For a unitary operator U on a Hilbert space H, the spectral projection-valued measure II on
the Borel o-algebra of the unit circle S satisfies

U = szﬂ(z).

S1

e The Sobolev norm | - | g+ (r2) for s € N is defined as HfH%{S(RQ) = ‘ ‘Z ||aafH%2(R2) ‘
a|<s
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2 Honeycomb potentials and Dirac points

We give a brief review of spectral theory of periodic elliptic operators, and Dirac points for
honeycomb Schrodinger operators [15, 42, 55, 21].

2.1 Review of Floquet-Bloch theory

Consistent with the notation of (1.4), we set:
H° = -A+V(x), acting on L*(R?),

where V is real-valued and periodic with respect a lattice A = Zv; @ Zvy < R?. The associated
dual lattice is A* = Zky @ Zks and Ky, - v, = 270p,m; see (1.5), (1.6).

Let Q = R2 denote a fundamental cell for R2 /A and B, the Brillouin zone, denote the funda-
mental cell for RZ/A. For each quasi-momentum (crystal momentum) k € B, denote by Li the
space of k-pseudoperiodic functions

L? = {ue L? (Rz) such that u(z +v) = eik'vu(ﬂﬂ) , VEA}.

loc

The space L?(R?) admits the fiber decomposition L?(R?) = Sf L} dk. Since H° is translation
invariant with respect to A, it has the fiber decomposition: H® = S? H dk, where HY = HOlLi’

the self-adjoint operator HY acting in L, has compact resolvent and therefore has an infinite
sequence of finite multiplicity real eigenvalues, tending to infinity,

Ei(k) < E>(k) <...Ep(k) <...,



listed with multiplicity, with corresponding eigenmodes ®;(z;k) € Li, known as Bloch modes,
which satisfy
HO®y(2;k) = Eyp(k)®p(z;k), Dp(-5k) € Lif .

The maps k € B — Ej(k) are Lipschitz continuous. The two-dimensional surfaces Ej(k) are called
the dispersion surfaces H°. We refer to the collection of all pairs (E,(k), ®,(z,k)), where b > 1
and k € B, as the band structure of H°.

2.2 Honeycomb lattice potentials and Dirac points

Here and henceforth, A denotes the equilateral triangular lattice in R?; see (1.5). A sufficiently reg-
ular function V' is a honeycomb potential if V' is real-valued, A-periodic, even and 27/3-rotationally
invariant; see [21, Definition 2.1]:

[C,V(x)]=0, [P,V(x)]=0, [R,V(x)]=0,  where (2.1a)

Clfl(x) = f(x), PLEx)=f(-x), R[f]x)=f(E%) . (2.1b)

An example of a honeycomb potential is a two dimensional infinite array of “atomic potential

wells” centered on the vertices of a triangular or honeycomb lattice; see [21, Section 2.3]. The
honeycomb case corresponds to the single electron model of graphene; see Figure 2.

A Dirac point of H® is a quasi-momentum / energy pair, (kp, Ep), where two consecutive

dispersion surfaces touch in a right circular cone; there exists vp > 0 such that, as |k — kp| — 0,

Ei(k)=EDiUD|k—kD|~(1+O|k—kD|) . (22)

Associated with a Dirac point, (kp, Ep), is an eigenvalue of multiplicity two of H® acting in LiD.

In [21] (see also [19, 20, 44]) it is proved that for generic honeycomb potentials, the band
structure of H® contains Dirac points, (kp, Ep), where kp varies over the six vertices of the
Brillouin zone B, the so-called high symmetry quasi-momenta. There are exactly two independent
high symmetry quasi-momenta, designated K and K'; a choice with K’ = —K is shown in Figure 2.

Figure 2: Left: Part of the honeycomb lattice in R2. Indicated are basis vectors vy and vy of
the equilateral triangular lattice, A. An example of a honeycomb potential (Section 2.2) is one
consisting of radially symmetric wells centered at vertices of the honeycomb [21]. Right: Brillouin
zone B, high-symmetry points K and K’ and basis vectors, ki and ks, of dual lattice A*.

N.B. Throughout this paper we will focus on a Dirac point at (kp, Ep) = (K, Ep). The results
for the Dirac point (K', Ep) can be derived using symmetries.



Corresponding to a Dirac point at (kp, Ep) = (K, Ep), is a two-dimensional eigenspace L3 —
eigenspace of HY:
nullspaceys (H° — Epl) = {®i(x), ®2(x)}.

Using honeycomb symmetries, a basis can be chosen such that

R[(I)l] = T(I)l, R[(I)Q:I = ?@2 and (I)Q(X) = (I)l(—X). (23)

Here, 1,7 and 7 denote the cubic roots of unity. We next record inner product relations, conse-
quences of (2.3), which play an important role in the derivation of effective Dirac dynamics; see
Section 8 and [22].

Proposition 2.1. [21, Prop. 4.1]

0
<¢1,V®1>L?( = <¢2,V®2>L?( = (0>, a=1,2 (24)

and

7

(®1,~2iV )5 = v (1> (2.5)

The constant, vp = %(1, —1){ D, —22’V<I>2>L%(, is known as the Dirac velocity or Fermi velocity.

By an appropriate choice of phase for ®1, vp can be chosen to be non-negative and has been proved
to be generically nonzero [19, 21].

Dirac points are robust in the following sense [21, 44]: the conical intersection of dispersion
surfaces persists under sufficiently small perturbations of H° which are A— periodic and invariant
under P o C. Under such perturbations, a Dirac cone may deform to an elliptical cone and the
cone vertex may perturb away from a vertex of B. On the other hand, a small perturbation which
breaks either P or C symmetry leads to a local gap opening, about (K, Ep), i.e. for k sufficiently
near the vertices of B.

3 Effective dynamics for Dirac wave-packets

A natural class of initial conditions for (1.1) are those whose Floquet-Bloch decomposition is
concentrated in a small neighborhood of a Dirac point. Indeed, this is the class of excitations
for which the remarkable properties of graphene and its engineered analogues have been widely
explored, theoretically and experimentally [49]. A way to construct such data is through a slow
and spatially decaying modulation of the degenerate subspace, associated with a Dirac point. The
spectrally concentration of such functions about the Dirac point is discussed in Section 4.

We define a Dirac wave-packet, associated with the Dirac point (K, Ep) to be a two-scale
function of the form:

wp(X) =€ Z a;0(ex)®;(z) = eap(ex) ' ®(x; K), where (3.1)

ap(X) = (Z;SE?D B(x; K) = @;gg) (3.2)

Here, {®1(x), ®2(x)} denotes the distinguished basis associated with the Dirac point, introduced
in Section 2.2 and ag € H*(R?;C?) for s > 0. The parameter ¢ > 0 is taken to be small and the
prefactor of € in (3.1) ensures that [1g,,[l2 ~ [lao]2 is of order 1.

A key part of our analysis is the observation that the evolution of Dirac wave packet initial
data (3.1), under the Schrodinger equation (1.4) is well-approximated, on very long time scales,
by the two-scale function ea(ex, et) T ®(x,kp), where the envelope functions a(X,T) = (a1, )"



evolve according to an effective (homogenized) magnetic Dirac Hamiltonian ID ,(T) with magnetic
potential A(T):

DA(T) = UD[ (1@)(1 + Al(T)> o1 — <1 Ox, + A2(T)> 02] . (3.3)

Here, 01 and o9 denote standard Pauli matrices; see (1.7).

Remark 3.1. Effective magnetic Dirac operators have been derived to explain phenomena in other
settings; see, for example, the recent work on strained photonic crystals and Landau levels, [31],
and references cited therein.

‘We shall write
a(T) = Upi(T)ay or a(T, X) = Upir[ao](X,T)

for the solution of the initial value problem (IVP)
iora(T, X) = D 4(T)a(T, X), a(0,X) = ap(X) € H*(R*;C?), s=0. (3.4)

Since I 4(T) is self-adjoint, the Dirac evolution (3.4) is unitary in L?(R%;C?). Furthermore, since
I 4(T) commutes with spatial translations we have, for any s > 0 it is also unitary in H2(R?;C?):

HO[(T)HHS(Rz;(Cz) = ||a0HHS(R2;C2)7 fOI‘ all T'. (35)

Theorem 3.2 (Effective magnetic Dirac dynamics). There exists eg > 0 such that for all0 < e <
€0, the following holds: Consider (1.4), the Schrodinger equation with time periodic Hamiltonian
He(t), and initial data, 5, of Dirac wave packet type (3.1) with g € H*(R?*; C?). Fix constants
To>0and0 < p<1.

Then, there exists a constant C, which depends on p, Ty, and |ao| g+ r2,c2), such that

HUE[ £ 1(t%) — eUpi[ao](ex, et) T B(x: kD)e_iEDt‘ <Ce?,  0<i<Tpe P (36)

L2(R2)

where 1y — U (t)hy denotes the solution of Schridinger equation (1.4) with 1(0,z) = 1q.

To prove Theorem 3.2 we first derive an effective (homogenized) Dirac equation, via a formal
multiple scale expansion, which we expect captures the dynamics on the desired long time-scale,
and we then estimate the error in this approximation. The details are presented in Section 8.

Since the effective dynamics given in Theorem 3.2 are valid, with small error, on a time scale
much larger than the period of temporal forcing ~ 7!, we can approximate the monodromy
operator, M¢ = U¢(¢™1T}e) for the Schrédinger evolution (1.4) applied to Dirac wave packets
using the monodromy operator, Mp;, = Upir(Tper) of the effective Dirac dynamics.

Corollary 3.3 (Mp;, as an approximation of M¢). Assume ag € H*(R?;C?). Then for0 < e < g
sufficiently small and wave-packet data vy,

A

(s, () — (M5, (x) Ce,

L2(R3)

where N _
(M5u5,) () = e(Mpirao)(ex)T @ () B0 Toer/o), (3.7)

The constant, C, depends on the H*(R?;C%) norm of ag and is independent of c.

Remark 3.4. In both Theorem 3.2 and Corollary 3.3, it is possible to relax the assumption ag € H%.
We do not pursue this here.
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3.1 Floquet-multiplier / quasi-energy gap for effective Dirac dynamics

In this section we show that on a subspace of band-limited L?(R?;C?) functions, the monodromy
operator for the effective dynamics, Mp;,, has a Floquet-multiplier gap on the unit circle S*. Our
main result, Theorem 5.1, shows that this property extends to an effective gap for the monodromy
operator M¢ associated with the Schrédinger evolution (1.4).

To facilitate explicit computations, we work with the specific periodic forcing [1, 54]

A(T) = R(cos(wT),sin(wT)). (3.8)

First note that Up;.(t), the Dirac flow of (3.4), is unitary on L?(R?). Therefore the spectrum of
Mp;, lies on the unit circle S'. Furthermore, ID 4 (T) is invariant under arbitrary spatial transla-
tions, so we can solve (3.4) via the Fourier transform. Let &;(7,&) denote the Fourier transform
on R? of (T, X). Then, for each & = (&, &) € R?, &(T,€) satisfies the system of periodic ODEs:

i0ra(T,€) = D(T;€)a(T,€),  where

D(T;€) = vp (&1 + Ai(T)) 01 — (&2 + A2(T)) 02)

. 0 & + 1€ + ReT
= up (51 — iy + Re T 0 (3.9)
Let Upi(T,€) : C2 — C2 denote the fundamental matrix for (3.9) with Upi,(0,€) = Ioxs. Then,
1 ; A N
(Ubieco)(X.T) = 15 | e Uon(T.€)col€)d (3.10)
(271') R2
and hence the monodromy operator
(Mp300)(X) = G55 | €€ Ui (Tyer )0 (€)dE (3.11)
(271') R2

Since trace(]b(T;{)) =0, then Upir(Tper,€) has two eigenvalues (Floquet multipliers), Ay (€) and
A_(€), which satisfy A, (€)A_(€) = 1 [9]. By unitarity of Up;.(T,€), they lie on the unit circle and
satisfy: A_(&) = A\ (§). We set

A (€) = exp(ip(@)Tper) and A (§) = exp(—ip(€) Tper)- (3.12)

Since p(§)Tper is defined modulo 27 we take p(€)Tper € [0,27). Choose an orthonormal set of
cigenvectors {vy (£),v_(€)} of Upir(Tper, €):

UDir(Tperag)vJ_r (5) = eXp(iiM(g)Tper)vi (6) . (313)
It follows that . _
Uir(Tper, §)0(€) = Y (0r(€), Go(€))ga €@ Toer, (£). (3.14)
r=+

Since the effective Dirac equation (3.4) is spatially translation invariant, the unitary evolution
Upi(T) acts invariantly on subspaces of compact Fourier support. For

Mp. 4, = Mpjy, defined by (3.4), acting in the invariant subspace x(|V| < do) L*(R?), (3.15)

the Hilbert space of L? functions whose Fourier transform vanishes for |£] > dy; see Section 4. We
next prove the following spectral gap result for Mp;, 4,; See upper panel in Figure 3.

Proposition 3.5. There exist constants dy > 0 and § = §(dp), both depending on the forcing A(T),
such that Mpiy 4, has a spectral gap on the unit circle;

spec(Mp,a,) 0 {e"” : [y < §Tper} = & -

11



Remark 3.6. The band-limiting condition, dy > 0, of Proposition 3.5 is necessary to ensure a
gap in the spectrum of Mp;.. Indeed, in Section 10 we prove, using WKB asymptotics, that the
monodromy operator of D(T’;&) is well-approximated by exp (i (vp(01&1 — 02€a) Tper), an effective
operator, whose eigenvalues exp(+ivp |€|Tper) and that

L fexp (Zip(€) Tper)} =25 ST (3.16)
|€]<do

It follows that spec(Mp;,) = S*; there are no gaps in spec(Mp;,). That (3.16) occurs, has previ-
ously noted in numerical simulations, see e.g., [29, 36, 43].

From a modeling perspective, the regime of arbitrarily high momenta & in aq is outside the
regime of validity of the effective Dirac equation (3.4), which models the dynamics of slowly-varying
envelope modulations of Bloch modes; see (3.1).

Remark 3.7. Our main result, Theorem 5.1, applies to all periodic forcing functions, A(T), for
which Mpirac,d, has a spectral gap for some dy > 0. The particular choice (3.8) enables very
explicit calculations. By continuity arguments, small (time-periodic) perturbations of (3.8) will
also have such a spectral gap.

Proof of Proposition 3.5. The proof has two steps. We first show that for £ = 0, we have u(0) # 0
and therefore the Floquet exponents are distinct. Then, by continuity, for small |£|, |u(€)] is
bounded away from zero.

Consider first £ = 0. Then (3.9) reduces to

A A 0 vpR T\ | o .
i076/(0,T) = oo R e—T &(0,T) = (0, T)a(0,T) . (3.17)
Defining ‘ _
a1 (T)=a1(T;0)e= T, ay(T) = ao(T;0)e 57T, (3.18)

we obtain the constant coeflicient system
w
iora(T) = ( > fp >a(T) =L a(T). (3.19)

Denote by z4(0) and v4(0) the eigenvalues and corresponding eigenvectors of L. One verifies:

1
24(0) = iiq/uﬂ + 4R?v3)

Let V denote the matrix whose columns are v (0) and v_(0). Then,

. ioT ) ) —iz4 (0)T
Upir(T,0) = (62 ’ ) e where e T =V (e X —iz?(O)T) v

0 e~ 3wT 0 e

For £ = 0, we then have Floquet solutions
U+(0)67iz+(0)T6%’wT _ U+(0)67i(z+(0)7%)T % eiwT
,Ui(o)e—iz,(O)Te—%wT _ U7<O)ei(z+(0)—%)T « e—wT7
where we used the relation z;(0) = —z_(0). Therefore, we have UDir(Tpcr,O)vi (0) = A£(0)vg

where A4 (0) = eT#(0) are the distinct (complex conjugate) Floquet multipliers, with correspond-
ing Floquet exponents

1y (0) = + <z+(0) - %) - i% («/oﬂ +4p203 — w) . (3.20)
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By continuity, for || < dg, where dy is chosen sufficiently small, |u4(€)| = co, where ¢o > 0
depends on dy. It follows that there exists C; > 0, depending on ¢y and djy, such that

—1

‘ (UDir(Tper,f) - /\12x2>

sup
[€1<do

N

C2xC2

for all A varying in an open arc on the unit circle, which contains 1. Finally, since

_ 1 iE- 2 -1
(Mpir.dy — Max2) tag = e f|5<d e X (UDir(Tpenf) - /\I2x2) Go(€)d€,
xdao

it follows that this open arc is in the resolvent set of Mpir 4, -

4 Band-limited Dirac wave-packets

In Theorem 3.2 we proved that the evolution of Dirac wave-packets, 1 = cag(ex)” ®(x) under the
Schrodinger equation, (1.4), is given by an effective magnetic Dirac equation. In Proposition 3.5
we showed that the effective Dirac dynamics, when restricted to a suitable invariant subspace of
band-limited functions, x(|V| < do)L?(R?), has a Floquet-multiplier (and therefore) quasi-energy
gap. This motivates the following:

Definition 4.1 (Band-limited Dirac wave-packets). Fix ,dy > 0 and let kp € {K,K’'}. We say
that ¢ € BL(dy,e) = BL(dy,e;kp) = L?*(R?), the subspace of band-limited Dirac wave packets
with parameters dy and e, if there exists a. € L?(R) with supp (d.) < {€ : |€] < do} such that

Y(x) = ac(ex) " ®(x; kp).
Here, & = F(a) is the Fourier transform of a. 2

Band-limited wave-packets are a good physical model of the types of excitations considered
by physicists, when exploring phenomena related to Dirac points of the unperturbed structure. A
mathematically more intrinsic notion would be states in L?(R?), comprised only of Floquet-Bloch
modes of H® = —A + V with energies within e distance from Ep. The next result shows that
these states are Dirac wave-packets, up to a high-order correction. It is convenient to require
the following property of the bulk (unforced) Hamiltonian, HY; see, for example, [18, 14] where a
no-fold condition plays a role in the construction of edge states.

Definition 4.2 (No-fold condition). We say that the Hamiltonian H° satisfies the no-fold condi-
tion if there exist constants dg, 1 > 0, such that for all 0 < § < §; the following holds: if k € B is
such [k —kp| > ¢ for both kp € {K,K'}, then Proj . (|H° — Ep| < d) = 0.

The no-fold condition asserts that the bands which touch conically at a (Ep, kp) (and therefore
all other high symmetry quasi-momenta at energy Ep) do not attain the energy Ep, outside a
sufficiently small neighborhood of the high-symmetry quasi-momenta. Physically, this means that
the bulk structure is semi-metallic at (Ep,kp). Although, in general, the no-fold condition may
not hold, it has been proved to hold for graphene-like potentials in the strong binding regime;
see [20]. Furthermore, in applications bulk structures can be engineered to satisfy this condition.
For an example, see [31].

Proposition 4.3. Suppose the bulk Hamiltonian, H°, satisfies the no-fold condition. 3 There
exists g > 0 such that for all 0 < & < &g, the following holds: for every f € L?(R?) there are
band-limited Dirac wave-packets, u¥[f] € BL(do, e; K) and u¥'[f] € BL(do,&; K'), such that

Proj 2 e (|H® — Ep| <€) f = uf[f] + u[f]+ O (*| flr2e2)) - (4.1)

2Elsewhere in this article we use the scaling ¥(x) = ea(ex) T ®(x;kp) to guarantee that |i|l2 ~ |a]2. Such ¥
satisfy the requirements of BL(dp, ), with a replaced by ea.

3If HO does not satisfy the no-fold condition, then the conclusion of Proposition 4.3 holds with
ProjLz(R2>(|H0 — Ep| < ¢) replaced by Sﬁika& PI‘Olez((‘HO — Ep| <€) with ¢ sufficiently small.

13



Conversely, let u € BL(do, ; kp), where kp € {K,K'}. Then,

HPI'OjLz(RQ)(|HO - ED| > E)U‘ < C€3HUHL2(R2). (42)

L2(R?)

In order to transfer the spectral gap information for the effective evolution (Section 3.1) to the
Schrodinger evolution, (1.4), for which BL(dy, €) is not invariant, we introduce a decomposition of
L?(R?) into a direct sum of BL(dp,¢) and its orthogonal complement.

Proposition 4.4. For any fited ¢ > 0 which is sufficiently small, L>(R?) has the orthogonal

decomposition
L*(R?) = BL(do, ) ®BL(do, )*.

Proof of Proposition 4.4. It suffices to prove that BL(dg, ¢) is a closed subspace of L?(R?). Let
a) (e)® — wu in L?*(R?). We prove that {a,} is a Cauchy sequence in L?(R%;C?). This is a
consequence of the following averaging lemma, which we prove in Section 7.

Lemma 4.5 (Averaging Lemma). Let ¢ € L*(R?) such that supp §(£) < {£€ : |€] < d} for some
d >0, and let p € L?>(Q) be A-periodic. Then, there exists g which depends d, such that for andy

fixred 0 < € < g9,
Jp(x)q(sx) dx =2 ‘[p(x) dx | - (Rf ¢(X)dX | . (4.3)
Q 2

RZ
Now apply Lemma 4.5 with

¢j,1(X) = (@jn — ajm) (X)(un — a,m)(X) and  pji(x) = @;(x)®i(x), 4, l=1,2.

Since the set {®1,®5} is orthonormal in L?(Q), for all £ > 0 sufficiently small:

| @ue0 = anex)T a0 ix - 3 f pia ([J Ga(X) dX

§i=1,2
2 S b quz ) dx
7,0=1,2

= 5_2Han - am”2~

Since the left hand side tends to zero as n and m tend to infinity, so does the right hand side.
Therefore, {a,} is Cauchy and converges in L?*(R?;C?) to some o, and therefore the sequence
{ea) (¢ )‘b} converges to e (¢-)® . Finally, we claim that supp(as) < {|€| < do}. Indeed, since
{a,} converges in L2, by the Plancherel identity, so does {a,,} and hence &, (£) converges almost
everywhere, up to a subsequence. Furthermore, for all n we have &, () = 0 for |£] > dg, so we
conclude G, (§) = 0 for €| > dy. This concludes the proof of Proposition 4.4 O

5 Main result; effective gap

By Proposition 3.5 the monodromy operator, Mp;, 4,, associated with the effective Dirac evolution
acting in x(|V| < do)L?, has a spectral gap on the unit circle, the arc {e : |y| < §Tper}. For any
g such that 0 < g < g consider, via Proposition 3.3 for approximating M€, the closed arc on the
unit circle:

{e™™ | veIy, I=1(9) = [(c"Ep — 9)Tper. (67 'Ep + 9)Tper] - (5.1)

We expect this arc to be filled with spectrum of M¢; see Remark 3.6. Let II¢ denote the spectral
measure associated with the unitary operator M¢

Me® = J z dII*(2); (5.2)
zespec(Me)c St
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spec(Mp.q4,) gap of spec(Mp q,) spec(Mp,4,)

— \ ——
— \ —
—p(0)Tper 0 +1(0)Tper
BL(dp,¢) spec(],\\/fl%) gap of spec(]T/fB) BL(dp,¢) spec(MB)
|
EDgilTpcr

Figure 3: Main results: Floquet spectra and gaps for the operators Mp 4, (top, see (3.15)),
M%, (middle, see (3.7)), compared to the effective gap of the monodromy M¢ of the Schrédinger
dynamics (1.4) (bottom), see more details in Fig. 4.

see Appendix A and, for example, [32, 61] . The nature of II¢ is largely an open problem but it
is expected that the arc (5.1) is contained in its support. Our main result concerns the nature
of any L? states formed via superposition of modes with quasi-energies in Z. No assumptions are
made on the projection valued measure z — II°(z).

Let Z(g) denote the quasi-energy gap of Mpir,d,:

Z(3) = (Epe™" + [=§,7]) Tper; see (5.1).

Theorem 5.1. Consider the parametrically forced Schrédinger equation (1.4) with periodic forcing
A(T) given by (3.8). Fiz 0 < g < g, so that Z(g) < Z(g). There exist constants eq, C1, and Cs,
such that if |e| < g9 and ' = Z(g) is an interval such that |I'| < C1(§ — g), and if u € L*(R?) is
such that

E({e™ |vel'u=u, u#0,

then
(T = Projpr,(ay,¢))ull 22y = C2(d — 9)|ull L2 r2).-
Z(g)
T
:g } .................................... ; .................. /_/H___~—‘:
_nger _nger EDf‘:ilTper +nger +§Tper

Figure 4: Effective gap result, Theorem 5.1, in terms of Floquet exponents.

Remark 5.2. The case of a proper spectral gap, i.e., where the range of II*({e~™" | v e Z}is {0},
is certainly covered by Theorem 5.1. Indeed, if there is an arc in S with no spectrum, then by
our definitions it is also an “effective gap” .
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Remark 5.3. As conjectured earlier, we expect the spectrum of the monodromy operator to be
all of S'. Concerning the spectral measure, we do not expect it to have a pure point component.
Indeed, if z € S is an L?(R?) eigenvalue of M€ if and only if z is an L? eigenvalue of M¢ for
a set of quasi-momentum k € B with positive Lebesgue measure [55, Theorem XIII.85]. This is
possible, for example, if the Hamiltonian or Floquet Hamiltonian (1.2) to have “flat quasi-energy
bands”, which is considered highly unlikely for (1.4). An alternative, more physical argument, is
to observe that if indeed spec(M¢) = S, then point spectrum would correspond to embedded
eigenvalues in the continuous spectrum. For generic potentials V' and forcings A one would expect
such states to couple to the continuum be, at best, long lived (metastable) scattering resonance
modes of finite lifetime [67].

Theorem 5.1 gives quantitative information on the effective gap; any state supported in the
spectral subspace of M€ associated with interval Z (see (5.1)) cannot be arbitrarily concentrated
in BL(dp, €). In particular, such a state must contain a non-negligible projection onto BL(dp, ).
While the BL(dp, €) condition may seem highly restrictive, the fact that Theorem 5.1 applies even
for modes with some BL(dy,e)* parts mean that the mode in question can contain:

1. Modulations of higher-order Bloch modes at kp, i.e., ®3, P4 etc.
2. Components of quasi-momentum k far away from kp.

3. Modulations (ex)T®(z) with § € L2(R2;C2) such that 8 contains high Fourier-frequencies,
ie., Bex(IV] > do)L2(R?; C2).

6 Proof of Theorem 5.1

Fix 0 < g < g, Z(9) < Z(g)- Let g, C1, and Cs be constants to be determined. Let |¢] < gg
and Z' < Z(g) be such that |Z’| < C1(§ — g). Finally, let u € L?*(R?), u # 0 and such that
E({e ™ |ve I'})u = u.

By the orthogonal decomposition of L?(R?) in Proposition 4.4, we may decompose u as:

u(x) = ug,, (x) + r(x), where (6.1)
us,, € BL(do,e), reBL(d,e)". (6.2)

To prove Theorem 5.1, we need to bound |r| 22y from below. The monodromy operator of the
effective Dirac equation, Mpir q,, gives rise to an approximation to the monodromy operator for

the Schrédinger equations (1.4), ]\7]‘3 (defined in (3.7)). As defined, ]\7]% only acts on the space
BL(dy, €). However we may extend it to all L?(R?):

Lemma 6.1. Mg extends to all L*>(R?) = BL(dy,¢) ® BL(do,€)* as a unitary operator.

Proof. Recall that we have defined MB on the closed subspace BL(dy,¢). For r € BL(dg,&)* we
define Mgr = r. By the orthogonal decomposition of L?(R?) (Proposition 4.4) and linearity, the
extended operator M5 is unitary on all L?(R?). O

By the effective dynamics approximation result, Corollary 3.3, we have
I(M® — Mp)ugp | r2ze) < Ce, . (6.3)
where C is independent of £.* Using that Ugp = U — T, 1\757“ =r, and (6.3), we have

[(M* = Mp)ul L2 re) < (M7 = Mp)ug, |2y + (M — Mp)r| 22

<
< Ce+ 2H7'||L2(R2) (6.4)

4The upper bound in Corollary 3.3 generally depends on [coll gra w2y However, for any u € x(|V| < do)L?(R?)
with |ul|p2(gzy = 1, then |[u| g4 g2y are uniformly bounded from above, and therefore we omit the explicit depen-
dence on this norm.
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We next obtain, for e sufficiently small, a lower bound on [(M® — MB)U||L2(R2). Two key steps
are required for this lower bound:

1. Proposition 6.2: Using that u is spectrally concentrated on Z’, with respect the measure
IT¢, we prove that for vy € 7'

Meu= e u+p, where [l < |7 Jul ).
2. Lower bound on |[(e=%0 — Mg)ui)pHLz(Rz) : This is proved using scale separation, the
spectral measure of Mpj;, and a multiscale averaging lemma (Lemma 4.5).

Since w is an approximate eigenvector of M (step 1.), the latter lower bound and (6.4) together
provide a lower bound on 7 € BL(dp, €)™, defined in (6.2), which will imply Theorem 5.1.

Proposition 6.2. Let 7' < Z(g) < Z(g) as above. Choose vy to be the midpoint of T'. Then,
Mfu=e "u+p, where lollL2e) < 1Z'[ - Jull 2 (ge).-

Proof. Since II°({e=® | v € I'})u = u, we have using the spectral representation of the unitary
operator M¢ (Appendix A):

Mfu = J M* dlI* (2)u = Je‘i” dIT (e= " )u,
{z=e—"wel'} T
= Je*i’jo dII* (e™™ )u + J(e*i” — e M) dITf (e7 ™ )u
z T
=e "oy +p, where p= J(e*i” — e 0) dIIf (e )u.
II
Therefore,
2
2 . —iv — iU —iv
[0z ey = H f (7 —em™) dI (el , oo
I/
—iv —ivg |2 —iv
= f}e —e ™" dIIf (e7 ™ Ju, uy < [T/ - ||UH2L2(R2) .
I/
This completes the proof of Proposition 6.2. O

Proposition 6.2 implies

=Tl [ (Tl 0
The upper bound (6.4) and the lower bound (6.5) gives:
(e =M ), o = 1T Julzeqeey < O+ 2l eqeey (6.6)

We now require a lower bound on [(e="°] — Mﬁ)uHLz(Rz) for all ¢ sufficiently small. Since

u = ug, + 7 and since ]\71% is the identity on BL(dp,e)* (Lemma 6.1) we have, by the triangle
inequality,

H (e*“’OI - MB) u . > H (e*“’(’f - MIED) Uz L2®?) 722 (Re) (6.7)
which together with (6.6) yields:
H (e—iw - Mg) Uap| oy € O+ By + 71 Pl (6.8)

Thus we now seek a lower bound for [[(e=®0] — Mﬁ)uwaLZ(Rz).
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Proposition 6.3. For all € > 0 sufficiently small,

(e = M),

1 -
gy = (G714 0= 9T ) ol 2 (69

L2(R?)
Before proving Proposition 6.3 we use it to conclude the proof of Theorem 5.1. By (6.9) and
(6.8) we have
1 ! ~ /
§|I |+ (3= 9)Tper ) |0l L2 geic2y < Ce + 37| L2 eey + |Z'] - ] 2 e2)
< Ce+ 3|rfpaey + 1Z'] - (Jug, |l + Ir)
= Ce+3Irlz2@e) + 1Z'] - (ool + 7],

where the latter equality holds since |[ug,,|z2®2) = |0 z2(®2,c2), for € sufficiently small, by aver-
aging Lemma 4.5. Therefore,

1 ~
<—2|I/| +(9— Q)Tper) laol L2 Re;c2) < Ce+ (3 + [Z']) 7] 2 (r2)

Finally, take |Z'| < (§ — g)Tper. By taking e sufficiently small we have

C(G—9) < |r|r2mz) = [(I — Projgry,e)) vl 2 ®2)-

This completes the proof of Theorem 5.1, with the exception of Proposition 6.3, which we now
establish.

Proof of Proposition 6.5. ug,, € BL(do,¢e) we have (Definition 4.1)

We(X) = cag(ex)®(x;kp)T with supp(do) < {€] < do}.

In terms of the Fourier transform of a and the eigenbasis {v, (€),v_(€)} for C2, see (3.13), we
have

Q@ :L e X (v Q 2V
) = Gp X J ¢ O O,

and hence

9

ey (x) = e 0 (=) (g & ) ! X .
() [ % L@o (r(€), o (€)x vr(€)E| @) (6.10)

By (3.10) and (3.14)

Mpir,do0 = Upir(Tper, X)[0](X)

and therefore

(Ri515,) (&) = (Mo o) (ex)] e 20 Bor o)

- ﬁ 2 L O 0 (6), 0 (€)) s €T (€) d B0 T ]T@(x).
r=+ <do
(6.12)

Subtracting (6.12) and (6.10) yields the two-scale expression

(e7™1 — Mp)uS,,(x) = 7°(ex) ®(x),
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T = 5o J&Isd | 2, (o). a0(E)cs (7o = em B O o) (6) | de

r=

We next claim that for all e sufficiently small:

wp

(e — M)

L2(R?) H’YEH%Z(Rz;W) ) (6.13)

and therefore the desired lower bound on the norm of (e=®0 — Mg)ufvp boils down to a lower
bound on the norm of v¢(X). To prove (6.13) we apply averaging Lemma 4.5 and use the the
orthonormality of ®;,®, € L?. Specifically, we have

9 2
e = MR, | = [ 0T ey = | 2| 25 (02(x)| dx
g2 =1
2
= fﬁﬁ(gx) ®,(x) FE(ex) Bi(@) dx
iG=1g,

2 2
Z iY@ @i )2 = Z Vi) m2)0i g

i,j=1 1,j=1

= > lZeme) = V1o rece) -

This completes the proof of (6.13), and thus the desired lower bound reduces to a lower bound on
the norm of ¢ (X).
By the (vector) Plancherel Theorem and using the orthonormality of {v (§),v_(§)}:
dg

— iV —1 —l_y er
”75“%2(1&2;@2) :J H Z (v (€ >(C2 ( o _ o~ i(Epe (€ Tp )Ur(f) I

- | \z@r ><< e [ g
§|<d0 r=+

e~ o _ o—i(Epe” '—rp(€)) Tper

2

> min min
r== |§|<do

Ha0||2LQ(]R2;<C2)

By Lemma 4.5, for € sufficiently small: [[ug [ z2®2) = [aolL2®2;c2), and so

. . i . 1
> min min ivo _ o—i(Epe” " —rpu(€))Tper

L2(R?) =% ¢]<do

wP € ‘OéOHL2(R2;(C2).

(e — M)

Now vy is centered in Z' < Z(g) < Z(g), see Fig. 4. Hence,

‘e—iuo _ —1(ED571+M(5)) per

1 -
§|I/‘ + (g - g)TpeN

and therefore, for € > 0 sufficiently small we obtain the lower bound (6.9). This completes the
proof of Proposition 6.3. O
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7 Proof of the Homogenization Lemma 4.5

Since the fundamental cell of the lattice 2 tiles the plane, we partition R? with respect to the
lattice, i.e., R? = |J_ .2 (€ + m). Therefore

[ pxaexax = 3 | patex) i

R2 meAQ+m
(change of variables x =y + m) = Z JP(Y)Q(S(Y +m)) dy
meA Q

j p(y) [2 gy + m>>] dy.  (71)

meA

Using a generalization of Poisson summation formula for general lattices [59], then

D aly +m) = ) gn)e*m v,

meA neA

where ¢ is the Fourier transform of ¢. Since in two space dimensions we have that q/(a\)(f) =
e72G(e71€), then

2 alely +m) = 3,7 (Z) e

Now, since ¢ is band-limited, then for sufficiently small € all of the terms in the last sum vanish
but n = (0,0). Therefore,

> alely +m)) = =24(0) = = [ qx)ax.

meA R2

which when substituted into (7.1), yields

fp(X)q(&‘X) dx = = fp(y) e? Jq(X) dx | dy

R2 Q R2
e J ply) dy ({J a(x)dx |

8 Derivation and time-scale of validity of effective Dirac
dynamics : Proof of Theorem 3.2

I

8.1 Multiple-scales expansion

We first derive the Dirac equation (3.4) using formal multiple scales expansion, and in Section
8.2 we prove Prop. 3.2. We introduce slow temporal and spatial scales: T = et and X = ex, and
formally view 1 as a function of independent fast and slow variables: ¥ = U(z, X,¢,T). Hence,
0y — Op + €01, Vx — Vx + eVx and (1.4) may be rewritten as:

i(0p—H)VU = eV +c*H, 0, (8.1)
where

Hy = — (id7 + 2Vx - Vx + 21A(T) - Vy) and Hy = — (Ax + 26A(T) - V). (8.2)
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The procedure we describe will yield ¥(z, X, ¢, T) such that

U(t,T,x,X) is an approximate solution of (1.4).
T=et, X=ex

We seek a formal expansion for a solution to (8.1), ¥(¢,T,x, X), consisting of a leading multiscale
part plus a correction :

U =Wy (x,X,t,T) + eV (x, X,t,T) + *Wy(x, X, t,T) + n°(t, x) . (8.3)

Substitution of (8.3) into (8.1) yields the hierarchy of equations:

O(EO) : (Zat — HO)\I/(] = 0; \I/(O,X, O,X) = Ol()’l(X)(I)l + a(]’Q(X)¢2 (84)
O(er) : (i0; — HO)Uy = HWy; U,(0,%,0,X) =0 (8.5)
O(e?) : (i0; — HO)Uy = H1 Uy + HyWg;  W5(0,%,0,X) =0 (8.6)

corrector : (i0, — H® — 2icA(et) - Vi) 1°(t,x) = 3F°(t,x); 7(0,x) =0, (8.7)
where

FE(t,%) = (HyWa + HyW) (T, x, X)| + 2 (HaW) (1,7, X) :
T=et,X=ex T=et,X=ex

(8.8)

Since we are looking to construct solutions of wave-packet type which are spectrally localized at
kp = K we shall seek an expansion where, for j = 0,1, 2,

x — U,(t,x,X,T) is K— pseudo-periodic with respect to x and decaying to zero as | X| — o0.

We view equations (8.4)-(8.6) as equations in the space L%, depending on parameters 7' and X.
The variations with respect to T" and X are determined via the solvability conditions of this
hierarchy of equations.

We first consider (8.4). Since the L% nullspace of Epl — HY is given by span{®;, ®5}, we have:

Uy = e Ep? i a; (X, T) ®;(z), (8.9)

Jj=1

where a1 (X, T) and ag(X,T) are decaying functions of X to be determined. The pre-factor of €
in (8.9) is inserted so that the L?(R%) norm is O(1).
Turning to first order in ¢, equation (8.5), since ¥y is oscillates with frequency Ep, it is

convenient to define: ) 5
Uy (t,T,x,X) = e Ert ¥ (T,x,X).

Substitution into (8.5) yields

2 2
(EDI—HO )\ifl = = N oy (X, T) &5 —i Y Vx aj(X,T) - (~2i) Vs,
Jj=1 j=1
2
+ 2 ai(X,T) A(T) - (=20)Vx®; . (8.10)
j=1

A necessary condition for the solvability of (8.10) for ¥, € L% is that the right hand side of (8.10)
be L%— orthogonal to ®; and ®5. These two solvability conditions read:

i&Tozl = — <@1, —22Vx<1>2> . VXOQ + <(I)1, 72’L.VX(I)2> . A(T) (%)
10ty = —1i <<I)2, —QiVX(I)1> -Vxa; + <(I>2, —2ivx®1> . A(T) oy .
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By Proposition 2.1
1
i0roy = ’UD( ;aXl + ax2 ) ag + Up (Al(T) + ’LAQ(T) )O[Q s
; 1 ;
1070y = ’UD( {6;(1 — 0X2 ) o1 + Up (Al(T) — ZAQ(T) )al, (8.11)
which, after rearranging terms, is seen to be the Dirac equation
iora(T, X) = D A(T)a(T, X); (8.12)

see (3.3)-(3.4).
Let 7+ denote the projection onto the orthogonal complement of span{®;, ®,} in Lk:

2
=T = Y (@5, = Y (P, )Py
i=1 >3

for convenience we indexed the L eigenpairs of H? such that span{®;, ®2}+ = span{®, : j > 3}.
If (o1, ap) is constrained to satisfy (8.11), then 7+ (H;¥o) = H; ¥, and hence:

Uy (t,x,T,X) = (Epl — H) " HyWg + ¢ Y B;(T, X);(x), (8.13)
j=12

where €3; are decaying functions of X which are to be determined at the next order equation (8.6),
and finally ¥ = Ve~ tFpt Turning next to second order in €, (8.6), we write Uy (t,x, 7, X) =
Uy (x, T, X)e Frt In analogy with our first order analysis, the condition for solvability condition
of (8.6) in L} is that Hy(¥q + 2.; Bj®;) is orthogonal to ®; and ®,. In a manner analogous to
the derivation of (3.4), we obtain a system of forced Dirac equations for 8 = (81, B2) '

ZaTB(TaX)_wA(T)ﬁ(TvX) :FZ(TvX)v (814)
where Fy = (ngl,Fg,g)T, and for j =1, 2:
Fyj ={(®;,H\(Ep — H*) "H1Wo)r2(0) - (8.15)

We note that F5 is independent of §, and is therefore a forcing term in (8.14). Corresponding to
any solution of the initial value problem for (8.14) in C'(R; H*(R)), we have that

Uo(t,x, T, X) = e Bt (Ep — HO) 17t ¥, . (8.16)

8.2 Bounding the corrector, 7°(,x)

Finally we turn to estimating the corrector, n°, which (8.7), (8.8). By self-adjointness of H+ iA(et)- V,
we have 0;||n°(¢)|? = 2e3Re (n, Z°(t,-)). This implies, by the Cauchy-Schwarz inequality, that
OemE ()| < &3|.F4(t,+)|. Therefore, for all ¢ > 0:

|77 (t, )2 re) < te® sup [ F(s, )| L2 (8.17)

s€[0,¢]

where .7 ¢ is given by (8.8). To prove Theorem 3.2 we next bound |.Z¢(t,-)| for t < e 2*.

Proposition 8.1. For all t > 0, we have the following L?(R?) bounds

S e A G P LCD P (8.18)
: SE

)

Here, a = (a1,a2)" and B = (B1,B82)" are solutions of the homogeneous and inhomogeneous
Dirac equations (8.12) and (8.14), respectively. The implicit constant in (8.18) depends only on
the honeycomb potential V.
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Proof. We shall use the following convention. If G(t,7T,x,X) is a multi-scale function, then we

write G¢(t,x) = G(t,T,x, X) et Xeox The proof of Proposition 8.1 makes use of the following
bounds:

1Tt )2 < ledet, ) m + [8(et, )2, (8.19)

[U5 ()2 < ot e + 1B(et, )2 (8:20)

|H1WS ()2 < Jatet, ) a2 + |B(et, )ar (8:21)

| HaW5 (¢, )2 < lloet, ) ms + [Blet, ) a2 (8:22)

| HoWs(t, )2 < ot ) s + |B(et, ) (823)

|72 (et, )z < lalet, Y ms + [1B(et, )2 - (8:24)

It will be useful to decompose ¥y into two separate terms and bound each of these elements
separately ~ R
Uy = (Ep — H) 'atH, T, Uip = Zﬁj‘l)g

We start with bounding |¥; ;2. By definition

—Hl\IIO =& 2 Z'aTij(T,X)(I)j + QVI@] . VXaj(T7X) - 2ZQJ(T,X)A . VCI)J
Jj=12

where ® = (®1,®5)7. Since (Epl — H)~! operates on L%, represent (Epl — H) 'wtH; ¥, in
the basis of the Bloch modes {®},>3. Using that, by the derivation of (8.12), the constraint
iora(T, X) = D(T)a(T, X) enforces nt H, ¥y = H, Vg, we have

\ijil(tvx) = ‘1’1,1(75,625,)(, £X)
= (Ep — H)‘1H1\110

T=et,X=ex
=) D, Eb <<I>b,u9Tozj(T X)®; +2V,®; - Vxa; (T, X) — ic;(T, X)A(T) - Ve®; 120y
b=3j5=1,2
o,
= E S —
bZ;)Eb Ep

[<¢b, (I)>L2(Q) . E(T)Q(T,X) + Z <(I)b, thbj}Lz(Q) . (2VX04(T,X) - QiA(T)Ozj(T,X))

J=1,2 T=et,X=ex

We estimate \i/‘il in L? = L?(R?) using that
1. Since ®, € L, then [®4(-)f(-)|2 < |If]2 for any f e L2

2. |fEe)ms < 571Hf\|Hs for every s = 0.

Hence,

\‘I’bHL _
H‘I’1 1)@y Se Z Z ||<‘I’b7 J>L2(Q)| YV xaj(et, ez
b=3 5= 12

||‘1>b|\L _
+e bZ;,|E o ‘H@MV‘I’DLQ(JE e (et, ey,
=

|
Slaet )y 3 3 5 o (K00 20,0, [+ 100,925, [) - (32)

7=1,2b>=3
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By the Sobolev inequality [17] for Q < R?, and the relation A®, = (V — E},)®,, we have for any
b>1:

1Po] () < I1Poll 20y < 1Pollz2(0) + AP L2(0) = [ Po]22(0) + [(V — Eb)Pp L2(0) -

Furthermore, since V' is bounded |®p|z =) < Ep|®Pp|r2() < [b], where we have used that
[®s]| = 1, and that E, ~ b as b — o0, by Weyl asymptotics in two dimensions. Hence, the factor
|®s]o0/|Ep— Ep| in (8.25) is uniformly bounded for all b. Therefore, bounding H@‘EJHLQ(W) reduces
to showing, for j,1 = 1,2:

Z ‘<(I)ba (I)j>L2(Q>‘ + ’<(I)b7amlq)j>L2(Q)‘ =@
b=>3

We claim that both summands decay rapidly with b. Indeed, by the self-adjointedness of H?, for
r=20,1:
<(I)ba a;l (I>]> = Eb_2<(HO)2(I)b5 a:zl(b]> = EI;_2<(I)ba (Ho)za;l¢J>

and therefore

[y 22, ®5] < B2 (02,8, < 67210, 7= 0.1,
which is sufficient to ensure summability. It follows that
1951t )22y < lalets ) m @z, - (8.26)

Together with the bound ||\I/1,2(t, M2 < ellBlet, &) |22y < 18(et, )| L2ry), we obtain (8.19).
The upper bounds (8.20)—(8.23) proceed in a similar fashion. The upper bound (8.24) follows
directly from the triangle inequality and .% = H1VUy + HaU; + e¢HyWs. Finally, we prove (8.18)
by combining (8.8), (8.17), and (8.24).
O

Proposition 8.1 provides upper bounds for 7°, the expansion corrector, in terms of the Sobolev
norms of a(T, X) and B(T, X), which satisfy the Dirac equations (3.4) and (8.14). We now turn
to estimating these norms.

Lemma 8.2. Let « satisfy and 8 denote solutions of homogeneous and non-homogeneous Dirac
equations (3.4) and (8.14). As initial data we take o(0,-) = ag € H*(R?;C?) and 5(0,x) = 0.
Then, for all T > 0 and s € N,

la (T, ) me = lla(0, )] &=, (8.27)
IB(T, ) < T)ef0, ) gre+2 - (8.28)

Proof. The conservation law (8.27) follows from unitarity and translation invariance; see (3.5). To
obtain (8.28), we have from (8.14), in L?(R?), that

i07|0x B(T, )3 = 2 Im(B(T, ), 0% Fa) = (=1)* - 2 Im((0% B(T, ), 0x F2)) - (8.29)

Therefore, by the Cauchy-Schwarz inequality, 0r|0%B(T,-)|e < |F2(T,-)|msr2). Finally, we
bound the H*(R?) norm of Fy . Since, by definition

Fp; ={(®;, Hy(Ep — H°) "' H1Wo)12(q)

we, as in Lemma 8.1, using (8.27) that | (T, )| ag < [a(T, )| g2 = ool gsre. Thus,

-
o5 B11me0) < [ VT gy T < Thaol e

0
which proves (8.28). O
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We now complete the proof of Theorem 3.2. With the notation and definitions introduced
above and (8.3) our solution of (1.4) is:

UE (%) = W5 (t,%) + 2W5 (1, %) + 25 (6 %) + 77 (1, %),

We shall estimate the size of the corrector to the leading order (effective Dirac) approximation:
P(t,x) — U5 (t,x) = eWi(t,x) + 25 (¢, x) + n°(t,%).

Using Lemmas 8.1 and 8.2 we have that

[9°(t, %) = Wo(t, )2 < e Wa(t, )2 + €[ Pa(t, )2 + [n(t, )2
S e (Jatet, M +8(et, )2) +€* (et ) + |8(et, ) |2) + 1t (alet, )| + 1B(et, ) r2)

v, v, "
< e (laolm + 18t )l2) +¢* (laolm + [8(et, )l2) + te® (laolzs + 18(et, )| =)
\Pl \PQ n

< € (loolmr + etlaolm2) + € (laol e + etfaolsz) + te® (laol s + telaol )

< 6HO¢0HH1 + SQtHOé()HH'z + t€3||a0HH3 + t254HO¢0HH4 .

Therefore, for any p > 0 and ¢ sufficiently small, supge;<.—2-n [°(t, %) — Wo(t,-)[2 < €. This
completes the proof of Theorem 3.2.

9 Proof of Proposition 4.3

From projections to wave-packets; proof of (4.1)

Let € > 0 be taken sufficiently small, and let f € L?(R?). Express H acting in L?(R?) as a direct
integral H = Sg Hj. dk, where Hy denotes the operator H = —A + V acting in L. Then under
the no-fold condition (Definition 4.2) there exists a constant a > 0, which depends on vp, such
that

. k—k .
Projrz 2y (|[H — Ep| <e)f = Z fdkx(|D| <a> PrOJLi(|Hk—ED\ <2)f
kp=K.K' j <

- > Jdkx(u{_ng'<a> i 3@ (CI—Hy) tdc| f.
B

kp=K,K’ |C—Ep|=2¢
(9.1)

We next expand the terms in (9.1) for k near kp, focusing on the kp = K term; he kp = K’

term is treated analogously. In order to expand for k near K, we next express the operators Hy

in terms of operators which acts in the fixed space LIQ(D. Note that Hy = e™®*H (k)e~ ™ where

H(k) = —(V+ik)? +V acts in L2(R?/A). Furthermore, (¢I — Hy) ™! = e**((I — H(k)) te~tkx,
Substitution into (9.1) yields

€ 211
[(—Ep|=2¢

= J dk ey ('k_K| < a> L 35 (CI—H(k)™H d¢ | e xf
B

= [awemen (B aa) | o (- HOK ) g |
B |[(—Epl|=2¢
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The contour integral inside the square brackets is smooth L?(R?/A)-valued function of &, and so
by Taylor expansion:

211
|¢—Epl|=2¢

+ J X (g < a) k Error[f; k] dk. (9.2)

B

e :f dr e EHR) Xy <|:| < a) ! § (CI — H(K))~td¢ | emi®+mxg
B

The last term in (9.2) is linear in f and easily seen to be bounded in L?(R?) by &3] f| > since the
domain of integration is over a disc of radius e.

The dominant term in (9.2) may be re-expressed as

u < a> eimx 1 : § eiK'x(CI _ H(K))_le_iK'x dC e_iﬁ,xf(x)

|[(—Ep|=2¢

J[amx
_ l dﬁx(g <a> o - T )
fon

[(—Ep|=2¢

sl _ a) ¢ Projys (|Hi — Ep| < 2¢) e™** f(x)

- f e X (P: = “) " 21 (xK) J dy ®(y: K)f(y)e "
B

2

=0T ) [ ay B RII) | [ s (B <a) e

R2 B

0 (xK) | dy BRI/ () Lf anx (% <a) e"“‘”)}
J 2

Adding the analogous K’ term from (9.1), we have that

Projpeey(|[H — Ep| <e)f = . uf?[f] + Opagze) (%] f]r2), where (9.3)
kp=K,K’

a2 [)(x) = #7 (x: kp) B2 [](x),  and
52,1100 = | (3C0r) w7 [x (B <) | 0, (9.4

where F~1[g](€) denotes the inverse Fourier transform, kp = K, K’, and * denotes convolution.
We next show that uX°[f] € BL(a, ¢; kp) by showing that F[ &P [f] ] € x(|¢] < aE)Lg. Indeed,

P51 = 7| (20ik0is) 7 i (<) || - Fotmoine - (<),

e

which is supported in {|€| < ea}. This completes the proof of (4.1).
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From wave-packets to projections; proof of (4.2)

Assume, without loss of generality, that u(x) € BL(dp, ¢; K) for some dy,e > 0, i.e., that

u(x) = T (x;K)ae(x), where ay(f) = <|§| < a) az (€).

Then by (9.3), there exists a > 0 and such that for ¢ > 0 sufficiently small we have that

PI‘OjLz(Rz)(|HO — ED| < €)u = Z ‘I)T(X,kD)’)/E7kD (X) + O(é‘guuHLz(R’z)) . (95)
kp—K,K’

To prove (4.2) it suffices to show that v, k(x) = a.(x) and v, k/(x) = 0. Substitution of v =
O (x; K)ae(x) into (9.4) yields

Ve, kp = ((P(-;kD)@T(-;K)aE) x F1 [X ('S < a)] , kp = K7K/_

We next compute the Fourier transform of v, k. For j = 1,2, and kp = K, K’
Fhessls = FEGcIp0T (iK)a(l; - x (£ <o)
= > F[®;(xkp) s (x; K)ae o(x)] - ('5 < a) (9.6)

=12

Consider the expression being summed in (9.6). Since ®;(x;kp) = e*P*¢,(x; kp) with ¢;(x;kp) €
L?(R?/A) periodic, we have

D;(x,kp)Ps(x, K)ag (%) = pje(r)gee(2),

where p;¢(x) = ¢;(x,kp)de(x,K) € L*(R*/A) and g p(x,§) = az(x)e™ K 0). Expanding
pje(x) in a Fourier series pj ¢(z) = 3, _p« Pj,e(n)e™> and substituting in (9.6) yields

MY b mg,@:)] (<)

(=1,2 neA*

S ) F [ e ()] x('5<)

£=1,2 neA*

5 % dreman €~ K-t +m) x (€ <a) (0.7

£=1,2 neA*

Flvekols

Note that by definition, iz has compact support in the disc of radius ea around the origin. In the
expansion above in (9.7), consider first the case where kp = K’. Note that K —kp = K — K’ =
2K is not in the dual lattice A*. A term in the expression (9.7) is non-vanishing only if (i)
€ — 2K + n| < ea (with n e A*) and (ii) || < ea. For any n € A* such that (i) and (ii) hold, we
have In—2K|—ea < | —2K +n| < ea. For ¢ positive and sufficiently small, this implies that there
are no such n € A* because dist(2K, A*) > 0. Hence, 7. x'(§) = 0 and therefore 7. x/(x) = 0.

Next, consider the case kp = K. By similar reasoning, the only non-zero term in (9.7) arises
from the lattice point n = (0,0). Hence,

Flvexlj ZPJ, Yoo (§) - x <|€|<a)

0=1,2

= a.,; (§) X(S <a>

S [ BRIy az©) - (€ <)

(=1,2
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Summarizing, we have 7. k (x) = a.(x) and 7. k(x) = 0. Substitution into (9.5) and recalling
that u(x) = ®(x; K) Ta.(x) yields

PI‘OjLz(]Rz)UHO — ED| < E)u = U(X) + O(€3HUHL2(R2)) . (98)

This is equivalent to (4.2). The proof of Proposition 4.3 is now complete.

10 Spectrum of the effective Dirac monodromy operator,
spec(Mp;,) = S'; Remark 3.6

Since the Dirac Hamiltonian I)(T), see (3.4), defines a flow which is unitary in L?(R?;C?), the
Floquet multipliers (eigenvalues of the monodromy operator) must all lie on the unit circle, S*.
In this section we justify the discussion in Remark 3.6 and prove that the spectrum of the mon-
odromy operator associated with I)(T) is equal to S*. To prove this, it suffices to show that the

~

Floquet multipliers associated with ID(T;€), see (3.9), cover the unit circle as |€| varies outside of
a sufficiently large circle in R%. Specifically, we shall demonstrate this for £ = (£,0) and & » 1.
As opposed to the analysis in Section 8, here we do not restrict A(T) to the form (3.8), but

rather to any periodic and differentiable A(T) with SOT"” A;(T)dT =0 for j = 1,2. Consider the
one-parameter family of periodically forced systems;

~

i0ra(T;€) = P(T;€)a(T3€) = [€or + o - A(T)] &(T5€), (10.1)

where 0 - A = Aj01 — As05. In order to construct the monodromy matrix, we first construct, for
|€] » 1 a basis of solutions via a WKB-type expansion. Set

a(T,€) = e %M B(T¢), (10.2)
where So(T) and B(T, €) are to be determined. Substitution into (10.1) yields
£So(T)B(T,€) +iorB(T,€) = [o1 + o - A] B(T,€) . (10.3)
We expand B(T,€) in powers of the small parameter £ 1:
B(T,€) = Bo(T) + &' Bi(T) + £ By(T56), (10.4)

We next formally obtain equations for By(T'), B1(T") by equating terms of order ¢ and order 1,
and an equation for the corrector, Ba(T, &) by balancing the remaining terms. This yields:

O (SH(T)I — o1) Bo(T) =0, (10.5)
OE): (U — o) Bi(T) = ¢+ A(T)Bo(T) — idr Bo(T) (10.6)

and the equation for the corrector, Ba(T,§):
i0rBs + £ (SH(T) —01) By — o - A(T)By = £ ( —iop + o - A(T)) By . (10.7)

We next solve (10.5)-(10.7). Equation (10.5) has a non-trivial solution S{(7") is an eigenvalue
of o1. Hence, we have the two linearly independent solutions

Sy T) =41, Bo(T) = eTpwe Wi = G) , (10.8)
S (T)=—1,  Bo(T) = c(T)w_, w_ = % <_11) . (10.9)
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We let Sj(T) = A denote either of these eigenvalues and wy denote the corresponding normalized
eigenvector. For this choice of eigenpair, (10.6) becomes:

(M — 01)Bi(T) =(g-A(T)e(T) — idre(T) Y)wy (10.10)
Equation (10.10) is solvable if and only if
wx, (g-A(T)e(T) —idore(T) )wyry =0

or equivalently
i0rc(T) =<wy,a - A(T)wyyc(T). (10.11)

This can be further simplified. We take ¢(0) = 1 and assume A,;(T) has zero mean on [0, Tpe,| for
7 =1,2. Note that ¢ - Aw) = Aj01w) — Asoow), and since oow) is orthogonal to w), we obtain

i0rc(T) =(wyx,01wr) A1(T)e(T), (T) =exp (—i <W)\,O'1W)\>JO Al(s)ds> ) (10.12)

where (w) ,01w)) = A\, where A = +1 or —1.
Next, using Bo(T) = ¢(T)wy and (10.11), (8.4) becomes

(AL = 1) Bi(T) = [2- A(T)wx — (wa, - A(T)wrywil e(T) = 74 [2 - A(T)wa] e(T),

where 73 u projects u € C? onto the subspace orthogonal to span{w,}, e.g., in the case of A = 1,
it projects onto the span of w_;. Hence, we have:

Bi(T) = (M — o1) ' my [o- A(T)wa] e(T), (10.13)

up to an element in the kernel of AT — o7 which we set equal to zero, and where ¢(T") is given
by (10.12).

Summarizing, for each of the two eigenvalues A = S of o1 (A = 1) with corresponding normal-
ized eigenvectors, wy, we have constructed first two terms of an expansion of &(T,¢) = e~ T B(T,¢)
by determining By(T") (equations (10.8),(10.9),(10.11)) and By (T') (equation (10.13)). Our expan-
sion reads:

ax(T,¢) = e [C(T)WA + C(gT) M — o) ' wt[o A(T)wa] + 5%32([, €) (10.14)

Next we bound By (T, ) from the ODE (10.7). For any Tj fixed we obtain:

|B2(T, )| < [€1To sup (JA(s)] + [A(s)]) - (10.15)

0<s<Tp

By (10.14) and (10.15) we have, corresponding to A = +1, the pair of linearly independent solutions
of (10.1) given by: B
ax(T,8) = ™7 (cx(T)wy + OL(lE[7) - (10.16)

Introduce the 2 x 2 matrix solution of (10.1), whose columns are a (7, €) and a_(T,&):
V(T,€) = [y | - |(1.6) = [ ey (Tywy + 0] | e (Thw- + Ol ™)] . (10.17)

Note V(T + Tper, &) = V(T,E)V10,)V (Tper, &). Hence the monodromy matrix for (10.1) is
given by:

MDir(g) = V_1(07 f)V(Tpera f) )
with the compressed notation Mps((€,0)) = Mpi(§). Since, by assumption, ¢4 (0) = 1 and A;
has zero mean, we have ¢4 (Tper) = 1. Using (10.17) we obtain:

MD(E) = Vo_l(O,ﬁ)Vo(Tper,ﬁ) + ngg(fil), where V()(Tper;f) = Ize*iprcfw_,_ ‘ eingch_] .
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The Oax2(|€]71) correction is with respect to any norm on complex 2 x 2 matrices. Since
(e STomrw [eTorw ) = (w, [w-.) diag(e ™ €Tror, e/€Tr) we have

1 —1 —ieT, iET efingcr 0
0.0V Tpr ) = (o) (e o i) - (7T 0 Y.

Therefore,
e_inger 0

Mo© = (6 Ye )+ Oveallel ™)

whose eigenvalues, et e S can be computed and expressed as: et™(&) = ¢Fi€Tper 4 v (8),
where |v4(€)] < C|€]7Y, with a constant C' which depends on bounds on A(T) and A’(T).> The
mapping & — (&) covers S'. Indeed, for 19 > 0 there exists Ny large such that the image of the
closed interval [—ng, 27 +10] + 27 No/Tper under (&) is dense in S*. Furthermore, by continuity,
the image of this interval is closed and hence equal to S*. It follows that

St = Ujejz¢,5pec(Mpir (€)) < spec(Mpi:) < S*.

Hence spec(Mp;,) = S*. This completes the justification of (3.16) in Remark 3.6.

A The Spectral Theorem for Unitary Operators

We review here in short the basic elements and formulations of the spectral theory of unitary
operators on Hilbert spaces, see details in e.g., [32, 61].

Definition A.1 (projection-valued measure). Let H be a Hilbert space, let X be a set, and ¥ a
o-algebra in X. A map II : ¥ — B(H), the Banach space of bounded linear operators on H, is
called a projection-valued measure if the following properties hold:

1. TI(I) is an orthogonal projection for every I € X.
2. II() = 0 and II(X) = Id.
3. If {I;};>1 < X are disjoint then

H<U1j>u= ML,  veH.

j>1 j>1

4. H(Il N IQ) = H([l)H(IQ) for all 11712 €.

Theorem A.2. Let U be a unitary operator on H. There exists a unique projection-valued measure
II =TII(;U) on the Borel o-algebra of S* such that

fde(z)=U.

S1
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