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Abstract

The Directed Grid Theorem, stating that there is a function f such that a directed
graphs of directed treewidth at least f(k) contains a directed grid of size at least k as a
butterfly minor, after being a conjecture for nearly 20 years, has been proven in 2015 by
Kawarabayashi and Kreutzer. However, the function f obtained in the proof is very fast
growing.

In this work, we show that if one relaxes directed grid to bramble of constant congestion,
one can obtain a polynomial bound. More precisely, we show that for every k ≥ 1 there
exists t = O(k48 log13 k) such that every directed graph of directed treewidth at least t
contains a bramble of congestion at most 8 and size at least k.

1 Introduction

The Grid Minor Theorem, proven by Robertson and Seymour [18], is arguably one of the most
important structural characterizations of treewidth. Informally speaking, it asserts that a grid
minor is a canonical obstacle to small treewidth: a graph of large treewidth necessarily contains
a big grid as a minor. The relation of “large” and “big” in this statement, being non-elementary
in the original proof, after a series of improvements has been proven to be a polynomial of
relatively small degree:

Theorem 1.1 ([4]). For every k ≥ 1 there exists t = O(k9polylogk) such that every graph of
treewidth at least t contains a k × k grid as a minor.

In the mid-90s, Johnson, Robertson, Seymour, and Thomas [9] proposed an analog of
treewidth for directed graphs, called directed treewidth, and conjectured an analogous state-
ment (with the appropriate notion of a directed grid). After nearly 20 years, the Directed Grid
Theorem was proven in 2015 by Kawarabayashi and Kreutzer [12]. However, their proof yields
a very high dependency between the required directed treewidth bound and the promised size
of the directed grid.

While searching for better and better bounds for (undirected) Grid Minor Theorem, re-
searchers investigated relaxed notions of a grid (e.g. [10]. In some sense, the “most relaxed”
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notion of a grid is a bramble: a family B of connected subgraphs of a given graph such that
every two B1, B2 ∈ B either share a vertex, or there exists an edge with one endpoint in B1 and
one endpoint in B2. Brambles can be large; the notion of complexity of a bramble is its order :
the minimum size of a vertex set that intersects every element of a bramble. We also refer to the
size of a bramble as the number of its elements and the congestion of a bramble as a maximum
number of elements that contain a single vertex; note that the size of the bramble is bounded
by the product of its order and congestion.

To link brambles and grids, first note that a k × k grid contains a simple bramble of order
k and size k2: the elements of a bramble are subgraphs consisting of i-th row and j-th column
of the grid for every 1 ≤ i, j ≤ k. If one wants a bramble of congestion 2, a bramble of size k
whose elements are subgraphs consisting of the i-th row and i-th column of the grid for every
1 ≤ i ≤ k is of order dk/2e. In the other direction, brambles of small congestion can replace grids
if one wants to use a grid as an object that allows arbitrary interconnections of small congestion
between different pairs of vertices on its boundary. Such a usage appears e.g. in arguments for
the Disjoint Paths problem (cf. [1, 2, 3, 5]).

Surprisingly, as proven by Seymour and Thomas [19], brambles form a dual object tightly
linked to treewidth: the maximum order of a bramble in a graph is exactly the treewidth of
the graph plus one. However, as shown by Grohe and Marx [6] and sharpened by Hatzel et
al. [8], brambles of high order may need to have exponential size: while a graph of treewidth k
neccessarily contains a bramble of order Ω̃(

√
k) of congestion 2 (and thus of size linear in their

order), there are classes of graphs (e.g., constant-degree expanders) where for every 0 < δ < 1/2
any bramble of order Ω̃(k0.5+δ) requires size exponential in roughly k2δ. Here, the notation Ω̃
and Õ omits polylogarithmic factors.

A slightly more organized bramble of congestion 2, namely two families of vertex-disjoint
paths with an intersection graph containing a large clique minor (with size bound of quartic
dependence on the treewidth), has been shown to exist in undirected graphs by Reed and
Wood [17].

In directed graphs, the notion of a bramble naturally generalizes to a family of strongly
connected subgraphs such that every two subgraphs either intersect in a vertex, or the graph
contains an arc with a tail in the first subgraph and a head in the second and an arc with a tail
in the second subgraph and a head in the first. The order of a directed bramble is defined in the
same way as in undirected graphs. While we no longer have a tight relation between directed
treewidth and maximum order of a directed bramble, these two graph parameters are within a
constant factor of each other, as shown by Reed [16]. However, the lower bound of Grohe and
Marx [6] also applies to directed graphs: there are digraph families where a graph of directed
treewidth k contains only brambles of order k0.5+δ of exponential size, for any 0 < δ < 0.5.

Hence, it is natural to ask what order of a bramble of constant congestion we can expect
in a directed graph of directed treewidth t. The lower bound of Grohe and Marx shows that
we cannot hope for a better answer than Õ(

√
t). Since a directed grid contains a bramble of

congestion 2 and order linear in the size of the grid, the Directed Grid Theorem implies that for
every k ≥ 1 there exists t = t(k) such that directed treewidth at least t guarantees an existence
of a bramble of order k and congestion 2. However, the function t = t(k) stemming from the
proof of Kawarabayashi and Kreutzer [12] is very fast-growing. Similarly, a half-integral variant
of the Directed Grid Theorem [10] could be used to obtain a bramble of order k and congestion 4
but also there the function t = t(k) is very fast-growing.

In this work, we show that this dependency can be made polynomial, if we are satisfied with
slightly larger congestion.

Theorem 1.2. For every k ≥ 1 there exists t = O(k48 log13 k) such that every directed graph of
directed treewidth at least t contains a bramble of congestion at most 8 and size at least k.
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So far, similar bounds were known only for planar graphs, where Hatzel, Kawarabayashi,
and Kreutzer showed a polynomial bound (with degree 6 of the polynomial) for the Directed
Grid Theorem [7]. Decreasing the congestion in Theorem 1.2, ideally to 2, even at the cost of
higher polynomial dependency of t and k, remains an interesting open problem. Optimizing
the parameters in the other direction would also be interesting: for all we know, obtaining the
dependency t = Õ(k2) for constant congestion may be possible.

On the technical level, the proof of Theorem 1.2 borrows a number of tools from previous
works. From Reed and Wood [17], we borrow the idea of using Kostochka-Thomason degeneracy
bounds for graphs excluding a minor [13, 20] to ensure the existence of a large clique minor in an
intersection graph of a family of strongly connected subgraphs, if it turns out to be dense (which
immediately gives a desired bramble). We also use their Lovász Local Lemma-based argument
to find a large independent set in a multipartite graph of low degeneracy. Similarly as in the
proof of Directed Grid Theorem [12] and in its planar variant [7], we start from the notion of a
path system and its existence (with appropriate parameters) in graphs of high directed treewidth.
Finally, from our recent proof of half- and quarter-integral directed Erdős-Pósa property [15, 14],
we reuse their partitioning lemma, allowing us to find a large number of closed walks with small
congestion. On top of the above, compared to [7] and [15, 14], the proof of Theorem 1.2 offers
a much more elaborate analysis of the studied path system, allowing us to find the desired
bramble.

Organization. We collect the formal statements of results from previous work in Section 2.
In Section 3 we gather tools that show how to obtain a low congestion bramble in various special
situations and we show how to obtain some intermediate structures. In Section 4 we then show
how to combine all the tools to prove Theorem 1.2.

2 Preliminaries

For integers n ∈ N we use [n] to denote {1, 2, . . . , n}.

Basics. Let G be a directed graph. A walk in G is a sequence W of vertices such that for each
pair of consecutive vertices u, v in W there is an arc (u, v) in G. A walk is closed if it starts
and finishes with the same vertex. Let W be a walk. We denote by V (W ) the set of vertices
that occur in the sequence W . A subwalk of W is a segment of W , that is, a subsequence of
consecutive elements. The number of occurrences of a vertex v in W , denoted by oc(v,W ), is
the number of times it occurs in the sequence W ; if W is closed and v is its starting vertex, then
it is the number of times v occurs in the sequence W minus one. The length of a walk W is the
sum of the numbers of occurrences of the vertices in V (W ).

Definition 2.1 (Congestion, Overlap). Let W be a family of walks in G and S be a family of
subsets of V (G). We define:

overlap(W) := max
v∈V (G)

∑
W∈W

oc(v,W ),

congestion(S) := max
v∈V (G)

|{S ∈ S | v ∈ S}|.

For a set of walks W, its congestion is the congestion of the family {V (W ) |W ∈ W}.
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Linkages, path systems, minors. For A,B ⊆ V (G), such that |A| = |B|, a linkage from A
to B in G is a set of |A| pairwise vertex-disjoint paths in G, each with a starting vertex in A
and ending vertex in B. A set X ⊆ V (G) is well-linked if for every A,B ⊆ X, s.t. |A| = |B|
there are |A| vertex-disjoint A-B-paths in G− (X \ (A ∪B)).

Definition 2.2 (Path system). Let a, b ∈ N. An (a, b)-path system (Pi, Ai, Bi)
a
i=1 consists of

• vertex-disjoint paths P1, P2, . . . , Pa, and

• for every i ∈ [a], two sets Ai, Bi ⊆ V (Pi), each of size b, such that every vertex of Bi
appears on Pi later than all vertices of Ai,

such that
⋃a
i=1Ai ∪Bi is well-linked in G.

In this work, we do not need the exact (and involved) definition of directed treewidth; instead,
we immediately jump to path systems via the following lemma.

Lemma 2.3 (Kawarabayashi, Kreutzer [12, 11] (implicit), see also [15, Lemma 7]). There exists
a constant cKK such that for every two integers a, b ≥ 1 every directed graph G of directed
treewidth at least cKK · a2b2 contains an (a, b)-path system.

The average degree of a graph with n vertices and m edges is 2m/n. We say that a graph is
d-degenerate if every subgraph of G contains a vertex of degree at most d. The degeneracy of a
graph G is minimum d such that G is d-degenerate. Observe that, for every graph G, we have
∆a(G) ≤ 2d(G), where ∆a(G) is G’s average degree and d(G) is G’s degeneracy.

Theorem 2.4 (Kostochka [13, Theorem 1], Thomason [20, Theorem] (restated)). There exists
a constant cKT, such that for every a ≥ 2, every undirected graph G with degeneracy at least
cKT · a ·

√
log a contains Ka as a minor.

Lemma 2.5 (Reed and Wood [17, Lemma 4.3]). Let r be an integer with r ≥ 2, d be a positive
real, and H be an r-colored graph with color classes V1, . . . , Vr, such that for every i ∈ [r] it holds
that |Vi| ≥ 4e(r− 1)d and for every i 6= j the graph H[Vi∪Vj ] is d-degenerate. Then there exists
an independent set {x1, . . . , xr} such that xi ∈ Vi for every i ∈ [r].

For a family S of sets, its intersection graph, denoted by Int(S), has vertex set S, and two
distinct sets S1, S2 ∈ S are adjacent in Int(S) if S1 ∩ S2 6= ∅. If W is a set of walks, then the
intersection graph Int(W) is defined as Int({V (W ) |W ∈ W}).

3 Tools

We now gather the new tools that we need in the main proof. The general setting is that, if
the directed treewidth of our graph is large enough, then there is a path system (Definition 2.2)
containing a large number of sets Ai, Bi and large linkages between them. We then distinguish
several cases for sets of pairs of linkages and the densities of the intersection graphs of the paths
in these linkages. We end up with three fundamental scenarios, that each allow us to define a
desired bramble. How the brambles are obtained in these scenarios is shown in Section 3.1.

In Section 3.2 we derive a set of tools that allow us to partition paths in the sets of linkages
mentioned above in such a way as to keep both the congestion low and the intersection graphs
of the parts sufficiently dense.
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3.1 Extracting a bramble

Lemma 3.1 (Dense winning scenario). Let cKT be the constant from Theorem 2.4. If a graph G
contains a familyW of closed walks of congestion α, whose intersection graph is not cKT·d·

√
log d-

degenerate, then G contains a bramble of congestion α and size d.

Proof. Since Int(W) is not cKT ·d ·
√

log d-degenerate, by Theorem 2.4, it contains a Kd minor K.
Since each branch set of K induces a connected subgraph of Int(W), and each vertex of Int(W)
is a closed walk in G, we obtain that each branch set of K corresponds to a strongly connected
subgraph of G. Furthermore, since between any branch sets of K there is an edge in Int(W), we
conclude that the subsets of V (G) corresponding to branch sets of K form a bramble in G. The
congestion bound follows clearly from the fact that the congestion of W is α.

Lemma 3.2 (Sparse winning scenario). There is an absolute constant c with the following
property. Let a > 1, b ≥ 1, and let (Pi, Ai, Bi)

a
i=1 be an (a, b)-path system in G. Let I be a

subset of [a]× [a]\{(i, i) | i ∈ [a]}, such that |I| ≥ 0.6 ·a(a−1). Assume that for every (i, j) ∈ I
we have a path Pi,j from Bi to Aj such that {Pi,j | (i, j) ∈ I} is of congestion at most α. Then
G contains a bramble of congestion at most 2 + 2α and size at least c ·

(
a1/2

log1/4 a

)
.

Proof. Consider a graph H with vertex set [a] and ij ∈ E(H) if both (i, j) ∈ I and (j, i) ∈ I.
Since |I| ≥ 0.6 ·a(a−1), we have |E(H)| ≥ 0.1 ·

(
a
2

)
. By Theorem 2.4, H contains a clique minor

of size p ≥ c′ · a/
√

log a, where c′ is an absolute constant. Without loss of generality, assume
that p =

(
q
2

)
for some integer q ≥ c · a1/2/ log1/4 a, where c is a constant. Let (Bx,y){x,y}∈([q]2 ) be

the family of branch sets of the clique minor of size p in H. Observe that for every x ∈ [q], the
subgraph of H induced by

⋃
y∈[q]\{x}Bx,y is connected, let Tx be its spanning tree. Note that

for every two distinct x, y ∈ [q], the trees Tx and Ty intersect in Bx,y. On the other hand, every
vertex and every edge of H is contained in at most two trees Tx.

For every i ∈ [a], let ei be the last edge of Pi, whose tail is in Ai. Note that ei is well-defined,
as the set Bi follows Ai on Pi, see Figure 1 (left). For every edge e = ij ∈ E(H), let We be
a closed walk in G obtained as follows. We start with Pi,j , and then we follow Pj until we
arrive at the starting vertex of Pj,i. Then we follow Pj,i, and then Pi until we close the walk,
see Figure 1 (right). Note that We contains both ei and ej . For every x ∈ [q], define a subgraph
Gx of G as the union of all walks We for all e ∈ E(Tx). Since for every e = ij ∈ E(H), the walk
We contains ei and ej , and Tx is connected, the graph Gx is strongly connected and contains
all edges ei for i ∈ V (Tx). Thus, since every two trees Tx and Ty intersect in Bx,y, the family
(Gx)x∈[q] is a bramble of size q ≥ c ·

(
a1/2

log1/4 a

)
in G.

Now let us argue that the congestion of the constructed bramble is at most 2α + 2. Each
vertex is in at most α paths Pi,j and in at most one path Pi. Thus each vertex appears in at
most α + 1 walks We. Each walk We might appear in at most two sets of the bramble, so the
overall congestion is at most 2α+ 2.

Lemma 3.3 (Sparse winning scenario, wrapped). Let c be the constant from Lemma 3.2. Let
a > 1, b ≥ 1, and let (Pi, Ai, Bi)

a
i=1 be an (a, b)-path system in G. Let I be a subset of

[a] × [a] \ {(i, i) | i ∈ [a]}, such that |I| ≥ 0.6 · a(a − 1). For (i, j) ∈ I, let Li,j be a linkage of
size b from Bi to Aj. Assume that for some integer d, the intersection graph of Li,j and Li′,j′
for every distinct (i, j), (i′, j′) ∈ I is d-degenerate. If b > 4 · e · a2 · d, then G contains a bramble
of congestion at most 4 and size at least c ·

(
a1/2

log1/4 a

)
.

Proof. Construct an auxiliary graph H, whose vertices are paths in
⋃

(i,j)∈I Li,j . Two paths are
adjacent in H if they contain a common vertex. Note that each set Li,j is independent in H, so
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Pi

Pj

Ai

Aj

Bj

Bi

ej

Pi

Pj

Ai

Aj

Bj

Bi

Pi,j

Pj,i

Pi,j

Pj,i

ei

ej

ei

Figure 1: The walk We constructed in the proof of Lemma 3.2.

H is |I|-partite. Furthermore, as for each (i, j), (i′, j′) ∈ I, the graph H[Li,j ∪Li′,j′ ] is precisely
the intersection graph of Li,j and Li′,j′ , it is d-degenerate. Finally, since I ⊆ [a]× [a], we have

b ≥ 4 · e · a2 · d ≥ 4 · e · (|I| − 1) · d.

Thus, applying Lemma 2.5 to H yields a single path Pi,j ∈ Li,j for each (i, j) ∈ I, such that the
paths in {Pi,j}(i,j)∈I are pairwise disjoint.

Now we observe that the set I and the family {Pi,j}(i,j)∈I of paths satisfy the assumptions
of Lemma 3.2 with α = 1. Thus the application of Lemma 3.2 yields a desired bramble.

3.2 Closed Walks and Threaded Linkages

In this section, we introduce a key object; the threaded linkage that we will use as a main building
block in our main proof. Informally, we want to order and connect paths within the linkage. In
order to achieve it, we construct one long walk, which contains all the paths from the linkage
interconnected by walks denoted as threads. Our ultimate goal is to find a collection of closed
walks, each containing a path from a linkage or, in case of two linkages, a collection of closed
walks, each containing a path from both linkages. The latter outcome is provided by another
basic tool: Bowtie lemma, which might be useful on its own. This concept was essentially proved
and used in [14, 15] in a slightly different setting. We will describe the differences later.

Definition 3.4 (Threaded linkage). A threaded linkage is a pair (W,L) where L = {L1, L2, . . . , L`}
is a linkage and W is a walk such that there exist `− 1 paths Q1, Q2, . . . , Q`−1 such that W is
the concatenation of L1, Q1, L2, Q2, . . . , Q`−1, L` in that order. The paths Qi are called threads.
A threaded linkage (W,L) for W = (L1, Q1, . . . , Q`−1, L`) is untangled if for every i, the thread
Qi may only intersect the rest of W in Li or Li+1.

The size of an (untangled) threaded linkage (W,L) is the size of linkage L and its overlap is
the overlap of the walk W .

Lemma 3.5 (Construction of threaded linkages). Let (Pi, Ai, Bi)
a
i=1 be (a, b)-path system for

a, b ∈ N. Then, for all i, j ∈ [a], there exists a linkage Li,j from Bi to Aj and threaded linkage
(Wi,j ,Li,j) of size b and overlap at most 3.

Proof. We construct a threaded linkage for each i, j ∈ [a] separately. For every i, j ∈ [a], we
fix a linkage Li,j from Bi to Aj and a linkage

←−
L i,j from Aj to Bi; these linkages exist by

well-linkedness of
⋃a
i=1Ai ∪Bi.
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For every P ∈ Li,j let ρi,j(P ) be the path of
←−
L i,j that starts at the ending point of P and

let πi,j(P ) be the path of Li,j that starts at the ending point of ρi,j(P ). Note that πi,j is a
permutation of Li,j . Let Ci,j be the family of cycles of the permutation πi,j , observe that every
such a cycle corresponds to a closed walk composed of the paths in Li,j and

←−
L i,j .

From every cycle C ∈ Ci,j we arbitrarily select one path; we call it the representative of C.
Let C1, C2, . . . , Cr be the elements of Ci,j in the order of the appearance of the starting points
of their representatives along Pi. Define the walk Wi,j as follows: follow Pi and for every ` ∈ [r],
when we encounter the starting point of the representative of C`, follow the respective closed
walk corresponding to C`, returning back to the starting point of the representative of C`, and
then continue going along Pi. Finally, trim Wi,j so that it starts and ends with a path of Li,j ,
as required by the definition of a threaded linkage.

Recall that the size of (Wi,j ,Li,j) is the size of the linkage Li,j , i.e., b. Now let us argue
about the overlap. The walkWi,j consists of the following subwalks: (1) paths of Li,j (each path
is used exactly once), (2) paths of

←−
L i,j (each path is used at most once), and (3) some pairwise

vertex-disjoint subpaths of Pi. Note that the subwalks within each of these three groups are
vertex-disjoint. Thus the overlap of (Wi,j ,Li,j) is at most 3.

Now, we refine the threaded linkage to get at least one good outcome: either a collection of
closed walks, each containing a path from the linkage or an untangled threaded linkage.

Lemma 3.6 (Construction of closed walks or untangled threaded linkages). Let (W,L) be a
threaded linkage of size b and of overlap α. Let x, d ∈ N such that b ≥ xd + (d − 1). Then one
of the following exists:

1. A family Z of d closed walks, such that for every walk W ∈ Z there exists a distinct path
P (W ) ∈ L that is a subwalk of W , and Z has overlap α; or

2. an untangled threaded linkage (W ′,L′) where W ′ is a subwalk W and L′ ⊆ L is of size at
least x. In particular, (W ′,L′) is of overlap α.

Proof. Let z be the length of W (i.e., the number of occurrences of vertices). For 1 ≤ p ≤
q ≤ z, by W [p] we will denote the p-th vertex of W and by W [p, q] we denote the subwalk
W [p],W [p+ 1], . . . ,W [q].

A useful walk of W is a subwalk W [p, q] of W , such that W [p] = W [q] and W [p, q] contains
at least one path of L as a subwalk. The pair of indices (p, q) is called a useful intersection.

We greedily construct a sequence I1, I2, . . . , I` of useful walks as follows: I1 = W [p1, q1] is a
useful walk ofW such that q1 is the smallest possible, and subsequently Iξ+1 = W [pξ+1, qξ+1] is a
useful walk of W such that pξ+1 > qξ and qξ+1 is the smallest possible. The greedy construction
stops when there are no useful walks starting after q`.

First, consider the case that ` ≥ d. Then every useful walk Iξ is a closed walk and, as W is
of overlap α, the family {Iξ | ξ ∈ [`]} is of overlap α. Furthermore, by the definition of a useful
walk, every Iξ contains a distinct path from L, so we obtain the first desired outcome.

So now consider the case that ` < d. We select `+1 subwalks I ′1, I ′2, . . . , I ′`+1 inW as follows.
The subwalk I ′1 is defined asW [1, q1−1]. Then, for 2 ≤ ξ ≤ `, we define I ′ξ asW [qξ−1+1, qξ−1].
Finally, we define I ′`+1 := W [q` + 1, z].

By the construction of the walks Iξ, no I ′ξ contains a useful walk. Furthermore, the union of
all walks I ′ξ covers Wi,j , except for q1, q2, . . . , q`. Hence, for at least |L| − ` paths P ∈ L it holds
there is ξ ∈ [` − 1] such that P is fully contained in I ′ξ. So there is some ξ ∈ [` + 1], such that
I ′ξ contains at least

|L| − `
`+ 1

≥ b− (d− 1)

d
≥ x

7



paths of L, where the last inequality holds because b ≥ xd+ (d−1) by precondition. Let L′ ⊆ L
be the set of paths contained in I ′ξ and let W ′ be the walk I ′ξ, trimmed so that it starts and
ends with a path of L′. We note that (W ′,L′) is an untangled threaded linkage as I ′ξ contains
no useful intersection. Thus, in this case, we obtain the second desired outcome.

Lemma 3.7 (Bowtie lemma). For d ≥ 1, let (W1,L1) and (W2,L2) be two threaded linkages
of overlap α and β, respectively, such that the intersection graph I(L1,L2) of L1 and L2 is not
(29 · 5 · d)-degenerate. Then there is a family Z of d closed walks such that every walk in Z
contains at least one path of L1 and one path of L2 as a subwalk, and the congestion of Z is at
most α+ β.
Furthermore, if (W1,L1) ((W2,L2), respectively) is untangled, then Z is of congestion at most
β+ 1 (α+ 1, respectively), and if both (W1,L1), (W2,L2) are untangled, then Z is of congestion
at most 2.

The main difference with version proven implicitly in [14, 15] is that there only the contain-
ment of a subpath of a path in L1 and of a subpath of a path in L2 was guaranteed as opposed
to the whole path we provide in the statement. For the proof, we make use of the following
Partitioning Lemma.

Lemma 3.8 (Partitioning Lemma [15, Lemma 11]). Let k, r ≥ 1 be two integers and let G
be a bipartite graph with bipartition classes X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} and
minimum degree at least 29·r·k. Then there are k sets U1, U2, . . . , Uk, and k sets W1,W2, . . . ,Wk,
such that:

1. for each i ∈ [k] the set Ui is a segment of X and the set Wi is a segment of Y ,
2. for each distinct i, j ∈ [k] we have Ui ∩ Uj = ∅ and Wi ∩Wj = ∅,
3. for every i ∈ [k], the average degree of the graph G[Ui ∪Wi] is at least r.

Now we are ready to prove Lemma 3.7.

Proof of Lemma 3.7. First, we invoke Lemma 3.8 for k = d, r = 5, and the graph I(L1,L2),
where the order of paths in each linkage is naturally determined by the ordering of their appear-
ance in the walks W1, W2. We obtain a partition of L11, . . . ,Ld1 of L1 and a partition L12, . . . ,Ld2
of L2, satisfying the conditions given in the lemma.

Fix some i ∈ [d]. Recall that I(Li1 ∪ Li2) is of average degree at least 5, there are L̃i1 ⊆ Li1
and L̃i2 ⊆ Li2, so that the graph I(L̃i1 ∪ L̃i2) is of minimum degree at least 3. Indeed, after a
vertex of degree at most 2 is removed, the average degree is still at least 5.

Let P1, P2, . . . , Pz be the paths of L̃i1, ordered by their appearance onW1. LetR1, R2, . . . , Rz−1
be the walks, such that Ri is the subwalk of W1 between Pi and Pi+1. Note that Ri might be
either a single thread of (W1,L1), or a subwalk consisting of alternating threads and paths of
Li that were not included in L̃i.

Similarly we define P ′1, P ′2, . . . , P ′z′ as the paths of L̃i2 and R′1, R
′
2, . . . , R

′
z′−1 as the corre-

sponding subwalks of W2. Finally, let us denote the concatenations of subwalks defined above:

W i
1 :=P1, R1, P2, R2, . . . , Rz−1, Pz

W i
2 :=P ′1, R

′
1, P

′
2, R

′
2, . . . , R

′
z′−1, P

′
z′ .

Since Pz is of degree at least 3 in I(L̃i1, L̃i2), there exists a common vertex v of Pz and some P ′q′
for q′ < z′ − 1. Symmetrically, there is a common vertex w of P ′z′ and Pq for some q < z − 1.
Consequently, we construct a closed walk, see also Figure 2:

Zi := v, the rest of P ′q′ , R
′
q′ , P

′
q′+1, . . . , w, the rest of Pq, Rq, Pq+1, . . . , v.
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P1

R1 P2

R2 Pq+1

Rz−1

Pz

Pq

RqRq−1

P ′z′

P ′q′

R′q′

R′z′−1

P ′q′+1

P ′1
R′1 P ′2

R′2
R′q′−1

v

w

Zi

Figure 2: The walk Zi constructed in the proof of Lemma 3.7.

Note that Zi fully contains at least one path from each linkage, i.e., Pq+1 ∈ L1 and P ′q′+1 ∈ L2.
To see that the family Z = {Zi | i ∈ [d]} satisfies the statement of the lemma, it remains to

discuss the congestion. By condition 2 of Lemma 3.8 each vertex can appear at most α times on
W1, thus is contributes as a part of at most α walks W i

1. Similarly, each vertex contributes as
a part of at most β walks W i

2. Summing up, each vertex may appear in at most α+ β elements
of Z.

Now, suppose that one of the input threaded linkages, say, (W1,L1), is untangled. Let
us enumerate L1 = {L1, L2, . . . , L`} and let Q1, Q2, . . . , Q`−1 be the threads of (W1,L1) as
in Definition 3.4. Recall that the paths from L1 are vertex-disjoint. Now consider a thread Qj .
Note at most one walks W i

1 might contain Qj as a subwalk. Furthermore, if Qj is a subwalk of
W i

1, then so are Lj and Lj+1. Thus, since (W1,L1) is untangled, each vertex from W1 might
contribute to the congestion of at most one walk in Z ∈ Z.

4 Main proof

Using the tools from Section 3 we now prove Theorem 1.2. As mentioned before, the starting
point is a path system (see Definition 2.2) containing a large number of sets Ai, Bi, i ∈ [a],
and large linkages Li,j between pairs of such sets. The basic goal is to exploit the interplay
between the dense and sparse winning scenarios from Section 3.1. The dense winning scenario
(Lemma 3.1) is applicable if there is a pair of linkages whose intersection graph has large de-
generacy. The crux is how to apply the sparse winning scenarios (Lemmas 3.2 and 3.3) because
they need a fraction of pairs of linkages that is slightly larger than half of the available pairs
of linkages. Our goal is thus to distinguish three subsets of the set of pairs of linkages such
that (i) one of the subsets will be larger than half the available pairs of linkages and (ii) each of
the subsets can be used to define a bramble of large size. We obtain these three distinguished
subsets by using two partially overlaying matchings in auxiliary graphs whose vertex sets are
the available pairs of linkages and whose edges represent the degeneracy of the corresponding
intersection graphs.

Some complications arise from the aim of keeping the congestion low. To achieve this, instead
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of applying the sparse winning scenarios directly to the linkages from the path set system, we
use first the tools from Section 3.2 to obtain subsets of pairs of linkages of lower congestion.

Setup. Let k ∈ N with k > 1 and let G be a graph of directed treewidth t. We show that if
t ≥ ct · k48 log13 k, then G contains a bramble of congestion at most 8 and size k. Herein, ct is a
constant that we specify below.

We start by fixing the following parameters. Let c be the constant in Lemma 3.3. Without
loss of generality we can assume that c ≤ 1

31/4
and thus c−4 ≥ 3; this will be used in the

case analysis later in the proof. We put ca = c−4 ≥ 3. Let cd3 := cKT be the constant from
Theorem 2.4. We define:

a =
⌈
ca · k2(1 + log k)1/2

⌉
,

d3 =
⌈
cd3 · k

√
log k

⌉
,

d2 =
⌈
2115e · a2d3

⌉
= O(k5 log3/2 k),

d1 =
⌈
2115e · a2d2

⌉
= O(k9 log5/2 k), and

b =
⌈
4e · a2d21

⌉
= O(k22 log6 k).

Let cKK be the constant in Lemma 2.3. Choose the constant ct such that t ≥ cKKa
2b2. To see

that this is possible, observe that

cKKa
2b2 ≤ 25e2 · cKK · a6d41
≤ 25054e6 · cKK · a14d42
≤ 29558e10 · cKK · a22d43
≤ 29658e10 · cKK · c4d3 · a

22k4 log2 k

≤ 29758e10 · cKK · c4d3 · c
22
a · k48 log2 k(1 + log k)11

≤ 29758e10 · cKK · c4d3 · c
22
a · k48 log2 k(2 log k)11

≤ 210858e10 · cKK · c4d3 · c
22
a · k48 log13 k.

Thus, putting ct = 210858e10 · cKK · c4d3c
22
a , we have t ≥ cKKa

2b2. Hence, by Lemma 2.3, there is
an (a, b)-path system (Pi, Ai, Bi)

a
i=1 in G.

Large subsets of pairs of linkages and sets of closed walks of low congestion. Let
V = {(i, j) | i, j ∈ [a] ∧ i 6= j}. Our aim is now to find the three subsets of V such that one of
them will be larger than |V |/2 mentioned above and to subset some linkages in order to achieve
low congestion. We achieve the second aim by using sets of closed walks derived from some of
the linkages. See Figure 3 for the various linkages and sets of walks that we define below and
their properties.

We apply Lemma 3.5 to (Pi, Ai, Bi)
a
i=1, obtaining for every (i, j) ∈ V a threaded link-

age (Wi,j ,Li,j) of size b and overlap at most 3. Then, we apply Lemma 3.6 to (Wi,j ,Li,j) with
x = 4ea2d1 + 1 and d = d1/(2

9 · 5). Note that xd + (d − 1) ≤ 4e · a2d21/(29 · 5) + d1/(2
8 · 5) ≤

4e · a2d21 ≤ b. Hence, the preconditions of Lemma 3.6 are satisfied. Let Z ⊆ V be the set of
pairs (i, j) for which the application of Lemma 3.6 results in the first outcome.

For each (i, j) ∈ V \Z: Let (W ′i,j ,L′i,j) be the untangled threaded linkage resulting from the
application of Lemma 3.6. Note that |L′i,j | ≥ x = 4e · a2d1 + 1.

For each (i, j) ∈ Z, that is, for each (i, j) where applying Lemma 3.6 results in the first
outcome: Let Zi,j be the family of closed walks resulting from the application of Lemma 3.6.
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Index Family o/c Size Comments
(i, j) ∈ V (Wi,j ,Li,j) o ≤ 3 b threaded linkage

(i, j) ∈ Z Zi,j o ≤ 3 d1/(2
9 · 5)

closed walks
each W ∈ Zi,j contains Pi,j(W ) ∈ Li,j

(i, j) ∈ V \ Z (W ′i,j ,L′i,j) o ≤ 3 4ea2d1 + 1 untangled threaded linkage

e ∈M1 Ze c ≤ 2 d1/(2
9 · 5)

closed walks, for (i, j) ∈ e
each W ∈ Ze contains Pi,j(W ) ∈ Li,j

e ∈M2 Ze c ≤ 4 d2/(2
9 · 5)

closed walks, for (i, j) ∈ e
each W ∈ Ze contains Pi,j(W ) ∈ Li,j

F ⊆ Z ∪M1 ∪M2

1 ≤ |F | ≤ 2
ZF c ≤ 8 d2/(2

9 · 5) intersection graph d3-degenerate

(i, j) ∈ Z LZi,j c ≤ 1 d1/(2
9 · 5)

linkage
LZi,j = {Pi,j(W ) | W ∈ Zi,j}

(i, j) ∈ V (M1) LZi,j c ≤ 1 d1/(2
9 · 5)

linkage, for e ∈M1 with (i, j) ∈ e
LZi,j = {Pi,j(W ) | W ∈ Ze}

(i, j) ∈ V (M2)
\(Z ∪ V (M1))

LZi,j c ≤ 1 d2/(2
9 · 5)

linkage, for e ∈M2 with (i, j) ∈ e
LZi,j = {Pi,j(W ) | W ∈ Ze}

Figure 3: Important linkages and families of closed walks. “o” stands for overlap and “c” stands
for congestion.

Observe that Zi,j is of size at least d1/(29 ·5) and of overlap at most 3. By the definition of Zi,j ,
for each walk W ∈ Zi,j there is a distinct path P (W ) ∈ Li,j such that P (W ) is a subwalk of W .
Define the linkage L′i,j := {P (W ) | W ∈ Zi,j}. For convenience, we denote also W ′i,j := Wi,j .
Observe that (W ′i,j ,L′i,j) is a threaded linkage (but not necessarily untangled).

For both ` = 1, 2, let E` ⊆
(
V
2

)
be the set of those pairs {(i, j), (i′, j′)} ∈

(
V
2

)
, for which

the intersection graph of L′i,j and L′i′,j′ is not d`-degenerate. Define an undirected graph H` =
(V,E`). Since d1 ≥ d2, we have E1 ⊆ E2, and thus H1 is a subgraph of H2.

Let M1 be a maximum matching in H1 − Z. Let M2 be a maximum matching in the graph
(V,E(H2) \

(
V (M1)∪Z

2

)
), that is, in the graph that results from H2 by removing all edges with

both endpoints in V (M1) ∪ Z, see Figure 4.
We are now ready to define the promised three vertex subsets of V such that one of them is

guaranteed to be sufficiently large for our purposes.

Claim 4.1. At least one of the following cases occurs:

Case 1. |V \ (V (M1) ∪ Z)| ≥ 0.6|V |;

Case 2. |V (M1) ∪ V (M2) ∪ Z| ≥ 0.6|V |;

Case 3. |V \ V (M2)| ≥ 0.6|V |.

Proof. It suffices to show that

2|V \ (V (M1) ∪ Z)|+ 2|V (M1) ∪ V (M2) ∪ Z|+ |V \ V (M2)| ≥ 3|V |. (1)

Consider how often vertices in the following vertex subsets are counted in the left hand side
of (1); consult also Figure 5:

• Each vertex in V \ (V (M1) ∪ V (M2) ∪ Z) is counted thrice.
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Z V (M1) V \ (V (M1) ∪ Z)

V \ V (M2)

V (M2)

Figure 4: The relation of V , Z, and the matchings M1 (red) and M2 (blue).

Z V (M1) V \ (V (M1) ∪ Z)

V \ V (M2)

V (M2)

Figure 5: Proof of Claim 4.1: the number of stars in each region corresponds to the number of
times the set is counted in the proof of Claim 4.1.

• Each vertex in V (M2) \ (V (M1) ∪ Z) is counted four times.

• Each vertex in V (M2) ∩ (V (M1) ∪ Z) is counted twice.

• Each vertex in V (M1) \ V (M2) is counted thrice.

• Each vertex in Z \ V (M2) is counted thrice.

Now note that no vertex of V occurs in two or more of the above sets. Hence, the left hand side
of (1) is at least

3|V \ (V (M1) ∪ V (M2) ∪ Z)|+ 4|V (M2) \ (V (M1) ∪ Z)|
+ 2|V (M2) ∩ (V (M1) ∪ Z)|+ 3|V (M1) \ V (M2)|+ 3|Z \ V (M2)|.

Observe that |(V (M1) ∪ Z) ∩ V (M2)| ≤ |V (M2) \ (V (M1) ∪ Z)|, because every edge of M2 has
at most one endpoint in V (M1) ∪ Z. Thus, the left hand side of (1) is at least

3|V \ (V (M1) ∪ V (M2) ∪ Z)|+ 3|V (M2) \ (V (M1) ∪ Z)|
+ 3|V (M2) ∩ (V (M1) ∪ Z)|+ 3|V (M1) \ V (M2)|+ 3|Z \ V (M2)|,

which is equal to 3|V | (recall here that V (M1) ∩ Z = ∅), as claimed.
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We now continue with definitions of sets of closed walks and sublinkages that we need to
derive a bramble of low congestion for that subset above that is large. Refer again to Figure 3
for a summary of all important linkages and families of closed walks defined here.

For both ` = 1, 2 and for each e = {(i, j), (i′, j′)} ∈M`, apply Lemma 3.7 to (W ′i,j ,L′i,j) and
(W ′i′,j′ ,L′i′,j′) to find a family Ze of d`/(29 · 5) closed walks, such that every walk in Ze contains
at least one path from L′i,j and at least one path from L′i′,j′ . Since the matchings M1 and M2

are disjoint, we obtain |M1|+ |M2| families of closed walks Ze for e ∈M1 ∪M2.
Let us now analyze the congestion of the families Ze. Recall that for all (i, j) /∈ Z, the

threaded linkage (W ′i,j ,L′i,j) is untangled. Thus for each e ∈M1, both its endpoints correspond
to untangled linkages, so by Lemma 3.7, the congestion of Ze is at most two. Now consider the
family Ze for an edge e ∈M2. At least one endpoint (i, j) of e is in V \Z and hence (W ′i,j ,L′i,j)
is untangled. Furthermore, for the other endpoint (i′, j′) of e we have that L′i′,j′ is of congestion
at most 3. So by Lemma 3.7, the congestion of Ze is at most 4.

Now suppose that for some F ⊆ M1 ∪ M2 ∪ Z of size 1 or 2, the intersection graph of
ZF :=

⋃
g∈F Zg is not d3-degenerate. Recall that for each (i, j) ∈ Z, the congestion of Zi,j is at

most 3 (since it resulted from the first outcome of Lemma 3.6), and for each e ∈ M1 ∪M2 the
congestion of Ze is at most 4. Thus the congestion of ZF is at most 8. Applying Lemma 3.1
to ZF thus yields bramble of size k and congestion at most 8, finishing the proof in this case.
Thus, henceforth the following claim holds.

Claim 4.2. For each F ⊆M1∪M2∪Z of size 1 or 2 the intersection graph of ZF is d3-degenerate.

For every e ∈ M1 and endpoint (i, j) ∈ e proceed as follows. Recall that every W ∈ Ze
contains a path in L′i,j . For every W ∈ Ze let Pi,j(W ) ∈ L′i,j be an arbitrary such path. Let
LZi,j = {Pi,j(W ) |W ∈ Ze}. Note that |LZi,j | ≥ |Ze| ≥ d1/(29 · 5).

Similarly, for every e ∈ M2 and endpoint (i, j) ∈ e \ (V (M1) ∪ Z), proceed as follows. For
every W ∈ Ze, pick a path Pi,j(W ) ∈ L′i,j on W . Let LZi,j = {Pi,j(W ) | W ∈ Ze}. Note that
|LZi,j | ≥ |Ze| ≥ d2/(29 · 5).

Furthermore, for every (i, j) ∈ Z set LZi,j = L′i,j . Note that |LZi,j | ≥ |Zi,j | ≥ d1/(29 ·5). Recall
that the application of Lemma 3.6 for (Wi,j ,Li,j) in the beginning resulted in the first outcome
and thus for every W ∈ Zi,j there is a distinct path P (W ) ∈ Li,j ⊆ L′i,j = LZi,j such that P (W )
is a subwalk of W . For every W ∈ Zi,j denote Pi,j(W ) = P (W ) ∈ L′i,j .

Case distinction. We are now ready to deal with the possible outcomes of Claim 4.1 one-by-
one. Refer to Figure 3 to recall the properties of the linkages and families of closed walks used
below.

Case 1: |V \ (V (M1) ∪ Z)| ≥ 0.6|V | (large independent set in H1). We would like
to apply Lemma 3.3 to the path system (Pi, Ai, Bi)

a
i=1 with I := V \ (V (M1) ∪ Z). To apply

Lemma 3.3 we check that (i) |I| ≥ 0.6 ·a ·(a−1), which is true since |I| ≥ 0.6|V | = 0.6 ·a ·(a−1),
that (ii) for every (i, j) ∈ I there is a linkage of size at least 4e · a2d1 + 1 between points in Ai
and Bj , that (iii) for every two (i, j), (i′, j′) ∈ I the intersection graph of the two linkages is
d1-degenerate and that (iv) the size of the linkages is strictly larger than 4e · a2d1, which clearly
holds by definition.

For the linkages in point (ii) we choose the linkages L′i,j . Observe that, since each (i, j) ∈ I
is not in Z, we have |L′i,j | > 4e ·a2d1, as required by point (ii). SinceM1 is a maximum matching
in H1−Z it follows that I is an independent set in H1. By the definition of H1 andM1, for every
two distinct pairs (i, j), (i′, j′) ∈ I, the intersection graph of L′i,j and L′i′,j′ is thus d1-degenerate.
Thus, point (iii) holds as well, meaning that Lemma 3.3 is applicable.
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Recall that c is the constant in Lemma 3.3 and we have ca = c−4 ≥ 3. The application
of Lemma 3.3 yields a bramble of congestion at most 4 and size at least

c · a1/2

log1/4 a
≥ c · (ca · k2(1 + log k)1/2)1/2

log1/4(cak2(4 + log k)1/2)
= k · cc

1/2
a (1 + log k)1/4

log1/4(cak2(4 + log k)1/2)

≥ k · cc
1/2
a (1 + log k)1/4

log1/4(2cak3)
= k · cc

1/2
a (1 + log k)1/4

(log 2ca + 3 log k)1/4

≥ k · cc
1/4
a · (ca + ca log k)1/4

(log 2ca + 3 log k)1/4
. (2)

As ca ≥ 3, we have that ca ≥ log 2ca and thus the right-hand side of inequality (2) is at least k,
finishing the proof in this case.

Case 2: |V (M1) ∪ V (M2) ∪ Z| ≥ 0.6|V | (large matchings). We show that we may
apply Lemma 3.2 to a set of paths obtained from the families Zg for g ∈ Z ∪M1 ∪M2. Let J be
the (|Z|+ |M1|+ |M2|)-partite graph whose vertex set is the disjoint union of the color classes
{Zg | g ∈ Z ∪M1 ∪M2} such that, for every pair of distinct g, g′ ∈ Z ∪M1 ∪M2, the graph
J [Zg ∪ Zg′ ] is the intersection graph of Zg and Zg′ (and J contains no further edges). Hence
we obtain a graph colored with |Z| + |M1| + |M2| ≤ |V | = a(a − 1) colors. We claim that by
Lemma 2.5 we may thus select a walk Wh ∈ Zh for every h ∈M1 ∪M2 ∪Z such that the walks
Wh are pairwise vertex-disjoint. To that end, it suffices to show the required relation on the
number of colors of J , the size of the color classes, and the degeneracy of subgraphs induced by
two color classes. By Claim 4.2 each subgraph of J that is induced by two different colors is
d3-degenerate. Moreover, for every g ∈ Z ∪M1 ∪M2 we have |Zg| ≥ d2/(29 · 5) by definition of
Zg and since d1 > d2. By definition of d2, we have d2/(29 · 5) ≥ 4e · a2d3 ≥ 4e(a(a− 1)− 1)d3,
as required by Lemma 2.5. Thus, indeed, we may choose the walks Wh as specified.

Let I be a subset of Z∪V (M1)∪V (M2) of size exactly d0.6a(a−1)e. The set of paths to which
we apply Lemma 3.2 is derived from the walks Wh as follows. If h = {(i, j), (i′, j′)} ∈M1 ∪M2,
then, by definition of Zh, walkWh contains a path Pi,j(Wh) ∈ Li,j and a path Pi′,j′(Wh) ∈ Li′,j′ .
If h = (i, j) ∈ Z, then, by definition of Zh, walk Wh contains a path Pi,j(Wh) ∈ LZi,j . Construct
a family Q = {Pi,j | (i, j) ∈ I} by, for each (i, j) ∈ I, choosing an arbitrary walk Wh such
that (i, j) = h or (i, j) ∈ h and putting Pi,j = Pi,j(Wh). Note that for each (i, j) ∈ I we
have Pi,j ∈ Li,j . Since two paths Pi,j , Pi′,j′ may only share vertices if they stem from the same
walk Wh we have that Q has congestion at most 2. By applying Lemma 3.2 to Q, we obtain a
bramble of congestion at most 2+2 ·2 = 6 and of size at least c · a1/2

log1/4 a
. By the same calculation

as in inequality (2), this bramble has size at least k, finishing the proof in this case.

Case 3: |V \V (M2)| ≥ 0.6|V | (large matching anti-adjacent to an independent set).
We now would like to apply Lemma 3.3 with I := V \ V (M2) to obtain a bramble of size k and
low congestion. To apply Lemma 3.3 we check that (i) |I| ≥ 0.6 · a · (a− 1), which is true since
|I| = |V \V (M2)| ≥ 0.6|V | = 0.6 ·a · (a−1), that (ii) for every (i, j) ∈ I there is a linkage of size
d1/(2

9 · 5) between points in Ai and Bj , that (iii) for every two (i, j), (i′, j′) ∈ I the intersection
graph of the two linkages is d2-degenerate and that (iv) d1/(29 · 5) > 4 · e · a2 · d2, which clearly
holds by definition.

As linkages for point (ii), for each (i, j) ∈ I∩(Z∪V (M1)) we take the linkage LZi,j . Note that
|LZi,j | ≥ d1/(2

9 · 5). For each (i, j) ∈ I \ (Z ∪ V (M1)) we take the linkage L′i,j . For convenience
we denote LZi,j := L′i,j . Note that |LZi,j | ≥ d1/(29 · 5) as well.
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For point (iii), observe that, for each (i, j), (i′, j′) ∈ Z ∪ V (M1), the intersection graph of
the linkages LZi,j ,LZi′,j′ is d3-degenerate (and thus d2-degenerate) because the paths in these
linkages are contained as subwalks in Z{(i,j),(i′,j′)} and by Claim 4.2. For each (i, j) ∈ I and
(i′, j′) ∈ I \ (Z ∪V (M1)) the intersection graph between LZi,j and LZi′,j′ is d2-degenerate because
otherwiseM2 would not be maximum. Hence also point (iii) holds, and it follows that Lemma 3.3
is applicable.

From Lemma 3.3 we obtain a bramble of congestion at most 4 and size at least c · a1/2

log1/4 a
,

which is at least k by inequality (2).
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