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Abstract

In this paper we focus on different -global, semi-local and local-
versions of Hoffman type inequalities expressed in a variational form.
In a first stage our analysis is developed for generic multifunctions be-
tween metric spaces and we finally deal with the feasible set mapping
associated with linear semi-infinite inequality systems (finitely many
variables and possibly infinitely many constraints) parameterized by
their right-hand side. The Hoffman modulus is shown to coincide with
the supremum of Lipschitz upper semicontinuity and calmness moduli
when confined to multifunctions with a convex graph and closed im-
ages in a reflexive Banach space, which is the case of our feasible set
mapping. Moreover, for this particular multifunction a formula –only
involving the system’s left-hand side– of the global Hoffman constant is
derived, providing a generalization to our semi-infinite context of finite
counterparts developed in the literature. In the particular case of lo-
cally polyhedral systems, the paper also provides a point-based formula
for the (semi-local) Hoffman modulus in terms of the calmness moduli
at certain feasible points (extreme points when the nominal feasible set
contains no lines), yielding a practically tractable expression for finite
systems.
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1 Introduction

Concerning finite linear inequality systems parameterized by their right-
hand side, the celebrated Hoffman lemma [10] is a result of global nature
as far as it works for any parameter making the system consistent and any
point of the Euclidean space. We can also find in the literature related semi-
local results as far as they work around a nominal (given) parameter and any
point in the Euclidean space, leading to the concept of Hoffman constant at
this parameter (see e.g. Azé and Corvellec [2] and Zălinescu [27]). In this
paper we relate these global and semi-local Hoffman constants with the local
concept of calmness modulus, which involves parameters and points, both
around nominal ones. Our analysis is developed in a first step in the context
of generic multifunctions to move subsequently to the particular case of the
feasible set mapping associated with a parameterized linear semi-infinite
inequality system

σ (b) :=
{
a′tx ≤ bt, t ∈ T

}
, (1)

where T is a compact metric space, t 7→ at ∈ Rn is a fixed continuous
function from T to Rn and b ≡ (bt)t∈T ∈ C (T,R) is the parameter to be
perturbed, C (T,R) being the space of continuous functions from T to R.
We are considering column-vectors and the prime stands for transposition,
so x′y denotes the usual inner product of x and y in Rn. In this parametric
context, the feasible set mapping, F : C (T,R) ⇒ Rn is given by

F (b) :=
{
x ∈ Rn | a′tx ≤ bt, t ∈ T

}
. (2)

With respect to the topology, Rn is equipped with an arbitrary norm, ‖·‖ ,
with dual norm given by ‖u‖∗ = max‖x‖≤1 |u′x| , and the parameter space
C (T,R) is endowed with the supremum norm ‖b‖∞ := maxt∈T |bt| .

The particular case when T is finite is included in this framework, in
which case F coincides with the polyhedral mapping considered in [10] and
Hoffman lemma reads as the existence of some constant κ ≥ 0 such that, for
all x ∈ Rn and all b ∈ domF (the domain of F),

d (x,F (b)) ≤ κmax
t∈T

[
a′tx− bt

]
+

, (3)

where [α]+ := max {α, 0} is the positive part of α ∈ R. This result is of
global nature as far as it involves all points x ∈ Rn and all b ∈ domF . Since
maxt∈T [a′tx− bt]+ = d

(
b,F−1 (x)

)
, inequality (3) can be written in a vari-

ational form as done in the following paragraph for a generic multifunction.
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Given a multifunction M : Y ⇒ X between metric spaces with both
distances being denoted by d, we say that the (global) Hoffman property
holds if there exists a constant κ ≥ 0 such that

d(x,M(y)) ≤ κd
(
y,M−1(x)

)
for all x ∈ X and all y ∈ domM, (4)

where d (x,Ω) := inf {d (x, ω) | ω ∈ Ω} for x ∈ X and Ω ⊂ X, with inf ∅ :=
+∞, so that d (x, ∅) = +∞. Since this paper is concerned with nonnegative
constants, we use the convention sup ∅ := 0. Here domM is the domain of
M (recall that y ∈ domM⇔ M(y) 6= ∅) and M−1 denotes the inverse
mapping of M (i.e. y ∈M−1 (x)⇔ x ∈M(y)).

Now we write a semi-local version of (4) by fixing y = y. M is said to
be Hoffman stable at y ∈ domM if there exists κ ≥ 0 such that

d(x,M(y)) ≤ κd
(
y,M−1(x)

)
for all x ∈ X. (5)

When the previous inequality (5) is only required to be satisfied in a neigh-
borhood of x ∈ M(y) we are dealing with the calmness of M at (y, x) ∈
gphM, the graph of M. Formally, the calmness of M at (y, x) ∈ gphM,
or equivalently the metric subregularity of M−1 at (x, y) (cf. [7, Theorem
3H.3 and Exercise 3H.4]), is satisfied when there exist a constant κ ≥ 0 and
a neighborhood U of x such that

d(x,M(y)) ≤ κd
(
y,M−1(x)

)
for all x ∈ U. (6)

The infimum of constants κ appearing in (4), (5) and (6) are called, respec-
tively, the global Hoffman constant of M, the Hoffman modulus of M at
y ∈ domM, and the calmness modulus of M at (y, x) ∈ gphM. The three
constants are denoted respectively by HofM, HofM(y) and clmM (y, x)
and, as a consequence of the definitions, they may be written as follows:

HofM = sup(y,x)∈(domM)×X
d(x,M(y))

d (y,M−1(x))
,

HofM(y) = supx∈X
d(x,M(y))

d (y,M−1(x))
, y ∈ domM,

clmM (y, x) = lim supx→x
d(x,M(y))

d (y,M−1(x))
, (y, x) ∈ gphM,

(7)

under the convention 0
0 := 0, where lim sup is understood as the supremum

(maximum, indeed) of all possible sequential upper limits (i.e., with (y, x)
being replaced with elements of sequences {(yr, xr)}r∈N converging to (y, x)
as r →∞).
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Now we describe the main contributions of the paper. Clearly

HofM = sup
y∈domM

HofM(y),

and we wonder if a similar relationship between HofM(y) and the supremum
of all calmness moduli clmM (y, x), with x ∈ M(y), works. Section 3
is devoted to this question and Theorem 4 gives a positive answer when
gphM is convex andM(y) is closed, Y being a normed space and X being a
reflexive Banach space. Some examples show that the convexity assumption
is not superfluous. Moreover, some intermediate constants as the Lipschitz
upper semicontinuity modulus are also considered.

With respect to mapping F our focus is on formulae only involving the
system’s coefficients for Hof F and Hof F(b), which are established in Theo-
rems 5 and 6, respectively. The first one extends to the current semi-infinite
framework previous results on finite linear systems (see, e.g., Burke and
Tseng [4, Theorem 8], Klatte and Thiere [13, Theorem 2.7], Peña et al. [19,
Formula (3)]); for comparative purposes, some details are gathered in Sec-
tion 2. Theorem 6 provides a formula for Hof F(b) in terms of the at’s, the
bt’s and some feasible points in the case when our system σ

(
b
)

is for locally
polyhedral. Specifically, from the referred Theorem 4, we have that

Hof F(b) = sup
x∈F(b)

clmF
(
b, x
)
,

and Theorem 6 refines this expression by reducing the supremum to a smaller
set (which turns out to be finite when T also is). Then, making use of the
expression for clmF

(
b, x
)

established in Li et al. [16] (recalled in Theorem

3), we derive the announced point-based formula for Hof F(b). Here we use
the term ‘point-based’ to emphasize the fact that the expression for Hof F(b)
does not involve parameters different from b or points outside F(b). An
alternative expression for Hof F(b) appealing to points outside F(b) is given
in [2, Theorem 2.6] (recalled in Theorem 2). We point out the fact that
Theorem 6 yields a particularly tractable procedure for computing Hof F(b)
when T is finite.

In summary, the structure of the paper is as follows: Section 2 introduces
the necessary notation and gathers some preliminary results. Section 3 an-
alyzes the relationships among different semi-local versions of Hoffman and
Lipschitz type properties for generic multifunctions and their moduli (Lips-
chitz type properties are widely analyzed in the monographs [7, 12, 17, 22]).
Section 3 also provides illustrative counter-examples. Section 4 is focused
on Hof F and Hof F(b), the latter in the case of locally polyhedral systems.
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Before establishing the announced formula for Hof F(b) some technical ge-
ometrical results are proved. The paper finishes with a short section of
conclusions and perspectives.

2 Preliminaries

Given S ⊂ Rk, k ∈ N, we denote by convS, coneS and spanS the convex hull,
the conical convex hull and the linear hull of S, respectively. It is assumed
that coneS always contains the zero-vector 0k, in particular cone(∅) = {0k}.
Moreover, S◦ denotes the (negative) polar of S given by

S◦ :=
{
u ∈ Rk | u′x ≤ 0, for all x ∈ S

}
(S◦ = Rk if S = ∅). From the topological side, intS, clS and bdS stand,
respectively, for the (topological) interior, closure, and boundary of S. For
a nonempty convex set C ⊂ Rk, O+C denotes its recession cone given by

O+C :=
{
d ∈ Rk | u+ αd ∈ C, for all u ∈ C and all α ≥ 0

}
,

while endC denotes its end set (introduced in [11]) defined as

endC := {u ∈ clC | @µ > 1 such that µu ∈ clC} .

Moreover, extrC stands for the set of extreme points of C. Recall that
x ∈ extrC if x ∈ C and it cannot be expressed as a convex combination of
two points of C\{x}. In any metric space (Z, d) , the closed ball centered
at z ∈ Z with radius r > 0 is denoted by B (z, r) , whereas B (S, r) :=
{z ∈ Z | d (z, S) ≤ r} , for S ⊂ Z, denotes the r-enlargement of S.

For comparative purposes, the next theorem gathers some results in the
literature on Hof F when confined to finite linear systems, where C (T,R) ≡
Rm for some m ∈ N. It is adapted to our current notation and to our choice
of norms. The first two expressions come from [19, Formulae (3) and (4)] (see
also [13, Theorem 2.7] when Rn is endowed with the Euclidean norm), while
the third one can be derived from [4, Theorem 8], where a dual approach is
followed. The last one appeals to the set

W2 :=
{
y ∈ Rm+ | {at, t ∈ supp (y)} lin. indep.

}
,

where Rm+ is formed by the vectors of Rm having non-negative coordinates
and supp (y) := {t ∈ {1, ...,m} | yt 6= 0} is the support of y; indeed W2 is
considered as a subset of the dual space of Rm, which we are identifying
with Rm itself.
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Theorem 1 Consider the feasible set mapping F defined in (2) and assume
that T is finite. We have

Hof F = max
J⊂T

0n /∈conv{at, t∈J}

d∗ (0n, conv {at, t ∈ J})−1 (8)

= max
J⊂T, rankAJ=rankA
{at, t∈J} lin. indep.

d∗ (0n, conv {at, t ∈ J})−1 (9)

= sup
{
‖y‖1 | y ∈W2,

∥∥A′y∥∥∗ = 1
}
, (10)

where AJ and A stand for the matrices whose rows are a′t, with t ∈ J and
t ∈ T, respectively, and d∗ stands for the distance associated with the dual
norm ‖·‖∗ .

Proof. According to [19, Formula (3)] and the subsequent comments therein,
to establish (8) we only have to prove that condition 0n /∈ conv {at, t ∈ J}
is equivalent to the consistency of system {a′tx < 0, t ∈ J} , and this follows,
for instance, from equivalence (iv) ⇔ (v) in [9, Theorem 6.1]. Equality (9)
comes from [19, Formula (4)] with the trivial observation that instead of
all linearly independent {at, t ∈ J} , with J ⊂ T , we can confine ourselves
to those which are maximal with respect to the inclusion order. Indeed,
the result also follows from (8), since the sufficiency of considering those
{at, t ∈ J} which are linearly independent comes from [2, Lemma 3.1].

Formula (10) comes from [4, Theorem 8]. Let us comment that we
can, alternatively, see the relationship between the second and the third
expression by observing that, for any y ∈ Rm+ , y 6= 0m,

1

‖y‖1
A′y =

1

‖y‖1

∑m

i=1
ytat ∈ conv {at, t ∈ supp (y)} ,

and that ‖A′y‖∗ = 1 is equivalent to ‖y‖1 =
∥∥∥ 1
‖y‖1

A′y
∥∥∥−1
∗
.

Generalizations of Hoffman constants to infinite dimensional spaces or
to convex functions playing the role of the distance function can be found
in [4]. Many other authors have contributed to the study of Hoffman con-
stants and their relationship with other concepts (as Lipschitz constants).
Additional references can be obtained from the reference list of the papers
above mentioned as well as [2] and [27], among others. At this moment we
also cite Belousov and Andronov [3], Li [15] and Robinson [20].

The following theorem provides formulae for Hof F(b), with b ∈ domF ,
and clmF

(
b, x
)
, with

(
b, x
)
∈ gphF through points outside F(b). They
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appeal to the supremum function fb : Rn → R, with b ∈ C (T,R) , given by

fb (x) := sup
t∈T

(
a′tx− bt

)
, for x ∈ Rn,

which is known to be convex on Rn. For each x ∈ Rn, we consider the subset
of indices

Jb (x) =
{
t ∈ T | a′tx− bt = fb (x)

}
.

The well-known Valadier’s formula works by virtue of the Ioffe-Tikhomirov
theorem (see e.g. [26, Theorem 2.4.18]), yielding

∂fb (x) = conv {at, t ∈ Jb (x)} ,

where ∂fb (x) stands for the usual subdifferential of convex analysis (see e.g.
[21]).

Theorem 2 The following statements hold:
(i) [2, Theorem 2.6] For any b ∈ domF , one has

Hof F(b) = sup
fb(x)>0

d∗
(
0n, ∂fb (x)

)−1
= sup

fb(x)>0
d∗
(
0n, conv

{
at, t ∈ Jb (x)

})−1
;

(ii) [14, Theorem 1] For any
(
b, x
)
∈ gphF ,

clmF(b, x) = lim sup
x→x, fb(x)>0

d∗
(
0n, ∂fb (x)

)−1
= lim sup

x→x, fb(x)>0
d∗
(
0n, conv

{
at, t ∈ Jb (x)

})−1
.

Remark 1 Observe that b ∈ domF and fb (x) > 0 mean that σ
(
b
)

is

consistent (it has some feasible solution) but x /∈ F(b)); in this case, 0n /∈
conv{at, t ∈ Jb (x)}, since x is not a global minimizer of the convex function
fb. Actually, [2, Theorem 2.6] is formulated in terms of (Hof F(b))−1, which
is called there the condition number of fb at level 0; in the terminology of
[14], observe that (clmF(b, x))−1 is the error bound modulus (also known as
conditioning rate [18]) of fb at x.

The following theorem is devoted to the computation of clmF(b, x),
(b, x) ∈ gphF , through a point-based formula (expressed exclusively in
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terms of the system’s coefficients and the nominal point x). Now we in-
troduce some extra notation. Given a fixed b ∈ domF , for any x ∈ F(b),
we consider (for simplicity, since there will be no ambiguity, we omit the
dependence on b)

T (x) :=
{
t ∈ T | a′tx− bt = 0

}
,

the subset of active indices of system σ
(
b
)

at x; i.e., T (x) = Jb (x) if fb (x) =
0, while T (x) = ∅ if fb (x) < 0 (i.e., if x is a strict solution –Slater point– of
the system). Let A (x) be the corresponding active cone at x; i.e.,

A (x) := cone {at, t ∈ T (x)}

(recall that A (x) = {0n} if T (x) = ∅). We also consider the family D (x) of
subsets D ⊂ T (x) such that system{

a′td = 1, t ∈ D,
a′td < 1, t ∈ T (x) \D

}
(11)

is consistent (in the variable d ∈ Rn); i.e., {at, t ∈ D} is contained in some
hyperplane which leaves {0n} ∪ {at, t ∈ T (x) \ D} on one of its two asso-
ciated open half-spaces. With this notation, the next theorem generalizes
the corresponding finite version established in [6, Theorem 4]. It appeals to
the following regularity condition at x: “There exists a neighborhood W of
x such that

F(b) ∩W = (x+A (x)◦) ∩W.” (12)

Observe that this condition is held at all points of polyhedral sets and, for
instance, at the vertex of the ice-cream cone.

Theorem 3 [16, Corollary 2.1, Remark 2.3 and Corollary 3.2] Let x ∈ F(b)
such that fb (x) = 0 and assume that the regularity condition (12) is held at
x. Then

clmF
(
b, x
)

= d∗
(
0n, end∂fb (x)

)−1
= sup

D∈D(x)
d∗ (0n, conv {at, t ∈ D})−1 .

(13)

Remark 2 Although condition (12) is not superfluous for establishing the
first equality in (13) as [16, Example 3.3] shows (see also Example 4), the
second equality does work for semi-infinite systems (1) without any addi-
tional condition. Indeed, from [16, Corollary 2.1 and Remark 2.3] we can
deduce

∪D∈D(x) conv {at, t ∈ D} ⊂ end∂fb (x) ⊂ cl
(
∪D∈D(x)conv {at, t ∈ D}

)
.

(14)
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3 From calmness to Hoffman constants for a ge-
neric multifunction

The purpose of this section is to analyze the relationship among different
Hoffman and Lipschitz type properties, including the known Lipschitz upper
semicontinuity that goes back to the classical work of Robinson [20]. At the
beginning of this section M : Y ⇒ X is a generic multifunction between
metric spaces Y and X. Later we will need further structure. To start with,
observe that alternatively to (5) we can write the Hoffman stability of M
at y ∈ domM in terms of the existence of κ ≥ 0 such that

d(x,M(y)) ≤ κd (y, y) for all (y, x) ∈ gphM,

while the calmness of M at (y, x) ∈ gphM, introduced in (6) in terms
of the (equivalent) metric subregularity of M−1, writes as the existence of
neighborhoods V of y and U of x along with a constant κ ≥ 0 such that

d(x,M(y)) ≤ κd (y, y) for all (y, x) ∈ (V × U)∩ gphM.

Moreover, the following equalities constitute well-known alternative expres-
sions to (7) for the corresponding moduli

HofM(y) = sup
(y,x)∈gphM

d(x,M(y))

d (y, y)
, (15)

clmM (y, x) = lim sup
(y,x)→(y,x)
(y,x)∈gphM

d(x,M(y))

d (y, y)
.

Recall that M is said to be Lipschitz upper semicontinuous at y ∈
domM if there exists a neighborhood V of y along with a constant κ ≥ 0
such that

d(x,M(y)) ≤ κd (y, y) for all (y, x) ∈ (V × Rn)∩ gphM. (16)

Here we borrow the terminology from [12] or [24], although this property,
introduced in [20] as upper Lipschitz continuity, has been also popularized
as outer Lipschitz continuity (see [7]). Equivalently, (16) may be written as
e(M(y),M(y)) ≤ κd (y, y) for all y ∈ V, where e (A,B) := supx∈A d (x,B) is
the Hausdorff excess of A over B, with A,B ⊂ X. The associated Lipschitz
upper semicontinuity modulus, denoted by LipuscM(y), is defined as the
infimum of constants κ satisfying (16) for some associated V.
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In the next definition, given y ∈ domM and ε > 0, the mapping Mε :
Y ⇒ X is defined by

Mε (y) :=M (y) ∩B (M (y) , ε) for y ∈ Y.

(For simplicity in the notation we obviate the dependence of Mε on y.)

Definition 1 Given y ∈ domM, we say that M is uniformly calm at y if
there exist a neighborhood V of y along with ε > 0 and κ ≥ 0 such that

d(x,M(y)) ≤ κd (y, y) for all y ∈ V and all x ∈Mε (y) , (17)

or, equivalently, if Mε is Lipschitz upper semicontinuous at y for some
ε > 0.

The corresponding modulus naturally appear. Specifically, we call mod-
ulus of uniform calmness of M at y, denoted by uclmM(y), to the infimum
of constants κ satisfying (17) for some associated V and ε > 0. It is straight-
forward to check that

uclmM(y) = inf
ε>0

LipuscMε(y). (18)

Roughly speaking, the uniform calmness of M at y entails the calmness of
M at any (y, x) for all x ∈ M (y) with the same calmness constant κ, the
same neighborhood V of y, and a common radius ε for all neighborhoods
of points x ∈ M (y) , say Ux := B(x, ε). Example 1 below shows that the
calmness of M at (y, x) for all x ∈ M (y) does not ensure the uniform
calmness of M at y.

As it occurs with the calmness property, the uniform calmness turns
out to be equivalent to a certain metric regularity type property, showing
that neighborhood V in Definition 1 is redundant. The key fact is that
points x ∈ M(y) which are required to satisfy (17) are those which are
sufficiently close to M (y) . This comment, which was already pointed out
for polyhedral multifunctions in [20] (see the corollary after Proposition 1
therein), is formalized in the following proposition.

Proposition 1 Let y ∈ domM. For any κ > 0, the following conditions
are equivalent:

(i) There exist a neighborhood V of y and ε > 0 such that (17) holds;
(ii) There exists ε > 0 such that (5) holds when restricted to those x ∈

B (M (y) , ε) .

10



Proof. Let us establish the nontrivial implication ‘(i) ⇒ (ii)’. Consider
V and ε as in statement (i) . Take ε1 > 0 such that B(y, ε1)⊂V and define
ε2 := min{ε, κε1} > 0. Let us see that (ii) holds for ε2 > 0. Take x ∈
B (M (y) , ε) and consider y ∈ M−1 (x) . Now, we distinguish between two
cases:

If d (y, y) ≤ ε1, then y ∈ V and, since we also have x ∈ B (M (y) , ε)
(recall that ε2 ≤ ε), from (i) we conclude the aimed inequality d(x,M(y)) ≤
κd (y, y) .

Otherwise, if d (y, y) ≥ ε1, then d(x,M(y)) ≤ ε2 ≤ κε1 ≤ κd (y, y) .

Remark 3 The statement of Proposition 1 does not hold for κ = 0. To see
this, take M : R −→ R (single-valued) given by M (y) := max {0, y − 1}
and let y = 0. Clearly (i) holds for V = ]−1, 1[ and κ = 0, whereas (ii)
works for ε > 0 if and only if κ ≥ ε/ (1 + ε) .

Corollary 1 Let y ∈ domM. We have:
(i) M is uniformly calm at y if and only if there exist ε > 0 and κ ≥ 0

such that

d(x,M(y)) ≤ κd
(
y,M−1(x)

)
for all x ∈ B (M (y) , ε) . (19)

(ii) The modulus of uniform calmness can be expressed as follows

uclmM(y) = inf {κ ≥ 0 | ∃ε > 0 such that (19) holds} .

Proof. Both (i) and (ii) come from the fact that uniform calmness at y with
associated elements V, ε > 0 and κ ≥ 0 in (17) entails the same property
with V, ε > 0 and κ̃ > κ. Hence the conclusions follow straightforwardly
from Proposition 1.

Next we provide characterizations of LipuscM(y) and uclmM(y) in
terms of certain upper limits, which allow for a better understanding of
these concepts and a clear relationship among all moduli introduced in the
paper.

Proposition 2 Let M : Y ⇒ X be a multifunction between metric spaces
and let y ∈ domM, then

(i) LipuscM(y) = lim sup
y→y

(
sup

x∈M(y)

d(x,M(y))

d (y, y)

)
;

(ii) uclmM(y) = lim sup
d(x,M(y))→0

d(x,M(y))

d (y,M−1(x))
.

11



Proof. (i) For the sake of simplicity, let us denote by s the right-hand side
of (i) and

K := {κ ≥ 0 | ∃V neighborhood of y verifying (16)} . (20)

We start by establishing inequality ‘≤’. Since LipuscM(y) = inf K, we
can write LipuscM(y) = limr→∞ κr for some {κr} ⊂ K. For each r take a
neighborhood Vr associated with κr according to (20) and define

κr := sup
y∈Vr∩B(y,1/r)

(
sup

x∈M(y)

d(x,M(y))

d (y, y))

)
≤ κr.

By definition κr ∈ K, having Vr ∩B (y, 1/r) as an associated neighborhood,
so that we have LipuscM(y) = limr→∞ κr.

Finally, for each r, consider any yr ∈ Vr ∩B (y, 1/r) such that κr − 1
r ≤

supx∈M(yr)
d(x,M(y))
d(yr,y))

≤ κr. Obviously, {yr}r∈N converges to y, and then

LipuscM(y) = lim
r→∞

sup
x∈M(yr)

d(x,M(y))

d (yr, y))
≤ s.

In order to prove ‘≥’ in (i) , we may assume the nontrivial case s > 0
and write

s = lim
r→∞

sup
x∈M(ỹr)

d(x,M(y))

d (ỹr, y)
,

for some {ỹr}r∈N converging to y. It is clear that we may replace {ỹr}r∈N
with a suitable subsequence (denoted as the whole sequence for simplicity)
such that ỹr ∈ Vr, and then

s ≤ lim
r→∞

κr = LipuscM(y).

(ii) The procedure is analogous to the previous one by considering

K̂ = {κ ≥ 0 | ∃ε > 0 such that (19) holds} .

As a direct consequence of the expressions in (15) for clmM (y, x) and
HofM (y) , together with (18) and the previous proposition, we conclude the
following corollary. Observe that the smaller ε > 0, the smaller LipuscMε (y) ,
and LipuscM (y) corresponds to ε = +∞.

Corollary 2 Let y ∈ domM. We have

sup
x∈M(y)

clmM (y, x) ≤ uclmM (y) ≤ LipuscM (y) ≤ HofM (y) . (21)
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Remark 4 The previous corollary yields (i)⇒ (ii)⇒ (iii)⇒ (iv) , where:
(i) M is Hoffman stable at y;
(ii) M is Lipschitz upper semicontinuous at y;
(iii) M is uniformly calm at y;
(iv) M is calm at every (y, x) ∈ gphM.

The next three examples show that all converse implications in the pre-
vious remark may fail for a suitable multifunction.

Example 1 Let M : R ⇒ R be given by M (y) = {hr (y) , r ∈ N} , where

hr (y) =

{
r + y if y ≤ 1

r ,

r + 1
r + r

(
y − 1

r

)
if y > 1

r .

For y = 0, it is easy to check that clmM (y, x) = 1 for all x ∈M (y). Hence,
supx∈M(y) clmM (y, x) = 1. Nevertheless, it is impossible to find ε > 0 that
meets the conditions for uniform calmness; i.e., uclmM (y) = +∞. More
specifically, take εr := r−1 + r−1/2 for all r ∈ N, r ≥ 8 (to ensure εr < 1/2),
and consider yr := r−1 + r−3/2 and xr := hr (yr) = r + r−1 + r−1/2 ∈
Mεr (yr) . Then

d (xr,M (0))

d (yr, 0)
=
r−1 + r−1/2

r−1 + r−3/2
→ +∞ as r → +∞.

Example 2 Consider M : R −→ R (single-valued) given by M(y) = 0 if
y ≤ 0 and M(y) = 1 if y > 0. It is clear that M is uniformly calm at y = 0
(take ε = 1/2 ) but not Lipschitz upper semicontinuous by just considering
yr = 1/r for r ∈ N.

Example 3 Let M : R ⇒ R be given by

M(y) = [0, 1] if y < 0, M(y) = [0,+∞[ if y ≥ 0.

It is clear thatM is Lipschitz upper semicontinuous, with zero modulus, at
any y ∈ R. Nevertheless, it is not Hoffman stable at any y < 0.

The next theorem establishes that all inequalities in (21) become equal-
ities under the convexity of gphM together with the closedness of M (y) ,
provided that Y is a normed space and X is a reflexive Banach space. As an
obvious consequence, all properties in Remark 4 become equivalent in such
a case. Firstly, we include two lemmas.
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Lemma 1 Let X be a normed space and ∅ 6= C ⊂ X be a closed set. Take
any x ∈ X and assume that there exists a best approximation, x, of x in C.
Then x is a best approximation of xλ := (1− λ)x+λx in C for all λ ∈ [0, 1].

Proof. Reasoning by contradiction, suppose that for some λ ∈ [0, 1] there
exists x̂ ∈ C such that ‖x̂− xλ‖ < ‖x− xλ‖. Then

‖x̂− x‖ ≤ ‖x̂− xλ‖+ ‖xλ − x‖ < ‖x− xλ‖+ ‖xλ − x‖
= λ ‖x− x‖+ (1− λ) ‖x− x‖ = ‖x− x‖ ,

which contradicts the fact that x is a best approximation of x in C.
In the next result X is assumed to be a reflexive Banach space in order

to ensure the existence of best approximations on nonempty closed convex
sets; see e.g. [26, Theorem 3.8.1].

Lemma 2 Let M : Y ⇒ X be a multifunction between a normed space
Y and a reflexive Banach space X, and assume that gphM is a nonempty
convex set. Let y ∈ domM and suppose that M (y) is closed. Consider any
(y, x) ∈ gphM and let x be a best approximation of x in M (y), then

d (x,M (y))

d (y, y)
≤ clmM (y, x) .

Proof. By the convexity assumption, for each λ ∈ [0, 1] ,

(yλ, xλ) := (1− λ) (y, x) + λ (y, x) ∈ gphM.

According to lemma 1, x is also a best approximation of xλ in M (y), for
each λ ∈ [0, 1]. Therefore,

d (x,M (y))

d (y, y)
=
‖x− x‖
‖y − y‖

=
‖xλ − x‖
‖yλ − y‖

=
d (xλ,M (y))

d (yλ, y)
, for all λ ∈ ]0, 1].

Since, letting λ→ 0, we have (yλ, xλ)→ (y, x) , by the definition of the
calmness modulus (recall (15)) we conclude

clmM (y, x) ≥ lim sup
λ→0

d (xλ,M (y))

d (yλ, y)
=
d (x,M (y))

d (y, y)
.

Theorem 4 Let M : Y ⇒ X, with Y being a normed space and X being a
reflexive Banach space, and assume that gphM is a nonempty convex set.
Let y ∈ domM with M (y) closed. Then one has

sup
x∈M(y)

clmM (y, x) = uclmM (y) = LipuscM (y) = HofM (y) .

14



Proof. We only have to prove HofM (y) ≤ supx∈M(y) clmM (y, x) , ac-
cording to (21).

Take any (ỹ, x̃) ∈ gphM and let x be a best approximation of x̃ in
M(y). Lemma 2 ensures that

d (x̃,M(y))

d (ỹ, y)
≤ clmM (y, x) ≤ sup

x∈M(y)
clmM (y, x) .

Then, recalling (15), we conclude

HofM (y) = sup
(ỹ,x̃)∈gphM

d(x̃,M(y))

d (ỹ, y)
≤ sup

x∈M(y)
clmM (y, x) .

We finish this section by observing that the global Hoffman constant for
the whole graph can be larger than the Hoffman modulus for a specific y.
Just consider M : R ⇒ R given by

M(y) = ]−∞, y] if y < 0, M(y) = ]−∞, 0] if y ≥ 0.

Then clearly HofM (y) = 1 if y < 0 and HofM (y) = 0 if y ≥ 0; so that
HofM = 1.

4 Hoffman and calmness moduli for linear semi-
infinite inequality systems

This section aims to obtain expressions for Hof F and Hof F
(
b
)
, b ∈ domF ,

in terms of the system’s data. These expressions are established in Theorems
5 and 6, respectively. The first result generalizes Theorem 1 to the current
semi-infinite framework, while the second provides an alternative expression
to Theorem 2 (i) , via points inside F

(
b
)
, for locally polyhedral systems. In

the case of finite linear systems Theorem 6 is particularly useful as far as it
establishes an implementable procedure for computing Hof F

(
b
)
.

Theorem 5 Consider F : C (T,R) ⇒ Rn defined in (2). We have

Hof F = sup
J⊂T compact

0n /∈conv{at, t∈J}

d∗ (0n, conv {at, t ∈ J})−1 .

Proof. It is clear that Hof F = supb∈domF Hof F (b) , and applying Theorem
2 we have

Hof F = sup
b∈domF

sup
x/∈F(b)

d∗ (0n, conv {at, t ∈ Jb (x)})−1 . (22)
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Hence, inequality ‘≤’ comes from (22) taking into account that b ∈ domF
and x /∈ F (b) imply 0n /∈ conv {at, t ∈ Jb (x)} (recall Remark 1). Take also
into account that each Jb (x) is compact since it is closed in T as far as Jb (x)
is the preimage of {fb (x)} by the continuous function t 7→ a′tx− bt.

Let us prove the converse inequality ‘≥’. Observe that for J = ∅ we have
d∗ (0n, conv {at, t ∈ J})−1 = d∗ (0n, ∅)−1 = 0. Fix a nonempty compact set

Ĵ ⊂ T such that 0n /∈ conv
{
at, t ∈ Ĵ

}
and let us define b̂ ∈ C (T,R) such

that
Ĵ = J

b̂
(x̂) , for some x̂ /∈ F

(
b̂
)
, b̂ ∈ domF .

First, by separation, since 0n /∈ conv
{
at, t ∈ Ĵ

}
, there exists 0n 6= x̂ ∈ Rn,

such that
a′tx̂ ≥ x̂′x̂, for all t ∈ Ĵ ,

where x̂ is the best approximation of 0n in the compact set conv
{
at, t ∈ Ĵ

}
with respect to the Euclidean norm in Rn. Define

b̂t := max{a′tx̂, 12 x̂
′x̂} − ϕ (t) 1

2 x̂
′x̂, t ∈ T,

where
ϕ (t) = 1− d

(
t, Ĵ
)
, for all t ∈ T.

Observe that b̂ ∈ domF since b̂t ≥ 1
2 (1− ϕ (t)) x̂′x̂ ≥ 0 for all t ∈ T and for

instance 0n ∈ F
(
b̂
)
. On the other hand, x̂ /∈ F

(
b̂
)

since,

a′tx̂− b̂t = a′tx̂−
(
a′tx̂− ϕ (t) 1

2 x̂
′x̂
)

= 1
2 x̂
′x̂ > 0, if t ∈ Ĵ .

Finally, observe that

a′tx̂− b̂t ≤ a′tx̂− a′tx̂+ ϕ (t) 1
2 x̂
′x̂ < 1

2 x̂
′x̂, whenever t ∈ T \ Ĵ .

So,

Ĵ =
{
t ∈ T | a′tx̂− b̂t = f

b̂
(x̂)
}
,

in other words, Ĵ = J
b̂
(x̂) , which finishes the proof.

Remark 5 Theorem 5 is the only result in this paper which uses the fact
that T is assumed to be a compact metric space. The rest of results work for
T being a compact Hausdorff space, which is the framework of the so-called
continuous systems in [9].
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The rest of this section is focussed on Hof F
(
b
)
, provided that b ∈

domF . To start with, as a consequence of Theorem 4, we always have

Hof F
(
b
)

= sup
x∈F(b)

clmF
(
b, x
)

= sup
x∈bdF(b)

clmF
(
b, x
)
, b ∈ domF , (23)

where the last equality comes from the fact that clmF
(
b, x
)

= 0 when

x ∈ intF
(
b
)

(the trivial case bdF
(
b
)

= ∅, equivalently F
(
b
)

= Rn, is
included; recall sup ∅ := 0). From now on we are devoted to refine (23) by
replacing bdF

(
b
)

with a smaller subset. The concluding result is Theorem
6. First, we establish some technical results.

Proposition 3 Let x1, x2 ∈ bdF
(
b
)

such that T
(
x1
)
⊂ T

(
x2
)
. Then,

(i) end∂fb
(
x1
)
⊂ end∂fb

(
x2
)
;

(ii) If the regularity condition (12) is held at xi, i = 1, 2, then

clmF
(
b, x1

)
≤ clmF

(
b, x2

)
.

Proof. (i) First, xi ∈ bdF
(
b
)

implies fb
(
xi
)

= 0, and so T
(
xi
)
6= ∅, i =

1, 2, by the compactness of T together with the continuity of t 7→
(at
bt

)
. Recall

that, ∂fb
(
xi
)

= conv
{
ai, i ∈ T

(
xi
)}
, i = 1, 2, hence ∂fb

(
x1
)
⊂ ∂fb

(
x2
)
.

Assume, arguing by contradiction, that there exists a ∈ end∂fb
(
x1
)
\

end∂fb
(
x2
)
. Since, by compactness, end∂fb

(
x1
)
⊂ ∂fb

(
x1
)
⊂ ∂fb

(
x2
)
, we

have a ∈ ∂fb
(
x2
)
\end∂fb

(
x2
)
. Then we have λa ∈ ∂fb

(
x2
)

for some λ > 1
and we can write

λa =
∑

t∈T (x1)

λtat +
∑

t∈T (x2)\T (x1)

λtat, (24)

for some {λt}t∈T (x2) ⊂ R+ such that
{
λt | λt 6= 0, t ∈ T

(
x2
)}

is a finite set.

On the other hand, consider d := x1 − x2 and observe that,{
a′td = 0, t ∈ T

(
x1
)
,

a′td = a′tx
1 − a′tx2 < bt − bt = 0, t ∈ T

(
x2
)
\T
(
x1
)
.

Then, multiplying (with the inner product) both members of (24) by d, we
deduce

0 = λa′d =
∑

t∈T (x2)\T (x1)

λta
′
td,

which yields λt = 0 for all t ∈ T
(
x2
)
\T
(
x1
)
. So, we attain the contradiction

λa =
∑

t∈T (x1) λtat ∈ ∂fb
(
x1
)
.

17



Statement (ii) follows straightforwardly from Theorem 3.
The following example shows that the regularity condition assumed in

statement (ii) of the previous proposition is not superfluous. The example
comes from modifying Example 1 in [6] (revisited in [16, Example 3.3]).

Example 4 Let us consider the system, in R2 endowed with the Euclidean
norm, given by

σ
(
b
)

:=


t (cos t)x1 + t (sin t)x2 ≤ t, t ∈ [0, π] ,

x1 ≤ 1, t = 4,
−x1 − x2 ≤ 1, t = 5

 ;

i.e., T := [0, π] ∪ {4, 5}, at := t (cos t, sin t)′ , for t ∈ [0, π] , a4 := (1, 0)′ and
a5 := (−1,−1)′ ; b ∈ C ([0, π] ∪ {4, 5},R) is given by bt = t, t ∈ [0, π] , b4 =
1, and b5 = 1. Consider the feasible points x1 = (1, 0)′ and x2 = (1,−2)′ .

Figure 1: Illustration of Example 4

As proved in [6, Example 1], we have that

clmF
(
b, x1

)
= +∞.

Alternatively, we can apply Theorem 2(ii) with sequence xr =
(
1 + 1

r

) (cos 1
r

sin 1
r

)
.

It is clear that the regularity condition (12) is not satisfied at x1. Indeed
(0, 1)′ ∈ A

(
x1
)◦

= cone
{

(1, 0)′
}◦

= R− × R, but x1 + ε (0, 1)′ /∈ F
(
b
)

for
any ε > 0. Moreover,

∂fb
(
x1
)

= conv
{

(0, 0)′ , (1, 0)′
}

and end∂fb
(
x1
)

=
{

(1, 0)′
}
. Hence, clmF

(
b, x1

)
6= d∗

(
02, end∂fb

(
x1
))−1

.
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With respect to point x2, one easily sees that condition (12) is satisfied,
where A

(
x2
)◦

=
{
u ∈ R2 | −u1 − u2 ≤ 0, u1 ≤ 0

}
. In this case, ∂fb

(
x2
)

=
conv

{
(0, 0)′ , (1, 0)′ , (−1,−1)′

}
. Hence, from Theorem 3 we have

clmF
(
b, x2

)
= d∗

(
02, end∂fb

(
x2
))−1

= d∗
(
02, conv

{
(1, 0)′ , (−1,−1)′

})−1
=
√

5.

Proposition 4 Let C be a nonempty closed convex subset of Rn different
from a singleton with extrC 6= ∅ and let x0 ∈ C\extrC. Then, there exist
y0 ∈ extrC, z0 ∈ C, and µ ∈ ]0, 1[ such that x0 = (1− µ) y0 + µz0.

Proof. The assumption extrC 6= ∅ is equivalent to the fact that C contains
no lines (i.e., its lineality space is {0n}). According to [21, Corollary 14.6.1],
this is also equivalent to int (O+C)

◦ 6= ∅, recalling that O+C is the recession
cone of C. Pick 0n 6= u ∈ int (O+C)

◦
and consider

K := C ∩
{
x ∈ Rn | u′x ≥ u′x0 − 1

}
.

Let us see that K is bounded, i.e., O+K = {0n} (see [21, Theorem 8.4]).
Reasoning by contradiction, assume the existence of 0n 6= v ∈ O+K. Then
x0 + λv ∈ K and, accordingly, u′

(
x0 + λv

)
≥ u′x0 − 1 for all λ > 0. Letting

λ → +∞ we obtain u′v ≥ 0. On the other hand, v ∈ O+C and, for
α > 0 small enough, we have u + αv ∈ (O+C)

◦
, yielding the contradiction

0 ≥ (u+ αv)′ v ≥ αv′v.
Once we know that K is a nonempty convex compact set, by applying

the Minkowski-Carathéodory theorem (see, e.g., [23, Theorem 8.11]), we
have K = conv (extrK) , and we can write

x0 =
k∑
i=1

λix
i (25)

with
{
x1, ..., xk

}
⊂ extrK being affinely independent,

∑k
i=1 λi = 1, and

λi > 0 for all i = 1, ..., k. Clearly it is not restrictive to assume u′x1 ≥ u′x0,
which easily entails x1 ∈ extrC. More in detail, if x1 were a midpoint of
distinct points in C, we could replace these points with others in the same
segment verifying u′x ≥ u′x0 − 1, and hence these points would be in K,
contradicting x1 ∈ extrK.
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On the other hand, by applying [9, Theorem A.7], (25) entails that
x0 is in the relative interior of conv

{
x1, ..., xk

}
(i.e., the interior relative

to the affine hull of these points), and then z0 := x1 + β
(
x0 − x1

)
∈

conv
{
x1, ..., xk

}
⊂ C for a small enough β > 1. Finally, let us write

x0 =
(

1− 1
β

)
x1 + 1

β z
0,

which provides the aimed result with y0 = x1 and µ = 1
β .

The following theorem appeals to locally polyhedral (LOP, in brief) sys-
tems. Recall that given b ∈ domF , σ

(
b
)

is a LOP system iff

D
(
F
(
b
)
, x
)

= A (x)◦ , for all x ∈ F
(
b
)
, (26)

where D
(
F
(
b
)
, x
)

denotes the cone of feasible directions of F
(
b
)

at x; i.e.,

d ∈ D
(
F
(
b
)
, x
)

if there exists ε > 0 such that x + αd ∈ F
(
b
)

for all
α ∈ [0, ε] . See [1] for a comprehensive analysis of LOP systems (see also
[9]). At this moment we recall a characterization of LOP systems in terms
of the regularity condition (26) which can be derived from Corollary 3.3 in
[16].

Lemma 3 (see [16, Corollary 3.3]) Let b ∈ domF . The following conditions
are equivalent:

(i) D
(
F
(
b
)
, x
)

= A (x)◦ , for all x ∈ F
(
b
)
,

(ii) The regularity condition (12) is held at any x ∈ F
(
b
)
.

From now on we consider the set

E
(
b
)

:= extr
(
F
(
b
)
∩ span {at, t ∈ T}

)
, with b ∈ domF . (27)

Observe that, E
(
b
)

is always a nonempty and finite set when T is finite;
moreover,

E
(
b
)

= extrF
(
b
)
⇔ extrF

(
b
)
6= ∅;

in fact, extrF
(
b
)
6= ∅ if and only if F

(
b
)

does not contain any line, which
is equivalent to the fact that span {at, t ∈ T} = Rn. This construction is
inspired by the one of [15, p. 142], and used in [8] to compute the calmness
modulus of the optimal value function of finite linear optimization problems.

Theorem 6 Let b ∈ domF and assume that σ
(
b
)

is a LOP system. Then

Hof F
(
b
)

= sup
x∈E(b)

clmF
(
b, x
)

= sup
x∈E(b)

sup
D∈D(x)

d∗ (0n, conv {at, t ∈ D})−1 .
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Proof. To start with, we recall equation (23):

Hof F
(
b
)

= sup
x∈bdF(b)

clmF
(
b, x
)
.

Since E
(
b
)
⊂ bdF

(
b
)
, the inequality Hof F

(
b
)
≥ supx∈E(b) clmF

(
b, x
)

follows trivially.
Let us see that Hof F

(
b
)
≤ supx∈E(b) clmF

(
b, x
)
. Specifically, let

us prove that for every x ∈ bdF
(
b
)

there exists x̃ ∈ E
(
b
)

such that

clmF
(
b, x
)
≤ clmF

(
b, x̃
)
.

Fix arbitrarily x ∈ bdF
(
b
)

and write x = y+z, where y ∈ span {at, t ∈ T}
and z ∈ {at, t ∈ T}⊥ (the orthogonal subspace to {at, t ∈ T}). Since
a′tx = a′ty for all t ∈ T, y ∈ bdF

(
b
)

and

T (x) = T (y).

Hence, applying Proposition 3(ii) (recall Lemma 3), we have

clmF
(
b, x
)

= clmF
(
b, y
)
. (28)

Let us denote
C = F

(
b
)
∩ span {at, t ∈ T} ,

which satisfies extrC 6= ∅. If y ∈ extrC = E
(
b
)
, we are done. Otherwise,

if y ∈ C\extrC, we can apply Proposition 4 and conclude the existence of
x̃ ∈ extrC, z̃ ∈ C, and µ ∈ ]0, 1[ such that y = (1− µ) x̃+ µz̃. Observe that

T (y) ⊂ T (x̃),

since a′ty = bt implies (1− µ) a′tx̃ + µa′tz̃ = bt, which entails a′tx̃ = a′tz̃ = bt
(because both x̃, z̃ ∈ F

(
b
)
). So, we conclude the aimed inequality

clmF
(
b, y
)
≤ clmF

(
b, x̃
)
,

which together with (28) yields

clmF
(
b, x
)
≤ clmF

(
b, x̃
)
, with x̃ ∈ E

(
b
)
.

21



4.1 On the finite case

This subsection gathers some specifics on finite linear systems. Thus, along
this subsection, we assume that T is finite, in which case, for a fixed

(
b, x
)
∈

gphF , D (x) is also finite and, clearly

∪D∈D(x)conv {at, t ∈ D} = end∂f (x)

is a closed set; moreover, E
(
b
)

is also finite and clmF
(
b, x
)

and Hof F
(
b
)

can be computed through the implementable computations:

clmF
(
b, x
)

= max
D∈D(x)

d∗ (0n, conv {at, t ∈ D})−1 .

Hof F
(
b
)

= max
x∈E(b)

clmF
(
b, x
)
.

In addition, as a consequence of Theorem 6, we can write

Hof F = max
b∈domF

Hof F (b) = max
b∈domF

max
x∈E(b)

clmF (b, x) .

Indeed, if the maximum in (9) in Theorem 1 is attained at J ⊂ T such that
rankAJ = rankA and {at, t ∈ J} is linearly independent, we have

Hof F = Hof F
(
bJ
)

= clmF
(
bJ , 0n

)
,

where bJ is defined as bJt = 0 if t ∈ J and bJt = 1 otherwise.
Finally, we observe that Proposition 3 (i) admits a refinement in this

finite case, which is written in the following result.

Proposition 5 Let x1, x2 ∈ bdF
(
b
)

such that T
(
x1
)
⊂ T

(
x2
)
. Then,

D
(
x1
)
⊂ D

(
x2
)
.

Proof. Given D ∈ D
(
x1
)
, let us see that D ∈ D

(
x2
)
. First, consider

d := x1 − x2 and observe that,{
a′td = 0, t ∈ T

(
x1
)
,

a′td = a′tx
1 − a′tx2 < bt − bt = 0, t ∈ T

(
x2
)
\T
(
x1
)
.

Now, recalling (11), the fact that D ∈ D
(
x1
)

ensures the existence of d ∈ Rn
such that {

a′td = 1, t ∈ D,
a′td < 1, t ∈ T

(
x1
)
\D.
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For every α > 0, we consider a new vector dα := d+ αd; observe that{
a′tdα = a′td+ αa′td = 1, t ∈ D,
a′tdα = a′t

(
d+ αd

)
< 1, t ∈ T

(
x1
)
\D.

Since a′td < 0 for t ∈ T
(
x2
)
\T
(
x1
)
, we can choose α large enough (any

α > maxt∈T (x2)\T (x1)
a′td−1
−a′td

will do it) to make a′t
(
d+ αd

)
< 1 for all t ∈

T
(
x2
)
\T
(
x1
)
. This proves D ∈ D

(
x2
)
.

The following example shows that the previous proposition does not hold
in the semi-infinite framework.

Example 5 Let us consider the system, in R2 endowed with the Euclidean
norm, given by

σ
(
b
)

:=
{

(1 + t cos t)x1 + (t sin t)x2 ≤ 0, t ∈
[
0, π2

] }
;

and take x1 = (0,−1)′ and x2 = (0, 0)′ . Then T
(
x1
)

= {0} ⊂
[
0, π2

]
=

T
(
x2
)
. We have

{0} ∈ D
(
x1
)
\ D

(
x2
)
.

To check that {0} /∈ D
(
x2
)

observe that the system, in the variable d =
(d1, d2)

′ ∈ R2,{
d1 = 1, (1 + t cos t) d1 + (t sin t) d2 < 1 , t ∈

]
0, π2

] }
is inconsistent.

5 Conclusions and perspectives

We have analyzed different properties oriented to quantify the global, semi-
local and local Hoffman behavior of set-valued mappings between metric
spaces, where by ‘semi-local’ we mean the study of the whole image set
with respect to parameter perturbations (a similar use of this term can be
found, for instance, in [25, Definition 2.1]), yielding to the known Lipschitz
upper semicontinuity when the study is concentrated around a nominal pa-
rameter. Local properties, as calmness, are focussed on the behavior of
the multifunction around a fixed element of its graph. The corresponding
moduli are analyzed. Both Hoffman stability (5) and uniform calmness (17)
constitute intermediate steps between calmness and global Hoffman prop-
erties. All these semi-local properties are shown to be equivalent (and with
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the same rate/modulus) for convex-graph multifunctions taking closed val-
ues in a reflexive Banach space (Theorem 4). This is the case of the feasible
set mapping, F , associated with a continuous linear semi-infinite inequality
system parameterized with respect to the right-hand side. At this moment,
let us comment that paper [5] analyzes the upper Lipschitz behavior of the
optimal set mapping, Fop, in finite linear programming, which does not have
a convex graph. Appealing to a certain concept of directional convexity in-
troduced in that paper, [5] establishes a counterpart for the optimal set
mapping of formula

LipuscF(b) = sup
x∈F(b)

clmF
(
b, x
)
.

However, it is shown there that the Hoffman and Lipschitz upper semiconti-
nuity moduli do not coincide when applied to Fop at a nominal parameter.

For this feasible set mapping we succeed in giving the following formula
for the global Hoffman constant (Theorem 5), which extends to the current
semi-infinite framework some previous results for finite systems,

Hof F = sup
J⊂T compact

0n /∈conv{at, t∈J}

d∗ (0n, conv {at, t ∈ J})−1 .

With respect to the semi-local measure, Hof F
(
b
)
, when confined to locally

polyhedral systems (which includes finite systems), Theorem 6 provides a
point-based formula involving exclusively some feasible points and the nom-
inal data at’s and bt’s:

Hof F
(
b
)

= sup
x∈E(b)

sup
D∈D(x)

d∗ (0n, conv {at, t ∈ D})−1 , (29)

where E
(
b
)

is defined in (27). When T is finite (and hence E
(
b
)

and each
D (x) also are), the previous expression yields a specially computable proce-
dure. It provides an alternative approach to the one given in [2] via points
outside the feasible set:

Hof F(b) = sup
x 6=F(b)

d∗
(
0n, conv

{
at, t ∈ Jb (x)

})−1
.

The problem of finding an expression for Hof F
(
b
)

in the line of (29) for not
locally polyhedral systems remains as open problem. A crucial step here is
to extended Theorem 3 about the calmness modulus (traced out from [16])
to more general semi-infinite system.
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