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Controllability Issues of Linear Ensemble Systems

over Multi-dimensional Parameterization Spaces

Xudong Chen∗

Abstract

We address an open problem in ensemble control: Whether there exist controllable

linear ensemble systems over multi-dimensional parameterization spaces? We provide

a negative result: Any real-analytic linear ensemble system is not Lp-controllable, for

2 ≤ p ≤ ∞, if its parameterization space contains an open set in Rd for d ≥ 2.

1 Introduction and Main Result

Ensemble control originated from quantum spin systems [1–3] and has found many applica-
tions across various disciplines in science and engineering, ranging from neuroscience [4–6],
to emergent behaviors [7], and to multi-agent control [8–10]. Driven by these emerging
applications, there has been an active development in mathematical control theory for an-
alyzing basic properties of infinite ensemble systems, among which controllability has been
a major focus. Although significant progress has been made over the last score, a complete
understanding of controllability is still lacking. This is true even for ensembles of linear
control systems. In the paper, we consider ensembles of linear time-invariant systems whose
(A,B) pairs are continuous, matrix-valued functions defined on compact subsets of multi-
dimensional Euclidean spaces. We call these subsets parameterization spaces. We address
controllability issues of those linear ensemble systems.

1.1 Successes in one dimension

When parameterization spaces are one-dimensional, it is known that there exist uniformly
controllable linear ensemble systems. We take below a simple but illustrative example:
Consider a scalar linear ensemble system over the closed unit interval [0, 1]:

ẋ(t, σ) :=
∂

∂t
x(t, σ) = σx(t, σ) + u(t), for all σ ∈ [0, 1], (1)

where x(t, σ) ∈ R is the current state of an individual system indexed by σ, and u(t) ∈ R

is the control input common to all individual systems. For a fixed time t, the collective of
x(t, σ), for σ ∈ [0, 1], is called a profile, which we denote by χ(t). The profile χ(t) can be
viewed as a function χ(t) : Σ → R, sending σ to x(t, σ). For this example, we assume that
profiles are continuous functions. Then, uniform controllability of system (1) is, roughly
speaking, the capability of using the scalar control input u(t) to steer from an arbitrary
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initial profile χ(0) to reach a profile which is L∞-close to a given, but arbitrary, target
profile χ̂.

In this setup, the controllable subspace associated with system (1) is the uniform closure
of the vector space (over R) spanned by akb, for k ≥ 0, where the associated (a, b) pair is
given by a(σ) := σ and b(σ) := 1 for all σ ∈ [0, 1]. System (1) is uniformly controllable
if and only if the controllable subspace comprises continuous functions from [0, 1] to R

(see Lemma 1 below). Here, akb are simply the monomials σk. By Stone-Weierstrass
theorem [11, Ch. 7], any continuous function on [0, 1] can be approximated uniformly and
arbitrarily well by polynomials. Thus, system (1) is uniformly controllable.

Significant extensions of the above controllability result have been made over the last
decade. Necessary and/or sufficient conditions have been established for controllability of
general linear ensemble systems over single closed intervals [12–16], finite unions of closed
intervals [17, 18], and curves in the complex plane [19]. Although the analysis for a general
case is much more involved, Stone-Weierstrass theorem (or Mergelyan’s theorem [20, Ch. 20]
for dealing with complex linear ensemble systems) is the core as was illustrated above. We
also refer the reader to [12,21–23] for ensembles of linear time-variant systems and, further,
to a book chapter [24, Ch. 12] for more relevant works.

Note that any compact, connected, one-dimensional manifold is homeomorphic to either
a closed interval or a circle [25, Ch. 2]. The literature is relatively sparse for linear ensemble
systems over circles: It is known [19, Remark 9-(d)] that there exist scalar, complex linear
ensemble systems with single control inputs that are L2-controllable (see Definition 1 below);
the conditions about cyclic operators and cyclic vectors described in [26] can be used to
establish the fact. A negative result about uniform controllability for those linear ensemble
systems has been established in [19, Lemma 5].

1.2 Problem for multi-dimensions

Those existing results make us wonder whether the successes can be repeated if the dimen-
sions of the parameterization spaces are increased? This is in fact an open problem.

Before we provide a solution to the problem, perhaps it is helpful to gain some insights
by looking into a complex version of system (1). Consider a linear ensemble system with
the same dynamics as (1), but with σ being a complex variable that belongs to the closed
unit disk centered at the origin of the complex plane:

ẋ(t, σ) = σx(t, σ) + u(t), for all σ ∈ C and |σ| ≤ 1. (2)

The state x(t, σ) is now complex-valued. We allow the scalar control input u(t) to take
complex value as well. Note that we choose to work with complex systems is for ease
of presentation: One can obtain a corresponding real ensemble system by realification.
The state space of each individual system after realification will be two-dimensional. We
elaborate on the correspondence later in Lemma 2, Section §2.

The controllable subspace associated with (2) is, similarly, given by the uniform closure
of the space (but now, over C) spanned by all the monomials σk for k ≥ 0. However, unlike
the previous case, what we obtain after taking the closure is not the space of continuous
functions anymore. It follows from Mergelyan’s theorem that the controllable subspace
comprises functions that are holomorphic in the interior of the closed disk and continuous
on the boundary. As a consequence, we lose uniform controllability of system (2). One
may wonder at the point whether we could fix the controllability issue by increasing the
dimension of state space and/or by adding more control inputs? The answer is no; in this
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paper, we show that if the parameterization space Σ contains an open set U in Rd for d ≥ 2,
and if A and B are real-analytic at a certain point in U , then the linear ensemble system
described by the (A,B) pair cannot be uniformly or Lp controllable, for p ≥ 2.

To the best of the author’s knowledge, the negative result is original. Previous works
on the problem have mainly focussed on obtaining necessary conditions for controllability.
For example, Helmke and Schönlein have provided in [14] conditions about disjointness of
the spectrums of the A-matrix. Later in [17], the authors have also shown that if uniform
controllability is concerned, then under some other mild assumptions, the parameterization
space is at most two-dimensional and, moreover, the A-matrix cannot have a branch of real
eigenvalues. In a more recent work [19], Dirr and Schönlein have shown that if there is only
one single control input, then a linear ensemble system cannot be uniformly controllable if
the dimension of the parameterization space is greater than one. Example and simulation
studies for linear ensemble systems over two-dimensional parameterization spaces are also
carried out by Zhang and Li in [23].

1.3 Main results

Let Σ be a compact subset of Rd. Let F be the field of either real or complex numbers. We
consider a continuum ensemble of linear time-invariant control systems over Σ:

ẋ(t, σ) = A(σ)x(t, σ) +B(σ)u(t), for all σ ∈ Σ, (3)

where x(t, σ) ∈ Fn, u(t) ∈ Fm, and A : Σ → Fn×n and B : Σ → Fn×m are continuous
matrix-valued functions. The control input u(t) is said to be admissible if for any T > 0,
u : [0, T ] → Fm is integrable.

Let χ(t) : Σ → Fn be the profile at time t, defined as the function sending σ to x(t, σ). In
this paper, the profiles χ(t) are either continuous or Lp-functions, for 1 ≤ p < ∞. Denote by
C0(Σ,Fn) the space of continuous functions f : Σ → Fn, and by Lp(Σ,Fn), for 1 ≤ p < ∞,
the Banach space of all functions f : Σ → Fn whose Lp-norm is finite. The profile space of
system (3), denoted by Xp

F
, is given by

Xp
F

:=

{

Lp(Σ,Fn) if 1 ≤ p < ∞,
C0(Σ,Fn) if p = ∞.

We now have the following definition:

Definition 1. System (3), or simply the pair (A,B), is Lp-controllable1, for 1 ≤ p ≤ ∞,
if for any initial profile χ(0) ∈ Xp

F
, any target profile χ̂ ∈ Xp

F
, and any error tolerance ǫ > 0,

there is a time T > 0 and an admissible control input u : [0, T ] → Fm such that the solution
χ(t) generated by (3) satisfies ‖χ(T ) − χ̂‖Lp < ǫ.

Let σ0 be a point of Σ. A function f : Σ → R is said to be real-analytic at σ0 if there
exists an open neighborhood U of σ0 in Rd such that f |U can be represented by a convergent
power series in the entries of (σ − σ0). Note that if σ0 belongs to the boundary of Σ, then
real-analyticity of f at σ0 means that f can be extended to an open neighborhood U of σ0

and the extended function is real-analytic at σ0. A complex-valued function f : Σ → C is
said to be real-analytic at σ0 if both real and imaginary parts of f are real-analytic at σ0.
A matrix-valued function is real-analytic at σ0 if all of its entries are real-analytic at σ0.

We now state the main result of the paper:

1For p = ∞, L∞-controllability is also known as uniform controllability [24].
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Theorem 1.1. If Σ contains an open set U in Rd, with d ≥ 2, and if continuous matrix-
valued functions A : Σ → Fn×n and B : Σ → Fn×m, with F = R or F = C, are real-analytic
at a certain point in U , then the linear ensemble system (A,B) cannot be Lp-controllable,
for 2 ≤ p ≤ ∞.

Theorem 1.1 can be formulated as a negative result in approximation theory. For that,
we first have the following definition:

Definition 2. Let A : Σ → Fn×n and B : Σ → Fn×m be continuous matrix-valued functions.
The Lp-controllable subspace of system (3), denoted by L

p
F
(A,B), is the Lp-closure of

the subspace, over F, spanned by the columns of AkB, for all k ≥ 0.

The above definition is a straightforward generalization of the controllable subspace
associated with a finite dimensional linear system. By the Kalman rank condition, a finite-
dimensional linear system is controllable if and only if the controllable subspace is the
entire state space. This is, in fact, true for linear ensemble systems. We introduce below a
necessary and sufficient condition for Lp-controllability adapted from [27]:

Lemma 1. System (3) is Lp-controllable if and only if Lp
F
(A,B) = Xp

F
.

With Lemma 1, the following result is then equivalent to Theorem 1.1:

Theorem 1.2. If Σ contains an open set U in Rd, with d ≥ 2, and if continuous matrix-
valued functions A : Σ → Fn×n and B : Σ → Fn×m are real-analytic at a certain point in U ,
then L

p
F
(A,B) is a proper subspace of Xp

F
, for 2 ≤ p ≤ ∞.

Now, let Σ be a compact subset of C. Given a bounded function a : Σ → C, let
Ma : Lp(Σ,C) → Lp(Σ,C), for 1 ≤ p < ∞, be the multiplication operator, defined as
Ma(b) := ab. The operator Ma is said to be cyclic [28] if there exists an Lp-function b such
that L

p
C

(a, b) = Lp(Σ,C), and any such b is called a cyclic function with respect to Ma.
Denote by ω : Σ → C the identity function, i.e., ω(σ) = σ for all σ ∈ Σ. It is known [28,29]
that Mω is a cyclic operator and, moreover, it is a canonical one in a sense that if Ma is
another cyclic operator, then there exists a surjective isometry J : Lp(Σ,C) → Lp(Σ,C)
such that Ma = J−1MωJ . While cyclic operators have been characterized and understood
to a certain extent, it still remains open what type of elements b ∈ Lp(Σ,C) can be cyclic
functions. A necessary and sufficient condition has recently been obtained in [19, Proposition
7], yet there is still lack of an explicit and complete characterization. Our contribution to this
area is formulated in the following result, which is an immediate consequence of Theorem 1.2:

Corollary 1.3. Let Σ be a compact subset of C and ω : Σ → C be the identity function.
Suppose that b ∈ Lp(Σ,C), for 2 ≤ p < ∞, is a cyclic function with respect to Mω; then, b
is nowhere real-analytic over the interior of Σ.

1.4 Organization of the paper

The remainder of the paper is devoted to the proof of Theorem 1.1. The proof is divided
into three parts:

In Section §2, we present preliminary results that can reduce moderately the complexity
of controllability analysis for system (3). By the end of Section §2, we will be able to focus
only on L2-controllability of complex linear ensemble systems over closed, d-dimensional
balls.
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In Section §3, we introduce a special class of (complex) linear ensemble systems, termed
normal forms. Each normal form is a scalar complex linear ensemble system whose param-
eterization space is a closed two-dimensional disk. Moreover, the A-matrix, now being a
scalar, is the identity function and the B-matrix, now being a row vector, is real-analytic.
We show that every normal form is not L2-controllable.

In Section §4, we bridge the gap between L2-controllability of normal forms and L2-
controllability of general linear ensemble systems (3). The analysis will be carried out by
a sequence of reductions on both state spaces of individual systems and parameterization
spaces. After these reductions, we will be able to focus only on scalar complex linear
ensemble systems over two-dimensional disks. These systems will be further translated into
the normal forms with controllability preserved. All the arguments then form a complete
proof of Theorem 1.1.

1.5 Notations

For a complex number z = x+ iy, let z̄ = x− iy be the complex conjugate of z. The polar
representation of z is given by z = reiθ where r ≥ 0 and θ ∈ [−π, π). If Z is a complex

matrix, then Z is entry-wise, and we let Z† := Z
⊤

.
Let S be a subset of Cn. A function f : S → Cn is said to be Ck, for k ≥ 0, real-analytic,

or holomorphic if it can be extended to a Ck, real-analytic, or holomorphic function on an
open set S′ that contains S (if S is open, then S′ can simply be S).

Throughout the paper, we use ωS : S → S to denote the identity function, i.e., ωS(x) = x
for all x ∈ S. We let 1S : S → R be the constant function that takes value one everywhere,
i.e., 1S(x) = 1 for all x ∈ S. For ease of notation, we will omit sometimes the subindex S
and simply write ω and 1.

Let S be a Lebesgue measurable subset of Rn. Let f1 and f2 be two complex, vector-
valued, square-integrable functions defined on S. We define the inner-product of f1 with f2

as 〈f1, f2〉S :=
∫

S f
†
1 (σ)f2(σ)dσ. Note that 〈f1, f2〉S = 〈f2, f1〉S . We will omit the subindex

S if it does not cause any confusion.

2 Preliminary Results

In this section, we will (1) establish equivalence of controllability for real and complex linear
ensemble systems; (2) compare Lp-controllability for different values of p; and (3) introduce
ensemble systems obtained by pullbacks and relate controllability properties of these systems
to those of the original ones (3). The results are formulated as Lemmas 2–4 and presented
in the subsequent subsections.

2.1 Controllability of real and complex ensembles

As indicated at the beginning of Subsection §1.3, the field F can be either R or C. When
F = C (resp. F = R), we call system (3) a complex (resp. real) linear ensemble system.
Since R ⊂ C, the pair (A,B) associated with a complex linear ensemble system can be real,
matrix-valued functions (but the control input u(t) can be valued in Cm).

We have the following result:

Lemma 2. There is a complex Lp-controllable linear ensemble system if and only if there
is a real Lp-controllable one.

5



Proof. If system (3) is real and Lp-controllable, then it is known (see, e.g., [19, Lemma 1]
and [30]) that the same pair (A,B) yields a complex, Lp-controllable linear ensemble system.
We now assume that system (3) is complex and Lp-controllable. We show below that its
realification is Lp-controllable. First, decompose A = A1 + iA2 and B = B1 + iB2 into real
and imaginary parts. The realification of (3) is then a 2n-dimensional real linear ensemble
system given as follows:

[

ẋ1(t, σ)
ẋ2(t, σ)

]

=

[

A1(σ) −A2(σ)
A2(σ) A1(σ)

] [

x1(t, σ)
x2(t, σ)

]

+

[

B1(σ) −B2(σ)
B2(σ) B1(σ)

] [

u1(t)
u2(t)

]

. (4)

The correspondence between (3) and (4) is straightforward: The two n-dimensional substates
x1(t, σ) and x2(t, σ) in (4) correspond to the real and imaginary parts, respectively, of x(t, σ)
in (3). The same holds for u1(t) and u2(t), i.e., they are real- and imaginary-parts of u(t)
in (3). We conclude from Definition 1 that if the linear complex ensemble system (3) is
Lp-controllable, then so is its realification (4). �

In the sequel, we will let F = C, i.e., we will consider complex linear ensemble systems.
The choice is made for ease of analysis. For ease of notation, we will simply write Lp(A,B)
by omitting its subindex C.

2.2 Comparison between different notions of controllability

We have the following result that compares Lp-controllability for different values of p:

Lemma 3. If system (3) is Lp-controllable and if 1 ≤ q < p ≤ ∞, then the system is also
Lq-controllable.

Proof. First, note that Lp(Σ,Cn) is a subset of Lq(Σ,Cn); indeed, by the Hölder’s inequality,

we have that ‖f‖Lq ≤ ‖f‖Lp vol(Σ)
1
q

− 1
p for any f ∈ Lp(Σ,Cn), where vol(Σ) is the volume

of Σ. It follows that ‖f‖Lq is finite and, hence, f ∈ Lq(Σ,Cn). By the same argument, we
know that L

q(A,B) contains L
p(A,B) as a subset. Because system (3) is Lp-controllable,

by Lemma 1, Lp(A,B) (and, hence, Lq(A,B)) contains C0(Σ,Cn) as a subset. Since Σ is
compact, C0(Σ,Cn) is dense in Lq(Σ,Cn) with respect to the Lq-norm. Finally, note that
Lq(A,B) is closed, so Lq(A,B) = Lq(Σ,Cn). By Lemma 1, system (3) is Lq-controllable. �

By Lemma 3, if system (3) is not L2-controllable, then it cannot be Lp-controllable for
all p ≥ 2. Thus, to prove Theorem 1.1, it suffices to prove for the case where p = 2.
Because of this, we assume, in the sequel, that p = 2. For ease of notation, we will write
L(A,B) := L2(A,B) by omitting the sup-index. We will also omit, on occasions, the prefix
“L2-” for controllability. For example, we will write controllable subspace instead of L2-
controllable subspace.

2.3 Pullbacks by embeddings and subensembles

In this subsection, we assume that Σ contains an open set U in Rd. Let Σ′ be a closed,
d-dimensional ball (or a rectangle) in Rd, and ϕ : Σ′ → U be a C1-embedding. Let A′ :
Σ′ → Cn×n and B′ : Σ′ → Cn×m be defined as A′ := A · ϕ and B′ := B · ϕ. We consider
the following ensemble system:

ẋ′(t, σ′) = A′(σ′)x′(t, σ′) +B′(σ′)u′(t), for all σ′ ∈ Σ′, (5)

and have the following definition:
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Definition 3. System (5) is the pullback of system (3) by ϕ. In the case ϕ : Σ′ → U is
an inclusion map we call system (5) a subensemble or, more explicitly, subensemble-Σ′

of system (3).

The following result relates controllability of system (3) to controllability of its pull-
back (5) (a similar result is obtained in [19, Lemma 1] for ϕ an inclusion map):

Lemma 4. If system (5) is not controllable, then neither is system (3).

Proof. Assuming that system (5) is not controllable, we will show that there exist a function
f ∈ L2(Σ,Cn) and an ǫ > 0 such that f is at least ǫ-away from L(A,B).

For any given σ′ ∈ Σ′, we let dϕσ′ : Rd → Rd be the derivative of ϕ at σ′. Because ϕ is
an embedding, dϕσ′ is a linear isomorphism. Thus, det(dϕσ′ ) is nonzero. Since ϕ is C1 and
since Σ′ is compact, there exist positive numbers κ0 and κ1 such that κ0 ≤ | det(dϕσ′ )| ≤ κ1,
for all σ′ ∈ Σ′.

Since system (5) is not controllable, by Lemma 1, L(A′, B′) is a proper subspace of
L2(Σ′,Cn). Thus, there exist a function f ′ ∈ L2(Σ′,Cn) and an ǫ′ > 0 such that f ′ is at
least ǫ′-away from L(A′, B′). Now, let f : Σ → Cn be defined as follows:

f(σ) :=

{

f ′(σ′) if σ = ϕ(σ′) for some σ′ ∈ Σ′,
0 otherwise.

It follows from computation that ‖f‖L2 ≤ κ1‖f ′‖L2 , so f ∈ L2(Σ,Cn).
Given an arbitrary g in L(A,B), let g′ : Σ′ → Cn be defined as g′(σ′) := g(ϕ(σ′)). It

should be clear that g′ ∈ L(A′, B′). Moreover, we have that

‖g − f‖2
L2 ≥ ‖(g − f)|ϕ(Σ′)‖2

L2 ≥ κ0‖g′ − f ′‖2
L2 ≥ κ0ǫ

′2.

Thus, f is at least
√
κ0ǫ

′-away from L(A,B), which implies that L(A,B) is a proper subspace
of L2(Σ,Cn). Thus, by Lemma 1, (A,B) is not controllable. �

If A and B are real-analytic at a certain point σ0 ∈ U , then they are real-analytic over an
open neighborhood of σ0, and any such open neighborhood contains a closed d-dimensional
ball.

Thanks to Lemma 4, we can now focus on the case where Σ is itself a closed d-dimensional
ball and, moreover, A : Σ → Cn×n and B : Σ → Cn×m are real-analytic functions. However,
even for such simplified case, the proof of Theorem 1.1 is nontrivial at all.

3 Normal Forms

In this section, we focus on a special class of complex linear ensemble systems, which we
term normal forms. Each normal form is a scalar ensemble system, and its parameterization
space is a closed, two dimensional disk in R2. In the sequel, we identify R2 with the complex
plane C, so a point σ = (σ1, σ2) ∈ R2 corresponds to a complex number σ = σ1 +iσ2. Define
a disk of radius R as follows:

D0[R] := {σ ∈ C | |σ| ≤ R} .

The square bracket in D0[R] indicates that it is a closed disk and the subindex 0 indicates
that the disk is centered at 0. We now have the following definition:
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Definition 4. A normal form is a scalar, complex linear ensemble system:

ẋ(t, σ) = σx(t, σ) + b(σ)u(t), for all σ ∈ D0[R], (6)

where b : Σ → C1×m is an arbitrary real-analytic, vector-valued function.

The goal of the section is to establish the following result:

Theorem 3.1. Every normal form (6) is not L2-controllable.

Outline of proof: By Lemma 1, Theorem 3.1 will be established if we can show that
L(ω, b) is a proper subspace of L2(D0[R],C), where ω denotes the identity function on
D0[R]. In particular, if there exists a nonzero f0 ∈ L2(D0[R],C) perpendicular to every
subspace L(ω, bi), for i = 1, . . . ,m, then f0 is perpendicular to L(ω, b), which implies that
L(ω, b) ( L2(D0[R],C).

The above arguments indicate that one can translate the L2-controllability problem for
normal forms into the following intersection problem: Given finitely, but arbitrarily, many
real-analytic functions bi : D0[R] → C, for i = 1, . . . ,m, is the intersection ∩m

i=1L
⊥(ω, bi)

always nontrivial, where L⊥(ω, bi) is the subspace of L2(D0[R],C) perpendicular to L(ω, bi)?
We show that the answer is affirmative; we borrow a terminology from topology and call such
a property the finite intersection property. This property will be formulated as a theorem,
Theorem 3.6, in Subsection §3.3.

The proof of existence of a desired f0 is constructive, and it will take several steps.
First, we use polar coordinates (i.e., σ = reiθ) to express each bi as a doubly infinite series
bi(r, θ) =

∑∞
k=−∞ ρi,k(r)eikθ . Similarly, we write f0(r, θ) =

∑∞
k=−∞ ρ0,k(r)eikθ . We call

ρ0,k the radius components of f0 and require that they satisfy certain conditions introduced
in Definition 6 so that the series f0 is uniformly and exponentially convergent. Since f0 is
uniquely determined by its radius components (and vice versa), to construct f0, it suffices
to construct ρ0,k. We do so by first establishing a necessary and sufficient condition on ρ0,k,
termed the null condition, for the resulting series f0 to be perpendicular to every L(ω, bi)
for i = 1, . . . ,m. This is done in Subsection §3.4. Then, in Subsection 3.6, we exhibit
appropriate ρ0,k they satisfy the null condition and render f0(r, θ) =

∑∞
k=−∞ ρ0,k(r)eikθ a

desired convergent series.
It is worth pointing out that the analysis outlined above will be carried out on a closed

annulus A1 inside D0[R], rather than the disk D0[R] itself. Specifically, we restrict each
bi to A1, and construct a nonzero f0 on A1 perpendicular to every subspace L(ωA1

, bi|A1
).

One then extends f0 to a nonzero function f̃0 ∈ L2(D0[R],C) simply by letting f̃0 be
identically 0 on D0[R]\A1; it should be clear that f̃0 is perpendicular to the subspaces
L(ω, bi). The reason of performing the above-mentioned restriction on the domain (from
D0[R] to A1) is that by our construction, the radius components ρ0,k of f0 will take the
form ρ0,k(r) = qk(r)r−k, where qk are polynomials with degrees less than or equal to m (the
construction will be given in Proposition 3.10). Thus, the functions ρ0,k(r), for k > m, may
diverge as r approaches 0 and, hence, the series f0(r, θ) =

∑∞
k=−∞ ρ0,k(r)eikθ may not be

convergent for r sufficiently small.

3.1 Regularization condition

In this subsection, we introduce a condition that regularizes the b-vector in the normal
form (6). We show that this condition can be assumed for free when proving Theorem 3.1

8



and will be of great use in the analysis. To state the condition, we first recall that a real-
analytic function f : D0[R] → C can be locally represented by a convergent power series
(Maclaurin series) in σ and σ̄:

f(σ) =
∞
∑

k=0

∞
∑

ℓ=0

c(k, ℓ)σkσ̄ℓ, for all σ such that |σ| < δ, (7)

where the coefficients c(k, ℓ) are complex numbers with k and ℓ indicating the powers of
σ and σ̄, respectively. The radius of convergence is defined to be the supremum of δ such
that (7) holds. We now introduce the regularization condition:

Definition 5. A real-analytic function f : D0[R] → C is regularized if f is nonzero
everywhere over D0[R], and the Maclaurin series of f and of f−1 have radii of convergence
greater than R.

With the definition above, we establish the following result:

Proposition 3.2. When proving Theorem 3.1, one can assume for free that every entry bi

of the b-vector in system (6) is regularized.

Proof. We first show that the following condition can be assumed for free: every entry bi

satisfies bi(0) 6= 0. We do so by establishing the fact that one can always construct another
normal form (ω, b̃), with b̃i(0) 6= 0 for all i, such that uncontrollability of (ω, b̃) implies
uncontrollability of (ω, b).

To this end, we choose an arbitrary real-analytic function b0 : D0[R] → C with b0(0) 6=
0. By concatenating b0 with the row vector b, we obtain an augmented row vector b̂ :=
[b0, b1, · · · , bm]. It should be clear that L(ω, b) ⊆ L(ω, b̂). Next, for each i = 1, . . . ,m, let
b̃i : D0[R] → C be defined such that b̃i := bi + b0 if bi(0) = 0 and b̃i := bi otherwise. By
construction, b̃i(0) 6= 0 for all i = 0, . . . ,m. Now, let b̃ := [b̃0, . . . , b̃m]. Since each b̃i is a

linear combination of the bi and vice versa, we have that L(ω, b̂) = L(ω, b̃). It then follows
that L(ω, b) ⊆ L(ω, b̃). Thus, if (ω, b̃) is not controllable, then neither is (ω, b).

By the above arguments, we can now assume that bi(0) 6= 0 for all i. Because b is
continuous and because each bi(0) is nonzero, there is a radius R′, with 0 < R′ ≤ R, such
that bi(σ) 6= 0 for all σ ∈ D0[R′] and for all i = 1, . . . ,m. Thus, bi and b−1

i are well
defined on D0[R′] and are locally represented by the corresponding Maclaurin series. By
shrinking R′, if necessary, we can assume that R′ is smaller than the radii of convergence of
those series. It follows that the condition given in the statement of the proposition will be
satisfied if R is replaced with R′. By Lemma 4, to show that system (6) is not controllable,
it suffices to show that the subensemble-D0[R′] is not controllable. We can thus assume
that the regularization condition is satisfied without passing (6) to any of its subensembles.
This completes the proof. �

3.2 Convergent series on annulus

In this subsection, we introduce the closed annulus A1 as indicated earlier in the outline of
proof, and a special class of continuous functions on A1, each of which can be represented
by a certain convergent series. To this end, let R1 and R2 be positive real numbers such
that 0 < R1 < R2 < R. Let A[R1, R2] be a closed annulus inside D0[R]:

A[R1, R2] := {σ ∈ C | R1 ≤ |σ| ≤ R2}. (8)

9



For convenience, we use A1 := A[R1, R2] as a short notation. To introduce the above-
mentioned continuous functions on A1, we use polar coordinates (i.e., σ = reiθ):

Definition 6. Let ρk : [R1, R2] → C, for k ∈ Z, be continuous functions. The following
doubly infinite series f : A1 → C:

f(r, θ) :=

∞
∑

k=−∞

ρk(r)eikθ (9)

is uniformly and exponentially convergent (uec) if there exists a real number q > 1
such that

∞
∑

k=−∞

‖ρk‖L∞q|k| < ∞.

We call ρk the radius components of f .

Note that by the uniform limit theorem, each uec series is a continuous function. Denote
by K the set of all uec series:

K :=
{

f ∈ C0(A1,C) | f is represented by a uec series
}

.

Next, we define a set of functions ηk : K → C0([R1, R2],C), for k ∈ Z, by sending an uec
series f to its radius components ρk. The maps ηk are explicitly given by:

ηk(f)(r) :=
1

2π

∫ π

−π

f(r, θ)e−ikθdθ, for r ∈ [R1, R2]. (10)

The set C0(A1,C) is an algebra (over C) with identity: Addition and multiplication are
pointwise, and the identity element is simply 1A1

. We have the following result:

Proposition 3.3. The set K is a subalgebra of C0(A1,C) with identity.

Proof. It should be clear that 1A1
belongs to K and that K is a subspace of C0(A1,C)

from Definition 6. We show below that K is closed under multiplication. i.e., for any two
f1, f2 ∈ K, f1f2 ∈ K. To proceed, we first express f1f2 using the following formal series:

(f1f2)(r, θ) =

(

∞
∑

k=−∞

ηk(f1)eikθ

)(

∞
∑

ℓ=−∞

ηℓ(f2)eiℓθ

)

=

∞
∑

k=−∞

[

∞
∑

ℓ=−∞

(

ηk−ℓ(f1)ηℓ(f2)
)

(r)

]

eikθ.

We show below that for each k ∈ Z, the series ρk :=
∑∞

ℓ=−∞ ηk−ℓ(f1)ηℓ(f2) is uniformly
and absolutely convergent on [R1, R2]. Since f1, f2 ∈ K, by Definition 6, there exist a p > 1
and an M > 0 such that ‖ηk(fi)‖L∞p|k| < M for all k ∈ Z and for all i = 1, 2. Then, for
any r ∈ [R1, R2],

∞
∑

ℓ=−∞

∣

∣

(

ηk−ℓ(f1)ηℓ(f2)
)

(r)
∣

∣ ≤
∞
∑

ℓ=−∞

‖ηk−ℓ(f1)‖L∞‖ηℓ(f2)‖L∞

<

∞
∑

ℓ=−∞

M2

p|k−ℓ|+|ℓ|
=

(

|k| +
p2 + 1

p2 − 1

)

M2

p|k|
. (11)
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It now remains to show that there exists a q > 1 such that
∑∞

k=−∞ ‖ρk‖L∞q|k| < ∞.
By (11), we have that for any q ∈ (1, p),

∞
∑

k=−∞

‖ρk‖L∞q|k| <

∞
∑

k=−∞

M2

(

|k| +
p2 + 1

p2 − 1

)(

q

p

)|k|

< ∞.

This completes the proof. �

We next introduce a set P, obtained by restricting regularized, real-analytic functions to
the annulus A1. Specifically, let

P := {f |A1
| f : D0[R] → C is real-analytic and regularized} . (12)

The elements of P will be used in the next subsection to index a special class of subspaces
of L2(A1,C), termed featured spaces. We have the following result:

Proposition 3.4. The set P defined in (12) is a subset of K.

Proof. Let f : D0[R] → C be a regularized, real-analytic function. Using the polar co-
ordinates, we re-write the Maclaurin series (7) of f as f(r, θ) =

∑∞
k=−∞ ρk(r)eikθ , where

ρk : [0, R] → C are given by the uniformly and absolutely convergence series:

ρk(r) :=

∞
∑

ℓ=0

c

(

ℓ+
1

2
(|k| + k), ℓ+

1

2
(|k| − k)

)

r2ℓ+|k|. (13)

Next, let ρ′
k := ρk|[R1,R2] and q := R/R2 > 1. Then, using (13) and the fact that r ≤ R2, we

have that

∞
∑

k=−∞

‖ρ′
k‖L∞q|k| ≤

∞
∑

k=−∞

∞
∑

ℓ=0

|c (ℓ+ (|k|+k)/2, ℓ+ (|k|−k)/2)|R2ℓ+|k|
2 (R/R2)

|k|

≤
∞
∑

k=−∞

∞
∑

ℓ=0

|c (ℓ+ (|k|+k)/2, ℓ+ (|k|−k)/2)|R2ℓ+|k|

=

∞
∑

k=0

∞
∑

ℓ=0

|c(k, ℓ)|Rk+ℓ. (14)

Since f is regularized, the radius of convergence of its Maclaurin series is greater than R
and, hence, the last expression (14) is bounded above. �

3.3 Finite intersection property

In this subsection, we first introduce and characterize a special class of Hilbert subspaces
of L2(A1,C), indexed by elements in P. We next formulate a theorem, Theorem 3.6, which
states that intersections of finitely, but arbitrarily, many these subspaces are always non-
trivial. Theorem 3.1 will then follow as an immediate consequence of Theorem 3.6.

Recall that ωA1
is the identity function on A1. For ease of notation, we will omit its

subindex in the sequel. Let P be given as in (12). For any g ∈ P, let

Kg := K ∩ L
⊥(ω, g) =

{

f ∈ K | 〈f, ωkg〉A1
= 0, for all k ≥ 0

}

, (15)

Note that the constant function 1 belongs to P (its subindex A1 has been omitted). We
characterize below the subspaces Kg:

11



Proposition 3.5. The following two items hold:

1. Let ηk be defined as in (10). The set K1 comprises all f ∈ K such that

∫ R2

R1

ηk(f)(r)rk+1dr = 0, for all k ≥ 0. (16)

2. Let g be an arbitrary element in P. Then, an f ∈ K belongs to Kg if and only if there
exists an f ′ ∈ K1 such that f = f ′ḡ−1.

Proof. We first establish item 1. Using polar coordinates, we have that

〈ωk, f〉A1
=

∫ π

−π

∫ R2

R1

∞
∑

ℓ=−∞

ηℓ(f)(r)rk+1ei(ℓ−k)θdrdθ. (17)

Since f ∈ K, there exists an M > 0 such that
∑∞

ℓ=−∞ ‖ηℓ(f)‖L∞ < M and, hence,

∞
∑

ℓ=−∞

|ηℓ(f)(r)rk+1ei(ℓ−k)θ| < Rk+1
2 M, for all r ∈ [R1, R2].

By dominated convergence theorem, we can switch the order of integrals and sum in (17)
and obtain that

〈ωk, f〉A1
=

∞
∑

ℓ=−∞

∫ R2

R1

∫ π

−π

ηℓ(f)(r)rk+1ei(ℓ−k)θdθdr = 2π

∫ R2

R1

ηk(f)(r)rk+1dr.

Thus, 〈ωk, f〉A1
= 0 if and only if (16) holds. This establishes item 1.

We next establish item 2. First, for any f ∈ Kg, we let f ′ := f ḡ and show that f ′ ∈ K1.
Since g ∈ P, its complex conjugation ḡ also belongs to P and, hence, to K by Proposition 3.4.
By Proposition 3.3, K is closed under multiplication, so f ′ ∈ K. Moreover,

〈f ′, ωk〉A1
= 〈f ḡ, ωk〉A1

= 〈f, ωkg〉A1
= 0, (18)

which implies that f ′ ∈ K1. Conversely, for any f ′ ∈ K1, let f := f ′ḡ−1. Since g ∈ P, g is
regularized and, hence, g−1 belongs to P. By the same arguments, f ∈ K. Using again (18),
we conclude that f ∈ Kg. This establishes item 2. �

It should be clear that for any g ∈ P, Kg is nontrivial, i.e., it contains nonzero elements.
Indeed, for the special case g = 1, the functions ωk, for k ≥ 1, belong to K1. Then, by
item 2 of Proposition 3.5, Kg is nontrivial for all g ∈ P. The following result shows that the
intersection of finitely, but arbitrarily many, Kg is also nontrivial:

Theorem 3.6. Let A1 = A[R1, R2] be the closed annulus in D0[R] defined in (8) and P be
defined in (12). For each g ∈ P, let Kg be defined in (15). Suppose that R1R > R2

2; then,
for any finite set {g1, . . . , gm} out of P, ∩m

i=1Kgi
is nontrivial.

We call the property described in the above theorem the finite intersection property.
Theorem 3.1 then follows as an immediate consequence of Theorem 3.6:

Proof of Theorem 3.1. Let b1, . . . , bm be the m entries of the b-vector of system (6).
By Proposition 3.2, we can assume for free that each bi is regularized. Let gi := bi|A1

for all i = 1, . . . ,m; then, gi ∈ P. By Theorem 3.6, there is a nonzero f0 ∈ ∩m
i=1Kgi

.
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By definition (15) of Kgi
, f0 is perpendicular to L(ω, g), where g := [g1, . . . , gm]. We then

extend f0 to a nonzero function f̃0 ∈ L2(D0[R],C) by setting f̃(σ) := 0 for all σ ∈ D0[R]\A1.
By construction, f̃0 is perpendicular to L(ω, b). We then conclude from Lemma 1 that the
pair (ω, b) is not L2-controllable. �

The remainder of the section is devoted to the proof of Theorem 3.6. We will show that
there exist a nonzero f0 ∈ K and m functions f1, . . . , fm ∈ K1 such that

f0ḡi = fi, for all i = 1, . . . ,m. (19)

Note that if (19) holds, then f0 = fiḡ
−1
i for all i = 1, . . . ,m. By Proposition 3.5, f0 ∈

∩m
i=1Kgi

, i.e., Theorem 3.6 is established.

3.4 Null condition

In this subsection, we establish a necessary and sufficient condition, termed null condition,
for two functions f, g ∈ K to satisfy fg ∈ K1. Recall that R1 and R2 are the inner- and
outer-radii of the annulus A1. For convenience, let s1 := R2

1 and s2 := R2
2. Using the

functions ηk defined in (10), we introduce another set of functions ξk : K → C0([s1, s2],C),
for k ∈ Z. For any f ∈ K, let ξk(f) : [s1, s2] → C be defined as follows:

ξk(f)(s) := ηk(f)(
√
s)s

k
2 =

1

2π

∫ π

−π

f(
√
s, θ)e−ikθdθs

k
2 . (20)

To introduce the null condition, we first have the following result:

Proposition 3.7. Let ξk be defined as in (20). Then, for any f, g ∈ K,

∫ R2

R1

ηk(fg)(r)rk+1dr =
1

2

∞
∑

ℓ=−∞

〈

ξ̄ℓ(f), ξk−ℓ(g)
〉

, for all k ∈ Z. (21)

Proof. First, note that ηk(fg) =
∑∞

ℓ=−∞ ηℓ(f)ηk−ℓ(g); the series is uniformly and absolutely
convergent as shown in the proof of Proposition 3.3. It then follows that

∫ R2

R1

ηk(fg)(r)rk+1dr =

∫ R2

R1

∞
∑

ℓ=−∞

(

ηℓ(f)ηk−ℓ(g)
)

(r)rk+1dr

=

∞
∑

ℓ=−∞

∫ R2

R1

(

ηℓ(f)ηk−ℓ(g)
)

(r)rk+1dr, (22)

where the last equality follows from the dominated convergence theorem. From (20), we
have that

ηℓ(f)(r) = ξℓ(f)(r2)r−ℓ and ηk−ℓ(g)(r) = ξk−ℓ(g)(r2)rℓ−k.

Using the above two expressions and changing variable s := r2, we obtain that

∫ R2

R1

(

ηℓ(f)ηk−ℓ(g)
)

(r)rk+1dr =
1

2

∫ s2

s1

(

ξℓ(f)ξk−ℓ(g)
)

(s)ds. (23)

By (22) and (23), we conclude that (21) holds. �

The next result is then an immediate consequence of Propositions 3.5 and 3.7:
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Corollary 3.8. Let f, g ∈ K. Then, fg belongs to K1 if and only if

∞
∑

ℓ=−∞

〈

ξ̄ℓ(f), ξk−ℓ(g)
〉

= 0, for all k ≥ 0. (24)

We call (24) the null condition.
Now, to establish Theorem 3.6, it suffices to show that given any finite subset {g1, . . . , gm}

of P, there exists a nonzero f0 ∈ K such that (24) is satisfied, with f replaced by f0 and g
replaced by gi, for all i = 1, . . . ,m. We address this existence problem by first introducing
a set of Laurent series induced by the gi (Subsection §3.5) and, then, providing a nontrivial
solution (which will be used to construct f0) to a homogeneous linear equation over the ring
of these Laurent series (Subsection §3.6).

3.5 Connections with Laurent series

Let A2 := A[R
2
2/R, R] be a closed annulus in D0[R], with inner- and outer-radii being R2

2/R

and R, respectively. Define

H := {h : A2 → C | h is holomorphic on A2} . (25)

Let P be defined as in (12). We construct below a set of functions φn : P → H for all
integers n ≥ 0. To this end, let {pn}∞

n=0 be an orthonormal basis of L2([s1, s2],C). We
will assume that every pn is a polynomial of degree n with real coefficients. Such a basis
can be obtained, for example, from the monomials {sn}n≥0 by applying the Gram-Schmidt
process. Now, for each n ≥ 0 and for any given g ∈ P, we define a Laurent series φn(g) as
follows:

φn(g)(z) :=

∞
∑

k=−∞

〈pn, ξ−k(g)〉zk, (26)

where functions ξk are defined in (20). We now have the following fact:

Proposition 3.9. For any g ∈ P and for any n ≥ 0, φn(g) ∈ H.

Proof. Since g ∈ P, there is a regularized, real-analytic function g′ : D0[R] → C such that
g = g′|A1

. We express g′ using its Maclaurin series as follows:

g′(σ) =
∞
∑

k=0

∞
∑

ℓ=0

c′(k, ℓ)σkσ̄ℓ, (27)

where c′(k, ℓ) ∈ C. By Definition 5, the radius of convergence of the above series is greater
than R. Thus, there exists an ǫ > 0 such that

∞
∑

k=0

∞
∑

ℓ=0

|c′(k, ℓ)|(R+ ǫ)k+ℓ < ∞. (28)

We show below that for the given ǫ, the Laurent series φn(g), for any n ≥ 0, converges
uniformly and absolutely on the closed annulus A′

2 := A[R
2
2/(R+ǫ), R+ ǫ], which contains A2

as a proper subset.
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First, note that for any z ∈ A′
2 and for any k ∈ Z,

|z|k ≤ max

{

(R + ǫ)k,
R2k

2

(R+ ǫ)k

}

=
(R+ ǫ)|k|

R
|k|−k
2

. (29)

Also, note that
|〈pn, ξ−k(g)〉| ≤ (s2 − s1)‖pn‖L∞‖ξ−k(g)‖L∞ . (30)

Since pn is a polynomial and ξ−k(g) is continuous (both are defined over [s1, s2]), we have
that ‖pn‖L∞ and ‖ξ−k(g)‖L∞ are finite. Then, using (29) and (30), we obtain that for any
z ∈ A′

2,

∞
∑

k=−∞

|〈pn, ξ−k(g)〉||z|k ≤ (s2 − s1)‖pn‖L∞

∞
∑

k=−∞

‖ξ−k(g)‖L∞

(R+ ǫ)|k|

R
|k|−k
2

. (31)

We now show that the infinite sum on the right hand side of (31) is bounded. To proceed,
we first obtain an upper bound for ‖ξ−k(g)‖L∞ . From (20), we have that ξ−k(g)(s) =
η−k(g)(

√
s)s−k/2. We can express η−k(g) using the coefficients c′(·, ·) in the Maclaurin

series (27) of g′ as follows:

η−k(g)(r) =

∞
∑

ℓ=0

c′ (ℓ+ (|k|−k)/2, ℓ+ (|k|+k)/2) r2ℓ+|k|.

It then follows that

ξ−k(g)(s) =
∞
∑

ℓ=0

c′ (ℓ+ (|k|−k)/2, ℓ+ (|k|+k)/2) sℓ+ 1
2

(|k|−k).

Because s ∈ [R2
1, R

2
2] and R2 < R, we obtain that

‖ξ−k(g)‖L∞ ≤
∞
∑

ℓ=0

|c′ (ℓ+ (|k|−k)/2, ℓ+ (|k|+k)/2)| (R+ ǫ)2ℓR
|k|−k
2 . (32)

With (32), we can now provide an upper bound for the infinite sum on the right hand
side of (31):

∞
∑

k=−∞

‖ξ−k(g)‖L∞

(R+ ǫ)|k|

R
|k|−k
2

≤
∞
∑

k=−∞

∞
∑

ℓ=0

|c′ (ℓ+ (|k|−k)/2, ℓ+ (|k|+k)/2)| (R+ ǫ)2ℓ+|k|

=

∞
∑

k=0

∞
∑

ℓ=0

|c′(k, ℓ)|(R+ ǫ)k+ℓ < ∞,

where the last inequality follows from (28). This completes the proof. �

3.6 Proof of Theorem 3.6

Let {g1, . . . , gm} be an arbitrary finite subset of P. We will first construct a nonzero element
f0 ∈ K and, then, show that f0ḡi ∈ K1 for all i = 1, . . . ,m. In the sequel, we will assume that
RR1 > R2

2, which is the hypothesis of Theorem 3.6. This hypothesis will be instrumental
in showing that the function f0 constructed below belongs to K.
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3.6.1 Construction of f0

Let the sets P and H, and the maps φn : P → H, for n ≥ 0, be defined as in (12), (25),
and (26), respectively. We first have the following result:

Lemma 5. There exist ψ0, . . . , ψm ∈ H, with at least one nonzero ψi, such that the following
holds:

m
∑

n=0

φn(ḡi)ψn = 0, for all i = 1, . . . ,m. (33)

Proof. The (m+ 1) linear homogeneous equations in (33) form an underdetermined system,
with m unknowns ψ1, . . . , ψn, over the ring H. Since H is an integral domain, such a system
has a nonzero solution. �

Let the Laurent expansions of ψn, for n = 0, . . . ,m, be given by

ψn(z) =

∞
∑

k=−∞

αn,kz
k. (34)

Using the coefficients αn,k in (34), we define functions ρ0,k : [R1, R2] → C, for k ∈ Z, as
follows:

ρ0,k(r) :=

m
∑

n=0

αn,−kpn(r2)r−k, (35)

where we recall that each pn is a polynomial of degree n with real coefficient, and that
{pn}n≥0 is an orthonormal basis of L2([s1, s2],C). With ρ0,k defined in (35), we set

f0(r, θ) :=

∞
∑

k=−∞

ρ0,k(r)eikθ . (36)

We now establish the following result:

Proposition 3.10. The function f0 defined by (34), (35), and (36) is a nonzero element
in K.

Proof. We first show that f0 ∈ K and, then, show that f0 is nonzero. Since r ∈ [R1, R2],
we obtain from (35) that

‖ρ0,k‖L∞ ≤
(

m
max
n=0

‖pn‖L∞

)(

2
max
i=1

R−k
i

)

m
∑

n=0

|αn,−k|, for all k ∈ Z.

It follows that for any q > 1,

∞
∑

k=−∞

‖ρ0,k‖L∞q|k| ≤
(

m
max
n=0

‖pn‖L∞

)

m
∑

n=0

∞
∑

k=0

(

|αn,k|(qR2)k + |αn,−k| (q/R1)
k
)

. (37)

We exhibit below a q > 1 such that the right hand side of (37) is bounded.
Since each ψn(z) =

∑∞
k=−∞ αn,kz

k, for n = 0, . . . ,m, is holomorphic on A2 = A[R
2
2/R, R],

it is absolutely convergent on the inner- and outer-circles of the annulus. It follows that for
all n = 0, . . . ,m and for all k ≥ 0,

∞
∑

k=0

|αn,k| (R/R2
2)k < ∞ and

∞
∑

k=0

|αn,−k|Rk < ∞. (38)
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Now, set q := RR1/R2
2. By the hypothesis, RR1 > R2

2, so q > 1. It follows that

∞
∑

k=0

(

|αn,k|(qR2)k + |αn,−k| (q/R1)k
)

=
∞
∑

k=0

(

|αn,k| (RR1/R2)k + |αn,−k| (R/R2
2)k
)

≤
∞
∑

k=0

(

|αn,k|Rk + |αn,−k| (R/R2
2)

k
)

< ∞,

where the first inequality follows from the fact that R1 < R2 (and, hence, RR1/R2 < R) and
the last inequality follows from (38). Because the above holds for all n = 0, . . . ,m, the right
hand side of (37) is bounded above.

It now remains to show that f0 is nonzero. Note that

‖f0‖2
L2 = 2π

∞
∑

k=−∞

∫ R2

R1

|ρ0,k(r)|2rdr.

Thus, it suffices to show that there exists at least one nonzero ρ0,k for some k ∈ Z. By
Lemma 5, there exists an ψn′ , for some n′ ∈ {0, . . . ,m}, such that ψn′ 6= 0. It follows from
the Laurent expansion (34) that there exists an αn′,k′ , for some k′ ∈ Z, such that αn′,k′ 6= 0.
We claim that ρ0,−k′ 6= 0. To see this, note that

∫ R2

R1

ρ0,−k′(r)pn′ (r2)r1−k′

dr =

m
∑

n=0

αn,k′〈pn, pn′〉 = αn′,k′ 6= 0.

This completes the proof. �

3.6.2 Proof that f0ḡi ∈ K1

By Corollary 3.8, to show that f0ḡi ∈ K1, it suffices to establish the following result:

Proposition 3.11. Let f0 ∈ K be defined by (34), (35), and (36), and let ξk be defined as
in (20). Then, for all i = 1, . . . ,m,

∞
∑

ℓ=−∞

〈ξ̄ℓ(f0), ξk−ℓ(ḡi)〉 = 0, for all k ≥ 0. (39)

Proof. It should be clear from Proposition 3.10 that the radius components of f0 are given
by ηℓ(f0) = ρ0,ℓ, where ρ0,ℓ for ℓ ∈ Z are defined in (35). Since ξℓ(f0)(s) = ηℓ(f0)(

√
s)sℓ/2,

we obtain that

ξℓ(f0)(s) =

m
∑

n=0

αn,−ℓpn(s). (40)

Next, for convenience, we introduce for each ḡi the following complex numbers:

βn,k(ḡi) := 〈pn, ξ−k(ḡi)〉 for all n ≥ 0 and for all k ∈ Z. (41)

By (26), these numbers are the coefficients in the Laurent expansions of φn(ḡi), i.e.,

φn(ḡi) =
∞
∑

k=−∞

βn,k(ḡi)z
k. (42)
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Since {pn}n≥0 is an orthonormal basis of L2([s1, s2],C), we can thus express ξk−ℓ(ḡi) in the
L2-sense as follows:

ξk−ℓ(ḡi) =

∞
∑

n=0

βn,ℓ−k(ḡi)pn. (43)

Using the two expressions (40) and (43) and, again, the fact that {pn}n≥0 is an orthonormal
basis, we obtain that

〈ξ̄ℓ(f0), ξk−ℓ(ḡi)〉 =

m
∑

n=0

αn,−ℓβn,ℓ−k(ḡi). (44)

Thus, (39) holds if and only if

∞
∑

ℓ=−∞

m
∑

n=0

αn,−ℓβn,ℓ−k(ḡi) = 0, for all k ≥ 0. (45)

Now, consider the Laurent expansions of φn(ḡi)ψn, for n = 0, . . . ,m:

(φn(ḡi)ψn) (z) =

∞
∑

k=−∞

γn,k(ḡi)z
k. (46)

The Laurent expansions of ψn and of φn(ḡi) are given by (34) and (42), respectively. It
follows that the coefficients γn,k(ḡi) are given by

γn,k(ḡi) =

∞
∑

ℓ=−∞

αn,−ℓβn,ℓ+k(ḡi), for all k ∈ Z and for all n = 0, . . . ,m.

Thus, to establish (45), it suffices to show that
∑m

n=0 γn,k(ḡi) = 0 for all k ≤ 0. But, this
directly follows from Lemma 5; indeed, by (33), we obtain that

(

m
∑

n=0

φn(ḡi)ψn

)

(z) =

∞
∑

k=−∞

(

m
∑

n=0

γn,k(ḡi)

)

zk = 0.

If a holomorphic function is identically zero, then all of its coefficients in the associated
Laurent expansion vanish. This completes the proof. �

4 Reductions and Translations to Normal Forms

In this section, we assume that Σ contains an open set U in Rd, with d ≥ 2, and prove
Theorem 1.1. Following the results in Section §2, we can assume, without loss of generality,
that A : Σ → Cn×n and B : Σ → Cn×m are real-analytic, matrix-valued functions. We will
show that the following complex linear ensemble system:

ẋ(t, σ) = A(σ)x(t, σ) +B(σ)u(t), for all σ ∈ Σ, (47)

is not L2-controllable. The proof relies on the fact that any such system (47) can be turned
into a normal form (6) after a sequence of reductions and translations.
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4.1 Reduction on state space

In this subsection, we perform reduction on state spaces of individual systems. The process
takes two steps: In the first step, we find a closed, d-dimensional ball Σ′ as a subset of
Σ such that a branch of eigenvalues of the A-matrix and its corresponding eigenspaces
are real-analytic over Σ′. Thanks to Lemma 4, to show that the original system is not
controllable, we only need to show that the subensemble-Σ′ is not. In the second step,
we translate the subensemble to a system whose A-matrix is block upper triangular via a
similarity transformation. We then make use of such a structure and iteratively reduce the
dimensions of individual systems. The iteration terminates in finite steps and we end up
with a real-analytic scalar ensemble over the closed ball Σ′.

4.1.1 Local real-analyticity of eigenvalues and eigenspaces

Let eig(σ) be the set of eigenvalues of A(σ). For a given λ ∈ eig(σ), let ma(λ) be the
algebraic multiplicity of λ. Let U be the open set in Rd inside Σ. We then let

λa ∈ argmin{ma(λ) | λ ∈ eig(σ) and σ ∈ U}.

Let ka := ma(λa) and σa ∈ U be such that λa ∈ eig(σa). Let Ua be an open neighborhood of
σa inside U and λ : Ua → C be a continuous function such that λ(σ) ∈ eig(σ) for all σ ∈ Ua

and λ(σa) = λa (continuity of λ can be established via the use of Rouché’s Theorem). Since
ma(λ(σ)) is locally nonincreasing in σ and attains the minimum value at σa, one can shrink
Ua, if necessary, so that ma(λ(σ)) = ka for all σ ∈ Ua. We have the following result:

Lemma 6. The function λ : Ua → C is real-analytic.

Proof. Consider the function h : Ua × C → C defined as follows:

h(σ, t) :=
∂ka−1

∂tka−1
det(tIn −A(σ)).

It should be clear that h(σ, t) is a polynomial in t for any fixed σ. By construction of ka

and Ua, this polynomial has a simple root λ(σ) and, hence, ∂
∂th(σ, λ(σ)) 6= 0. The lemma

then follows from the analytic implicit function theorem. �

We fix the branch of eigenvalues λ : Ua → C constructed above. Let mg(λ(σ)) be the
geometric multiplicity of λ(σ). Let

σg ∈ argmin{mg(λ(σ)) | σ ∈ Ua} and kg := mg(λ(σg)).

Similarly, since mg(λ(σ)) is locally nonincreasing and attains the minimum value at σg,
there is an open neighborhood Ug of σg inside Ua such that mg(λ(σ)) = kg for all σ ∈ Ug.
Let GL(n,C) be the set of n × n invertible complex-valued matrices. The following fact is
well-known (see [31] and references therein):

Lemma 7. If Ug is sufficiently small, then there is a real-analytic function P : Ug →
GL(n,C) such that

P−1AP =

[

λIkg
A′

12

0 A′
22

]

, (48)

where Ikg
is the kg × kg identity matrix.

Note that if kg = n, then P−1AP is simply λIn.
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4.1.2 Block upper triangular structures

Let Σ′ be a closed d-dimensional ball inside the open set Ug. For ease of notation, we
will now treat A, B, and P given in Lemma 7 as matrix-valued functions on Σ′. Define
A′ : Σ′ → Cn×n and B′ : Σ′ → Cn×m as

A′ := P−1AP and B′ := P−1B.

Consider the linear ensemble system given by the pair (A′, B′):

ẋ′(t, σ) = A′(σ)x′(t, σ) +B′(σ)u′(t), for all σ ∈ Σ′. (49)

By construction, this system is obtained by first restricting the original system (A,B) to Σ′

and, then, applying the similarity transformation via the matrix-valued map P . It should
be clear that if (A′, B′) is not controllable, then neither is (A,B).

By Lemma 7, A′ is block upper triangular. We will now make use of such structure to
perform reduction on system (A′, B′). Consider two cases:

Case 1: kg = n. In this case, A′ = λIn. It follows that the dynamics of the n entries
x′

i(t, σ) of system (49), for i = 1, . . . , n, are given by

ẋ′
i(t, σ) = λ(σ)x′

i(t, σ) + b′
i(σ)u′(t), for all σ ∈ Σ′,

where b′
i is the ith row of B′. Note that (A′, B′) is controllable only if every (λ, b′

i) is.
Case 2: kg < n. In accordance with (48), we partition B′ = [B′

1;B′
2] and x′(t, σ) =

[x′
1(t, σ);x′

2(t, σ)]. Then, the dynamics of x′
2(t, σ) are given by

ẋ′
2(t, σ) = A′

22(σ)x′
2(t, σ) +B′

2(σ)u′(t), ∀σ ∈ Σ′. (50)

It should be clear that (A′, B′) is controllable only if (A′
22, B

′
2) is. System (50) is not

necessarily a scalar ensemble, yet the dimension of the state space of each individual system
has been reduced from n to (n− kg). Iterating this reduction process in a finite number of
times, we will end up with Case 1.

The reduction on state space is now complete. It remains to show that scalar ensemble
systems over closed d-dimensional balls are not controllable.

4.2 Reduction on parameterization space

In this subsection, we let Σ be a closed d-dimensional ball in Rd, and consider the following
scalar ensemble system:

ẋ(t, σ) = a(σ)x(t, σ) + b(σ)u(t), for all σ ∈ Σ, (51)

where a : Σ → C and b : Σ → C1×m are real-analytic functions. Let Re a and Im a be the
real and imaginary parts of a, respectively. Define J : Σ → R2×d as follows:

J(σ) :=
∂

∂σ

[

Re a(σ)
Im a(σ)

]

. (52)

Further, we let

σJ ∈ argmax{rankJ(σ) | σ ∈ Σ} and kJ := rankJ(σJ ).

We establish below the following fact:
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Proposition 4.1. If system (51) is L2-controllable, then kJ = d.

Note that by construction (52), the rank of J(σ) is at most 2. Thus, a consequence of
the result is that system (51) is not controllable if d > 2.

We establish below Proposition 4.1. Because rank J(σ) is locally nondecreasing in σ,
there is an open neighborhood UJ of σJ in Σ such that rank J(σ) = kJ for all σ ∈ UJ .
We can assume, without loss of generality, that σJ and UJ are in the interior of Σ. The
following result is a consequence of the Rank Theorem [32, Theorem 4.12]:

Lemma 8. There exist a closed neighborhood ŪF of σJ in UJ and a C1-diffeomorphism:

ϕ : [−ǫ1, ǫ1]d−kJ × [−ǫ2, ǫ2]kJ → ŪF ,

with ǫ1, ǫ2 > 0, such that for every µ2 ∈ [−ǫ2, ǫ2]kJ , the map a·ϕ is constant on the following
set:

Sµ2
:= [−ǫ1, ǫ1]d−kJ × {µ2}.

Each Sµ2
will be referred to as a slice. For ease of notation, we let V̄F := [−ǫ1, ǫ1]d−kJ ×

[−ǫ2, ǫ2]kJ and, for clarification of presentation, we use letter µ to denote a point in the
closed rectangle V̄F . Let a′ : V̄F → C and b′ : V̄F → C1×m be defined as follows:

a′ := a · ϕ and b′ := b · ϕ.

Then, the pullback of system (51) by ϕ is given by

ẋ′(t, µ) = a′(µ)x′(t, µ) + b′(µ)u′(t), for all µ ∈ V̄F . (53)

With the preliminaries above, we now prove Proposition 4.1:
Proof of Proposition 4.1. By Lemma 4, it suffices to show that if kJ < d, then system (53)

is not controllable. Since kJ < d, the dimension of each slice Sµ2
defined in Lemma 8 is

positive. Let b′
i be the ith entry of the row vector b′ and b′

i|Sµ2
be the restriction of b′

i

to the slice Sµ2
. Denote by Bµ2

the finite-dimensional subspace of L2(Sµ2
,C) spanned

by b′
1|Sµ2

, . . . , b′
m|Sµ2

. Note that dimBµ2
is locally nondecreasing as a function of µ2 ∈

[−ǫ2, ǫ2]kJ . We can assume, without loss of generality, that the maximum value of dimBµ2

is achieved at µ2 = 0, and let m′ := dimB0. Furthermore, by decreasing the value of ǫ2,
if necessary, we can assume that the first m′ scalar functions b′

1|µ2
, . . . , b′

m′ |µ2
are linearly

independent for all µ2 ∈ [−ǫ2, ǫ2]kJ .
Denote by Pµ2

the orthogonal projection of the Hilbert space L2(Sµ2
,C) onto B

⊥
µ2

,
the subspace perpendicular to Bµ2

. The operator can be computed explicitly: For any
h ∈ L2(Sµ2

,C), we have that

Pµ2
(h) = h−

m′

∑

i=1

ci(h)b′
i|Sµ2

,

where the coefficients ci(h) ∈ C are given by







c1(h)
...

cm′(h)






:=







〈b′
1|Sµ2

, b′
1|Sµ2

〉 · · · 〈b′
1|Sµ2

, b′
m′ |Sµ2

〉
...

. . .
...

〈b′
m′ |Sµ2

, b′
1|Sµ2

〉 · · · 〈b′
m′ |Sµ2

, b′
m′ |Sµ2

〉







−1 





〈b′
1|Sµ2

, h〉
...

〈b′
m′ |Sµ2

, h〉






.
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Note that the square matrix in the above expression is Hermitian and, moreover, positive
definite because b′

1|Sµ2
, . . . , b′

m′ |Sµ2
are linearly independent. Also, note that the coefficients

ci(h) are linear in h and continuous in µ2. Thus, Pµ2
(h) is continuous in both h and µ2.

Next, let f : V̄F → C be a continuous function such that there exists at least one point
µ2 ∈ [−ǫ2, ǫ2]kJ with f |Sµ2

/∈ Bµ2
. Further, define g : V̄F → C as follows:

g(µ1, µ2) := Pµ2
(f |Sµ2

)(µ1, µ2), for all (µ1, µ2) ∈ V̄F ,

i.e., each g|Sµ2
is the orthogonal projection of f |Sµ2

to B⊥
µ2

. By construction, g is continuous
and nonzero.

We show below that g is orthogonal to the controllable subspace L(a′, b′) associated
with system (53). By Lemma 8, the function a′ takes a constant value on each slice Sµ2

; we
denote the value by a′

µ2
. Then, for any i = 1, . . . ,m and for any k ≥ 0,

〈g, a′kb′
i〉V̄F

=

∫

[−ǫ2,ǫ2]kJ

a′k
µ2

〈g|Sµ2
, b′

i|Sµ2
〉Sµ2

dµ2 = 0,

where the last equality holds because, by construction,

〈g|Sµ2
, b′

i|Sµ2
〉Sµ2

= 0, for all µ2 ∈ [−ǫ2, ǫ2]kJ .

We thus conclude that g is orthogonal to L(a′, b′), so L(a′, b′) cannot be the entire L2(V̄F ,C).
By Lemma 1, system (53) is not controllable. �

4.3 Translation to the normal form

We establish below Theorem 1.1. By the arguments in the previous subsections, we only need
to consider scalar, complex linear ensemble systems over closed, two-dimensional disks Σ:

ẋ(t, σ) = a(σ)x(t, σ) + b(σ)u(t), for all σ ∈ Σ. (54)

By Proposition 4.1, we can further assume that there is a point σJ in the interior of Σ such
that rank J(σJ ) = 2 because otherwise, system (54) is not controllable. This excludes, for
example, the case where a is real-valued.

Again, we identify R2 with C and treat Σ as a subset of C. Since the Jacobian matrix
J(σJ ) has full rank, it follows from the inverse function theorem that there is an open neigh-
borhood UJ of σJ in the interior of Σ such that a : UJ → C is a real-analytic diffeomorphism
between UJ and its image, which we denote by VJ . Let aJ := a(σJ ) and DaJ

[R] be the
closed disk of radius R > 0 in C centered at aJ . We let R be sufficiently small such that
DaJ

[R] is contained in the open set VJ .
Let R be given as above and D0[R] be the closed disk of radius R centered at 0. Now,

consider the following normal form (for clarity of presentation, we use letter µ to denote a
point in D0[R]):

ẋ′(t, µ) = µx′(t, µ) + b(a−1(µ+ aJ))u′(t), for all µ ∈ D0[R]. (55)

We establish the following result:

Proposition 4.2. If system (55) is not controllable, then neither is system (54).
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Proof. For convenience, we let b′(µ) := b(a−1(µ + aJ)). To establish the result, we first
consider the following ensemble system as a variation of (55):

ẋ′′(t, µ) = (µ+ aJ)x′′(t, µ) + b′(µ)u′′(t), for all µ ∈ D0[R], (56)

where we have replaced the “A-matrix”, which is the identity function ω in (55), with the
function (ω + aJ 1) in (56). Note that system (55) is controllable if and only if system (56)
is. This holds because the controllable subspaces associated with the two systems are the
same. Indeed, for any k ≥ 0, (ω + aJ 1)k is a linear combination of ωℓ, for 0 ≤ ℓ ≤ k.
Conversely, each ωk can be expressed as a linear combination of (ω + aJ1)ℓ, for 0 ≤ ℓ ≤ k.
It follows that L(ω, b′) = L(ω + aJ 1, b′).

It now suffices to show that if system (56) is not controllable, then neither is system (54).
We let µ′ := µ+ aJ and re-write system (56) as follows:

ẋ′′(t, µ′) = µ′x′′(t, µ′) + b′(µ′)u′′(t), for all µ′ ∈ DaJ
[R]. (57)

It turns out that system (57) is the pullback of system (54) via the embedding a−1 :
DaJ

[R] → Σ. For this, we recall that DaJ
[R] is contained in VJ , VJ is the image of UJ

under a, and UJ is in the interior of Σ. Thus, by Lemma 4, if system (57) is not control-
lable, then neither is system (54). �

A proof of Theorem 1.1 is now at hand:
Proof of Theorem 1.1. From Theorem 3.1, normal forms are not L2-controllable. Thus,

by Proposition 4.2, system (54) is not L2-controllable. The arguments in Subsections §4.1
and §4.2 then imply that system (47) is not L2-controllable. Combining this with the
arguments in Section §2, we complete the proof. �

5 Conclusions

We have shown that for a linear ensemble system (A,B), if its parameterization space Σ
contains an open set in Rd, for d ≥ 2, and if A : Σ → Fn×n and B : Σ → Fn×m, with F being
either R or C, are real-analytic at a point in U , then the linear ensemble system cannot be
Lp-controllable, for 2 ≤ p ≤ ∞. This negative result has implications for approximation
theory and operator theory, as described in Theorem 1.2 and Corollary 1.3. Finally, we
note that the negative result applies only to linear ensemble systems. There exist uniformly
controllable ensembles of control-affine systems [33], with real-analytic vector fields, over
multi-dimensional parameterization spaces.
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[1] S. J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O. Schedletzky, N. C. Nielsen, O. W.
Sørensen, and C. Griesinger, “Unitary control in quantum ensembles: Maximizing sig-
nal intensity in coherent spectroscopy,” Science, vol. 280, no. 5362, pp. 421–424, 1998.

[2] R. Brockett and N. Khaneja, “On the stochastic control of quantum ensembles,” in
System Theory. Springer, 2000, pp. 75–96.

[3] J.-S. Li and N. Khaneja, “Control of inhomogeneous quantum ensembles,” Physical
review A, vol. 73, no. 3, p. 030302, 2006.

23



[4] S. Ching and J. Ritt, “Control strategies for underactuated neural ensembles driven by
optogenetic stimulation,” Frontiers in Neural Circuits, vol. 7, p. 54, 2013.

[5] A. Zlotnik, R. Nagao, I. Z. Kiss, and J.-S. Li, “Phase-selective entrainment of nonlinear
oscillator ensembles,” Nature Communications, vol. 7, no. 1, pp. 1–7, 2016.

[6] A. R. Mardinly, I. A. Oldenburg, N. C. Pégard, S. Sridharan, E. Lyall, K. Chesnov,
S. G. Brohawn, L. Waller, and H. Adesnik, “Precise multimodal optical control of neural
ensemble activity,” Nature Neuroscience, vol. 21, no. 6, pp. 881–893, 2018.

[7] R. W. Brockett, “On the control of a flock by a leader,” Proceedings of the Steklov
Institute of Mathematics, vol. 268, no. 1, pp. 49–57, 2010.

[8] A. Becker and T. Bretl, “Approximate steering of a unicycle under bounded model
perturbation using ensemble control,” IEEE Transactions on Robotics, vol. 28, no. 3,
pp. 580–591, 2012.

[9] A. T. Becker, “Controlling swarms of robots with global inputs: Breaking symmetry,”
in Microbiorobotics (Second Edition). Elsevier, 2017, pp. 3–20.

[10] X. Chen, “Controllability of continuum ensemble of formation systems over directed
graphs,” Automatica, vol. 108, p. 108497, 2019.

[11] W. Rudin, Principles of Mathematical Analysis. New York, NY: McGraw-Hill, Inc.,
1976.

[12] J.-S. Li, “Ensemble control of finite-dimensional time-varying linear systems,” IEEE
Transactions on Automatic Control, vol. 56, no. 2, pp. 345–357, 2010.

[13] J. Qi and J.-S. Li, “Ensemble controllability of time-invariant linear systems,” in Deci-
sion and Control (CDC), 52nd IEEE Conference on. IEEE, 2013, pp. 2709–2714.

[14] U. Helmke and M. Schönlein, “Uniform ensemble controllability for one-parameter fam-
ilies of time-invariant linear systems,” Systems & Control Letters, vol. 71, pp. 69–77,
2014.

[15] J.-S. Li and J. Qi, “Ensemble control of time-invariant linear systems with linear pa-
rameter variation,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp. 2808–
2820, 2015.
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and Its Applications, vol. 392, pp. 45–59, 2004.

[32] J. M. Lee, Introduction to Smooth Manifolds, ser. Graduate Texts in Mathematics.
Springer, 2012, vol. 218.

[33] X. Chen, “Structure theory for ensemble controllability, observability, and duality,”
Mathematics of Control, Signals, and Systems, vol. 31, no. 2, pp. 1–40, 2019.

25


	1 Introduction and Main Result
	1.1 Successes in one dimension
	1.2 Problem for multi-dimensions
	1.3 Main results
	1.4 Organization of the paper
	1.5 Notations

	2 Preliminary Results
	2.1 Controllability of real and complex ensembles
	2.2 Comparison between different notions of controllability
	2.3 Pullbacks by embeddings and subensembles

	3 Normal Forms
	3.1 Regularization condition
	3.2 Convergent series on annulus
	3.3 Finite intersection property
	3.4 Null condition
	3.5 Connections with Laurent series
	3.6 Proof of Theorem 3.6
	3.6.1 Construction of f0
	3.6.2 Proof that f0iK1


	4 Reductions and Translations to Normal Forms
	4.1 Reduction on state space
	4.1.1 Local real-analyticity of eigenvalues and eigenspaces
	4.1.2 Block upper triangular structures

	4.2 Reduction on parameterization space
	4.3 Translation to the normal form

	5 Conclusions

