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Abstract. In this paper, we investigate the complexity of the central path of semidefinite optimization through
the lens of real algebraic geometry. To that end, we propose an algorithm to compute real univariate
representations describing the central path and its limit point, where the limit point is described by
taking the limit of central solutions, as bounded points in the field of algebraic Puiseux series. As a

result, we derive an upper bound 2O(m+n2) on the degree of the Zariski closure of the central path,
when µ is sufficiently small, and for the complexity of describing the limit point, where m and n
denote the number of affine constraints and size of the symmetric matrix, respectively. Furthermore,
by the application of the quantifier elimination to the real univariate representations, we provide a

lower bound 1/γ, with γ = 2O(m+n2), on the convergence rate of the central path.
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1. Introduction. The main goal of this paper is to investigate the complexity of the central
path of semidefinite optimization (SDO) through the lens of real algebraic geometry [6, 12].
Among other things, we address the following open problem, as stated in [13, Page 59].

Problem 1.1. Derive a lower bound on the convergence rate of the central path.

A SDO problem is defined as the minimization of a linear objective function on the cone of
positive semidefinite matrices intersected with an affine subspace. SDO has been of great
theoretical and practical interest with numerous applications in theoretical computer science,
control theory, optimization, and statistics [45]. There has been a growing interest in the study
of SDO through the lens of convex algebraic geometry [10, Chapters 5 and 6] and polynomial
optimization [26, 27], where SDO is an emerging computational tool.

Let Sn denote the vector space of n×n real symmetric matrices endowed with an inner product
〈X,S〉 = trace(XS) for any X,S ∈ Sn. Mathematically, a SDO problem is defined as

(P) v∗p := inf
X∈Sn

{
〈C,X〉 | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

where C,Ai ∈ Sn for i = 1, . . . ,m are n×n real symmetric matrices, and b ∈ Rm. We assume
that all the coefficients Ai, C and b belong to Z. In this context, X � 0 means that X belongs
to the cone of positive semidefinite matrices. The dual of (P) is given by

(D) v∗d := sup
(y,S)∈Rm×Sn

{
bT y |

m∑
i=1

yiA
i + S = C, S � 0

}
.
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A primal-dual vector is denoted by (X, y, S), and it is called feasible if (X, y, S) satisfies the
equalities and inequalities in (P) and (D). The sets of primal and dual solutions are denoted,
respectively, by

Sol(P):=
{
X ∈ Sn | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0, 〈C,X〉 = v∗p

}
,

Sol(D):=
{

(y, S) ∈ Rm × Sn |
m∑
i=1

yiA
i + S = C, S � 0, bT y = v∗d

}
.

The following conditions, which we assume throughout this paper, guarantee the existence of
a primal-dual solution and the compactness of the primal and dual solution sets [44, Corol-
lary 4.2]:

Assumption 1.1. The matrices Ai for i = 1, . . . ,m are linearly independent, and there
exists a feasible (X◦, y◦, S◦) such that X◦, S◦ � 0, where � 0 means positive definite.

Primal-dual interior point methods (IPMs) [1, 35] are among the most efficient methods to
solve (P)− (D). However, unlike linear optimization (LO), the existence of a polynomial time
algorithm for an exact solution of (P) − (D) is still an open problem, see [5, Section 4.2]
or [39, 40]. In the bit model of computation, a semidefinite feasibility problem either ∈
NP ∩ co−NP or 6∈ NP ∪ co−NP [39]. In the real number model of computation [11], a
semidefinite feasibility problem belongs to NP∩co−NP. The existence of a polynomial time
algorithm for (P)− (D) with fixed dimension was proved by Porkolab and Khachiyan [38], see
also [22, 23].

Notation 1.1. We identify a (real or complex) symmetric matrix X = (Xij)n×n by a vector
x through the linear map

X 7→
(
X11, X12, . . . , X1n, X22, X23, . . . , X2n, . . . , Xnn

)T
,

where

t(n) :=

(
n+ 1

2

)
.

For the ease of exposition we introduce n̄ := m+2t(n). The notation (., ., . . . , .) and (.; .; . . . ; .)
is adopted for side by side arrangement of matrices and concatenation of column vectors,
respectively. Accordingly, a primal-dual vector (X, y, S) is identified by (x; y; s).

Besides the complexity in the bit/real number model of computation, it is possible to approach
the complexity of SDO from the perspective of the so-called central path, which lies at the heart
of primal-dual path-following IPMs. The central path is a smooth1 semi-algebraic function
φ : (0,∞)→ Rt(n) ×Rm ×Rt(n) such that φ(µ) : µ 7→ (x(µ); y(µ); s(µ)) and (µ, φ(µ)) satisfies

(1.1)

〈Ai, X〉 = bi, i = 1, . . . ,m,
m∑
i=1

Aiyi + S = C,

XS = µIn, X, S � 0,

where In is the identity matrix of size n, see [13, Page 41] and Notation 1.1. Generally
speaking, the main idea of primal-dual path-following IPMs is to compute solutions in a

1The analyticity of the central path follows from the nonsingularity of the Jacobian of the equations
in (1.1) [13, Theorem 3.3], and the analytic implicit function theorem [16, Theorem 10.2.4].
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contracting sequence of open sets, in the Euclidean topology, around the central path. For
every fixed positive µ, (X(µ), y(µ), S(µ)) is so-called a central solution. Given a fixed µ̄ > 0,
the central path restricted to (0, µ̄] is bounded [13, Lemma 3.2], and a proof was given in [20,
Theorem A.3], on the basis of the curve selection lemma [30, Lemma 3.1], that the central
path always converges with the limit point in the relative interior of the primal-dual solution
set [17, Lemma 4.2]. Alternatively, the existence of a unique limit point follows from the
fact that the semi-algebraic path φ |(0,µ̄] is bounded [13, Lemma 3.2], and thus it can be
continuously extended to µ = 0 [6, Proposition 3.18].

Contribution. Algorithmic features of primal-dual path-following IPMs, such as search
directions, neighborhoods, step length etc., have been extensively studied for an approximate
solution of (P) − (D), see e.g., [3, 35]. However, the analyticity or limiting behavior of the
central path has received little attention in the absence of strict complementarity condition,
see e.g., [20, 37] and Section 2.3. In particular, the worst-case convergence rate of the central
path is still unknown, and there are only a few partial characterizations for its limit point, see
e.g., [21, 42]. As illustrated by Example 1.1, the distance of a central solution from the limit
point can be as big as Ω(µ2−n).

Example 1.1 (Example 3.3 in [13]). Consider the following SDO problem in dual form (D):

max

{
− yn | S =


1 y1 y2 . . . yn−1
y1 y2 0 . . . 0

y2 0 y3
. . .

...
...

...
. . .

. . . 0
yn−1 0 . . . 0 yn

 � 0

}
,

where (y∗∗, S∗∗) with y∗∗i = 0 for i = 1, . . . , n is the unique solution. In this case, the central

path converges with the order ‖S(µ)−S∗∗‖ = Ω(µ2−n), where ‖ · ‖ denotes the Frobenius norm
of a matrix.

The main contribution of this paper is to bound the degree and convergence rate of the central
path for (P) − (D). To that end, we propose an algorithm to describe the central path and
its limit point. The algorithm computes parametrized univariate representations which, for
all µ ∈ (0, 1], represent a central solution. A parametrized univariate representation is the
description of each coordinate of the central path as a rational function of µ and the roots of
a univariate polynomial, see Sections 2.1 and 3.1. Our algorithm invokes [6, Algorithm 12.18]
(Parametrized Bounded Algebraic Sampling) which, for all µ ∈ (0, 1], describes X1-pseudo
critical points [6, Definition 12.41] on an algebraic set formed by the sum of squares of the
polynomials

P :=
{ n∑

j,`=1
j<`

2Ai
j`Xj` +

n∑
j=1

Ai
jjXjj − bi,

( m∑
i=1

Aiyi + S − C
)
j`
, (XS + SX − 2µIn)j`, j ≤ `

}
(1.2)

in the ring Z[µ, V1, . . . , Vn̄], where v := (x; y; s) and (·)j` refers to upper triangular entries
of a symmetric matrix, see Remark 3.1 and Notation 1.1. The limit point of the central
path is then described by taking the limits of bounded zeros of (1.2), as a µ-infinitesimally
deformed polynomial system, whose coordinates belong to the field of algebraic Puiseux series.
In doing so, our algorithm applies the subroutine [7, Algorithm 3] (Limit of a Bounded Point)
to the real univariate representations from the parametrized bounded algebraic sampling, see
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Section 3.2. As a result, we derive an upper bound 2O(m+n2) on the degree of the Zariski
closure of the central path, when µ is sufficiently small, and for the complexity of describing
the limit point of the central path. Furthermore, the application of the quantifier elimination
algorithm [6, Algorithm 14.5] to the real univariate representations gives rise to a bound on
the convergence rate of the central path. The following theorem is one of the main results of
this paper, answering the open question in [13, Page 59].

Theorem 1.1. Let (X∗∗, y∗∗, S∗∗) be the limit point of the central path. Then the distance
of a central solution from its limit point, when µ is sufficiently small, is bounded by

‖X(µ)−X∗∗‖ = O(µ1/γ) and ‖S(µ)− S∗∗‖ = O(µ1/γ),

where γ = 2O(m+n2).

Related work. The central path of (convex) SDO is well-studied in the literature, see
e.g., [13, 17, 19, 20, 21, 29, 31, 37, 42]. Under the strict complementarity condition only,
Halická [19] extended the analyticity of the central path to µ = 0. Halická et al. [20] showed
that the convergence of the central path to the analytic center of the solution set, see Sec-
tion 2.3, is no longer guaranteed when the strict complementarity condition fails. Goldfarb
and Scheinberg [17] proved, under the strict complementarity and primal-dual nondegeneracy
conditions [2], that the first-order derivatives of the central path converge as µ ↓ 0. Sporre
and Forsgren [42] characterized the limit point of the central path as the unique solution to
an auxiliary convex optimization problem, see also [21]. Convergence of central solutions for
smooth convex SDO problems was also established in [18]. Recently, Mohammad-Nezhad and
Terlaky [31] provided bounds on the convergence rate of vanishing eigenvalues on the central
path, see also [43].

The algebro-geometric properties of the central path were initially studied by Bayer and
Lagarias [8, 9] for LO, where the central path was identified as an irreducible component of a
complete intersection. Furthermore, there are comprehensive studies on the total curvature2

and Riemannian length of the central path [4, 14, 15, 32, 34, 36, 41, 47]. Techniques from
differential and algebraic geometry were invoked by Dedieu et al. [15] to bound the total
curvature of the central path. Under genericity assumptions, De Loera et al. [14] applied
algebraic geometry and matroid theory to describe the central path equations for LO and
thus refine bounds on the total curvature and the degree of the central path. Very recently,
using an algebraic geometry approach, a polynomial upper bound on the degree of the Zariski
closure of the central path was provided in [24] for generic SDO problems.

Organization of the paper. The rest of this paper is organized as follows. In Section 2,
we briefly review the required concepts in real algebraic geometry and some known results
for the convergence of the central path. In Section 3, we present our main results: We show
that under a nonsingularity assumption, the polynomial system (1.2) is zero-dimensional at a
given µ > 0. In Section 3.1, using the parametrized bounded algebraic sampling algorithm [6,
Algorithm 12.18], we describe central solutions and provide an upper bound on the degree of
the Zariski closure of the central path, when µ is sufficiently small. In Section 3.2, we describe
the limit point of the central path using [7, Algorithm 3] and provide a complexity bound for

2The Sonnevend total curvature was used in [47] to bound the iteration complexity of IPMs, i.e., the number
of Newton steps to arrive at an approximate solution.
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describing the limit point. In Section 3.3, we apply the quantifier elimination algorithm [6,
Algorithm 14.5] to real univariate representations of the central path and its limit point to
bound the convergence rate of the central path. Finally, the concluding remarks and topics
for future research are stated in Section 4.

Notation 1.2. Throughout this paper, Sn+ denotes the cone of symmetric positive semidefi-
nite matrices, B̄n(x, r) is the closed ball of radius r centered at x in Rn, and ri(.) denotes the
relative interior of a convex set. For a symmetric matrix X, λ[i](X) denotes the ith largest
eigenvalue of X. Finally, the limit point of the central path is denoted by (X∗∗, y∗∗, S∗∗) or
(x∗∗; y∗∗; s∗∗), and a central solution is denoted by (X(µ), y(µ), S(µ)) or (x(µ); y(µ); s(µ)).

2. Background. In this section, we provide a brief review of notions in real algebraic
geometry, optimization theory, and the central path of SDO. We borrow our notation from [6,
13]. The reader is referred to [25] for a detailed discussion of algebraic notions in Section 2.1.

2.1. Real algebraic geometry. Let C be an algebraically closed field, and Q be a finite
subset of polynomials in C[X1, . . . , Xk], where C[X1, . . . , Xk] denotes the ring of polynomials
with coefficients in C3. Then the zero set of Q in Ck is defined as

Zer
(
Q,Ck

)
:=
{
x ∈ Ck |

∧
P∈Q

P (x) = 0
}
,

which is called an algebraic subset of Ck. Let R be a field. Then R is called a real field if for
every x1, . . . , xk ∈ R we have

k∑
i=1

x2
i = 0 ⇒ xi = 0, ∀i = 1, . . . , k.

A field R endowed with a total order ≤ such that for any x, y, z ∈ R

x ≤ y ⇒ x+ z ≤ y + z,

0 ≤ x, 0 ≤ y ⇒ 0 ≤ xy
is called an ordered field. A field R is called real closed if the field extension R[X]/(X2 + 1) is
algebraically closed, see also [6, Theorem 2.11]. The set R of real numbers and the set Ralg of
real algebraic numbers are both real closed fields. The field R〈〈ε〉〉 of Puiseux series in ε with
coefficients in a real closed field R, i.e., a series of the form

∑
i≥k aiε

i/q with ai ∈ R, i, k ∈ Z,
and q being a positive integer, is another example of a real closed field [6, Theorem 2.91]. The
field of algebraic Puiseux series, denoted by R〈ε〉, is a subfield of elements of R〈〈ε〉〉 which are
algebraic over R(ε). On the real closed field R〈ε〉, the unique order <ε extends the order of R
such that ε is infinitesimal over R, i.e., ε is positive and smaller than any positive element of
R, see [6, Notation 2.5]. For an element 0 6= κ ∈ R〈ε〉, o(κ) denotes the order of κ, and εo(κ)

indicates the leading monomial of κ with respect to the order <ε. A valuation ring of R〈ε〉
is a subring of algebraic Puiseux series with nonnegative order, and it is denoted by R〈ε〉b,
see [6, Proposition 2.99]. On R〈ε〉, limε is defined as a ring homomorphism from the valuation
ring R〈ε〉b to R, which maps a bounded algebraic Puiseux series

∑
i∈N aiε

i/q to a0, see also [6,
Notation 2.100 and Notation 12.23].

3In our notation, an indeterminate of a polynomial is shown by an upper case letter, which should not be
confused with a matrix.
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A quantifier free formula Φ(X1, . . . , Xk) with coefficients in a real closed field R is the boolean
combination of atoms, where an atom is a polynomial equality or inequality defined by P = 0
or P > 0 for some P ∈ R[X1, . . . , Xk], and {X1, . . . , Xk} are called free variables. A quantified
formula is defined as

(Q1Z1) . . . (Q`Z`) B(Z1, . . . , Z`, X1, . . . , Xk),

where Qi ∈ {∀, ∃} are quantifiers and B is a quantifier free formula with polynomials in
R[Z1, . . . , Z`, X1, . . . , Xk]. The set of all (x1, . . . , xk) ∈ Rk satisfying the formula Φ is called
the R-realization of Φ. A semi-algebraic subset of Rk is the R-realization of a quantifier free
formula Φ(X1, . . . , Xk). In other words, a semi-algebraic subset of Rk is a subset of the form

s⋃
i=1

ri⋂
j=1

{
x ∈ Rk | Pij(x) ∆ij 0

}
,

where Pij ∈ R[X1, . . . , Xk] and ∆ij is either < or = for i = 1, . . . , s and j = 1, . . . , ri. The
family of semi-algebraic subsets of Rk is closed under finite union, finite intersection, and
complementation.

Let K be an ordered field contained in a real closed field R, C = R[X]/(X2 + 1), and let
Q ⊂ K[X1, . . . , Xk] be a zero-dimensional polynomial system, i.e., Zer(Q,Ck) is a finite set.
Coordinates of every x̄ ∈ Zer(Q,Ck) can be described using a k-univariate representation, i.e.,
a (k + 2)-tuple of polynomials u =

(
f, g0, . . . , gk

)
∈ K[T ]k+2 such that

x̄ =

(
g1(t)

g0(t)
, . . . ,

gk(t)

g0(t)

)
∈ Ck,

where t ∈ C is a root of f(T ), and f and g0 are coprime, see [6, Proposition 12.16]. A real
k-univariate representation of a real x̂ ∈ Zer(Q,Rk) is a pair (u, σ) such that

x̂ =

(
g1(tσ)

g0(tσ)
, . . . ,

gk(tσ)

g0(tσ)

)
∈ Rk,

where u is a k-univariate representation and σ is called the Thom encoding of a real root
tσ ∈ R of f(T ). Given a polynomial P ∈ R[T ], a Thom encoding [6, Definition 2.29]
of t ∈ R is a sign condition σ on the set of the derivatives of P , i.e., a mapping σ :{
P, P (1), P (2), . . . , P (deg(P ))

}
→ {0, 1,−1}, such that σ(P ) = 0 and

σ
(
P (i)

)
= sign

(
P (i)(t)

)
:=


0 P (i)(t) = 0,

1 P (i)(t) > 0,

−1 P (i)(t) < 0,

i = 1, . . . ,deg(P ),

where deg(P ) denotes the degree of the polynomial P , and P (i) for i > 0 denotes the ith-order
derivative of P .

2.2. Optimality and complementarity. Assumption 1.1 guarantees that y is uniquely
determined for a given dual vector S. Furthermore, Assumption 1.1 ensures that Sol(P) and
Sol(D) are nonempty, bounded, and that v∗p = v∗d, [44, Corollary 4.2]. As a consequence,
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Figure 1: A 3-elliptope. A 3-elliptope is a con-
vex semi-algebraic subset of R3.

(X̄, ȳ, S̄) is a primal-dual solution if and only if it satisfies

〈Ai, X〉 = bi, i = 1, . . . ,m,
m∑
i=1

yiA
i + S = C,

XS = 0, X, S � 0,

where XS = 0 is called the complementarity condition. A primal-dual solution (X∗, y∗, S∗) is
called maximally complementary if X∗ ∈ ri(Sol(P)) and (y∗, S∗) ∈ ri(Sol(D)). Alternatively,
(X∗, y∗, S∗) is called maximally complementary if rank(X∗) + rank(S∗) is maximal on the
solution set [13, Lemma 2.3]. A maximally complementary solution (X∗, y∗, S∗) is called
strictly complementary if X∗ + S∗ � 0.

Remark 2.1. Throughout this paper, the strict complementarity condition is said to hold
if there exists a strictly complementary solution. Equivalently, the strict complementarity
condition holds if every maximally complementary solution is strictly complementary.

Under Assumption 1.1, both Sol(P) and Sol(D) are nonempty, and thus there always exists
a maximally complementary solution. However, the following example shows that in contrast
to a LO problem, a SDO problem may have no strictly complementary solution.

Example 2.1. Consider the minimization of a linear objective over a 3-elliptope, see Fig-
ure 1:

min

{
4x− 4y − 2z |

(
1 x y
x 1 z
y z 1

)
� 0

}
,(2.1)

which can be cast into the standard form (P) by introducing b = (1, 1, 1)T , and

A1 =

(
1 0 0
0 0 0
0 0 0

)
, A2 =

(
0 0 0
0 1 0
0 0 0

)
, A3 =

(
0 0 0
0 0 0
0 0 1

)
, C =

(
0 2 −2
2 0 −1
−2 −1 0

)
.

The unique solution of (2.1) is given by

X∗ =

(
1 −1 1
−1 1 −1

1 −1 1

)
, y∗ = (−4, −1, −1)T , S∗ =

(
4 2 −2
2 1 −1
−2 −1 1

)
,(2.2)

which fails X∗ + S∗ � 0.

2.3. Convergence of the central path. Recall from Section 1 that the limit point of the
central path is a maximally complementary solution, i.e., a point in the relative interior of
the primal-dual solution set. The characterization of the limit point is well-studied under
the strict complementarity condition, where the limit point is the so-called analytic center
of the solution set [13, Definition 3.1]. If we further assume the uniqueness of the solution,
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the limiting behavior can be described using the implicit function theorem. Let us assume,
without loss of generality4, that both primal and dual solutions are block diagonal:

X∗ =

(
UX∗ 0 0

0 0 0
0 0 0

)
, S∗ =

(
0 0 0
0 0 0
0 0 US∗

)
, UX∗ , US∗ � 0,

where rank(UX∗) and rank(US∗) are maximal on Sol(P)× Sol(D)5. The analytic center of the
primal solution set is defined as the unique solution Xa := Diag(UXa , 0, 0) such that

UXa := arg max
UX�0

{
det(UX) | Diag(UX , 0, 0) ∈ Sol(P)

}
.

Analogously, the analytic center of the dual solution set is the unique solution (ya, Sa) such
that Sa := Diag(0, 0, USa), and

USa := arg max
US�0

{
det(US) |

(
y,Diag(0, 0, US)

)
∈ Sol(D)

}
.

As a result of the strict complementarity condition, there exists a Lipschitzian bound on the
distance of a central solution from the solution set.

Proposition 2.2 (Theorem 3.5 in [29]). Suppose that the strictly complementarity condition
holds. Then for µ ∈ (0, 1) we have

‖X(µ)−Xa‖ = O(µ) and ‖S(µ)− Sa‖ = O(µ),

where

Xa =
(
UXa 0

0 0

)
, Sa =

(
0 0
0 USa

)
, UXa , USa � 0.

As shown by Example 1.1, the central path appears to have a complicated limiting behavior in
the absence of the strict complementarity condition. If the strict complementarity condition
fails, the central path does not necessarily converge to (Xa, ya, Sa) [13, Example 3.1], and
the Lipschitzian bounds in Proposition 2.2 may fail to exist. For instance, this can be ob-
served in Table 1, where the central path of Example 2.1 converges to the unique non-strictly
complementary solution at almost a rate γ = 1

2 .

Table 1: Convergence to the unique non-strictly complementary solution.

µ λ[3](X(µ)) λ[2](X(µ)) λ[3](S(µ)) λ[2](S(µ)) ‖X(µ)−X∗∗‖ ‖S(µ)− S∗∗‖
1.00E-09 1.66E-10 4.48E-05 3.33E-10 2.24E-05 6.72E-05 5.49E-05
1.00E-10 1.66E-11 1.42E-05 3.33E-11 7.08E-06 2.13E-05 1.74E-05
1.00E-11 1.66E-12 4.48E-06 3.33E-12 2.24E-06 6.72E-06 5.49E-06
1.00E-12 1.66E-13 1.42E-06 3.33E-13 7.08E-07 2.13E-06 1.74E-06
1.00E-13 1.70E-14 4.48E-07 3.30E-14 2.24E-07 6.72E-07 5.49E-07
1.00E-14 2.00E-15 1.42E-07 4.00E-15 7.12E-08 2.14E-07 1.74E-07

In general, a Hölderian (rather than Lipschitzian) bound exists on the distance of a central

4This can be done using an orthogonal transformation from the optimal partition of the problem, see
e.g., [31].

5By definition, X∗ and S∗ have a common zero eigenvalue, only under the failure of the strict complemen-
tarity condition.
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solution to the solution set.

Proposition 2.3 (Lemma 3.5 in [31]). Let (X(µ), y(µ), S(µ)) be a central solution. Then
for sufficiently small µ we have

dist
(
X(µ), Sol(P)

)
= O

(
µ21−n)

and dist
(
(y(µ), S(µ)),Sol(D)

)
= O

(
µ21−n)

.

The magnitude of the positive and vanishing eigenvalues of X(µ) and S(µ) can be quantified
using the bounds in Proposition 2.3 and a condition number of (P)−(D), see [31, Section 3.1].
By the analyticity of the central path, as µ ↓ 0, the eigenvalues of X(µ) and S(µ) naturally
separate into the following three subsets:

1. λ[i](X(µ)) converges to a positive value and λ[n−i+1](S(µ)) converges to 0;
2. both λ[i](X(µ)) and λ[n−i+1](S(µ)) converge to 0;
3. λ[i](S(µ)) converges to a positive value and λ[n−i+1](X(µ)) converges to 0.

The bounds on the positive and vanishing eigenvalues are summarized as follows.

Proposition 2.4 (Theorem 3.8 in [31]). Let nB := rank(X∗∗), nN := rank(S∗∗), and
nT := n− nB − nN . Then for all sufficiently small µ we have

λ[n−i+1](S(µ)) = O(µ), λ[i](X(µ)) = Θ(1), i = 1, . . . , nB,

λ[n−i+1](X(µ)) = O(µ), λ[i](S(µ)) = Θ(1), i = 1, . . . , nN ,

λ[i](X(µ)) = O(µ21−n
), λ[n−i+1](S(µ)) = O(µ21−n

), i = nB + 1, . . . , nB + nT ,

λ[i](X(µ)) = Ω(µ1−21−n
), λ[n−i+1](S(µ)) = Ω(µ1−21−n

), i = nB + 1, . . . , nB + nT .

Besides convergence to a “non-analytic center” of the solution set, the first-order derivatives
of the central path fail to converge in the absence of the strict complementarity condition [17].

Example 2.2. The central path of Example 2.1 can be described by

X(µ) =

(
1 X12(µ) −X12(µ)

X12(µ) 1 −2X2
12(µ) + µX12(µ)/2 + 1

−X12(µ) −2X2
12(µ) + µX12(µ)/2 + 1 1

)
,

y(µ) =
(
4X12(µ)− µ, 2/X12(µ) + 1, 2/X12(µ) + 1

)T
,

S(µ) =

(
µ− 4X12(µ) 2 −2

2 −2/X12(µ)− 1 −1
−2 −1 −2/X12(µ)− 1

)
,

where X12(µ) is the real root of

2T 3 + (2− µ/2)T 2 − (µ+ 2)T − 2 = 0,(2.3)

which makes X(µ) and S(µ) positive definite, see Figure 2. Since the limit point is the unique
solution given in (2.2), we must have X12(µ) → −1 as µ ↓ 0. Furthermore, it is easy to see
from (2.3) that as µ ↓ 0

dX12(µ)

dµ
=

X2
12(µ)/2 +X12(µ)

6X2
12(µ) + (4− µ)X12(µ)− (µ+ 2)

→∞,

i.e., the central path cannot be analytically extended to µ = 0.

Example 2.3. The cubic polynomial in (2.3) has a discriminant equal to µ4/4 + 6µ3 +
21µ2 + 128µ, implying that (2.3) has only three real isolated solutions for every µ > 0 [6,
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Figure 2: The central path converges tangen-
tially to the unique non-strictly complementary
solution (2.2).

Propositions 4.5 and 4.27]. However, the equation (2.3) at µ = 0 has two distinct real roots
t = 1 and t = −1 with multiplicity 2. All this means that as µ ↓ 0, two out of the three
solutions of (2.3) converge to t = −1 yielding the singular unique solution (2.2), and the
other solution converges to t = 1 resulting in an infeasible vector

X =

(
1 1 −1
1 1 −1
−1 −1 1

)
, y = (4, 3, 3)T , S =

−4 2 −2

2 −3 −1

−2 −1 −3

 .

3. On a semi-algebraic characterization of the central path. While Proposition 2.4
bounds the convergence rate of vanishing eigenvalues, it neither involves the limit point nor
provides any quantitative bound on the distance to the limit point. To tackle this problem,
we adopt a semi-algebraic approach to describe the limit point of the central path, which in
turn allows us to bound the degree and convergence rate of the central path. Without loss of
generality, we consider the restriction of the central path to the interval (0, 1]. Our derivation
of bounds on the degree and convergence rate is on the basis of parametrized univariate
representations [6, Page 481], whose sets of associated points, for every µ ∈ (0, 1], contain a
central solution.

Remark 3.1. By [3, Page 749], the centrality condition XS = µIn in (1.1) can be alterna-
tively written as XS+SX = 2µIn in the presence of X � 0 and S � 0. From this point on, we
consider this alternative system, which has a symmetric structure and still has a nonsingular
Jacobian at a central solution [33, Theorem 2.1].

Recall from (1.2) the subset P of polynomials in Z[µ, V1, . . . , Vn̄], and let zeros of P in C and
R be denoted by

Sµ(C) := Zer
(
P,Cn̄

)
,

Sµ(R) := Zer
(
P,Rn̄

)
.

Notice that Sµ(R) has only a finite number of topological types over all µ ∈ R [6, Theo-
rem 5.47], and for every fixed positive µ, (x(µ); y(µ); s(µ)) is an isolated solution of Sµ(R)
by the implicit function theorem [28, Theorem C.40], see Remark 3.1. Furthermore, under a
nonsingularity condition, both Sµ(C) and Sµ(R) are finite sets.

Proposition 3.2. Let J(v, µ) be the Jacobian of P with respect to {V1, . . . , Vn̄}, and suppose
that ¯̄µ ∈ C such that J(v, ¯̄µ) is nonsingular for every v ∈ S ¯̄µ(C). Then S ¯̄µ(C) is finite.

Proof. The result follows from [28, Theorem 5.12] by noting that S ¯̄µ(C) is a regular sub-
manifold of Cn̄ of codimension n̄, and thus it is a finite set.
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3.1. Degree of the central path. The idea is to invoke the parametrized bounded alge-
braic sampling algorithm [6, Algorithm 12.18] to describe, for all µ ∈ (0, 1], sample points in
every semi-algebraically connected component of Sµ(R). Although a central solution is always
a nonsingular isolated solution of Sµ(R), Sµ(R) might have an unbounded solution in R〈µ〉n̄
to which [6, Algorithm 12.18] is not directly applicable, because in that case, the sample
points need not meet every semi-algebraically connected component of Sµ(R). Nevertheless,
as mentioned in Section 1, we should note that the central path is locally bounded at every
positive µ, i.e., there exists6 a rational ε > 0 such that

‖(x(µ); y(µ); s(µ))‖ ≤ 1/ε, ∀µ ∈ (0, 1].(3.1)
Therefore, the parametrized bounded algebraic sampling can be utilized to describe central
solutions for every µ ∈ (0, 1], i.e., the tail end of the central path. To that end, we define

polynomials Q ∈ Z[µ, V1, . . . , Vn̄] and Q̃ ∈ Z[µ, V1, . . . , Vn̄+1] as

Q =

m∑
i=1

( n∑
j,`=1
j<`

2Ai
j`Xj` +

n∑
j=1

Ai
jjXjj − bi

)2
+

n∑
j,`=1
j≤`

( m∑
i=1

Aiyi + S − C
)2
j`

+
(
XS + SX − 2µIn

)2
j`

and Q̃ = Q2 +
(
ε2
(
V 2

1 + . . . + V 2
n̄+1

)
− 1
)2

, where Zer(Q̃,Rn̄+1) is the intersection of the
cylinder based on Sµ(R) and an n̄-sphere centered at 0.

Remark 3.3. If Sµ(R) is uniformly bounded over all µ, i.e., if there exists a rational ε̂ ≤ 1
such that

‖v‖ ≤ 1/ε̂, ∀v ∈ Sµ(R), ∀µ ∈ R,

then the parametrized bounded algebraic sampling algorithm can be directly applied to Q.

Notice that for every µ ∈ (0, 1], Zer(Q̃,Rn̄+1) is nonempty and bounded. Furthermore,

π
(

Zer
(
Q̃,Rn̄+1

))
= Zer(Q,Rn̄) ∩ B̄n̄(0, 1/ε),

where π(·) denotes the projection from Rn̄+1 to the first n̄ coordinates. We now apply the
parametrized bounded algebraic sampling with input Q̃ to describe X1-pseudo critical points
on Zer(Q̃,Rn̄+1). By the boundedness property (3.1), the set of X1-pseudo critical points on
Zer(Q̃,Rn̄+1) meets every semi-algebraically connected component of Zer(Q̃,Rn̄+1) [6, Propo-
sition 12.42]. Further, the set of the projection of the X1-pseudo critical points to the first n̄
coordinates contains a central solution for every µ ∈ (0, 1].

Consider a sequence of integers (d1, d2, . . . , dn̄+1) such that d1 ≥ . . . ≥ dn̄+1, deg(Q̃) ≤ d1,
and tdegVi(Q̃) ≤ di for i = 2, . . . , n̄+ 1, where tdegVi(Q̃) denotes the maximal total degree of

the monomials of Q̃ which contain Vi. Furthermore, let d̄i be the smallest even integer greater
than di for i = 1, . . . , n̄+ 1, and let π1 denote the projection of Rn̄+1 to the first coordinate.
Then X1-pseudo critical points on Zer(Q̃,Rn̄+1), see also [6, Section 12.6], are defined as the
limits of critical points of π1 on a smooth submanifold of Rn̄+1 defined by a ξ-deformation

Def(Q̃, ξ) := ξGk(d̄, ε̄) + (1− ξ)Q̃,(3.2)

6Note that ‖X(µ)‖ and ‖S(µ)‖ for µ ∈ (0, 1] are bounded by
⌈

2n
λmin(S(1))

⌉
and

⌈
2n

λmin(X(1))

⌉
, respectively.
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where

Gk(d̄, ε̄) := ε̄d̄1
(
V d̄1

1 + . . .+ V
d̄n̄+1

n̄+1 + V 2
2 + . . .+ V 2

n̄+1

)
− (2n̄+ 1),

and ε̄ = ε/2, in which ε is defined in (3.1). Deformation (3.2) and the bound (3.1) induce
a nonsingular algebraic hypersurface Zer(Def(Q̃, ξ),R〈ξ〉n̄+1), whose coordinates are bounded
over R [6, Proposition 12.38]. Hence, the limits of points in Zer(Def(Q̃, ξ),R〈ξ〉n̄+1) are well-
defined.

Proposition 3.4 (Proposition 12.37 and 12.42 in [6]). For every fixed µ ∈ (0, 1] we have

lim
ξ

(
Zer(Def(Q̃, ξ),R〈ξ〉n̄+1)

)
= Zer(Q̃,Rn̄+1).

Furthermore, a central solution (X(µ), y(µ), S(µ)) is obtained by forgetting the last coordinate
of an X1-pseudo critical point on Zer(Q̃,Rn̄+1).

In view of Proposition 3.4 and its preceding discussion, the application of the parametrized
bounded algebraic sampling to Q̃ yields parametrized univariate representations

u := (f, g) :=
(
f, (g0, g1, . . . , gn̄+1)

)
∈ Z[µ, T ]n̄+3.(3.3)

Then, for all sufficiently small positive µ, there exists a real root tσ of f(µ, T ) with Thom
encoding σ such that

xi(µ) =
gi(µ, tσ)

g0(µ, tσ)
∈ R, i = 1 . . . , t(n),

yi(µ) =
gt(n)+i(µ, tσ)

g0(µ, tσ)
∈ R, i = 1 . . . ,m,

si(µ) =
gt(n)+m+i(µ, tσ)

g0(µ, tσ)
∈ R, i = 1 . . . , t(n),

where g0(µ, tσ) 6= 0. Algorithm 3.1 presents the outline of our procedure for a real univariate
representation of the central path.

Algorithm 3.1 Description of the central path

Input: Q̃ ∈ Z[µ, V1, . . . , Vn̄+1]; By (3.1), Zer(Q̃,Rn̄+1) is bounded over all µ.
return a set U of parametrized univariate representations (f, g) ∈ Z[µ, T ]n̄+3 and Thom
encodings of real roots of f ∈ Z[µ][T ]; For all sufficiently small µ, there exists ((f, g), σ)
such that the central path is described by the projection of points associated to ((f, g), σ).

Procedure:
• Apply [6, Algorithm 12.18] (Parametrized Bounded Algebraic Sampling) with input
Q̃ and parameter µ, and output the set U of parametrized univariate representations.
• Apply [6, Algorithm 10.14] (Thom Encoding) with input f ∈ Z[µ][T ] from the set
U : compute the ordered list of Thom encodings of the roots of f in R〈µ〉, see [6,
Remark 10.76].
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Since a central solution is an isolated solution of Zer(Q,Rn̄), the set of all µ such that a
given ((f, g), σ) with (f, g) ∈ U describes a central solution is a semi-algebraic subset of R.
In other words, Algorithm 3.1 partitions the parameter space (0, 1] into subintervals Ii such
that the central path restricted to each Ii is represented by a ui ∈ U and a Thom encoding σi.
Therefore, there must exist ((f, g), σ) which represents the central path when µ is sufficiently
small.

From the complexity of the parametrized bounded algebraic sampling and Thom encoding
in Algorithm 3.1, the following results are immediate.

Lemma 3.5. The polynomials (f, g) in (3.3) have degree O(1)n̄+1 in T and degree 2O(m+n2)

in µ. Further, the complexity of describing the central path, when µ is sufficiently small, is
2O(m+n2).

Proof. Algorithm 3.1 outputs a set U of O(d1) . . . O(dn̄+1) polynomials (f, g) which are of
degree O(d1) . . . O(dn̄+1) in T and tdegµ(Q̃)(d1 . . . dn̄+1)O(1) in µ. Then the first part follows

by noting that (d1, . . . , dn̄+1) = (8, . . . , 8) and tdegµ(Q̃) = 6. The complexity of describing the
central path is determined by the number of parametrized univariate representations (f, g)
in U and the complexity of [6, Algorithm 12.18] and [6, Algorithm 10.14] applied to every
(f, g) ∈ U .

Remark 3.6. Assume, without loss of generality, that Cx, Cs ∈ Z[µ][T,Λ] are the char-
acteristic polynomials of X̆(µ) and S̆(µ) associated to ((f, g), σ) from Algorithm 3.1, which
by Lemma 3.5, are of maximum degree 2O(m+n2). Then ((f, g), σ) represents the central solu-
tion at a sufficiently small µ if the roots of Cx(tσ,Λ) and Cs(tσ,Λ) are all positive, i.e., if the
following sentences are both true:

(3.4)
(∃T ) (∀Λ)

(
sign(f (k)(T )) = σ(f (k)), k = 0, 1, . . .

)
∧
(
¬(Cx(T,Λ) = 0) ∨ (Λ > 0)

)
,

(∃T ) (∀Λ)
(

sign(f (k)(T )) = σ(f (k)), k = 0, 1, . . .
)
∧
(
¬(Cs(T,Λ) = 0) ∨ (Λ > 0)

)
.

There exists an algorithm with complexity 2O(m+n2) to decide whether or not ((f, g), σ) rep-
resents the central solution at µ [6, Theorem 14.14].

Finally, using the degree of the polynomials in (3.3), we can derive a bound on the degree of
the tail segment of the central path.

Theorem 3.7. The degree of the Zariski closure of the central path restricted to (0, µ], when
µ is sufficiently small, is bounded above by 2O(m+n2).

Proof. The degree of the Zariski closure of φ((0, µ]) is bounded above by the number of
points at which a generic hyperplane a0 + a1V1 + . . . an̄Vn̄ = 0 intersects the image φ((0, µ]),
which is the zero set of {a0g0(µ, T ) + a1g1(µ, T ) + . . . + an̄gn̄(µ, T ), f(µ, T )}. By [6, Algo-
rithm 11.1] (Elimination), [6, Proposition 8.45], and also Lemma 3.5, the elimination of T
yields a polynomial of degree

max{degµ(f),degµ(g)} × (degT (f) + degT (g)) = 2O(m+n2)

in µ, which is also a bound on the degree of the Zariski closure of φ((0, µ]).
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Remark 3.8. Notice that the degree bound in Theorem 3.7 is valid in general non-generic
situation. However, under genericity assumptions, a polynomial upper bound was given in [24]
for the degree of the Zariski closure of the central path.

3.2. Limit point of the central path. The central path system (1.2) can be alternatively
viewed as a µ-infinitesimal deformation of the polynomial system{ n∑

j,`=1
j<`

2Aij`Xj` +
n∑
j=1

AijjXjj − bi,
( m∑
i=1

Aiyi + S − C
)
j`
, (XS + SX)j`, j ≤ `

}
(3.5)

whose zeros, rather than Cn̄, belong to the extension C〈µ〉n̄, see Section 2.1. Let us denote
the µ-infinitesimally deformed polynomial system by G ⊂ R[µ][V1, . . . , Vn̄]. Bounded zeros of
G in R〈µ〉n̄ and C〈µ〉n̄ are defined as

Zerb(G,R〈µ〉n̄) := Zer(G,R〈µ〉n̄) ∩ R〈µ〉n̄b ,
Zerb(G,C〈µ〉n̄) := Zer(G,C〈µ〉n̄) ∩ C〈µ〉n̄b ,

where R〈µ〉n̄b and C〈µ〉n̄b denote the subrings of bounded elements over R and C, respectively.
As the infinitesimal µ goes to zero, the limits of points in Zerb(G,R〈µ〉n̄) are well-defined,
see Section 2.1, and they form a closed semi-algebraic set [6, Proposition 12.43]. Since limµ

is a ring homomorphism from R〈µ〉 to R, the limit of a bounded point of Zer(G,R〈µ〉n̄) is
necessarily a zero of (3.5).

Our goal is to describe the limit point of the central path by taking the limits of bounded
points described by Algorithm 3.1. More concretely, we describe (x∗∗; y∗∗; s∗∗) by apply-
ing [7, Algorithm 3] (Limit of a Bounded Point)7 to the real univariate representations
((f, (g0, g1, . . . , gn̄)), σ) from Algorithm 3.18, which all represent bounded points over R. Given
the input ((f, g), σ) with coefficients in Z[µ], [7, Algorithm 3] computes an (n̄+ 2)-tuple ū of
polynomials and Thom encoding σ̄, where

ū =
(
f̄ ,
(
ḡ0, ḡ1, . . . , ḡn̄

))
∈ Z[T ]n̄+2,(3.6)

f̄(T ) = lim
µ
µ−o(f(T ))f(T ),

ḡi(T ) =
(

lim
µ
µ−o(gi(T ))gi(T )

)(kσ̄−1)
, i = 0, . . . , n̄,

in which limµ µ
−o(f(T ))f(T ) denotes the univariate polynomial whose coefficients are the limits

of the coefficients in µ−o(f(T ))f(T ), tσ̄ is the real root of f̄(T ) with Thom encoding σ̄, kσ̄
denotes the multiplicity of the real root tσ̄, and ḡi(T ) is the (kσ̄−1)th derivative of limµ µ

−o(gi)gi
with respect to T , see also [6, Notation 12.25]. Then (ū, σ̄) represents the limit point of the
central path if the ball of infinitesimal radius δ (0 < µ� δ � 1) centered at

x̄i =
ḡi(tσ̄)

ḡ0(tσ̄)
, ȳi =

ḡt(n)+i(tσ̄)

ḡ0(tσ̄)
, s̄i =

ḡt(n)+m+i(tσ̄)

ḡ0(tσ̄)

7We only invoke a simplified form of [7, Algorithm 3], which originally describes the limit of a bounded
point over a triangular Thom encoding. See [7, Definition 4.2] for details.

8From this point on, (f, (g0, g1, . . . , gn̄)) is simply denoted by (f, g).
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contains (x(µ); y(µ); s(µ)). The outline of our procedure is summarized in Algorithm 3.2.

Algorithm 3.2 Description of the limit of the central path

Input: Real univariate representations ((f, g), σ) from Algorithm 3.1.
return Real univariate representations (ū, σ̄) given in (3.6) which represent the limits of
bounded points associated to ((f, g), σ).

Procedure:
• Apply [7, Algorithm 3] to each ((f, g), σ) and output the real univariate representa-

tion ((f̄ , ḡ), σ̄).

As a consequence of Algorithm 3.2, the limits of the bounded points associated to U , and the
limit point of the central path in particular, can be described as a rational function of the real
roots of f̄(T ). The following theorem summarizes one of the main results of this paper.

Theorem 3.9. Given the polynomial system (1.2), there exists an algorithm with complexity
2O(m+n2) to describe the limit point of the central path.

Proof. The application of [7, Algorithm 3] to the real univariate representations ((f, g), σ)
yields the bound max{degµ(f),degT (f),degµ(g), degT (g)} on the degrees of (f̄ , ḡ) and a

complexity bound (max{degµ(f), degT (f),degµ(g), degT (g)})O(1) = 2O(m+n2), which follows
from [6, Algorithm 10.14] (Thom Encoding) and Lemma 3.5. This also yields the overall
complexity bound 2O(m+n2) for describing the limits of bounded points from the polynomial
system (1.2).

Remark 3.10. We observe from (3.6) that if ((f̄ , ḡ), σ̄) represents a solution of (P)− (D),
then the following analogues of (3.4) must be both true:

(∃T ) (∀Λ)
(

sign(f̄ (k)(T )) = σ̄(f̄ (k)), k = 0, 1, . . .
)
∧
(
¬(C̄x(T,Λ) = 0) ∨ (Λ ≥ 0)

)
,

(∃T ) (∀Λ)
(

sign(f̄ (k)(T )) = σ̄(f̄ (k)), k = 0, 1, . . .
)
∧
(
¬(C̄s(T,Λ) = 0) ∨ (Λ ≥ 0)

)
,

where C̄x, C̄s ∈ Z[T,Λ] are the characteristic polynomials of X̄ and S̄ consisting of the entries
x̄i and s̄i associated to ((f̄ , ḡ), σ̄), and deg(C̄x), deg(C̄s) = 2O(m+n2). Analogous to Remark 3.6,
there exists an algorithm [6, Theorem 14.14] with complexity 2O(m+n2) in Z to decide whether
or not the given ((f̄ , ḡ), σ̄) describes a solution of (P)− (D).

Remark 3.11. In the presence of the strict complementarity condition, Theorem 3.9 shows
an improvement on the complexity of describing a strictly complementary solution, when
compared to the direct application of [6, Algorithm 13.2] (Sampling). More precisely, the set
of strictly complementary solutions is a bounded basic semi-algebraic set and can be described
as the realization of a sign condition on the following set of O(m+ n2) polynomials of degree
n in Z[V1, . . . , Vn̄]:

R =
{ n∑

j,`=1
j<`

2Ai
j`Xj` +

n∑
j=1

Ai
jjXjj − bi,

( m∑
i=1

Aiyi + S − C
)
j`
j ≤ `, (XS), det(X[i] + S[i])

}
,
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where (XS) stands for all entries of XS, and X[i] and S[i] denote the ith leading principal
submatrices of X and S for i = 1, . . . , n9. In that case, the sampling algorithm applied to R
has a complexity (2mn+ 2n3)O(m+n2) for describing a strictly complementary solution.

3.3. Worst-case convergence rate. We adopt the same approach as in Remark 3.6 to
bound the convergence rate of the central path, i.e., the rate at which a central solution
converges to (X∗∗, y∗∗, S∗∗). Let ((f, g), σ) and ((f̄ , ḡ), σ̄) be the input and output of Algo-
rithm 3.2, describing the central path for sufficiently small µ and its limit point, respectively,
and define a polynomial Px ∈ Z[µ,D, T1, T2]

Px = D
(
g0(µ, T1)ḡ0(T2)

)2 − t(n)∑
i=1

(
gi(µ, T1)ḡ0(T2)− ḡi(T2)g0(µ, T1)

)2
.

Given a sufficiently small µ, tσ, and tσ̄, the real root of Px(µ,D, tσ, tσ̄) is the distance of x(µ)
from its unique limit point x∗∗, i.e.,

dx = ‖x(µ)− x∗∗‖2 =

t(n)∑
i=1

(
gi(µ, tσ)

g0(µ, tσ)
− ḡi(tσ̄)

ḡ0(tσ̄)

)2

,

where f(µ, tσ) = 0 and f̄(tσ̄) = 0. Analogously, we can define Ps ∈ Z[µ,D, T1, T2]

Ps = D
(
g0(µ, T1)ḡ0(T2)

)2 − n̄∑
i=m+t(n)+1

(
gi(µ, T1)ḡ0(T2)− ḡi(T2)g0(µ, T1)

)2
,

which for a sufficiently small µ, tσ, and tσ̄ has the real root

ds = ‖s(µ)− s∗∗‖2 =

n̄∑
i=m+t(n)+1

(
gi(µ, tσ)

g0(µ, tσ)
− ḡi(tσ̄)

ḡ0(tσ̄)

)2

.

Notice that ‖X(µ) − X∗∗‖ ≤
√

2‖x(µ) − x∗∗‖ and ‖S(µ) − S∗∗‖ ≤
√

2‖s(µ) − s∗∗‖. In
summary, for all sufficiently small µ, (µ, dx) and (µ, ds) belong to the R-realization of the
following quantified first-order formulas with integer coefficients:

(3.7)

Ψx(µ,D) : (∃T1) (∃T2)
(
Px(µ,D, T1, T2) = 0

)
∧
(

sign(f (k)(µ, T1)) = σ(f (k)), k = 0, 1, . . .
)

∧
(

sign(f̄ (k)(T2)) = σ̄(f̄ (k)), k = 0, 1, . . .
)
,

Ψs(µ,D) : (∃T1) (∃T2)
(
Ps(µ,D, T1, T2) = 0

)
∧
(

sign(f (k)(µ, T1)) = σ(f (k)), k = 0, 1, . . .
)

∧
(

sign(f̄ (k)(T2)) = σ̄(f̄ (k)), k = 0, 1, . . .
)
.

Now, we present the proof of the main result of this paper.

Proof of Theorem 1.1. The quantifier elimination algorithm [6, Algorithm 14.5] applied
to the formulas Ψx and Ψs returns quantifier free formulas with polynomials R ∈ R[µ,D] of
degree (max{deg(Px),deg(Ps),deg(f),deg(f̄)})O(1), where

max
{

deg(Px), deg(Ps),deg(f), deg(f̄)
}

= 2O(m+n2).

9Notice that the conditions XS = 0, X + S � 0 also imply X � 0 and S � 0.
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Figure 3: An exterior semi-algebraic path ex-
ists and converges to the unique non-strictly
complementary solution (2.2).

By the definition of Px and Ps, the R-realization of (3.7) contains a unique (µ, d) for sufficiently
small µ. Therefore, the quantifier free formula obtained from (3.7) must involve an atom R = 0
with deg(R) = 2O(m+n2). By the Newton-Puiseux theorem [46, Theorem 3.1], R(µ,D) = 0
has a root d ∈ C〈µ〉 with a positive valuation, since otherwise d either would be unbounded
over C or would have a positive limit. Thus, the valuation of d is the negative of the slope
of the leftmost non-vertical segment in the Newton polygon of R [46, Section 3.2], and it is
bounded below by 1/degD(R). Since degD(R) = 2O(m+n2), the proof is complete.

4. Concluding remarks and future research. In this paper, we investigated the degree
and worst-case convergence rate of the central path of SDO problems. We described central
solutions and the limit point of the central path as points associated to real univariate repre-
sentations ((f, g), σ) and ((f̄ , ḡ), σ̄) from Algorithm 3.1 and Algorithm 3.2, respectively. As a
result, we derived an upper bound 2O(m+n2) on the degree of the Zariski closure of the central
path, when µ is sufficiently small, and a complexity bound 2O(m+n2) for describing the limit
point of the central path. Additionally, by applying the quantifier elimination algorithm to
((f, g), σ) and ((f̄ , ḡ), σ̄), we provided a lower bound 1/γ, with γ = 2O(m+n2), on the conver-
gence rate of the central path. It is worth mentioning that the worst-case convergence rate of
the central path could serve as a quantitative measure for the hardness of solving (P) − (D)
using primal-dual path-following IPMs, see e.g., [29].

Exterior semi-algebraic paths. As Remark 3.10 suggests, Algorithm 3.1 and Algorithm 3.2
not only describe the central path and its limit point, they also describe other semi-algebraic
paths, arising from the parametrized univariate representations in U , which may converge to
a point in the solution set. By the centrality condition XS = µIn and the positive sign of the
eigenvalues of X(µ) and S(µ), the central path is the only semi-algebraic path which converges
from the interior of Sn+. However, it turns out that a solution could be approached from a
semi-algebraic path, so-called exterior semi-algebraic path, which converges from the exterior
of Sn+. This can be observed in Example 2.3, where the solutions of (2.3) are all bounded over
R, see also Figure 3. The existence of an exterior semi-algebraic path is particularly important
when the strict complementarity condition fails. Such a path may exhibit numerical behavior
superior to the central path, which suffers from a slower convergence rate than γ = 1 in the
absence of the strict complementarity condition. See e.g., Example 2.1 and Table 1 where the
central path converges to the unique solution at almost a rate γ = 1

2 .
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[33] R. D. C. Monteiro and P. R. Zanjácomo, A note on the existence of the Alizadeh-Haeberly-Overton
direction for semidefinite programming, Mathematical Programming, 78 (1997), pp. 393–396.

[34] M. Mut, Curvature as a Complexity Bound in Interior-Point Methods, PhD thesis, Department of In-
dustrial and Systems Engineering, Lehigh University, 2014.

[35] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994.

[36] Y. Nesterov and A. Nemirovskii, Primal central paths and Riemannian distances for convex sets,
Foundations of Computational Mathematics, 8 (2008), pp. 533–560.

[37] J. X. d. C. Neto, O. P. Ferreira, and R. D. C. Monteiro, Asymptotic behavior of the central path
for a special class of degenerate SDP problems, Mathematical Programming, 103 (2005), pp. 487–514.

[38] L. Porkolab and L. Khachiyan, On the complexity of semidefinite programs, Journal of Global Opti-
mization, 10 (1997), pp. 351–365.

[39] M. V. Ramana, An exact duality theory for semidefinite programming and its complexity implications,
Math. Programming, 77 (1997), pp. 129–162.

[40] M. V. Ramana and P. M. Pardalos, Semidefinite programming, in Interior Point Methods of Mathe-
matical Programming, T. Terlaky, ed., Springer, Boston, MA, 1996, pp. 369–398.

[41] G. Sonnevend, J. Stoer, and G. Zhao, On the complexity of following the central path of linear
programs by linear extrapolation II, Mathematical Programming, 52 (1991), pp. 527–553.

[42] G. Sporre and A. Forsgren, Characterization of the limit point of the central path in semidefinite
programming, Tech. Rep. TRITA-MAT-2002-OS12, Department of Mathematics, Royal Institute of
Technology, Sweden, 2002.

[43] S. Sremac, H. J. Woerdeman, and H. Wolkowicz, Error bounds and singularity degree in semidefinite
programming, SIAM Journal on Optimization, 31 (2021), pp. 812–836.

[44] M. J. Todd, Semidefinite optimization, Acta Numerica, 10 (2001), pp. 515–560.
[45] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), pp. 49–95.
[46] R. J. Walker, Algebraic Curves, Springer, New York, NY, USA, 1978.
[47] G. Zhao and J. Stoer, Estimating the complexity of a class of path-following methods for solving linear

programs by curvature integrals, Applied Mathematics and Optimization, 27 (1993), pp. 85–103.


	1 Introduction
	2 Background
	2.1 Real algebraic geometry
	2.2 Optimality and complementarity
	2.3 Convergence of the central path

	3 On a semi-algebraic characterization of the central path
	3.1 Degree of the central path
	3.2 Limit point of the central path
	3.3 Worst-case convergence rate

	4 Concluding remarks and future research

