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Abstract

This paper considers the equilibrium positions of n particles in one dimension. Two
forces act on the particles; a nonlocal repulsive particle-interaction force and an external
force which pushes them to an impenetrable barrier. While the continuum limit as n→∞
is known for a certain class of potentials, numerical simulations show that a discrete
boundary layer appears at the impenetrable barrier, i.e. the positions of o(n) particles do
not fit to the particle density predicted by the continuum limit. In this paper we establish
a first-order Γ-convergence result which guarantees that these o(n) particles converge to
a specific continuum boundary-layer profile.

keywords: discrete-to-continuum; boundary layers; Γ-convergence; Γ-development.
MSC: 74Q05, 74G10, 49J45, 82C22.

1 Introduction

This paper contributes to a recent trend in interacting particle systems which aims to find
more detailed information on the particle positions at equilibrium than the information which
the continuum limit provides. There are roughly two directions which are currently pursued;
convergence rates and particle patterns on mesoscopic scales. The studies on convergence
rates (see, e.g. [BO20, EOS16, HvMP20, KvM21, PZ20, TS19, vM18]) aim to find a topology
in which the distance between the configuration of n particles and the continuum particle
density can be measured and bounded by a small value which vanishes as n → ∞. The
studies on particle patterns zoom in on a mesoscopic scale, and reveal how the particles are
distributed on this scale, either in the bulk (see the paper series started in [PS17, SS15]) or
near the end of the support [GvMPS16, HCO10, HHvM18, Hud13]. This paper contributes
to the latter, in which case we call the particle pattern a boundary layer. More precisely,
this paper fills the important gap that was left open in [GvMPS16] on the characterization
of boundary layers.

The gap in [GvMPS16] To describe the gap in [GvMPS16], we first recall the correspond-
ing setting. Consider n+ 1 many particles (n ≥ 1) confined to the half-line

Ω = [0,∞).

We label their positions as x := (x0, x1, . . . , xn) and assume that they are ordered, i.e. x ∈ Ωn,
where

Ωn := {x ∈ Rn+1 : 0 = x0 < x1 < . . . < xn}.
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The discrete (i.e. n <∞) particle interaction energy is given by

En : Ωn → [0,∞), En(x) :=
1

n2

n∑
i=1

i−1∑
j=0

γnV (γn(xi − xj)) +
1

n

n∑
i=0

U(xi), (1)

where V is an interaction potential, U is a confining potential and γn > 0 is a parameter. The
double sum accounts for each pair of two particles. Figure 1 illustrates typical examples for V
and U . The assumptions and properties of V and U are roughly as follows. U ∈ C1(Ω) with
minΩ U = 0 and U(x) → ∞ as x → ∞. V ∈ L1(R) is normalized to

∫
R V = 1, nonnegative,

even and singular at 0 with the bound

V (x) ≤ C
{
|x|−a if a > 0
− log |x| if a = 0

for all x ∈ (0, 1
2) (2)

for some C > 0, where a ∈ [0, 1) is a parameter which bounds the strength of the singu-
larity. We also assume that V |(0,∞) is non-increasing and convex. We state the precise list
of assumptions and resulting properties in Section 3. With respect to [GvMPS16], we put
more assumptions on V , but allow for a general confining potential U instead of the specific
choice U(x) = x. This generalization of U does not result in further complications. Instead,
it clarifies the dependence of U on the boundary layer.

x0

V (x)

0 x

U(x)

Figure 1: Typical examples of V and U .

One particular choice of V which we have in mind is

Vwall(x) = x cothx− log |2 sinhx|. (3)

For this potential, En is a model for the pile-up of dislocation walls at a lock. We refer to
[GvMPS16] for the discussion of this model in the literature and its physical relevance. We
show in Section 3 that it satisfies all the assumptions that we put on V .

The asymptotic behaviour of the parameter γn in (1) as n → ∞ plays a decisive role for
the limiting energy E of En as n → ∞. This can be expected from (1) by noting that the
scaled potential

Vγ(x) = γV (γx), (4)

which has unit integral for all γ > 0, is squeezed to a delta-peak at 0 as γ → ∞. Hence, as
γ increases, the particle interactions become more localized. In [GPPS13] the Γ-limit of En
is obtained as n → ∞. Depending on the asymptotic behavior of γn, five different limiting
energies are obtained: two of these belong to the critical scaling regimes γn → γ > 0 and
γn/n → Γ > 0 as n → ∞, and the other three belong to the three regimes separated by
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these two critical regimes (the outer two regimes require a rescaling of En and x; we refer to
[GPPS13] for the details).

In this paper we focus on the regime in between the two critical ones, i.e.

lim
n→∞

γn =∞ and lim
n→∞

γn
n

= 0. (5)

In this regime the Γ-limit of En (see [GPPS13, Thm. 7]) is given by

E : P(Ω)→ [0,∞], E(µ) =
1

2
‖µ‖2L2(Ω) +

∫
Ω
U(x) dµ(x), (6)

where P(Ω) is the space of probability measures on Ω. The L2-norm is extended to measures
(see (27) for details) and may be infinite. It is well-known (see, e.g. [KS80, Thm. 2.1] with
minor modications to account for U /∈ L2(Ω)) that the minimization problem of E over P(Ω)
has a unique minimizer µ∗ ∈ L2(Ω) ∩ P(Ω) and that its density ρ∗ is characterized by{

ρ∗ + U ≥ CU on Ω

ρ∗ + U = CU on supp ρ∗,
(7)

where the constant CU > 0 is such that
∫

Ω ρ∗(x) dx = 1. Obviously,

ρ∗ = [CU − U ]+. (8)

Figure 2 illustrates ρ∗.

0 x

CU
ρ∗

U(x)

Figure 2: Geometrical interpretation of ρ∗ in (8). ρ∗ is the height function of the region
(colored in gray) with unit area below CU and above U .

As pointed out in [GvMPS16], the Γ-convergence of En is not completely satisfactory,
because it does not detect any particle patterns on mesoscopic scales. For the scaling regime
in (5), the numerical computations of the minimizer x∗ in [GvMPS16] indicate that O(n/γn)
particles are not distributed according to ρ∗; see Figure 3. The main result [GvMPS16,
Thm. 1.1] captures the continuum boundary-layer profile according to which these O(n/γn)
particles are distributed. This profile is obtained by firstly proving a first-order Γ-convergence
result for the continuous counterpart of En (see (9) below) and by secondly minimizing the
first-order Γ-limit. While Figure 3 suggests strongly that the obtained boundary-layer profile
accurately describes the discrete boundary layer, any proof for this observation was left open.
This is the gap in [GvMPS16] which we aim to fill in this paper.
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choice, because we cannot expect the total variation of νγ to stay bounded in the

limit γ → ∞, but only locally bounded.

As a consequence of Theorem 1.1 the functional F achieves its minimum in A;

since A is convex and F is strictly convex, this minimum is also unique.

1.2. Approximation of the minimiser of Eγ by “matching ”

The Γ-convergence result in Theorem 1.1 suggests an improved approximation of the

minimiser of the energy Eγ at the left boundary of the pile-up domain, where the

bulk density ρ∗ fails to describe the profile of the discrete density (see Fig. 2).

Denoting with ν∗ the minimiser of F , ρ∗(0)+ ν∗ is the blown-up boundary-layer

profile, which corresponds to the behaviour of the minimiser of Eγ close to the lock.

In view of the Γ-convergence result, we can therefore define a “matched” continuous

density in terms of the original, unscaled variables, as

ργ
∗ := ρ∗ + γ←ν∗, or, in terms of Lebesgue densities,

ργ
∗(x) = ρ∗(x) + ν∗(γx), in analogy with (1.9),

(1.13)

as the improved approximation of the minimiser of Eγ in (1.6). This expression

appears also to be a good approximation of the discrete optimal density ρn, as shown

in Fig. 4. The agreement between ργ
∗ and the discrete density is striking, even for a

small number of dislocation walls, except for the free end of the pile-up region, where

a second boundary layer appears, whose analysis is beyond the scope of this paper.

1.3. Conclusion and comments

Theorem 1.1 gives a clear description of the boundary-layer behaviour of the pile-up

at the lock through the minimiser of the limit energy. This theorem however only

0 0.0567 0.1134
0

0.7797

1.5594

2.3391

3.1188

3.8985

ρn

(a)

0 1.2825 2.5651
0

0.7797

1.5594

2.3391

3.1188

3.8985

ρn

(b)

ργ
∗

ρ∗

ρ
γ
∗

ρ∗

Fig. 4. Comparison between the discrete pile-up profile ρn in (1.5), the “bulk” density ρ∗ and

the “matched” density ργ
∗ = ρ∗ + γ← ν∗, for n = 27 and γ =

√
n. The length of the x-axis in the

left plot equals
√

a/γ.

Figure 3: This is a copy of [GvMPS16, Fig. 4]; copyright by World Scientific Publishing
Co., Inc. The Figure illustrates the minimizers x∗ and ρ∗ of respectively En and E for the
potentials V as in (3) and U(x) = x. (a) is obtained from (b) by zooming in with the scaling
operator (γn)→ defined in (10). The crosses ρn illustrate the discrete density profile of x∗.
The x- and y-coordinates of these crosses are respectively x∗,i and 2

n(x∗,i+1 − x∗,i−1)−1. ργn∗
is the continuum boundary-layer profile; see (13).

The first-order Γ-convergence result of [GvMPS16] In order to describe this paper’s
first-order Γ-convergence result which will fill the gap in [GvMPS16], we first recall that of
[GvMPS16]. By [GPPS13, Thm. 5] the Γ-limit of En in the regime γn → γ > 0 is given by

Eγ : P(Ω)→ [0,∞], Eγ(µ) :=
1

2

∫
Ω

∫
Ω
Vγ(x− y) dµ(y)dµ(x) +

∫
Ω
U(x) dµ(x), (9)

where Vγ is defined in (4). The energy Eγ is the continuous counterpart of En which is
considered in [GvMPS16]. It Γ-converges to E as γ → ∞ (see [GvMPS16, Thm. 2.1]). In
particular, this means that there exists a sequence (µγ)γ such that

Eγ(µγ)− E(ρ∗) = o(1) as γ →∞.

The idea of the authors of [GvMPS16] to upgrade this to a first-order Γ-convergence result
was to characterize the o(1)-term. They predicted from a priori computations that this term
is O(1/γ), and that it is easier to replace E(ρ∗) by Eγ(ρ∗). This motivated them to consider
the functional

F γ(µ) := γ
(
Eγ(µ)− Eγ(ρ∗)

)
.

They call F γ the boundary-layer energy. The first-order Γ-convergence of Eγ is simply the
(zeroth-order) Γ-convergence of F γ .

For the Γ-convergence of F γ the topology needed to be chosen carefully. From the formal
asymptotics in [Hal11] and their own numerical simulations the authors guessed that the
width of the boundary layer is O(1/γ). This motivated them to use the following spatial
rescaling. For a measure µ ∈ P(Ω), let

µ̃ := γ→µ := γ (γ id)#µ. (10)
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The inverse scaling is given by

µ := γ←µ̃ :=
1

γ

(1

γ
id
)

#
µ̃.

Note that if µ has a density ρ, then the density of µ̃ satisfies

ρ̃(x) = ρ(x/γ) =: γ→ρ(x).

Using this scaling, the authors of [GvMPS16] employed the following change of variables:

νγ := µ̃− ρ̃∗, µ = γ←νγ + ρ∗.

By subtracting ρ∗ the bulk behaviour gets separated from the boundary layer.

For the signed Radon measures νγ with total variation that growths linearly with γ, the
authors used the vague topology. This topology is defined as follows on the space M(Ω) of
signed Radon measures on Ω. A sequence (νε)ε>0 ⊂ M(Ω) converges to ν ∈ M(Ω) vaguely
(denoted by νε

v
⇀ ν) as ε→ 0 if∫

Ω
ϕdνε

ε→0−−−→
∫

Ω
ϕdν for all ϕ ∈ Cc(Ω).

The main result [GvMPS16, Thm. 1.1] states that F γ Γ-converges with respect to the
vague topology to a certain limiting boundary-layer energy F . This functional F is defined
on

A =
{
ν ∈M(Ω) | ν−(dx) ≤ ρ∗(0)dx, sup

x≥0
ν+([x, x+ 1]) <∞

}
, (11)

where ν+, ν− ≥ 0 are respectively the positive and negative part of ν such that ν = ν+− ν−.
While ν ∈ A may have infinite total variation, we have that ν− ∈ L∞(Ω) and that the local
bound on ν+ is translation invariant. For ν ∈ A ∩ L2(Ω),

F (ν) :=
1

2

∫
Ω

∫
Ω
V (x− y)ν(y)ν(x) dydx− ρ∗(0)

∫ 0

−∞
(V ∗ ν)(x) dx. (12)

It is not obvious to extend this definition to ν ∈ A, because ν need not be of finite total
variation. We recall this extension briefly in Section 5.1. Finally, [GvMPS16] noted that F
has a unique minimizer ν∗ (existence follows from the Γ-convergence result in [GvMPS16]
and uniqueness follows from the convexity of A and the strict convexity of F ), and that the
continuous boundary-layer profile is given by

ρ̃γ∗ := ν∗ + ρ̃∗, ργ∗ := γ←ν∗ + ρ∗. (13)

Figure 3 and all other numerical simulations performed in [GvMPS16] suggest that ργ∗ gives
a very good prediction for both the bulk and the boundary layer in the minimizer x∗.

However, the match between x∗ and ργ∗ has only been observed and has not been proven.
Hence, there is no guarantee that such a match extrapolates to any other choices for the
potentials U and V and for the parameter γn. This motivates our aim to establish a first-
order Γ-convergence result for the discrete energy En instead of its continuous counterpart
Eγn .
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First-order Γ-convergence result of En To establish a first-order Γ-convergence result
for En, we follow largely the same setup as the one just described. In fact, from Figure
3 we expect the same limiting boundary-layer energy F . Also, there is a close connection
between En and Eγn , which can be seen as follows. Given x ∈ Ωn, consider the corresponding
empirical measure

µn :=
1

n

n∑
i=0

δxi ∈
n+ 1

n
P(Ω). (14)

Then, we can express En(x) in terms of µn as

En(µn) :=
1

2

∫∫
∆c

Vγn(x− y) dµn(y)dµn(x) +

∫
Ω
U(x) dµn(x), (15)

where the diagonal
∆ = {(x, x)T : x ∈ R} ⊂ R2

is removed from the integration domain to avoid self-interactions. Apart from removing the
diagonal, the expressions for En and Eγn are the same. Yet, the removal of the diagonal and
the difference in the admissible sets on which En and Eγn are defined are crucial. Indeed,
(x, y) 7→ Vγn(x− y) concentrates around the diagonal as n→∞ and thus careful analysis is
required.

Following the procedure from [GvMPS16], we consider the blown-up energy difference
γn[En(µn)−Eγn(ρ∗)] and employ the following change of variables. For µn as in (14), we set

νn := µ̃n − ρ̃∗, µn = (γn)←νn + ρ∗. (16)

Then, the discrete boundary-layer energy Fn is defined on the admissible set

An :=

{
νn ∈M(Ω) | ν−n = ρ̃∗, ∃y ∈ Ωn : ν+

n =
γn
n

n∑
i=0

δyi

}
(17)

and given by
Fn(νn) := γn

[
En
(
(γn)←νn + ρ∗

)
+ Eγn(ρ∗)

]
. (18)

Note that if νn is constructed from µn by (16), then

Fn(νn) = γn (En(µn)− Eγn(ρ∗)) . (19)

The main result of this paper in the following Γ-convergence result of Fn:

Theorem 1.1. Let U and V satisfy Assumptions 3.1 and 3.2, and let a ∈ [0, 1) be such that
(2) holds. If

1� γn �


n

1−a
2−a if 0 < a < 1√
n

log n
if a = 0,

then any sequence (νn)∞n=1 with νn ∈ An and supn≥1 Fn(νn) < ∞ is pre-compact in A in
the vague topology. Moreover, the functionals Fn Γ-converge to F with respect to the vague
topology, i.e.

∀ ν ∈ A ∀ νn ∈ An with νn
v
⇀ ν : lim inf

n→∞
Fn(νn) ≥ F (ν)

∀ ν ∈ A ∃ νn ∈ An with νn
v
⇀ ν : lim sup

n→∞
Fn(νn) ≤ F (ν).

6



More precisely, the assumption on γn is equivalent to

lim
n→∞

γn =∞ and


lim
n→∞

γnn
−1−a

2−a = 0 if 0 < a < 1

lim
n→∞

γn

√
log n

n
= 0 if a = 0.

The proof of Theorem 1.1 is given in Section 6 with preliminaries in Sections 4 and 5. It
follows the proof in [GvMPS16] with major modifications to allow for the discreteness. Here,
we briefly describe the main features of Theorem 1.1 and focus in particular on these major
modifications.

First, we recall from [GvMPS16] that the expression for F in (12) arises naturally when
the right-hand side in (18) is explicitly expressed in terms of νn. In Section 4 we redo this
computation, which in our case deals with the discrete setting and with a general confining
potential U .

The main difficulty with respect to [GvMPS16] is that the diagonal ∆ is removed from
the integration domain (see (15)) and that the domain of Fn is discrete (i.e. the degrees
of freedom are empirical measures). To deal with this, we use essentially the particular
regularization V β of V constructed in [KvM21], which approximates V from below as β → 0.
Using this regularization, we add and subtract the contribution of the diagonal. By adding
the diagonal, we can apply similar arguments as those in [GvMPS16] to establish the liminf
inequality. However, β needs to be chosen carefully. If β is too small, then the contribution
of the diagonal is too large and may not vanish in the limit. On the other hand, if β is too
large, then we cannot control the error made by the replacement of V by V β. Balancing out
these two errors results in the asymptotic upper bound on γn in Theorem 1.1. This bound is
a stronger requirement than in (5), which is sufficient for the (zeroth-order) Γ-convergence of
En to E.

Establishing the limsup inequality is also significantly more challenging than in [GvMPS16].
The discreteness of An forces us to discretize ν, which was not necessary in the continuous
setting in [GvMPS16]. Since we blow up the energy difference by the factor γn, we need to
show that the discretization error is asymptotically smaller than 1/γn. This is much more in-
tricate than for the zeroth-order Γ-limit of En (see [GPPS13, Thm. 7]), where it was sufficient
to show that the discretization error simply vanishes as n→∞.

Discussion In conclusion, Theorem 1.1 extends its continuous counterpart [GvMPS16,
Thm. 1.1] (i.e. the Γ-convergence of F γ to F ) in two manners. First, on a minor note, it
allows for a general confining potential U . This highlights the fact that the dependence of
F on U is restricted to the single value ρ∗(0) ≥ 0, which depends nonlocally on U (see (8)
and Figure 2). Second, on a major note, Theorem 1.1 considers the discrete energy Fn. As
a consequence of Theorem 1.1, any sequence of minimizers ν∗,n of Fn converges to ν∗. Since
this convergence happens on the mesoscopic scale of the boundary layer, this proves that
ργn∗ (see (13)) indeed describes the boundary layer which appears in x∗. This gives the first
theoretical motivation for the observations in Figure 3 and any other numerical computation
in [GvMPS16] that fits to the regime of γn assumed in Theorem 1.1. This fills the main gap
that was left open in [GvMPS16].

Yet, the story is not complete; [GvMPS16] contains a number of conjectures sparked by
numerical simulations to which Theorem 1.1 does not provide an answer. Here, we focus on
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the main limitation of Theorem 1.1, which is the upper bound on γn. Indeed, the numerical
simulations in [GvMPS16] suggest that ργn∗ is the correct boundary-layer profile for the whole
regime of γn in (5). However, [GvMPS16, Table 1] suggests that the anticipated scaling of the
energy difference, i.e. En(x∗)− Eγn(ρ∗) ∼ 1/γn, ceases to hold at the upper bound on γn in
Theorem 1.1. Hence, this upper bound is not simply an artefact of our proof. Looking deeper
into the proof in Section 6, it seems that this upper bound is caused by the contribution to
Fn from a narrow region around the diagonal in the double integral in (15). A more precise
treatment of this diagonal region could perhaps reveal a contribution of the right-hand side
in (19) which diverges to ∞ as n→∞. Specifying this contribution, subtracting it from Fn
and proving Γ-convergence of the resulting energy functional (provided that his is possible)
would reveal that ργn∗ remains the correct boundary layer profile beyond the upper bound on
γn in Theorem 1.1. Pursuing this direction is beyond our scope.

Organization of the paper In Section 2 we set the notation. In Section 3 we state the
precise assumptions on the potentials V and U , and derive further properties that follow
from these assumptions. In Section 4 we rewrite Fn defined in (18) explicitly in terms of νn,
which will clarify the connection with the expression for F in (12). In Section 5 we build the
functional setting on which our proof of Theorem 1.1 relies. We also provide several a priori
estimates. Finally, Section 6 is devoted to the proof of Theorem 1.1.

2 Notation

Here we list some symbols and abbreviations that we use throughout the paper.

a smallest constant such that V (x) ≤ C|x|−a As. 3.2(ii)
An, A admissible sets for Fn and F (17), (11)
β regularization parameter for V and T (36)
γn modelling parameter Thm. 1.1
γ→µ, γ←µ transforms of µ by scaling space by γ > 0 (10)
En discrete energy (1)
Eγ Γ-limit of En for γn = γ (9)
E Γ-limit of En for 1� γn � n (6)

f̂ , Ff Fourier transform of f ;

(Ff)(ω) = f̂(ω) :=
∫
R f(x)e−2πixω dx

F−1f inverse Fourier transform of f ;
Fn discrete boundary-layer energy (18), (24)
F continuum boundary-layer energy (12), (30)
L the Lebesgue measure on Ω; L ∈M(Ω)
M(Ω) signed Radon measures on R with support in Ω
ν+, ν− positive and negative part of a

measure ν ∈M(Ω); ν± ≥ 0
P(Ω) P(Ω) ⊂M(Ω) is the set of probability measures
ρ∗ minimizer of E (8)
ρ̃∗ rescaled version; ρ̃∗(x) := (γn)→ρ∗(x) = ρ∗(x/γn)
T ‘convolutional square root’ of V ; T 2f = V ∗ f (28), Lem. 5.1
Xk,j Hilbert space; Xk,j ⊂ L2(R) (32)
‖ · ‖p Lp(R)-norm; 1 ≤ p ≤ ∞.
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We reserve c, C > 0 for generic constants which do not depend on any of the relevant
variables. We use C in upper bounds (and think of it as possibly large) and c in lower bounds
(and think of it as possibly small). While c, C may vary from line to line, in the same display
they refer to the same value. If different constants appear in the same display, we denote
them by C,C ′, C ′′, . . ..

To avoid clutter, we often omit the integration variable. For instance, we use∫
Ω
U dρ :=

∫
Ω
U(x) dρ(x)∫

R
V :=

∫
R
V (x) dx

(V ∗ νn)(x) :=

∫
Ω
V (x− y) dνn(y),

and extrapolate this notation to other integrands. Other than the framework of measures, we
will also work with distributions. To connect the two notions, we often interpret measures on
Ω as distributions on R supported in Ω.

3 The potentials U and V

To the potential U we add one more assumption to those mentioned in the introduction. We
recall that CU is the constant in (7); see also Figure 2.

Assumption 3.1. U ∈ C1(Ω) satisfies minΩ U = 0 and U(x) → ∞ as x → ∞. Moreover,
there exist finitely many disjoint closed intervals I1, . . . , Im such that

supp[CU − U ]+ =

m⋃
i=1

Ii. (20)

The assumption minΩ U = 0 is not restrictive, as otherwise one can achieve this by adding
a constant to En. The assumption (20) is technical; it excludes pathological cases in which
the graph of U crosses the value CU infinitely many times. In fact, for the choice U(x) = x
in [GvMPS16], (20) holds for m = 1. For U as in Figure 2, (20) holds for m = 2.

In view of (8), Assumption 3.1 directly translates to assumptions on ρ∗, independent of
the assumptions on V . Indeed, from (8) it is clear that Assumption 3.1 implies that ρ∗ is
Lipschitz continuous, and that ρ′∗ is uniformly continuous on Ω \ ∂(supp ρ∗). Hence, (20)
implies that only at finitely many points ρ∗ is not of class C1.

Next we turn to the potential V :

Assumption 3.2. V ∈ C(R \ {0}) satisfies

(i) (Evenness). V : R→ R is even;

(ii) (Singularity). V (x) → ∞ as x → 0, and there exist C > 0 and a ∈ [0, 1) such that for
all x ∈ (0, 1

2 ]

V (x) ≤ C
{
|x|−a if a > 0
− log |x| if a = 0;

9



(iii) (Convexity). V is convex on (0,∞) and λ-convex near x = 0, i.e.

∃ λ, δ > 0 : x 7→ V (x)− λ

2
x2 is convex on (0, δ);

(iv) (Integrability). V is normalized to ‖V ‖1 = 1 and has bounded first moment, i.e.∫
R
|x|V (x) dx <∞;

(v) (Regularity). V ∈W 2,1
loc (0,∞) and

√
V̂ ∈W 2,∞(R).

First, we mention several properties of V which follow from Assumption 3.2. The evenness,
convexity and integrability imply that V ≥ 0 is non-increasing on (0,∞) and that V̂ is real-
valued, nonnegative and even, which is sufficient for Assumption 3.2(v) to be well-defined. A
less obvious consequence is Lemma 3.3.

Lemma 3.3. There exists a constant c > 0 such that for all ω ∈ R

v(ω) := V̂ (ω) ≥ cmin{1, |ω|−2}.

Proof. Since v is even and real-valued, it is enough to focus on ω > 0. [KvM20, (A.3)] provides
the characterization

v(ω) =
1

πω3

∞∑
k=0

∫ 1
2

0

(∫ 1
2

0
V ′′
(k + x+ y

ω

)
dy

)
sin(2πx) dx.

Since the integrand is nonnegative, we may bound it from below by shrinking the integration
domain. Then, on 0 ≤ x ≤ 1

4 , we bound sin(2πx) ≥ 4x. For V ′′ we note from Assumption
3.2(iii) that

V ′′(z) ≥ λ1(z < δ) for all z > 0,

where 1(P ) equals 1 if the statement P is true and 0 otherwise. Then,

V̂ (ω) ≥ c

ω3

∞∑
k=0

∫ 1
4

0

(∫ 1
4
−x

0
1
(
(k + x+ y) < δω

)
dy

)
x dx.

We split two cases. If ω ≤ 1
4δ , then only the term corresponding to k = 0 is nonzero, and

the right-hand side equals

c

ω3

∫ δω

0

∫ δω−x

0
xdydx ≥ δ3c′.

If ω > 1
4δ , then we estimate

V̂ (ω) ≥ c

ω3

∞∑
k=0

∫ 1
4

0

(∫ 1
4
−x

0
1
(
(k + 1

4) < δω
)
dy

)
x dx

=
c′

ω3

∞∑
k=0

1
(
(k + 1

4) < δω
)

=
c′

ω3
dδω − 1

4e ≥
4

5
δ
c′

ω2
.

10



Next we compare Assumption 3.2 to the assumptions on V made in [GvMPS16], which are
weaker. Indeed, in [GvMPS16] Assumption 3.2(ii) and the regularity on V are not required,
and Assumption 3.2(iii) is relaxed to the requirement that V |(0,∞) is non-increasing. While
[GvMPS16] has a further assumption that V can be approximated from below by a certain
class of functions, we show that this holds under Assumption 3.2 by constructing such an
approximation explicitly; see (36).

Next we motivate the assumptions which are new with respect to [GvMPS16]. We believe
that these additional assumptions are minor, and still allow for most of the potentials in
practice which satisfy the assumptions in [GvMPS16]. Regarding Assumption 3.2(ii), it is
obvious from the bound on γn in Theorem 1.1 that a bound on the singularity of V is
needed. The requirement V (x) → ∞ as x → 0 might not be necessary. However, including
this case in the proof would require a further case splitting. Since we are not aware of any
application for this case, we omit it. While the convexity in Assumption 3.2(iii) is new, it
captures the following three assumptions in [GvMPS16]: V̂ > 0 (see the proof of Lemma
3.3), V |(0,∞) is non-increasing, and V can be approximated from below by a special class
of functions. The local λ-convexity is a technical addition which simplifies several steps in
the proof of Theorem 1.1. Finally, in Assumption 3.2(v), the regularity on V is only a small
upgrade of V ∈W 1,∞

loc (0,∞), which follows from convexity. The regularity of
√
v is required in

[GvMPS16] to extend F from L2(Ω) to A. We further exploit this assumption when proving
properties of the regularization V β. This is the single assumption which can be hard to check
in practice.

Finally, we show that Vwall defined in (3) satisfies Assumption 3.2. We recall from
[GPPS13] that Vwall is strictly convex, has a logarithmic singularity (in particular, a = 0) and
exponential tails. Then, the only non-trivial property left to check is the regularity of

√
v

with v := FVwall. By the strict convexity and the exponential tails of Vwall, it follows that
v ∈ C∞(R) is positive, and thus

√
v ∈ W 2,∞

loc (R). To extend this to large ω, we recall from
[GPPS13, App. A.1] that

v(ω) =
1

2ω

(
coth− id

sinh2

)
(π2ω) =:

ϕ(ω)

ω
.

Note that ϕ(ω)→ 1 and ϕ′(ω), ϕ′′(ω)→ 0 as ω →∞. Then, we obtain
√
v ∈W 2,∞(R) from

(√
v
)′

(ω) =

(√
ϕ
)′

(ω)

ω1/2
−
√
ϕ(ω)

2ω3/2

ω→∞−−−→ 0

(√
v
)′′

(ω) =

(√
ϕ
)′′

(ω)

ω1/2
−
(√
ϕ
)′

(ω)

ω3/2
+

3
√
ϕ(ω)

4ω5/2

ω→∞−−−→ 0.

4 Explicit expression of Fn(νn)

Here we derive an explicit expression for Fn(νn) in terms of νn and motivate the prefactor γn
in (18). By scaling back, note from (16) that νn ∈ An can be written as

σn := (γn)←νn = µn − ρ∗
for some empirical measure µn of the form (14). Then, in view of the right-hand side in (19),
we set Vγ(x) := γV (γx) and compute

En(µn)− Eγn(ρ∗)

11



=
1

2

∫∫
∆c

Vγn(x− y) dµn(y)dµn(x)− 1

2

∫∫
∆c

Vγn(x− y) dρ∗(y)dρ∗(x) +

∫
Ω
U dσn

=
1

2

∫∫
∆c

Vγn(x− y) dσn(y)dσn(x) +

∫
Ω

[
(Vγn ∗ ρ∗) + U

]
dσn,

where we recall that ρ∗ and µn are extended from Ω to R by 0.
Next we rewrite the second term. With this aim, we set

ρ∗(x) :=

{
ρ∗(0) if x < 0

ρ∗(x) if x ≥ 0
(21)

and expand∫
Ω

[
(Vγn ∗ ρ∗) + U

]
dσn

=

∫
Ω

(
Vγn ∗ (ρ∗ − ρ∗)

)
dσn +

∫
Ω

(
(Vγn ∗ ρ∗)− ρ∗

)
dσn +

∫
Ω

(
ρ∗ + U

)
dσn. (22)

The first term equals

− ρ∗(0)

∫
Ω

∫ 0

−∞
Vγn(x− y) dy dσn(x) = −ρ∗(0)

∫ 0

−∞
(Vγn ∗ σn)(y) dy. (23)

For the integrand of the third term in (22), we note from (8) that∫
Ω

(
ρ∗ + U

)
dσn =

∫
Ω
CU dσn +

∫
(supp ρ∗)c

(U − CU ) dσn =
CU
n

+

∫
(supp ρ∗)c

(U − CU ) dµn.

Collecting our computations, we obtain

En(µn)− Eγn(ρ∗) =
1

2

∫∫
∆c

Vγn(x− y) dσn(y)dσn(x)− ρ∗(0)

∫ 0

−∞
(Vγn ∗ σn)(x) dx

+

∫
Ω

(Vγn − δ0) ∗ ρ∗ dσn +

∫
(supp ρ∗)c

(U − CU ) dµn +
CU
n
.

Multiplying by γn and changing variables (recall νn = (γn)→σn), we get

Fn(νn) =
1

2

∫∫
∆c

V (x− y) dνn(y)dνn(x)− ρ∗(0)

∫ 0

−∞
(V ∗ νn)(x) dx

+

∫
Ω
γn(Vγn − δ0) ∗ ρ∗ dσn +

∫
(supp ρ̃∗)c

(
U(x/γn)− CU

)
dν+
n (x) + CU

γn
n
. (24)

For later use we note that the integral in the second term can be rewritten as (recall (23))∫ 0

−∞
(V ∗ νn)(y) dy =

∫
Ω

∫ ∞
x

V (y) dy dνn(x). (25)

Note that the first two terms in (24) resemble the expression of F in (30). This motivates
the scaling of the energy difference in (18) by γn. We treat the latter three terms in (24) as
error terms when proving Theorem 1.1. While the third term obviously vanishes as n→∞,
the other two terms may not for certain sequences (νn)n. We rely on the fact that the second
term is nonnegative, and that the integrand in the first term is expected to be small because
Vγ

v
⇀ δ0 as γ →∞. We give a precise bound later in Lemma 5.6.
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5 Functional setting and preliminaries

In Section 5.1 we recall from [GvMPS16] the necessary functional framework to extend the
definition of F in (12) toA. Since this functional framework also facilitates the statements and
proofs of several preliminary estimates, we treat them in the subsequent Section 5.2. In this
functional framework we identify measures on Ω as tempered distributions on R supported
in Ω.

5.1 Proper definition of F

Since F is the same as in [GvMPS16], we briefly recall the extension of the definition in (12)
on L2(R) to A. Ideally, if there exists a function u such that V = u ∗ u, then for f ∈ L2(R)
we have for the interaction term that∫

R
(V ∗ f)f =

∫
R

(u ∗ f)2 = ‖u ∗ f‖22. (26)

This expression can be extended to distributions by noting that

‖ξ‖22 := sup
ϕ∈C∞c (R)

(
2〈ξ, ϕ〉 − ‖ϕ‖22

)
∈ [0,∞]. (27)

However, from Assumption 3.2 it is not clear whether such a function u exists.
One way to avoid characterizing u is to work in Fourier space. Since convolution transforms

into multiplication by the Fourier transform, the linear operation of convolving by u turns
into multiplication by

√
FV , which is a function due to Assumption 3.2(v). Precisely, we set

T : L2(R)→ L2(R), T f := F−1(
√
vf̂), (28)

where v = FV . Then, by translation to Fourier space, we observe that (26) turns into∫
R

(V ∗ f)f = ‖Tf‖22. (29)

Together with the observation in (25) this yields

F (ν) =
1

2
‖Tν‖22 − ρ∗(0)

∫
Ω
g dν (30)

for all ν ∈ A ∩ L2(R), where

g(x) :=

∫ ∞
x

V (y) dy for all x ≥ 0. (31)

To extend F to A, we show that the linear term in (30) is bounded and that the operator
T can be extended to A. We do this in Lemmas 5.1 and 5.2. For later use, we state these
lemmas in a general form. With this aim, we introduce the Hilbert spaces

Xk,j(C) :=
{
f ∈ Hk(R;C) : xjf(x) ∈ L2(R;C)

}
(f, φ)Xk,j :=

k∑
`=0

∫
R
f (`)φ(`) +

∫
R
x2jf(x)φ(x) dx

13



for all k, j ∈ N. In case the functions are real-valued, we set

Xk,j :=
{
f ∈ Hk(R) : xjf(x) ∈ L2(R)

}
. (32)

Note that L2(R) = X0,0 ⊃ Xk,j ⊃ S(R) for all k, j ∈ N, where S(R) is the space of Schwarz
functions. Note from the Fourier transform property

F(xjf (k)) = ik+j(2π)k−j
(
ωkf̂

)(j)
that F is an invertible bounded linear operator from Xk,j(C) to Xj,k(C). We further set X ′k,j
as the dual of Xk,j with respect to the L2-topology, and L(Xk,j) as the space of all bounded
linear operators from Xk,j to Xk,j .

Lemma 5.1 ([GvMPS16, Lem. A.2]). The operator T and the set A satisfy

(i) A ⊂ X ′1,2;

(ii) For each k ∈ N and each ` ∈ {0, 1, 2}, T ∈ L(Xk,j) is symmetric, and can be extended
to T ∈ L(X ′k,j) by

〈Tξ, f〉 := 〈ξ, Tf〉 for all ξ ∈ X ′k,j , f ∈ Xk,j .

Lemma 5.2 ([GvMPS16, Lem. 3.4]). There exist constants C, εM > 0 with

sup
M≥0

εM <∞ and εM
M→∞−−−−→ 0

such that for all ν ∈ A and all M ≥ 0 it holds that∫ ∞
M

g d|ν| ≤ εM sup
x≥0
|ν|([x, x+ 1]), where g is as in (31), and (33)∣∣∣∣ ∫

Ω
fν

∣∣∣∣ ≤ C‖f‖X1,2 sup
x≥0
|ν|([x, x+ 1]) for all f ∈ X1,2. (34)

We remark that while Lemma 5.2 is a stronger statement than [GvMPS16, Lem. 3.4], the
proof in [GvMPS16] instantly implies Lemma 5.2.

5.2 A priori bounds on νn

First we state the counterpart of Lemma 5.1(i) in the discrete setting. Since Dirac-delta
measures are included in H−1(R), we obtain

An ⊂ H−1(R) = X ′1,0. (35)

While An ⊂ A, it is pointless to consider F on An, because F (νn) =∞ for each νn ∈ An
due to the discreteness and the singularity of V at 0. This is the crucial difference with the
continuous setting in [GvMPS16] in which Fn is a small perturbation of F |An .

To deal with the discreteness, we construct a careful regularization of V . With this aim,
let λ, δ > 0 be as in Assumption 3.2(iii). For β ∈ (0, δ) we define the regularization

V β(x) =

V (β) + (x− β)V ′(β) +
λ

2
(x− β)2 if 0 ≤ x < β

V (x) if x ≥ β,
(36)

14



and consider the even extension of V β to R. Figure 4 illustrates V β. Note that on (0, β), V β

is a parabola which is tangent to V at x = β. We also set

W β := V − V β.

Lemma 5.3 lists several properties of V β,W β.

x0 β

V β(x)

Wβ(x)

V (x)

Figure 4: Sketch of V β. The first two terms in (36) for x < β describe the tangent line (red)
of V at x = β.

Lemma 5.3 (Properties of V β,W β). There exist constants C, c > 0 such that for all β small
enough

(i) (Pointwise bounds). 0 ≤ V β ≤ V and 0 ≤W β ≤ V ;

(ii) (Convexity). V β and W β are convex and non-increasing on (0,∞). Moreover, V β

satisfies Assumption 3.2(iii) with the same constants λ, δ;

(iii) (Narrow support). suppW β ⊂ [−β, β];

(iv) (Fourier transform). vβ := FV β is real-valued and even, and satisfies

‖vβ‖∞ ≤ ‖v‖∞ and vβ(ω) ≥ cmin{1, |ω|−2} > 0 for all ω ∈ R.

(v) (L1, L∞ bounds). ‖V β‖∞ = V β(0) ≤ Cβ−a and ‖W β‖1 =
∫
RW

β ≤ Cβ1−a.

Proof. Properties (i), (ii), (iii) and the fact that vβ is real-valued and even hold by construc-
tion. From these properties, we observe that the proof of Lemma 3.3 also applies to vβ; this
proves the lower bound in (iv). The upper bound follows simply from ‖vβ‖∞ = ‖V β‖1 and
(i). The bound on W β in (v) follows from (iii) through∫

R
W β =

∫ β

−β
W β ≤

∫ β

−β
V ≤ C

∫ β

−β
|x|−a dx = C ′β1−a.

15



To prove the bound on V β(0) in (v), we observe from (36) that

V β(0) = V (β)− βV ′(β) +
λ

2
β2 ≤ Cβ−a + β|V ′(β)|.

By the Mean Value Theorem and the fact that |V ′| is non-increasing, we get

|V ′(β)| ≤ V (β/2)− V (β)

β/2
≤ 2

Cβ−a − 0

β
= 2Cβ−1−a.

This completes the proof of Lemma 5.3.

Lemma 5.3(iv) allows us to define, similarly to V , the convolutional square root operator

T β : L2(R)→ L2(R), T βf := F−1(
√
vβ f̂),

where vβ = FV β. As in (29), it is easy to see (in Fourier space) that V β ∗ f = T βT βf and∫
R

(V β ∗ f)f = ‖T βf‖22. (37)

Lemma 5.4 states further properties of T β.

Lemma 5.4. The operator T β defined above satisfies

(i) For each k ∈ N and all β small enough, T β ∈ L(Xk,0) is symmetric, and can be extended
to T β ∈ L(X ′k,0) as in Lemma 5.1;

(ii) lim sup
β→0

‖T β‖L(Xk,0) <∞ for each k ∈ N;

(iii) For all β small enough, each n ≥ 1 and all νn ∈ An, there holds T βνn ∈ L2(R),

V β ∗ νn = T βT βνn and

∫
Ω

(V β ∗ νn) dνn = ‖T βνn‖22;

(iv) There exists β0 > 0 such that for all Schwarz functions f ∈ S(R) there exists Cf > 0
such that for all β ∈ (0, β0)

‖(T − T β)f‖X1,2 ≤ Cfβ1−a.

Proof. Since
√
vβ = (FV β)1/2 is even and bounded, (i) and (ii) follow from the same argument

used in the proof of [GvMPS16, Lem. A.2(ii)]. In particular,

‖T β‖L(Xk,0) ≤ C‖
√
vβ‖∞,

for which Lemma 5.3(iv) provides a sufficient bound.
Next we proof (iii). It is clear that V β ∗ νn = T βT βνn holds in distributional sense. Note

that (37) defines a seminorm, which can be extended to distributions similarly to (27). Using
this and applying (i), we write

∞ >

∫
Ω

(V β ∗ νn) dνn = sup
ϕ∈X1,0

(
2〈V β ∗ ϕ, νn〉 −

∫
Ω

(V β ∗ ϕ) dϕ

)
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= sup
ϕ∈X1,0

(
2〈T βT βϕ, νn〉 − ‖T βϕ‖22

)
= sup

ψ∈TβX1,0

(
2〈ψ, T βνn〉 − ‖ψ‖22

)
,

where T βX1,0 := {T βf | f ∈ X1,0}. We claim that T βX1,0 is dense in X1,0. From this claim,
(iii) follows by applying (27). To prove the claim, we note that, by translating it to Fourier
space, it is equivalent to the claim that {√vβf | f ∈ X0,1} is dense in X0,1. This is easily seen
to be true; for f ∈ X0,1, set fk := f |(−k,k) and note from the lower bound in Lemma 5.3(iv)
that fk/

√
vβ ∈ X0,1 for all k ∈ N.

Finally we prove (iv). Note that

‖(T − T β)f‖X1,2 ≤ C
∥∥F((T − T β)f

)∥∥
X2,1

. (38)

Recalling v = FV , we set wβ := FW β = v − vβ and compute

F
(
(T − T β)f

)
= (
√
v −√vβ)f̂ =

wβ√
v +
√
vβ
f̂ =: wβuβ f̂ ,

where uβ = (
√
v +
√
vβ)−1/2. We observe from Lemma 5.3(i),(iii) that for any j ∈ N

‖w(j)
β ‖∞ = (2π)j‖F(xjW β)‖∞ = (2π)j

∫
R
|x|jW β(x) dx ≤ Cj

∫ β

0
xj−a dx = C ′jβ

j+1−a.

This will eventually result in the prefactor in (iv).
Next we bound uβ. We recall from Assumption 3.2(v) that

√
v, (
√
v)′, (
√
v)′′ ∈ L∞(R)

and from Lemmas 3.3 and 5.3(iv) that

min
{√

v,
√
vβ
}
≥ cmin

{
1,

1

|ω|
}
.

Here and henceforth, we often abuse notation by removing the variable ω from the notation
for functions in Fourier space. Then,

uβ =
1√

v +
√
vβ
≤ C(1 + |ω|) =: Cω1,

where C is independent of β and

ωk := (1 + |ω|k) for all k ∈ N.

Using this, we obtain for the X0,1-part of the norm in (38) that∥∥F((T − T β)f
)∥∥
X0,1

=
∥∥wβuβ f̂∥∥X0,1

≤
∥∥ω1wβuβ f̂

∥∥
2
≤ Cβ1−a‖ω2f̂‖2 = Cfβ

1−a.

For the H1-part of the norm, we compute

u′β =
−1

(
√
v +
√
vβ)2

(
(
√
v)′ +

v′β
2
√
vβ

)
= −u2

β

(
(
√
v)′ +

v′ − w′β
2
√
vβ

)
. (39)
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Writing v′ = 2
√
v(
√
v)′ ∈ L∞(R), all terms in the expression for u′β can be bounded from the

estimates above. This yields

|u′β| ≤ Cω2
(
C ′ + (C ′′ + β2−a)ω1

)
≤ C ′′′ω3.

Hence, ∥∥(F((T − T β)f
))′∥∥

2
≤
∥∥w′βuβ f̂∥∥2

+
∥∥wβu′β f̂∥∥2

+
∥∥wβuβ(f̂)′

∥∥
2

≤ Cβ1−a
(
β
∥∥ω1f̂

∥∥
2

+
∥∥ω3f̂

∥∥
2

+
∥∥ω1(f̂)′

∥∥
2

)
≤ Cfβ1−a.

Finally we bound the H2-part of the norm. By the estimates obtained so far,∥∥(F((T − T β)f
))′′∥∥

2
≤
∥∥wβ(uβ f̂)′′

∥∥
2

+ 2
∥∥w′β(uβ f̂)′

∥∥
2

+
∥∥w′′βuβ f̂∥∥2

≤ Cβ1−a∥∥(uβ f̂)′′
∥∥

2
+ Cfβ

2−a. (40)

In preparation for estimating the second derivative, we compute (using the expression in (39))

u′′β = −2uβu
′
β

(
(
√
v)′ +

v′ − w′β
2
√
vβ

)
− u2

β

(
(
√
v)′′ +

v′′ − w′′β
2
√
vβ
−

(v′ − w′β)2

4v
3/2
β

)
.

Then, rewriting
v′′ = ((

√
v)2)′′ = 2

√
v(
√
v)′′ + 2((

√
v)′)2 ∈ L∞(R),

we estimate all terms in the expression for u′′β by the bounds obtained above. This yields

|u′′β| ≤ Cω1ω3(1 + ω1) + C ′ω2(1 + ω1 + ω3) ≤ C ′′ω5.

Returning to (40), we obtain∥∥(uβ f̂)′′
∥∥

2
≤
∥∥u′′β f̂∥∥2

+ 2
∥∥u′β(f̂)′

∥∥
2

+
∥∥uβ(f̂)′′

∥∥
2

≤ C
(∥∥ω5f̂

∥∥
2

+
∥∥ω3(f̂)′

∥∥
2

+
∥∥ω1(f̂)′′

∥∥
2

)
≤ Cf .

Plugging this estimate into (40) completes the proof of (iv).

This completes the preliminaries on the regularization V β. Next we apply them to con-
struct tools for the proof of Theorem 1.1. The first of these tools is a crucial estimate in the
proof of compactness. It is the discrete counterpart of [GvMPS16, Lem. 3.3].

Lemma 5.5. There exists a constant C > 0 such that for all β > 0 small enough and all
n ≥ 1

sup
x≥0

ν+
n ([x, x+ 1]) +

∫ 0

−∞
V ∗ νn ≤ C(‖T βνn‖L2(R) + 1).

Proof. The proof is a modification of the proof of [GvMPS16, Lem. 3.3]. Let x ≥ 0 be
arbitrary. Using that V β ≥ 0 is non-increasing on [0,∞), we obtain∫ x+1

x
V β ∗ ν+

n =

∫
Ω

∫ x+1

x
V β(y − z) dydν+

n (z) ≥
∫

[x,x+1]

∫ x+1

x
V β(y − z) dydν+

n (z)
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≥
∫

[x,x+1]

(∫ 1

0
V β(y) dy

)
dν+
n (z) =

(∫ 1

0
V β

)
ν+
n ([x, x+ 1]).

Taking β small enough such that
∫ 1

0 V
β ≥ 1

2

∫ 1
0 V > 0, Lemma 5.4(iii) implies

ν+
n ([x, x+ 1]) ≤ 2∫ 1

0 V

∫ x+1

x
V β ∗ ν+

n =
2∫ 1

0 V

∫ x+1

x
(T βT βνn) +

2∫ 1
0 V

∫ x+1

x
V β ∗ ν−n .

Then, applying the Cauchy-Schwarz Inequality and Lemma 5.4(ii)

ν+
n ([x, x+ 1]) ≤ C‖T βT βνn‖L2(R) + C

∫ x+1

x

∫ γn

0
V β(y − z)ρ̃∗(z) dzdy

≤ C ′‖T βνn‖L2(R) + C

(∫
R
V

)
‖ρ∗‖∞, (41)

which shows the desired estimate for the first term in the display in Lemma 5.5.

For the second term, we use that V ≥ 0 is non-increasing on (0,∞) together with (41) to
estimate ∫ 0

−∞
V ∗ νn ≤

∫ 0

−∞

∫
Ω
V (y − z)dν+

n (z)dy

≤
∫ 0

−∞

∞∑
k=0

V (y − k) ν+
n ([k, k + 1])dy

≤ C(‖T βνn‖L2(R) + 1)
∞∑
k=0

∫ ∞
k

V,

where the sum is finite due to Assumption 3.2(iv).

The local bound on ν+
n in Lemma 5.5 turns out useful when passing to the limit n→∞

in the second and third term in the expression for Fn in (24). This is made precise in the
following two lemmas.

Lemma 5.6. There exists C > 0 such that for all n ≥ 1 and all νn ∈ An∣∣∣∣ ∫
Ω
γn(Vγn − δ0) ∗ ρ∗ dσn

∣∣∣∣ ≤ C,
where σn = (γn)←νn and ρ∗ is defined in (21). If

sup
n≥1

sup
x≥0

ν+
n ([x, x+ 1]) <∞,

then ∫
Ω
γn(Vγn − δ0) ∗ ρ∗ dσn

n→∞−−−→ 0.

Proof. Let un := γn(Vγn − δ0) ∗ ρ∗. Since ρ∗ is Lipschitz continuous, we obtain
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‖un‖L∞(R) = sup
x∈R

∣∣∣∣ ∫
R
γn
(
ρ∗(x− y)− ρ∗(x)

)
V (γny)γn dy

∣∣∣∣
≤ L

∫
R
|γny|V (γny)γn dy = L

∫
R
|z|V (z) dz, (42)

which is bounded due to Assumption 3.2(iv). Hence,∣∣∣∣ ∫
Ω
un dσn

∣∣∣∣ ≤ ‖un‖∞|σn|(Ω) ≤ C(2 + n−1). (43)

To prove the convergence statement in Lemma 5.6, we improve the bound on un in (42).
Let ε > 0 be arbitrary. By (8) and (20) there exist finitely many points y1, . . . , y` such that
ρ′∗ is uniformly continuous on R\{y1, . . . , y`}. Let Ii := (yi−ε0, yi+ε0) where ε0 = ε

2` . Then,
for all x ∈ Oc := R \ O,

ρ∗(x− y)− ρ∗(x) = −ρ′∗(x)y + rx(y) for all y ∈ R,

where the bounded function y 7→ rx(y)/y vanishes as y → 0 uniformly in x ∈ Oc. Using this,
we estimate, similarly to (42),

‖un‖L∞(Oc) = sup
x∈Oc

∣∣∣∣ ∫
R
γn
(
ρ′∗(x)y + rx(y)

)
V (γny)γn dy

∣∣∣∣
≤ γn‖ρ′∗‖∞

∣∣∣∣ ∫
R
yVγn(y) dy

∣∣∣∣+ sup
x∈Oc

∫
{|z|<√γn}

∣∣∣rx(z/γn)

z/γn

∣∣∣|z|V (z) dz

+ sup
x∈Oc

∫
{|z|>√γn}

∣∣∣rx(z/γn)

z/γn

∣∣∣|z|V (z) dz

≤ 0 +

(
sup
x∈Oc

sup
|z|<√γn

∣∣∣rx(z/γn)

z/γn

∣∣∣) ∫
R
|z|V (z) dz + C

∫
{|z|>√γn}

|z|V (z) dz

n→∞−−−→ 0.

Using this, we sharpen the bound in (43) by∣∣∣∣ ∫
Ω
un dσn

∣∣∣∣ ≤ ‖un‖L∞(R)|σn|(O) + ‖un‖L∞(Oc)|σn|(Ω).

The second term vanishes as n→∞. For the first term, we note that

|σn|(O) ≤ 1

γn

∑̀
i=1

|νn|(γnIi).

Covering each interval γnIi with dεγn/`e many intervals of length 1, we use the given bound
on ν+

n to continue this estimate by

1

γn

∑̀
i=1

|νn|(γnIi) ≤
1

γn

∑̀
i=1

C
(εγn
`

+ 1
)

= C ′ε.

In conclusion,

lim sup
n→∞

∣∣∣∣ ∫
Ω
un dσn

∣∣∣∣ ≤ Cε.
Since ε > 0 is arbitrary, Lemma 5.6 follows.
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Lemma 5.7. Let νn ∈ An be such that νn
v
⇀ ν ∈ A as n→∞. If

sup
n≥1

sup
x≥0

ν+
n ([x, x+ 1]) <∞,

then (recall g(x) =
∫∞
x V ) ∫ 0

−∞
(V ∗ νn)(x) dx

n→∞−−−→
∫

Ω
g dν.

Proof. We follow the proof in [GvMPS16] for the continuum setting and present it here in
more detail. Take a continuous cut-off function

ψM : [0,∞)→ [0, 1] with ψM (x) =

{
1 if x ≤M
0 if x ≥M + 1.

(44)

We recall from (25) that∫ 0

−∞
(V ∗ νn)(x) dx =

∫
Ω
g dνn =

∫
Ω
gψM dνn +

∫ ∞
M

g(1− ψM ) dνn, (45)

where M > 0 is an arbitrary constant. Since gψM ∈ Cc([0,∞)), we obtain from νn
v
⇀ ν that∫

Ω
gψM dνn

n→∞−−−→
∫

Ω
gψM dν.

For the second term in (45), we use (33) to estimate∣∣∣∣ ∫ ∞
M

g(1− ψM ) dνn

∣∣∣∣ ≤ ∫ ∞
M

g d|νn| ≤ εM sup
x≥0
|νn|([x, x+ 1]) ≤ CεM ,

where εM → 0 as M →∞. By a similar argument, it follows from ν ∈ A that∣∣∣∣ ∫ ∞
M

g(1− ψM ) dν

∣∣∣∣ ≤ CεM .
Tracing these observations back to (45), we conclude∫ 0

−∞
(V ∗ νn)(x) dx

n→∞−−−→
∫

Ω
gψM dν +

∫ ∞
M

g(1− ψM ) dν + CεM =

∫
Ω
g dν + CεM .

Since M is arbitrary, Lemma 5.7 follows.

6 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Theorem 1.1 consists of three statements:
compactness, the liminf inequality and the limsup inequality. We prove these three statements
respectively in Sections 6.1, 6.2 and 6.3 for the power-law case a > 0 (see Assumption 3.2(ii)).
In Section 6.4 we show that with minor modifications the proof for the logarithmic case a = 0
follows.
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6.1 Compactness

Let νn ∈ An be such that supn≥1 Fn(νn) < ∞. We start from the expression for Fn(νn) in
(24). Since the fourth and fifth term in (24) are nonnegative (recall (7)), we may neglect
them. By Lemma 5.6 the third term is uniformly bounded. Hence, it is sufficient to focus on
the first two terms in (24), which we label Fn(νn).

Recalling the regularization V β defined in (36), we expand

Fn(νn) =
1

2

∫∫
∆c

V (x− y) dνn(y)dνn(x)− ρ∗(0)

∫ 0

−∞
(V ∗ νn)

=
1

2

∫∫
∆c

(V − V β)(x− y) dνn(y)dνn(x) +
1

2

∫∫
R2

V β(x− y) dνn(y)dνn(x)

− n+ 1

2n2
γ2
nV

β(0)− ρ∗(0)

∫ 0

−∞
(V ∗ νn). (46)

For the second term, note from Lemma 5.4(iii) that∫∫
R2

V β(x− y) dνn(y)dνn(x) = ‖T βνn‖22.

The first and third terms in (46) can be bounded from below by small constants. Indeed,
using V β(0) ≤ C/βa, we bound the third term by

−n+ 1

2n2
γ2
nV

β(0) ≥ −Cγ
2
n

n
β−a.

For the first term in (46), we recall W β = V − V β and expand νn = µ̃n − ρ̃∗:

1

2

∫∫
∆c

W β(x− y) dνn(y)dνn(x)

=
1

2

∫∫
∆c

W β(x− y) dµ̃n(y)dµ̃n(x)−
∫

Ω
(W β ∗ ρ̃∗) dµ̃n +

1

2

∫
Ω

(W β ∗ ρ̃∗)ρ̃∗.

Since W β ≥ 0, the first and third term are nonnegative. Using
∫
RW

β ≤ Cβ1−a, we estimate
the second term by

−
∫

Ω
(W β ∗ ρ̃∗) dµ̃n ≥ −

∫
Ω

(∫
R
W β

)
‖ρ̃∗‖∞ dµ̃n ≥ −Cγnβ1−a.

Hence, the first and third term in (46) are bounded from below by

−Cβ−aγn
(
β +

γn
n

)
.

We choose β such that this quantity is maximal. Up to a constant, this yields

β = βn :=
γn
n
.

Then, by the assumption on γn in Theorem 1.1, we obtain

Cβ−an γn

(
βn +

γn
n

)
= 2Cγn

(γn
n

)1−a

︸ ︷︷ ︸
=:εn

n→∞−−−→ 0.
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Collecting these estimates, we obtain from (46) that

Fn(νn) ≥ 1

2
‖T βnνn‖22 − εn − ρ∗(0)

∫ 0

−∞
(V ∗ νn). (47)

For the fourth term in (47), we use a rougher estimate. By Lemma 5.5,

ρ∗(0)

∫ 0

−∞
(V ∗ νn) ≤ C(‖T βnνn‖2 + 1)

for all n large enough. Then, together with the first two terms in (47), we obtain

Fn(νn) ≥ 1

2
‖T βnνn‖22 − C ′. (48)

By (48), ‖T βnνn‖2 is bounded. This implies two useful properties. First,

T βnνn ⇀ φ

in L2(R) as n → ∞ along a subsequence (not relabelled) for some φ ∈ L2(R). Then, by
Lemma 5.5, supn≥1 |νn|([0,M ]) is bounded for any M > 0. Hence,

νn
v
⇀ ν ∈M(Ω)

along a further subsequence as n→∞.
It is left to show that ν ∈ A, i.e.

ν− ≤ ρ∗(0)L and sup
x≥0

ν+([x, x+ 1]) <∞. (49)

Since ρ̃∗(x) = ρ∗(x/γn) and ρ∗ is continuous, it follows that

ν−n = ρ̃∗
v
⇀ ρ∗(0)L

as n→∞. Then, together with νn
v
⇀ ν, we obtain

ν+
n = νn + ν−n

v
⇀ ν + ρ∗(0)L

as n → ∞. In particular, ν + ρ∗(0)L ≥ 0, which shows the first statement in (49). To prove
the second statement, we take x ≥ 0 arbitrary, and take a test function ϕ ∈ Cc(Ω) which
satisfies 0 ≤ ϕ ≤ 1 and

ϕ(y) =

{
1 if x ≤ y ≤ x+ 1
0 if y ≤ x− 1 or y ≥ x+ 2.

Then,

ν+([x, x+ 1]) ≤
∫ x+2

x−1
ϕdν+ =

∫ x+2

x−1
ϕdν +

∫ x+2

x−1
ϕdν−

≤ lim
n→∞

∫ x+2

x−1
ϕdνn + ρ∗(0)

∫ x+2

x−1
ϕ(x) dx

≤ lim sup
n→∞

( 2∑
k=0

|νn|([x+ k − 1, x+ k])

)
+ 3ρ∗(0),

which by Lemma 5.5 and (48) is bounded uniformly in x. This implies the second statement
in (49).
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6.2 Liminf inequality

To prove the liminf inequality in Theorem 1.1, let νn
v
⇀ ν be given. We may assume that

Fn(νn) is bounded along a subsequence in n (not relabelled), as otherwise the liminf inequality
is trivial. Then, as in the compactness proof, we obtain (48), which shows that (T βnνn)n is
bounded in L2(R). Then, Lemma 5.5 implies

sup
n≥1

sup
x≥0

ν+
n ([x, x+ 1]) ≤ C. (50)

Let Fn be as in (46). First, we observe that

lim inf
n→∞

Fn(νn) ≥ lim inf
n→∞

Fn(νn). (51)

Indeed, in the compactness proof we already showed that the fourth and fifth term in (24)
are nonnegative. By (50) and Lemma 5.6, the third term vanishes as n→∞.

Next we bound the right-hand side in (51) from below. As in the proof for the compactness,
we obtain (47). Together with Lemma 5.7 this yields

lim inf
n→∞

Fn(νn) ≥ 1

2
lim inf
n→∞

‖T βnνn‖22 − ρ∗(0)

∫
Ω
g dν.

In particular, T βnνn ⇀ φ in L2(R) as n → ∞ along a subsequence to some φ ∈ L2(R). It is
left to prove that φ = Tν. With this aim, let ϕ ∈ C∞c (R) be a test function. Using (35) and
Lemma 5.4(i) we obtain∫

R
ϕ(T βnνn) =

∫
Ω

(T βnϕ) dνn =

∫ M+1

0
(T βnϕ)ψM dνn +

∫ ∞
M

(T βnϕ)(1− ψM ) dνn, (52)

where ψM is the cut-off function introduced in (44), and M > 0 is an arbitrary constant. We
pass to the limit n→∞ in both terms separately.

For the first term in (52), we note from Lemma 5.4(iv) that (T βnϕ)ψM → (Tϕ)ψM in
C([0,M + 1]) as n→∞. Together with νn

v
⇀ ν this yields∫ M+1

0
(T βnϕ)ψM dνn

n→∞−−−→
∫ M+1

0
(Tϕ)ψM dν.

For the second term in (52), we set ψM := 1 − ψM and obtain from (34), Lemma 5.5,
‖T βnνn‖2 ≤ C and the triangle inequality that∣∣∣∣ ∫ ∞

M
(T βnϕ)ψM dνn

∣∣∣∣ ≤ C∥∥ψMT βnϕ∥∥X1,2
sup
x≥0
|νn|([x, x+ 1])

≤ C ′
(
‖ψM (T − T βn)ϕ‖X1,2 + ‖ψMTϕ‖X1,2

)
. (53)

For the second term, we set f := Tϕ and compute

‖fψM‖2X1,2
=

∫ ∞
M

(x4 + 1)f(x)2ψM (x)2 dx+

∫ ∞
M

(
fψM

)′
(x)2 dx

≤
∫ ∞
M

(x4 + 1)f(x)2 dx+ C‖ψM‖2W 1,∞(R)

∫ ∞
M

(
f(x)2 + f ′(x)2

)
dx.
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Since f ∈ X1,2, this value vanishes as M → ∞. For the first term in (53), we obtain from
Lemma 5.4(iv) that

‖ψM (T − T βn)ϕ‖X1,2 ≤ C‖ψM‖W 1,∞(R)‖(T − T βn)ϕ‖X1,2 ≤ C ′β1−a
n ,

which vanishes as n→∞ uniformly in M . In conclusion, by tracing these observations back
to (52), we obtain ∫

R
ϕ(T βnνn)

n→∞−−−→
∫ M+1

0
(Tϕ)ψM dν + cM , (54)

where cM → 0 as M →∞.
Next we pass to the limit M → ∞. Since also supx≥0 |ν|([x, x + 1]) is bounded, the

computation in (53) shows that∣∣∣∣ ∫ ∞
M

(Tϕ)ψM dν

∣∣∣∣ ≤ C‖(Tϕ)ψM‖X1,2

M→∞−−−−→ 0.

Hence, the right-hand side in (54) can be cast into∫ M+1

0
(Tϕ)ψM dν +

∫ ∞
M

(Tϕ)(1− ψM ) dν + o(1) =

∫
R

(Tϕ) dν + o(1)

as M →∞. Finally, by Lemma 5.1 we conclude that φ = Tν.

6.3 Limsup inequality

We first assume ρ∗(0) > 0 and treat the special case ρ∗(0) = 0 afterwards. Since F is the same
as in [GvMPS16] and only depends on U through the constant ρ∗(0), we may use the density
result in [GvMPS16]. This result states that it is sufficient to prove the limsup inequality only
for those ν ∈ A for which ν ∈ L2(R), supp ν ⊂ [0,M ] for some M > 0 and ν− ≤ ρ∗(0) − δ
on [0,M ] for some δ > 0. In particular, we treat ν as a density. Since F is continuous as a
functional on L2(R), we may further assume that ν ∈ C1(Ω).

We first treat the case
∫

Ω ν ≥ 0, and comment on the case
∫

Ω ν < 0 afterwards. To choose
νn ∈ An, we note from (17) that An can be parametrized by x ∈ Ωn through

νn =
γn
n

n∑
i=0

δxi − ρ̃∗, (55)

where we recall that ρ̃∗(x) = ρ∗(x/γn) depends on n. We choose xi such that∫ xi

xi−1

ν(x) + ρ̃∗(x) dx =
γn
n

for all i = 1, . . . , n. (56)

Note from
∫

Ω(ν+ ρ̃∗) = γn+
∫

Ω ν ≥ γn that such an x ∈ Ωn exists. By taking n large enough,
we may further assume that ν + ρ̃∗ ≥ 0 and that

xi ∈ supp ρ̃∗ for all i = 0, . . . , n. (57)

Next we prove several properties of νn and x. We observe from (56) that

xi − xi−1 ≥
γn

n
(
‖ν‖∞ + ‖ρ∗‖∞

) for all i = 1, . . . , n. (58)
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Hence,

sup
x≥0

ν+
n ([x, x+ 1]) = sup

x≥0

(
#{xi ∈ [x, x+ 1]}

)γn
n
≤ C. (59)

To prove
νn

v
⇀ ν as n→∞, (60)

we take a test function ϕ ∈ Cc(Ω) and set N := max suppϕ. Taking n large enough such that
ρ̃∗ ≥ δ

2 on [0, N + 1] and ν + ρ̃∗ ≥ δ
2 on [0,M ], we note from (56) that

xi − xi−1 ≤
2

δ

γn
n

for all i such that xi−1 < N, (61)

which vanishes as n→∞. Then, from∫
Ω
ϕd(νn − ν) =

∫ N

0
ϕdµ̃n −

∫ N

0
ϕ(ν + ρ̃∗)

=
∑

i :xi−1<N

∫ xi

xi−1

(
ϕ(xi−1)− ϕ(x)

)
(ν + ρ̃∗)(x) dx

≤ max
i :xi−1<N

(
max

x∈[xi−1,xi]

∣∣ϕ(xi−1)− ϕ(x)
∣∣) ∫ N

0
(ν + ρ̃∗)

we obtain by the continuity of ϕ that the right-hand side vanishes as n → ∞. This proves
(60).

Next we prove the limsup inequality in Theorem 1.1 for νn as constructed above. With
this aim, we treat all five terms of Fn in (24) separately. The latter four terms all converge
as n→∞. Indeed, the fifth term in (24) vanishes as n→∞. By (57) the fourth term equals
0. Due to (59), Lemma 5.6 implies that the third term vanishes as n→∞. Due to (59) and
(60), Lemma 5.7 guarantees the convergence of the second term.

Therefore, it is sufficient to prove the limsup inequality only for the first term in (24). We
first show that for all β > 0 small enough

lim sup
n→∞

∫∫
∆c

V (x− y) dνn(y)dνn(x) ≤
∫

Ω
(V β ∗ ν)dν + Cβ1−a. (62)

Let I be the smallest integer for which xI ≥M . Using that V is even, we expand∫∫
∆c

V (x− y) dνn(y)dνn(x)

=

∫∫
[0,xI ]2

V β(x− y) dνn(y)dνn(x)− (I + 1)
(γn
n

)2
V β(0) (63a)

+

∫∫
[0,xI ]2\∆

W β(x− y) dνn(y)dνn(x) (63b)

+ 2

∫
(xI ,xn]

∫
[0,xI ]

V (x− y) dνn(y)dνn(x) (63c)

+

∫∫
(xI ,xn]2\∆

V (x− y) dνn(y)dνn(x) (63d)

+ 2

∫
[0,xn]

∫
(xn,∞)

V (x− y) dνn(y)dνn(x) (63e)
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+

∫∫
(xn,∞)2\∆

V (x− y) dνn(y)dνn(x). (63f)

The second term in (63a) is negative; we simply bound it from above by 0. By (60) and
ν, ρ∗ ∈ L∞(R), we obtain that νn|[0,xI ]

v
⇀ ν|[0,M ] as n→∞. By [AFP00, Thm. 1.59] we then

also have that (νn⊗νn)|[0,xI ]2
v
⇀ (ν⊗ν)|[0,M ]2 as n→∞. Since V β is continuous, this implies

for the first term in (63a) that∫∫
[0,xI ]2

V β(x− y) dνn(y)dνn(x)
n→∞−−−→

∫∫
[0,M ]2

V β(x− y) dν(y)dν(x),

which equals the integral in the right-hand side of (62).
Next we bound (63b). Neglecting the negative cross terms, we estimate∫∫

[0,xI ]2\∆
W β(x− y) dνn(y)dνn(x)

≤
∫∫

[0,xI ]2\∆
W β(x− y) dν+

n (y)dν+
n (x) +

∫∫
[0,xI ]2

W β(x− y) dρ̃∗(y)dρ̃∗(x). (64)

For the second term, we recall from Lemma 5.3(v) that
∫
RW ≤ Cβ1−a. Since xI < M + 1

for n large enough, we obtain∫∫
[0,xI ]2

W β(x− y) dρ̃∗(y)dρ̃∗(x) ≤
∫ M+1

0

(∫
R
W β

)
‖ρ∗‖∞ dρ̃∗(x) ≤ C(M + 1)‖ρ∗‖2∞β1−a.

The first term in (64) is the discrete counterpart of the second term, and can be treated
similarly. Relying on (58) and I = O(n/γn), we bound it by

∫∫
[0,xI ]2\∆

W β(x− y) dν+
n (y)dν+

n (x) = 2
(γn
n

)2
I−1∑
i=0

I−i∑
k=1

W β(xi+k − xi)

≤ Cγn
n

I−1∑
i=0

∞∑
k=1

c
γn
n
W β

(
c
γn
n
k
)
≤ C ′

∫ ∞
0

W β = C ′′β1−a.

Hence, (63b) is bounded by Cβ1−a uniformly in n. In view of (62), it is therefore left to show
that the limsup of the remaining terms in (63) are nonpositive.

We start with (63d). Expanding νn = ν+
n − ρ̃∗ and using that V is even, we rewrite∫∫

(xI ,xn]2\∆
V (x− y) dνn(y)dνn(x)

= 2
γn
n

n∑
i=I+1

(
γn
n

i−1∑
j=I+1

V (xi − xj)−
i∑

j=I+1

∫ xj

xj−1

V (xi − x)ρ̃∗(x) dx

)

+ 2

n∑
i=I+1

∫ xi

xi−1

( i−1∑
j=I+1

∫ xj

xj−1

V (x− y)ρ̃∗(y) dy − γn
n

i−1∑
j=I+1

V (x− xj)
)
ρ̃∗(x) dx

+

n∑
i=I+1

∫ xi

xi−1

∫ xi

xi−1

V (x− y)ρ̃∗(y)ρ̃∗(x) dx
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=: T1 + T2 + T3. (65)

Using (56) and the fact that V is decreasing, we obtain for the integrals inside the parentheses
that ∫ xj

xj−1

V (xi − x)ρ̃∗(x) dx ≥ V (xi − xj−1)

∫ xj

xj−1

ρ̃∗(x) dx =
γn
n
V (xi − xj−1) (66)

and, similarly, ∫ xj

xj−1

V (x− y)ρ̃∗(y) dy ≤ γn
n
V (x− xj)

for all x ∈ (xi−1, xi). Hence, T1, T2 ≤ 0. For T3, we observe from V (x) ≤ C|x|−a and (56)
that∫ xi

xi−1

V (x− y)ρ̃∗(y)dy ≤ 2

∫ γn/(2n‖ρ∗‖∞)

0
V (z)‖ρ∗‖∞ dz

≤ C
∫ γn/(2n‖ρ∗‖∞)

0

1

za
dz = C ′

(γn
n

)1−a
. (67)

Hence, T3 ≤ C ′γ2−a
n /n1−a, which by the assumption on γn in Theorem 1.1 vanishes as n→∞.

In conclusion, the limsup of (63d) is nonpositive.
For (63f), we note that (xn,∞) is disjoint with supp ν+

n . Hence,∫∫
(xn,∞)2\∆

V (x− y) dνn(y)dνn(x) =

∫∫
(xn,∞)2

V (x− y)ρ̃∗(y)ρ̃∗(x) dydx. (68)

Then, since ∫ ∞
xn

ρ̃∗ =

∫
R
ρ̃∗ −

∫ xn

0
(ρ̃∗ + ν) +

∫ xn

0
ν =

∫
Ω
ν = C ≥ 0, (69)

we get
∫∞
xn/γn

ρ∗ = C/γn. Since ρ∗ is Lipschitz continuous, this implies that

‖ρ̃∗‖L∞(xn,∞) = ‖ρ∗‖L∞(xn/γn,∞) ≤ C ′/
√
γn.

Then, similarly to (67), we estimate the right-hand side of (68) as∫∫
(xn,∞)2

V (x− y)ρ̃∗(y)ρ̃∗(x) dydx ≤
∫ ∞
xn

(
2

∫ C
√
γn

0
V (z)

C ′√
γn

dz

)
ρ̃∗(x) dx ≤ C ′′

γ
3/2
n

‖V ‖1,

which vanishes as n→∞.
Next we treat (63c). We split νn = (νn − ν) + ν in the inner integral. For the first part,

we expand as in (65),∫
(xI ,xn]

∫
[0,xI ]

V (x− y) d(νn − ν)(y)dνn(x)

=
γn
n

n∑
i=I+1

(
γn
n

I∑
j=0

V (xi − xj)−
I∑
j=1

∫ xj

xj−1

V (xi − x)(ν + ρ̃∗)(x) dx

)

+
n∑

i=I+1

∫ xi

xi−1

( I∑
j=1

∫ xj

xj−1

V (x− y)(ν + ρ̃∗)(y) dy − γn
n

I∑
j=0

V (x− xj)
)
ρ̃∗(x) dx
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=: T4 + T5.

A similar argument as that in (66) yields T5 ≤ 0 and

T4 ≤
γn
n

n∑
i=I+1

γn
n
V (xi − xI).

Noting from (58) that

n∑
i=I+1

V (xi − xI) ≤
∞∑
k=1

V (ckγn/n) ≤ 1

c

n

γn

∫ ∞
0

V = C
n

γn
,

we obtain lim supn→∞ T4 ≤ 0.
The second part of (63c) equals (setting f := V ∗ ν ∈ Lip(Ω))∫

(xI ,xn]

∫
[0,xI ]

V (x−y)ν(y) dνn(x) =

∫
(xI ,xn]

f dνn =

n∑
i=I+1

∫ xi

xi−1

(
f(xi)−f(x)

)
ρ̃∗(x) dx. (70)

To estimate this in absolute value, we split the sum in two parts. Let J = dn/√γne and take
n large enough such that J − I − 1 ≥ cn/

√
γn (recall that I = O(n/γn)) and such that (61)

holds for all i ≤ J . Then,

J∑
i=I+1

∫ xi

xi−1

∣∣f(xi)− f(x)
∣∣ρ̃∗(x) dx ≤ C

J∑
i=I+1

∫ xi

xi−1

|xi − xi−1|ρ̃∗(x) dx

≤ C
J∑

i=I+1

(γn
n

)2
≤ C ′γ

3/2
n

n

n→∞−−−→ 0

and, recalling (58),

n∑
i=J+1

∫ xi

xi−1

∣∣f(xi)− f(x)
∣∣ρ̃∗(x) dx ≤

n∑
i=J+1

∫ xi

xi−1

2‖f‖L∞(xi−1,xi)ρ̃∗(x) dx

≤
n∑

i=J+1

2
γn
n
V (xi−1 − xI)

∫
Ω
|ν| ≤ C

n∑
i=J+1

c
γn
n
V
(
c
γn
n

(i− 1− I)
)

≤ C
∫ ∞
c(J−I−1)γn/n

V ≤ C
∫ ∞
c′
√
γn

V
n→∞−−−→ 0.

Hence, the limsup of the second part of (63c) is nonpositive. We conclude that the limsup of
(63c) is nonpositive.

Finally, for (63e), we observe that the inner integral∫
(xn,∞)

V (x− y) dνn(y) = −(V ∗ ρ̃∗|(xn,∞))(x)

is nonpositive and non-increasing on [0, xn]. Then, using a similar argument as for (63c)
(simplifications are possible), we conclude that the limsup of (63e) is nonpositive. This
completes the proof of (62).
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In conclusion, we have proved that

lim sup
n→∞

Fn(νn) ≤ 1

2

∫
Ω

(V β ∗ ν)dν + Cβ1−a − ρ∗(0)

∫
Ω
g dν

for all β > 0 small enough. Since ν ∈ L2(R) and V β → V in L1(R) as β → 0, we conclude
the limsup inequality in Theorem 1.1 by taking β → 0 and applying (29).

It is left to treat the cases ρ∗(0) = 0 and
∫

Ω ν < 0. Since ρ∗(0) = 0 implies ν ≥ 0, these
two cases are mutually exclusive. We start with the case ρ∗(0) = 0. We follow the proof for
the case ρ∗(0) > 0 with minor modifications. By density, instead of assuming ν− ≤ ρ∗(0)− δ,
we may assume that ν ≥ ψδ on Ω, where ψδ is a monotone cut-off functions which equals δ
on [0,M − δ] and 0 on [M,∞). Under this assumption, (61) does not hold for large i, and
thus we need to construct a different argument for (60) and for showing that the limsup of
(63c) is nonpositive.

To prove (60), we take a test function ϕ ∈ Cc(Ω) and set N := max suppϕ. From the
proof of (60) we observe that ν ≥ ψδ on Ω implies that

∫
[0,M ] ϕd(νn− ν)→ 0 as n→∞. For

the integral over [M,∞), we note from the Lipschitz continuity of ρ∗ and ρ∗(0) = 0 that∫ N

M
ρ̃∗ ≤

∫ N

0
ρ∗
( x
γn

)
dx ≤ C

∫ N

0

x

γn
dx ≤ C ′

γn

n→∞−−−→ 0.

Then, by (56), ∫
(M,N ]

dν+
n ≤

γn
n

+

∫ N

M
ρ̃∗

n→∞−−−→ 0.

Hence, ∫
(M,∞)

ϕd(νn − ν) =

∫
(M,N ]

ϕd(ν+
n − ρ̃∗) ≤ ‖ϕ‖∞

∫
(M,N ]

d(ν+
n + ρ̃∗)

n→∞−−−→ 0.

We conclude (60).
Next we show that the limsup of (63c) is nonpositive. We can follow the proof for the case

ρ∗(0) > 0 up to the term
∫

(xI ,xn] f dνn in (70). Since ρ∗(0) = 0 implies ν ≥ 0, we observe that

f = V ∗ν is nonnegative and non-increasing on (xI ,∞). Hence, by a similar argument as that
in (66), it follows that

∫
(xI ,xn] f dνn ≤ 0. This concludes the proof of the limsup inequality in

Theorem 1.1 in the case ρ∗(0) = 0.
It is left to prove the limsup inequality for the case

∫
Ω ν < 0. We largely follow the

proof for the case
∫

Ω ν ≥ 0, and focus on the modifications. For the choice of νn, we define
x0, . . . , xJ as in (56), where J is the smallest integer at which∫ ∞

xJ

ρ̃∗ ≤
γn
n
.

For i > J we set

xi = xJ + (i− J)
γ

3/2
n

n
, (71)

and take νn as in (55). Clearly, properties (58), (59) and (60) are still satisfied. To obtain
the discrete equivalent of (69), we compute

γn
n
J = ν+

n ([0, xJ)) =

∫
[0,xJ )

(ν + ρ̃∗) =

∫
Ω
ν +

∫
Ω
ρ̃∗ −

∫ ∞
xJ

ρ̃∗ ≥
∫

Ω
ν + γn −

γn
n
.
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Hence,

n− J ≤ 1 +
n

γn

∣∣∣∣ ∫
Ω
ν

∣∣∣∣. (72)

Finally, instead of (57), we now have

xi ∈ supp ρ̃i for all i = 0, . . . , J. (73)

Similarly to the previous case, we pass to the limit n → ∞ in all five terms in (24)
separately. By Lemmas 5.6 and 5.7 we obtain the same limit for the second, third and fifth
term. Using (73), the fourth term equals∫

(supp ρ̃∗)c

(
U(x/γn)− CU

)
dν+
n (x) ≤ γn

n

(
CU +

n∑
i=J+1

[
U(xi/γn)− CU

]+)
.

To bound the sum in the right-hand side, note from xJ ∈ supp ρ̃∗ that

n∑
i=J+1

[
U(xi/γn)− CU

]+ ≤ n∑
i=J+1

(
U(xi/γn)− U(xJ/γn)

)
.

Since by (72)
xi
γn
− xJ
γn

= (i− J)

√
γn

n
≤ 1√

γn

n→∞−−−→ 0,

it follows from U ∈ C1(R) that the summand vanishes as n→∞. Hence, the fourth term in
(24) also vanishes as n→∞.

We treat the first term in (24) similarly as in (62) and (63). The modifications to (63) are
as follows. First, we replace xn by xJ in all integration domains. Then, we replace in (63e)
and (63f) νn by −ρ̃∗ in the integrals over (xJ ,∞). Finally, we add two new terms (see (74)) to
account for xJ+1, . . . , xn. With these modifications, (63a)–(63f) can be treated analogously.
The two new terms that need to be added are

2
(γn
n

)2
n∑

i=J+1

i−1∑
j=J+1

V (xi − xj) + 2
γn
n

n∑
i=J+1

∫
[0,xJ ]

V (xi − y) dνn(y). (74)

Using (71) and (72) we estimate the first term by

(γn
n

)2
n∑

i=J+1

i−1∑
j=J+1

V (xi − xj) ≤
(γn
n

)2
n∑

i=J+1

n−J∑
k=1

V (kγ3/2
n /n) ≤ Cγn

n

n−J∑
k=1

V (kγ3/2
n /n).

For the second term in (74), we apply a similar argument as for (63c). This yields

γn
n

n∑
i=J+1

∫
[0,xJ ]

V (xi − y) d(νn − ν)(y) ≤ γn
n

n∑
i=J+1

V (xi − xJ) =
γn
n

n−J∑
k=1

V (kγ3/2
n /n)

and

γn
n

∣∣∣∣ n∑
i=J+1

∫
[0,xJ ]

V (xi − y)ν(y) dy

∣∣∣∣ ≤ CV (xJ+1 − xI)
∫

Ω
|ν| ≤ CV (cγn)

n→∞−−−→ 0.
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Hence, (74) is bounded from above by

C
γn
n

n−J∑
k=1

V (kγ3/2
n /n) ≤ C√

γn

∞∑
k=1

γ
3/2
n

n
V
(
k
γ

3/2
n

n

)
≤ C√

γn

∫ ∞
0

V
n→∞−−−→ 0.

This completes the proof of the limsup inequality in Theorem 1.1.

6.4 The case a = 0

Here we prove Theorem 1.1 for the case a = 0. The proof is the same as for the case 0 < a < 1,
except for minor computational modifications. All these modifications are ramifications from
the difference in the bound on V in Assumption 3.2(ii), which in the current case a = 0
produces logarithms. The ramifications in the preliminary estimates are the statement of
Lemma 5.3(v), which changes into

V β(0) ≤ C| log β| and

∫
R
W β ≤ Cβ| log β|, (75)

and the statement of Lemma 5.4(iv). By observing that
∫ β

0 xj | log x| dx ≤ Cβj+1| log β|, it
follows from the proof of Lemma 5.4(iv) that the corresponding statement becomes

‖(T − T β)f‖X1,2 ≤ Cfβ| log β|. (76)

In the compactness proof, by taking again βn = γn/n, we observe from (75) that the term
εn becomes

εn = C
γ2
n

n

∣∣∣ log
γn
n

∣∣∣.
Applying the asymptotic bound on γn in Theorem 1.1, we obtain

εn � C
1

log n
(log
√
n+ log

√
log n) ≤ C,

which is sufficient for continuing the argument in the proofs for the compactness and the
liminf inequality.

For the liminf inequality, we only need that (76) vanishes as β → 0, which is obvious. For
the limsup inequality, the bounds in (75) yield that (63b) is bounded by Cβ| log β|. Hence,
we may replace the term Cβ1−a in (62) by Cβ| log β|. Also, the bound in (67) changes by
(75) into ∫ xi

xi−1

V (x− y)ρ̃∗(y)dy ≤ C
∫ γn/(2n‖ρ∗‖∞)

0
| log z| dz = C ′

γn
n

∣∣∣ log
γn
n

∣∣∣.
From this estimate, we obtain for the term T3 in (65) that

T3 ≤ C
γ2
n

n

∣∣∣ log
γn
n

∣∣∣ = C ′εn
n→∞−−−→ 0,

which is sufficient for the proof of the limsup inequality.
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