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PERIODIC PERTURBATIONS OF A COMPOSITE WAVE OF TWO
VISCOUS SHOCKS FOR 1-D FULL COMPRESSIBLE NAVIER-STOKES
EQUATIONS

QIAN YUAN AND YUAN YUAN*

ABSTRACT. This paper is concerned with the asymptotic stability of a composite wave of two
viscous shocks under spatially periodic perturbations for the 1-D full compressible Navier-
Stokes equations. It is proved that as time increases, the solution approaches the background
composite wave with a shift for each shock, where the shifts can be uniquely determined if
both the periodic perturbations and strengths of two shocks are small. The key of the proof
is to construct a suitable ansatz such that the anti-derivative method works.
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1. INTRODUCTION

The one-dimensional full compressible Navier-Stokes (N-S) equations in the Lagrangian
coordinates read
00 — Oy = 0,
oy + 0pp(v, 0) ( ’””), reR,t>0, (1.1)

v

O + 0. (p(v, >u) - w3, (22) + i, (222),

where v(z,t) > 0 is the specific volume, u(x,t) € R is the velocity, 0(x,t) > 0 is the absolute
temperature, the pressure p(v, ) satisfies p(v,0) = T’ and the total energy is given by

&

E=e+ %uz, where the internal energy e is e = 7_}519 + const.

When = 0 and k = 0, (1.1) is the full compressible Euler equations. This hyperbolic
system has rich wave phenomena such as the shock, rarefaction wave, contact discontinuity
and their compositions, which are called Riemann solutions, satisfying the initial data

(@laﬁ'lvE_'l)a T < 07
(v,u, B)(x,0) =<7 7
(/UT7/U/T7E7’)7 T > 07
where v, > 0, 4, E’l,r > 0 are constants. This paper is concerned about a composite wave
of two shocks, i.e. there is an intermediate state (@m,ﬁm,Em) connecting the left state
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(ﬁl,ﬂl,El) by a 1-shock and the right state (@r,ﬂr,E,,) by a 3-shock. More precisely, by
denoting [-]; and [-]; as the jumps when crossing the 1-shock and 3-shock, respectively
(e.g. [v]; = Um — Uy and [v]; = U, — U, etc), these constants satisfy the Rankine-Hugoniot

conditions,
=s; [v], = [u]; =0,
—si[u], +[pl; =0,  fori=1,3, (1.2)
—s; [E]; + [pu]; = 0
and the Lax entropy conditions,

)\l(ﬁmagm) < 8§51 < )\1(171,9_5), /\3(’UT,Q ) < 83 < Ag(vm,ﬁ_m), (13)

yp(v,0)
v

where s; < 0 and s3 > 0 are the shock speeds of 1-shock and 3-shock, and A\ (v, 0) = —
and A3(v,0) = —A1(v,0) are the first and third eigenvalues of the full compressible Euler
equations, respectively.

For the compressible N-S equations (1.1), it is well known that if the initial data tends to
constant states at the far field, i.e.

(@l,ﬂl, El) as r — —o,

(v, o, Eo)(x) — { (1.4)

(@r,ar, ET) as r — +oo,

the large time behavior of the solution is governed by the viscous version of the corre-
sponding Riemann solution. The viscous version of an i-shock is a traveling wave solution
(v7,uf, EY) (x — s;t) to (1.1), satisfying

() ()~ () (@) = 0, |
s () (@) + (0 (05.09)) @) = (LY (), (15)
s () @)+ (0 (5.0%) ) @) = (L) (@) () ),

with 65 = IL[ES — 1 (uf)?], and

)

(vi,uf, EY) () — (v, w, E)  (resp. (Um, Um, En))  as z — —oo (resp. + o),
(v5,u3, ) (¥) = (U, U, En)  (vesp. (0,7, E,))  as z — —o0 (resp. + o).

In this paper, we are concerned with the stability of the composite wave of two viscous
shocks under periodic perturbations, i.e. we consider a Cauchy problem for (1.1) with the
initial data

(v,u, E)(x,0) = (v, uo, Fo)(x), xeR, (1.6)
satisfying
R (01, w, 1) + (o1, You, wor) () as T — —oo,
(vo, uo, Eo) () {(U'I"U’T7ET’) + (Goms Vor, 0, (2) as 1 > 4o, (1.7)

where the constants (v, 4y, Ey,) satisfy (1.2) and (1.3), and (@o;.0r, Yor,0r, Wor,0r) are periodic
functions with period 7, > 0 and have zero averages, i.e.

T,r
J (bo1,0rs Yor,0r Woror) (z)dx = 0. (1.8)

0

It is the most important feature of the nonlinear hyperbolic equations that no matter
how smooth and small the initial data is, the classical solution may blow up, that is, the
shock waves may appear in finite time. For the 1-d hyperbolic equations, many literatures
have shown that the shock waves possess strong structural stability under localized (e.g.
compactly supported) perturbations; see |14, 17]. For the Navier-Stokes equations, due to
the effect of viscosity, the perturbed shock wave time-asymptotically tends to its viscous
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version, a viscous shock, which is a smooth travelling wave solution to the compressible N-S
equations, connecting the shock states at the far field and travelling with the shock speed.
The first result about the stability of viscous shocks owns to I'lin-Oleinik [I4] for the 1-d
scalar viscous conservation laws, where the approach is based on a maximum principle for
the anti-derivative variables of the perturbations. For the systems, |24, 15, 5] used the energy
method to prove the stability of a single viscous shock provided that the shock-strength is
small and the initial perturbation carries no excessive mass. This zero-mass condition was
then successfully removed by Liu [18], Szepessy-Xin [26] and Liu-Zeng [20], by introducing
diffusion waves propagating along other families of characteristics and establishing their point-
wise estimates. If the shock-strength is arbitrarily large, [31, 22, 7] showed the nonlinear
stability if a spectral stability holds true, which was then verified by the works [13, 12 1]
for the Navier-Stokes equations, based on numeric analysis or high Mach numbers. Recently,
with the aid of the effective velocity, [6] successfully used the elementary energy method to
obtain the nonlinear stability of the large-amplitude viscous shock for the isentropic Navier-
Stokes equations. For a composite wave of two weak viscous shocks of the full compressible
N-S equations, Huang-Matsumura [9] utilized the energy method to achieve the nonlinear
stability under H'(R) n L'(R) perturbations. We also refer to [23, 19, 10, 30, 8] for the
stability results of other Riemann solutions such as rarefaction waves, contact discontinuities
and other composite waves, in which the initial perturbations are at least in the H'(RR) space.

On the other hand, the study of the periodic solutions to the hyperbolic conservation laws
is also important and interesting, where the solutions have infinite oscillations at the far field
and therefore, there are infinitely many wave interactions. Lax [16] was the first to show
algebraic decay rates of the periodic solutions to the 1-d scalar hyperbolic equations. Then
with the aid of the novel Glimm scheme, Glimm-Lax [!] proceeded to study some 1-d 2 x 2
hyperbolic systems, showing the global existence of the periodic solutions and the large time
behaviors; see also Dafermos [2]. However, for the compressible Euler equations, the global
existence of periodic solutions is still open until now. In fact, the difficulty is mainly due to
a resonant phenomenon proved by Majda-Rosales [21] for the periodic solutions to the full
compressible Euler equations, which never appears in the case for 2 x 2 hyperbolic systems.
We also refer to [3] for the asymptotic behavior of the periodic solutions to scalar convex
conservation laws in multiple dimensions, and [25] for a long time existence result of the
periodic solutions to the 1-d full compressible Euler equations, respectively.

The works of Lax and Glimm [16, 1] reveal the asymptotic stability of constants with
periodic perturbations for conservation laws. Recently, Z. Xin and the authors [28, 27, 29]
studied the stability of shocks and rarefaction waves with periodic perturbations for the 1-
d scalar conservation laws in both inviscid and viscous cases. It was shown that different
from the localized perturbations, there is a new phenomenon that the inviscid shock and
viscous shock have different kinds of shifts under periodic perturbations, where the latter one
depends on the fluxes, while the former one does not. Huang-Yuan [11] continued to study
the nonlinear stability of a single viscous shock for the isentropic compressible N-S equations,
in which the periodic perturbations satisfy a zero-mass type condition.

In this paper, we prove the nonlinear stability of a composite wave of two viscous shocks
under general periodic perturbations for the full compressible N-S equations. To deal with
the periodic perturbations which are not integrable on R, the key point is to construct a
suitable ansatz to carry the same oscillations as those of the solution at the far field and

make the anti-derivative method work. Motivated by [27, 1], the ansatz is constructed
through selecting appropriate shift functions (of time) for the 1-viscous shock and 3-viscous
shock, respectively, which is totally different from that in [24, 9]; see (2.12) for the details.

It is proved that if the periodic perturbations and the strengths of shocks are both suitably
small, the ansatz can be well constructed by using the implicit function theorem. With the
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desired ansatz, we can define the anti-derivative variables of the perturbations and use the
energy method to achieve the main result, Theorem 2.5.

The rest of the paper is organized as follows. In Section 2, we introduce some notations
and some useful lemmas, then present the construction of the ansatz and the main result. In
Section 3, we define the anti-derivative variables of the perturbations with their error terms,
then give the reformulated problem. Then the a priori estimates are shown in Section 4. The
proofs of Lemmas 2.3 and 3.1 about the shift curves and the error terms of the ansatz are
supplemented in the last Section 5.

2. ANSATZ AND MAIN RESULTS

2.1. Preliminaries. In the beginning, we introduce some notations and recall some basic
properties of viscous shocks and periodic solutions to (1.1).

First, since the system (1.1), the R-H conditions (1.2), and the entropy conditions (1.3)
are invariant under the Galilean transform, one can let u — ,,, 4; — Uy, 0, 4, — U, substitute
w, Uy, U, Uy, respectively, to assume without loss of generality that

Uy = 0. (2.1)
Assume that the initial data (1.6) satisfies

(vo — v% = Por, o — u” = Yor, By — B —woy)(x) € L' (=0,0), (2.2)
(UO — ’US — ¢0T7U0 — US — ¢07’7 E() — ES — wo,,)(x) € Ll(O, +OO) '
Notations. Let [|-[| := |[[| 2y and [|-||; := |[[| gu(g) for { = 1. Denote
€= Z [[0i, Yoi, Woill g3 (0,1
i=l,r
0
+ f (oo —v% = dat| + w0 — u® = Yoi| + | Eo — B — war| ) dae (2.3)
—00
+00
+f ("UO—US_QSOT“F’Uo—us_¢0r|+‘E0—Es—wor|)dl'7
0
and the wave strengths as
01 :=|Um — 0|, 03:=10, —¥y| and §:= min{dy,ds}. (2.4)
Then it follows from (1.2) that
coy < Wl\,w_m—?l‘ < Oy, (2.5)
053 < |7~_L'r| ) {Qr - em‘ < 0637

here and hereafter we let 0 < ¢ < 1 < C denote generic constants, independent of €, and ¢.
As in [9], we also assume

0 < max{d;,d3} < C6 as max{dy,ds} — 0, (2.6)
which means that the strengths of two shocks are comparable.

Lemma 2.1 ([15, 9]). Under the conditions (1.2) and (1.3), assume that v € (1,2] and
(2.6) holds with 6 > 0 being small. Then (1.5) admits a viscous shock wave (v, w}, EY)(x —

sit) satisfying (uf) < 0 for i = 1,3. Moreover, there exist constants co > 0 and C > 0,
independent of x and 6, such that

| (v7 (2) = O, 7 (2), 07 () — 0) | < CE1e % for 2 > 0,

’(U:f(m) — U, uj (z), 05 (z) — Om)| < Cosell for o < 0,
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(2 S )

d
I (v7 uf, 07) ()] < Co%e=%l forxeR, i=1,3.

When A and B represent either v, u, E or 6, it follows from (2.6) and Lemma 2.1 that
|05[ (A7 (z — s1t) — A,) (BS (x — s3t) — By || < 82?0kl | = 0,1, (2.7)

where ¢; = ¢omin{|s1|, s3}.
Now we give some properties of the periodic solutions to (1.1).

Lemma 2.2. Assume that (vo, ug, Eo)(z) € H*((0,7)) with k > 2 is periodic with period
7 > 0 and average (v,u, E). Then there exists g > 0 such that if

€1 = ||(?}07U0, EO) - (6’B7E <28)

)HHk((o,n)) S €o;

there exits a unique periodic solution
(v,u, B)(,t) € C(0, +o0; H*((0,)))

to (1.1) with the initial data (v,u, E)(x,0) = (vo, uo, Fo)(x), which has the average (v,u, E),
and satisfies
(v, 4, B) = (8,3, E) || o,y () < CEre7, £ 20, (2.9)

where the constants C' > 0 and o > 0 are independent of €1 and t.

The proof of Lemma 2.2 is based on standard energy method with the aid of Poincaré
inequality, which is left in the appendix for easing reading.

2.2. Ansatz. In this paper, the ansatz (v, 1, E) is constructed so that the anti-derivative
method is available, even though the initial perturbation in (1.7) is not integrable on R.
Motivated by [27, 11], it is plausible that the solution (v, u, F) of (1.1) and (1.7) tends to the
periodic solutions (v, u,, Ey,) of (1.1) as + — Foo for all ¢ > 0, which have the periodic
initial data

(Ui7 Uy, Ez) (377 0) (Uza uu Z) (QSO’LJ %27 sz) ( ) fOI‘ 1= l, r; (210)

see the existence of periodic solutions in Lemma 2.2. To use the energy method, the ansatz
is expected to carry the same oscillations as those of the solution to (1.1) with (1.7) at the
far field. Following the idea of [27, 11], we use the background viscous shocks to connect two
periodic solutions (v, u;,, Ey,), and also a proper linear diffusion wave to carry excessive
mass.

For i = 1,7, let ;(x,t) := 7—;%1 (El — %uf) t), and define the perturbations of the periodic
solutions as _
(Qszaw’wwl) (ZL’, ) ( Vi, Ui, )(.T,t) - (@ZaalaEZ) ) (2 11)
Gi(z,t) == 0i(z,t) — 0,
which satisfies that Sﬂ (s, s, wz) (x,t)dx = 0 for all t > 0; see Lemma 2.2.
For the viscous shocks (v, uf, EY) and (v§,u§, E3) , define
vl (x) — v uw(z) —u E?(z) — E
grla) = 0, g BT 2B
[v], g [E],
s - S S 3
vg () — U _ ug(7) E3(x) — En
g3(x) := == hs(z) == ————,
[v]; Uy [ET;

where the two equalities follow from (1.2) and (1.5). It is straightforward to check that
0 < gi(z),hi(z) < 1 and gi(z), hi(x) > 0 for i = 1, 3.

Now we are ready to construct the ansatz. Let X(t),Y(t), Z(t) be three C' curves on
[0,+o0) and o € R be a constant, all of which will be determined later.
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Set

Vi, t) == (e, ) [1 = 72(g1) (2, 1)) + O [72(90) (2, 1) = T34, (g5) (2, 1)]

+ 0 (2, 1) Ty o (93) (),
uH (1) == w(w, t) [1 = m5(g1) (2, )] + e (@, )75, (95) (2, 1), (2.12)
Ef(x,t) := By, t) [1 = 73(h)(x, 0)] + By [r5 () (2,1) — 75, (hs) (2, 1)]

+ En(2, )72 4 (hs) (@, 1),

and
—1 1 2
0 (2, 1) := ’YT[Eti -5 ()" (@, 1), (2.13)

where the two shift operators 7! and 73 are defined as
T (A)(z,t) = A(x — st — b(t)), i=1,3,

where s; is the speed of i-shock, and A = A(z) and b = b(t) are any measurable functions.
As in [18, 9|, for general perturbations of viscous shocks, one should consider a diffusion
wave propagating along the second family of characteristics ro = (1, 0, %)T. Let ne R be a
constant to be determined later.

Set the ansatz as

Gi=0f + 0, a:=u+ad,0, E:=FE+ p—ml@, (2.14)
/'y J—
where O(x,t) = meuaéﬂ) is a smooth diffusion wave, satisfying
2 : (v—1Dr
00 = adi0 with a=-—"—>0, O(z, t)dx = n. (2.15)
fYRvm R

Note that the ansatz (2.14) tends to the periodic solutions (v, u, E;,) as  — Foo for all
t = 0. For later use, let

ooy~ 1, 1 o Pmg a(y—1) a\&x@F "
g := 7 (E - 5 ) =46 +—R@ 7 ( 5 —i—u&w@), (2.16)
_ R S a(y —1) a|d,0|?
L B N S t
pi=— =1 == (V" = pn) - ( S tu aw@). (2.17)

The whole remaining part of this subsection is devoted to determining the parameters of
the ansatz, namely, the curves X (t), Y(t), Z(t) and numbers o,7, so that the anti-derivative
method is available (Lemma 2.4). Once they are determined, we can state the main result of
this paper, Theorem 2.5, which is placed in the next subsection.

By plugging the ansatz (vf, u*, E*) into (1.1) with direct calculations, one can arrive at

O — Opuf = 0, F1, +f12+X/f137
Opuf + O,p(vF, 0F) — (aszﬁ) = 0Oy F21 + foo + YV fos, (2.18)
OE* + 0, (p(v?, 6%) uﬁ) — K (Z8) — 0, (EBE) = 0,Fsy + faz + 2 fas,

where
Fip=u [ (91) — T}c(gl)] — Ur [7'331+a(93) - T»3c+a(93)] )
f1,2 = [Sl(vl - Um) + Ul] 7_)1((91) - [83(UT‘ - @m) + ur] Tg{-&-a(Qé)a (2'19)
Jiz3 = (v — @m)T)lc(gi) — (v — @m>7—§(+a(9é>’



COMPOSITE WAVE OF TWO VISCOUS SHOCKS UNDER PERIODIC PERTURBATIONS 7

(Fa1 = p(vh, 0%) — p(vr, 00) [1 = 9(01)] — p(vr, 0,)75,(93)
—nl 8 = (1= m(0) - S (9s)],

fao = [Sﬂbl p(u, 6;) + 1 Iul]ﬁl}(gi) (2.20)
—[s5u, — p(v,, 0;) + uaf,?]7§+a(gé),

\f23 = uﬂ'f;(gi) - urT§’,+U(g§)),

F3 1 = p(vF, ) )uf — (Ul, 0w [1 —75(h)] — p(oy, 0,)un72, o (hs)
R[azeﬁ alel —75(h1)) — aifrTzw(hi&)]

—p[ 5 ~ a (1= 73 () — 25273 ()]
fs2=[s1(EB,— E ) plug, O))uy + k&=L 91 + u“l&”“l] L(n))
_[53(E - FE m) — p(vr, 0, )u, + kb 4 pHECEE IuT]TZJra(h/)
faz = (B1 = En)T5(0)) — (B, - E )TZJro(h/)

It is noted that since (v, uf, E* 6%) tends to (vi,,u., B, 0) as  — Foo, one can verify

easily that each F;;(x,t) (i = 1,2,3) vanishes as |x| — oo for all ¢ > 0. To make the system
(2.18) as a conservative form, the curves X', ) and Z should satisfy

SR f172(£13, t)dl' yl(t) _ S]R fgyg ($, t)dl‘ S]R f372 ($, t)dl‘

S fus(z, t)de’ [, fas(z t)da’ Z'(t) = —m, (2.22)

where the denominators in (2.22) are away from zero if the initial periodic perturbations
(¢oi, Yoi, woi) (i =1,7) are small (see Lemma 2.2). The curves X', and Z can be uniquely
determined as long as the corresponding initial data Xy, Yy and Z; are given. More precisely,
it holds that

A

(2.21)

X'(t) = —

Lemma 2.3. Assume that (1.2) and (1.8) hold. Then there exists an €y > 0 such that if

Z ”¢0i7wOivaiHH%(oyﬂ-i)) <& <&y,
i=l,r
then given any constant triple (Xo, Vo, 20), there exists a unique solution (X,Y,Z)(t) €
C10, +0) to the system (2.22) with the initial data (X,Y, Z)(0) = (Xo, Vo, Z0), satisfying
that
(XY 21 ()] + (X, P, 2) () = (X, Vio, Z0)| < Cee™, 20,
where the constant o > 0 is independent of € and t. Moreover, the corresponding constant

locations X, Voo, Zo can be computed (in terms of the constants o, Xy, Vo, Zo and the periodic
solutions (2.10)) as follows,

1
Xoo:XO+, —
Vr — U

{ f [Doi(2) g1 (z — Xp) — dor(x)gs(x — Xy — 0)] dx (2.23)

[ ) (1 1l = 20) — 00 0) (1 = gslo — Ko = o))

0

f fdm S f J%r dyd:z:}

- Hl(Xﬂv

Voo = Mo +

ur_ul

{ J [Yoi(x)g1(x — Vo) — Yor(w)gs(x — Vo — 0)] dx (2.24)

- " [o@) (1= g1(x — D)) — vior (&) (1 = gale — Do — 0))] dx

0
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lrl r woz(y)dydx_J“o%fm [p(v1,6:) — p(1,0,)] dewdt
J f Yor(y dydac+f J p(vy,0,) — p(oy,0,)] dudt

+ —J log (v; + ¢o1) — log(vl)]d:c _£ [log (U + bor) — log(@r)]da:}

T Jo

= Hg(y0,0)7

and

_ { LD wor(2)ha (2 — ) — wor(2)hs(x — Zo — 0)] da (2.25)

— L B [woz(:r) (1 — h1(ZL‘ — Zo)) — ’LU()T»(ZL') (1 — hg(l’ — Zo — O'))] d.’L‘

1 uvi T 1 Ty xr
L f f woly)dyds — — j f wor (y)dydz
0

te1 0,0 wOptl _
f f oy lvl L (p(vr, 6w _p(@lael)ﬂl)]dl‘dt

+0
f 1 f 6 0 Muraxur — (p(ym Q,,,)ur — p(Q_JT, G_T)ﬂr)]dxdt},

v,
= Hg(ZQ, O').
Note that due to Lemma 2.2, all the integrals in (2.23) to (2.25) are bounded, thus X, Vo,

and Z,, are well-defined. Since the proof of Lemma 2.3 is similar to that in [27, 11], we place
it in the last Section 5 for easy reading.

Define the composite wave of 1- viscous shock and 3- viscous shock with the corresponding
shifts b = b(t) and d = d(t) as

Vi =T (1) = Tm + 73 (v5)

gy =7 (ur) + 74 (u5)

E§d>:=if(ﬁf)f%z+7ﬁ(ﬁg)v (2.26)
— 2

= 7 (05) — O + 72 (05) — ) (u) 72 (uf) .

For convenience, we omit the lower index (b, d) above when b = d = 0. Moreover, we denote
A ~ B when

1A = Bl oy < Cee™™ + Co2e7% >0 (2.27)
holds, and denote A ~ B as in [9], when the pointwise estimate
2
[A— B| < C(8% + || 63 ) emdt=etlal 4 C%e‘ T 05 + [pl)eeel (2.28)

holds. Thus, by Lemmas 2.2 and 2.3 and (2.7), the functions given in (2.12) satisfies
V(1) ~ v (1 — st — X)) + vy (x — S5t — X — ) — Ty = vam’Xwg)(x,t),
W, t) ~ uf (@ — 51t — Vo) +us (v — s3t — Vo — 0) = ufyoc,yww)(x, t),
E¥(x,t) ~ EY (x — 81t — Z) + By (v — 83t — 2o —0) — B, = Efzoo’zmw)(:c, t),
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Constraints from coinciding limits. From [9], it is plausible to require X, = YV, = 2,
denoted by &. Otherwise, neither

(v] (z — s1t — X)), uf (2 — s1t — Vo), B (x — 51t — 24))
nor
(05 (x — sst — Xy — 0),u5 (x — s5t — Vop — 0), B (x — 83t — 2,0 — 0))

is a traveling wave solution to (1.1). Thus, by Lemma 2.3, one has three constraints on the
five free variables &, o, Xy, Vo and Z; as

5 = H1<X0,0'> = Hg(y(),(f) = H3(20,0'>. (229)
Under the condition (2.29), it follows from Lemmas 2.1 and 2.3 that

4 S s s s
VE~Vx,xto) ~ VQyto) ~ Yz 240) T V(Etro)

4 s s s s
U~ Uy, x+o) ~ Yy yto) ~ U(zZ,2+0) ~ U(gtto)

for all t > 0 (2.30)
S S S S )
Eﬁ ~ E(X,X+U) ~ E(y,y+a) ~ E(Z,Z—i—a) ~ E(g,g+g)>

S S S S
O ~ v x10) ~ O yi0) ~ Oz.210) ~ Oecro)

Constraints from zero masses. From the equations (1.1), Lemma 3.1 and (2.15), one
can get that the perturbations v — v, u — @ and F — E carry zero masses for all £ > 0, as long
as their initial data satisfy

JR (v — ) (x,0)dx = 0, fR(u — @) (2,0)dx = 0, JR (E - E)(2,0)dz = 0. (2.31)

Then by direct calculations, the first identity in (2.31) gives that

r

n = .JR (vo(:v) — v¥(z, O)) dx
= JPR [UO($> — v — X)) —vf(x — Xy —0) + Uy

= @) (1 = g1(5 — X)) = dor ()gsl0 — Xo — 0)]da
_ J; [05(z) — v5(z — X)] da + JR [05(z) — v(z — X — 0)] da
+ JP_OOO (vo — % — ¢or) (x)da + EOO (vo — v% — ¢o,) (2)dzx
N w [b0(2)1(x — Xo) — dor()aa(x — Xy — 0)] da
[ w1 = 15 = 20) ) (1 sa(o — o~ )]

This, together with (2.23), yields that
0
N = (Uy — U)X + (0 — ) (Xo + 0) + J (vo — % — (bgl) (x)dx
—0

Jw(o—v ) @)+ (5 )6 - )

J J dou(y dyder—J J dor(y)dyda

= (0, =) {+ (0, — V) 0+ Cy, (2.32)
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where the constant C; denotes the sum of the four integrals, which is independent of the six
variables, Xy, Vo, 20, 0, and 7. By similar calculations, it follows from (2.24) and (2.25) that

0= JR (uo(z) — u¥(z,0)) dx = (@, — W) & + (U — Up) 0 + Co,

P fR (Eolz) — E*2,0)) dz = (B, — B) € + (B, — Bp) o + Cs,

+00

Co = foo (uo — u® — Yo ()dz + L (uo — u® — tho,) (x)dx
1 J ) J "oy dydz + f v % rl [p(01, 61) — plo, 61)] dedt

f J Yor(y)dydx —J er p(vr, 0,) — p(0,,6,)] dudt

- _J | [log (@l + ¢Ol) - log(@l)]dx + _J [log (@7" + gbOr) - 1Og<@r)]dl‘7
™ Jo T Jo

+00

Cy = foo (Eo — E° — wy) (z)dz + L (Eo — E® — wo,) (z)da

1 T rT 1 T T
- —J J wo(y)dydz + —f J wor (y)dydx
0

+00
J 1 J a el e _ (p(%@l)ul _p(@“él)al)](x,t)dxdt
i

+00 1 _
S L o 4 n (0, 0,0, — p(0,.0,)5, ) | (2. ot

T

both of which are mdependent of Xo, Vo, 20, 0,& and n.

(2.33)

(2.34)

Collecting (2.29) and (2.32) to (2.34), the six free variables Xy, My, 20, 0,& and n should

satisfy the following six equalities,

(¢ — Hi(Xo,0) =
€ — Hy(Vo,0) =0
§— Hs(20,0) =

(Ur — 0)& + (U — U)o — 1+ C1 =0,
(@, — )&+ (U — U)o+ Co = 0,
k(ET—E_Il)f—F (ET—E )U——??+Cg—0
By (2.3) and Lemma 2.2, the constants Cy,Cy and Cs satisfy
|Cl| + |C2| + |C3| < Ce

One can compute the Jacobian determinant of the system (2.35) as

[ 0, Hy 0 0 0, Hy —1 0
0 oy H, O 0, H, 1 0
0 0 aZOHg 0 - Hs —1 0
det | 0 0 o—0, U -7 -1
0 0 0 G-d mom 0
0 0 0 E B, E L —I

[[Uﬂ?) [v], + [U]]s —1
= Ox,Hy - Oy Hy - 0z,Hs - det | [u];  [ul, + [u]; 0
[[E]]g [[E]]l + HEH3 _mel

(2.35)

(2.36)

(2.37)
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Recall that r, = (1,0, %)T is a 2-eigenvector. And for weak i-shock, the vector ([v],, [u],, [E],)"
is close to be parallel to an i-eigenvector for ¢+ = 1, 3. Thus, when the wave strengths ¢; and
d3 are both small, the determinant of the 3 x 3 matrix in (2.37) is nonzero. On the other

hand, all the derivatives dxy, H1, 0y, H2 and 0z, H3 are non-zero, if

Z 16065 Yois Woill s (0.myyy < WD 00 = W], |G — @], |Er = Ea] }. (2.38)
i=l,r
In fact, it follows from (2.23) that
1
OxyHi =1— P J [bor () (z — Xp) — dor(2)g5(7 — Xy — 0)] da, (2.39)
r— Ul JR

which gives that
1
O H1 — 1] < m( b0l oo gy + 10l ooy ) -
The proof of 0y, Hy and 0z, H3 are similar. Therefore, with Lemma 2.2, we have the following
lemma.

Lemma 2.4. Assume that (1.2), (2.2) and (2.6) hold and (doior, Yorors wor0r) € H>((0, 7))
satisfy (1.8) and (2.38). Then there exist 6y > 0 and g9 > 0 such that if 6 < §y and € < &,
the system (2.35) admits a unique solution (Xy, Vo, Z0,0,&,m) € RS. Moreover, it holds that
In| < Ce.

In fact, it follows from the last three equalities of (2.35) with (2.6) that
|(6£760-7 77)| <C |(Cla627c3)| < 057
which finishes the proof of Lemma 2.4.

Thanks to Lemma 2.4, the desired ansatz (2.14) is well constructed. For convenience, we

denote
(‘/17 U17 Ela 61) (:C?t) = (vfaufa Eiga ef) (fﬂ — s1t — 5)7

2.40
(V3,Us, E3,03) (z,t) := (vg,ug,Egg,H?‘?) (x — st — & —0), (2.40)
and P, :=p(V;,0;) for i =1, 3.
2.3. Main result. By (2.2), we can well define
(q)Oa qJOa WO)<x) = J (UO(y) - {)(ya O)a Uo(’y) - ﬂ(y, 0)7 EO(y) - E(y7 0))dy (241)
—0
Assume that
(Do, Uy, W) € H*(R), (2.42)

then we are ready to present the main result.

Theorem 2.5. Assume that (1.2) and (1.3) hold, the strengths of two shocks satisfy (2.6),
and the periodic perturbations (doior Yorors Woror) € H*((0,7,)) satisfy (1.8) and (2.58).
Further assume that the initial data satisfies (2.2) and (2.42) and also 1 <y < 2. Then there
exist eg > 0 and 69 > 0 such that if

[(®g, Wo, W), +€ <eo and & < by,

where € and 0 are given in (2.3) and (2.4), respectively, then the problem (1.1) and (1.6)
admits a unique global solution (v,u,0) satisfying

(v—0,u—a,0—0) e C(0,+w; H'(R)), v—19eL*(0,+0; H'(R)),
(u—1,0—0) e L* (0, +o0; HA(R)) .
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Moreover, it holds that
H(v,u,&) — (V1 + V3 — 0, U1 + U3, 01 + O3 — ém)”m(na) —0 ast— +o0. (2.43)

Remark 2.6. It is noted that the zero average condition (1.8) is necessary for the stability
of the background wave. Otherwise, by adding the constant averages of these periodic per-
turbations onto the constants (;,u;, E;) for i = I, 7, the new states may generate other kinds
of Riemann solutions.

Remark 2.7. The ansatz (0, a, 5) is more complicated than that in [9]. Besides adding
periodic perturbations, we have to choose appropriate shift functions (of time) X', Y, Z for
each variable v, u and F, respectively, while the ansatz in [9] is a composite wave in which
each of the shock waves is shifted by a constant. Meanwhile, the definitions of C;(i = 1,2, 3)
shows that in contrast to the case of localized perturbations, besides the localized part of
the initial perturbation, the periodic oscillations at infinities generate another shift to the
background composite wave.

3. REFORMULATION OF THE PROBLEM

In this section, we reformulate the problem (1.1) and (1.6) into the one for the anti-
derivative variables of the perturbation (v — 0,u — 4, £ — E). From (2.14) and (2.18), the
ansatz (0, u, E) satisfies that

00 — 0,11 = 0,7,
Oyl + 0yp = 110, (%) + 0, Fy + 0, Ry, (3.1)
O + 0,(pi) = kO, (%0) + 1o, (222) + 0, Fy + 0, Ry,

where Fj,i = 1,2,3 are the anti-derivative variables of the source terms in (2.18), i.e

Fu(e,t) = Fraet) + | fualy, 0)dy + X'(0) f " faly )y,
Fole,t) = Fan(wnt) + | foaly, 0)dy + V() f " fasly Dy, (3.2)
F3(z,t) := F31(x,t) + [ fs2(y, t)dy + Z’(t)f f33(y, t)dy,

and the remainders R; and R are given by

Ri=ad® +p— pﬁ—u<a—u—%§>

(3.3)

]:222 5@+pu—pﬁuﬁ—/€<
v —1

TS )

Lemma 3.1. Under the assumptions of Theorem 2.5, the anti-derivative variables (3.2) exist
and satisfy that

[Pyl + || F, Fa||, < Cee™® + O5%2e70, (3.4)
where a > 0 and c¢; > 0 are the constants in Lemmas 2.3 and 2.1, respectively.

The proof is based on Lemmas 2.2 and 2.3, and we place it in Section 5 for brevity.
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Introduce
=Vi+V3—10,, +0,

= U, + Us + ad,©,

¢

¢

E2:E1+E3—Em+—
v

1= Lp Lo S RO
0 := I (E 5l ) and pi=—

We remark that (3.5) is exactly the ansatz constructed in [9], in which the initial perturbation
around the background composite wave is in the H*(R) space, i.e. the periodic perturbations
(0oi, Yoi, wo;) for i = [, r vanish. Comparing (3.5) with the ansatz (2.14), when A represents
either v, u, E, 0 or p, direct calculations yield that

A=A+¢ and FFA=0I0"A+¢, k=012, (3.6)

where and hereafter we use € to represent the error terms which satisfy the relation (2.27),
ie. €~ 0.

Lemma 3.2. Under the assumptions of Theorem 2.5, it holds that
Ri~0, 0,R;~0, i=12. (3.7)
Proof. From |9], when A and B represent either v, u, E, 0 or p, it holds that
(A7 (z — sit) — A,,) (BS (x — s3t) — By) ~ 0,
(AP(x —sit) — 4,,)0 ~ 0, i=1,3,
and
OF (A — A,)000 = 0% (A1 + A3 — A + € — 4,) 70 ~ €O ~ 0, k,j=0,1,2,-
where A; represents the terms given in (2.40). It follows from (2.17) that
~ S )

Ry~ —— (pﬁ—ﬁm)—i- —020 — —50r uf ~ 0.
v v
By (2.16), it holds that
5 0.6 0ot
Ry~ 8@+p(u—uﬁ) <g u_)
v — vt o ot
Wma@+pwa@—m%a@_o
Ruv,,
It is similar to prove the derivatives 096}?1 and Rg. O

Define the perturbations
p:=v—0, Yv:=u—1u w:=E—F and (:=0-0,

and the anti-derivatives
(Q%W%%U:J(mewﬁ@- (3.8)
—0

Let E(z,t) := 22 (W — @¥) (z,t). Then it holds that

g:@a—iig(;@wﬁ—amw) (3.9)
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From (1.1), (2.41) and (3.1), we arrive at the reformulated problem

atq)—a\lf— F17
o — (2 - “6”“)6¢+Rax:+”lauqf—“a2xp+J1 F— Ry,

3.10
L OZ+ (p— 128) 0,0 + 0¥ — "0, (0,a0) + 00,0 (3.10)
= gaﬁ:—FJQ—Fg—FUFQ R2+UR1,
with the initial data
(@, U, Z)(x,0) = (o, ¥o, Zg)(z) € H*(R), (3.11)
where Zg 1= 11 (Wy(z) — @(x,0)¥o(z)) and .J; and .J, are higher order terms given by
71 o, Moo - 2 - D R
= — (0, ¥ — ¢)* — —0;00, P — (p— ~0,P — —
Jp 5% (0,¥)° + 2 0, 1(0,P)? w& O (p—p+ 6@ z ¢)
v—1 2, M o5 - 2 6 ® =
= v — d)? :

oou 0, - axcpaxe—é
Jy = (j— p)@‘l’—i—u( g vu>8qf—%@m\ﬂ@§\ﬂ—ﬁ#.

Theorem 3.3. Under the assumptions of Theorem 2.5, there exist 09 > 0 and g > 0 such
that if 6 < d¢ and

1(®o, Wo, Wo)ll, + & < 2,
the problem (3.10) and (3.11) admits a unique global solution (®,V,Z), satisfying
(®,9,5) e C (0,+0; H*(R)), ,® € L*(0,+0; H'(R)),
(0,9, 0,E) € L* (0, +00; H*(R)) .
Proof of Theorem 2.5. If Theorem 3.3 holds true, with the fact that

(0,1,0) — (V1+V3—77m7U1+U3,@1+@3—

. H < Cee, (3.13)
Lo (®)

it is standard (see |9]) to verify (2.43). Thus, it remains to prove Theorem 3.3 to complete
the proof of Theorem 2.5. U

4. A PRIORI ESTIMATES

Based on the standard local-existence theory, one can finish the proof of Theorem 3.3 if
the following a priori estimate, Proposition 4.1, holds true.
For T' > 0, denote

V.= sup ||(¢)’\I[75>(t)||2 (41)

te[0,T]

Proposition 4.1 (A priori estimates). Under the assumptions of Theorem 3.3, there exist
positive constants 0y, 9 and vy, independent of T, such that if § < 6y, < g9 and v < vy, then

T
sup ||, 0,52 + f (0.8 + [, ¥, 6,52 )t

te[0,T7]

f f (0.U1] + 12,Us]) (V2 + =2) dadt < O [0, To, Wol2 + = +6%).  (4.2)

By (4.1) and the Sobolev inequality, if 0, and v are small, one has that

sup |[|(p, u, 0)|| oo gy < C,
te[0,T7]
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and

. ._ . v . 5 .
inf o> —, inf ©v>-2, inf 6> inf 6>-"2.
zeR,t>0 2 zeR,t[0,T] 4 zeR,t=0 2 zeR,te[0,T] 4

&

Moreover, the higher-order terms J; and .J; in (3.12) satisfy
1] < C (0.9 + 0,@ + |020] |0,®] + |0,Z1* + | 0u11] []7) |

4.3
[ Jo| < C (10.@17 + 09 + |02 + |0, [O]* + [0, 9] |02 + [0,¢] |0,2]) , 3
and it holds that
i - 0
inf (;a— "a“) > cinfd — CF — Ce = 2 <,
z,t v x,t 4 (4 4)
: 0 0,1 0 '
, ﬁ_ué‘mU) O (u_uxU> O
1£1tf <p i > 1 and glf P 5 = 1

For later use, we denote

P <ﬁ_ u(?xfb)17 It <pti B /M?xuﬁ>1’ 7. (ﬁ_ u@ra)l_
v

v v

The proof of Proposition 4.1 consists of the following series of lemmas.

Lemma 4.2. Under the assumptions of Proposition 4.1, there exist 69 > 0,69 > 0 and vy > 0
such that if 0 < dg,e < €9 and v < vy, then

T T
sup ||®, W, Z|* + J 16,9, 6,2 dt + J f (10.U1| + |0.Us|) (9% + =) dadt
0 o Jr

te[0,T]

T
< c{ @0, Wo, Wol|* + & + 67 + (v + 5%) f |0.®, 0,¢, 20| dt}. (4.5)
0
Proof. With direct calculations, (3.10); - ® + (3.10)y - 9LW + (3.10)3 - RL?Z gives that

4
ONy+ Y Ny =0u(-) = Fi® + (Jy — Fy — Ry)oLW
i=2 (4.6)
+ (JQ — F3 + /ZLFZ — RQ + &Rl)RPE,

where 0,(- -+ ) vanishes after integration on R and

N, = 1(qb2 + L2 + R—2E2:2)
1 9 v — 1 — )
- - - - 1 - -
Ny = b¥? + pd, LYo,V + puL(0,¥)*  with b= —§at(17L) + (v — 1) Lo, 1,
2 ] ~ (4.7)
Ny = - [0, 0=+ az(ﬁﬁ)aamz LBz
v—1 v v

T2

_ _ _ I
Ny = R(I%6i — 0, L) U= + "B6,01%0,02 1 n(y — 1)a,ave, (—5)
vv v

Now we estimate the terms in (4.6) one by one. First, similar to the proof of Lemma 3.2,
one can verify that

3t]5’~‘:§tpﬁzatﬁ+(’3%at(P1+P3—]5m)+€a

Maxa ~ ,uaa:uu ~ Naxa ~ :uaa:Ul :uaa:U3
at( k )Nat( - )Nat( . )+@~at( 7 )+@, (4.8)
L~Lf~Li+Ls+€ 0L~0L +0Ls+¢ 0,L~0.L +0,Ls+ ¢, (4.9)
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where L; := (P, — %)_1 = (b; — s?V;)~! with b; = p,, + s70,,, for i = 1, 3, and the coefficient

b in N, satisfies that

~ 1 1 o o
b~ —éét(vﬁLﬁ) + (v - 1)[}iagcuﬁ = —§6t(f)L) +(y—1)Lou+ €&

1%

2L %@(LM) +(y = DLid,Ui] + € = % 2 GO L (b = 2(y = L) + €.
i=1,3 =13

13

For easy reading, we first ignore the terms arising from the relation “ ~ 0” and postpone

their estimates at the end of the proof. Thus, it holds that
ZN—J > Z (ﬁm B Cai)il - HQEHLDC(R) = C— Cee™ — Cd%e*cl‘st’

i=1,3
Z) =c 2 |5$Uz| ((3 — V)ﬁm — C(Sl) — C’se‘at — 05%6_01&,
i=1,3
and p0, LV0, ¥ ~ 3 pus?L?0,V; 0,V + ¢Wo, V. Since |0,V;| < C'|0,U;| < C6;, then if ¢ and
i=1,3
0 are small, one can get that

T T T
J J Nodadt = cJ J (|0.U1| + |0.Us|) |¥|? dadt + cJ 16,9 dt

0 R 0 JR 0

— Cle+07) sup |9,
te[0,T]

(4.10)

By (4.9) and the fact that |0,0|° ~ 0, ¢,L; = s?L2s;0,V; = —s2L?|0,U;| for i = 1,3, it
holds that

———Lo,LZ? = c(|0.Uh| + |0:Us)) 2 = [| €]l por sy 2,

=| < (|00 +

o.L]) 12103

kR ~ _ — —_
< 2—6L2(6I:)2 + 6 (10,U1| + 10:Us]) 22 + || €70 ) E2.

Then if € and § are small, it holds that

T T )
ff]\@dxdt}cj (0,00 +10.U5)} .22 de — € (e +8%) sup 22, (411)
0 R

0 te[0,T]

By the facts that |0,0;] < C'|0,U;],i = 1,3 and &, 2 |0,0]* ~ 0, one can verify

P20y - 0,1 = 2[oi+ o,(5 - sl

<

1 1
< O (|0,U1] + |0:Us]) 2 + €68 |07 + | €]| ooy (B + 10,217 .
Thus, it holds that

T | T
J f |N4|dxdt<0(5+52)f |
0 R 0
2

—l—C’(e—i—(S%) sup ||[¥,Z|".
te[0,T7]

I >] = EQ(é’ng + éxﬁl) x EanFQ = @7

P RI?0,60,0% 0.0

Vv

1€l o ) 1022 2]

1 2
(10.U1] + |0uUs))? (9,5) , 0,®, 0,= ‘ dt

(4.12)

It follows from (4.3) that
‘aijqu‘ < O oy [ 1029 + 10,0 + 0,2 + |20
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+ (10:U1] + [0:Us| + [|€]] oo my ) 2], (4.13)
\Ri%z < CIE] poge [10:0 + [0, + |0,5 + |62’
+ (1001 + [0:Us| + [|€]| ooy ) ¥ + l10xCI1 | (4.14)

Then one has that
T
f f IRHS of (4.6)| dadt
0 R
T T )
OJ |y, P, F| H(D,\II,EHdtJrCuJ (lle. (@, w.2)+

2w ac]* + ||

(10:U1] + |0.Us)) \IIH )dt+C(5+6 ) sup [

te[0,T']

T
< C(e+02) + Ce+67) sup ||‘I’,‘1’,5||2+0Vf <||5x (2,9, 5))” +
0

te[0,T]
1|2 T 2
(.0l + l.0a) || Y + cuf 162w, a,¢|f dt. (4.15)
0
At last, we deal with all the error terms arising from the relation “~” that were postponed

in the previous estimates, denoted by R. Same as [9, Lemma 3.1], the integrals of them on
R x [0,T] can be bounded by

T
J f [R|(12]+ 191 + [E] + 10| + 29| + |0,Z]) dudt
0 JR

T
<[ 6+ e+ s e e fo.v.2 0.0 00 05 a
0 (1+1t)s

<Cv JT [(63 + [n]6)e " + L + (0 + |n|)e‘ct]dt
0 (1+1)i
< C(6% +|n]) < C(67 + ). (4.16)

Thus, collecting the estimates (4.10) to (4.12), (4.15) and (4.16), one can get (4.5) if £, and
v are small.

g

Lemma 4.3. Under the assumptions of Proposition 4.1, there exist small oy > 0,9 > 0 and
vp > 0 such that if 6 < dg,e < g9 and v < vy, then

T
sup (|\<I>H§+H\IJ,EH2)+J J(|axU1|+\angy)(\1ﬂ+52) dadt (4.17)
te[0,7] 0o JR

T T
+f ||¢,¢,6IE||2dt<C{ 1Doll} + 1 W0, WolI* + & + 62 + (1/+52)J Hamg,amy?dt}.
0 0

Proof. Taking 0,¥ = 0,® + Fy into (3.10),, and then multiplying the resulting equation by
0, P, one has that

a(5= 100 ) = o35 )W R A (4.18)

= (Eazz NP S-SR FQ)awqx
v

v (%
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Since 0,9V = 0,(0,PV) — 0,(0,PV) + |(7‘T\If|2 — F10,¥ and by the fact that if 6 > 0 and
€ > ( are small,

_ H 1 _ ]5 M(étﬁ_amﬂ) o i %
0t(21}) * onl, 20 + 252 > O C”awFlHLOO(R) > cl,, — Cle +62),

integrating (4.18) over R x [0, 7] yields that
f( |0, ®|? —(9<I>\Il)(dex+J J = |0, P dxdt
2 2 r 2
C(IRoll +19l?) +C | orw. 05| a
T T
+08 [ [ (0] +10.0] ) Wdadt + C [ €l oo 191
0 R 0

T s ) ) -
+ C’J <HR1H + [ [} + [1E2 )dt + CI/J 1]l 1.y dt- (4.19)
0 0

Similar to the proof of Lemma 4.2, we can use Lemmas 3.1 and 3.2 and (4.3) to estimate the
last three integrals on the RHS of (4.19) to get that

T T
sup 2,017 + [ 10,017 at < O s I+ 00l + 100l + | e, 2P
te[0,T 0

te[0,T]
T
+J J(|&xU1|+|6xU3|)\112d9:dt+52+52+f 2| ar).
0 R 0

This, together with Lemma 4.2, yields (4.17).
U

Lemma 4.4. Under the assumptions of Proposition 4.1, there exist small oy > 0,9 > 0 and
vp > 0 such that if 6 < dg,e < g9 and v < 1y, then

T
sup 6,1, +J 1.0, 0uClP dt < C([[ B0, Wo, Wol? + & +6%).  (4.20)
te

Proof. Subtracting (3.1)y from (1.1), gives that
xd] o ~ axa >
8t¢ u@ < ) = —6z <p —p+ /LE(ZS + F2 + Rl) . (421)

Multiplying % on (4.21) and integrating the resulting equation on R x [0,7] with the fact
that ||p — p|| < C'||(, ¢||, one has that

T T
sup [0l + | it < Clli € | . m
0

te[0,T
It follows from (3.9) that

2
dt. (4.22)

T T T L
f HCH2dt<CJ |\ax5,axqz\|2dt+cf | (2011 + 10,5 ) \DH dt
0 0 0

+C(e+67) sup |
te[0,T7]

Combining (4.22) and Lemma 4.3, if ¢, and  are small enough, one has that

T
sup [|¢]® + f lowwll? de
te[0,T] 0

T
< O'||®@o, Wol[7 + [Wo|* + C (v +62) f 10.¢|17 dt + C (e + 62). (4.23)
0
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Similarly, subtracting (3.1); from (1.1)3 gives that
0xC )

R 0.0 .
1(9t§ — KOy ( —(p = P)0stt — pOpth — 0y (Iiﬁ¢ + F5+ Rg)

y—
( ) — L+ = (2@ i+ 00) 0 + Op[U(Fy + Ra)| — ,0(Fy + Ry). (4.24)

Then multiplylng ( on (4.24) and integrating the resulting equation on R x [0, 7], one can
verify that
2

dt.

T T
sup [IC]I? + j l.Cl2 dt < C [I¢(, ) + C j Foo, By, By
0 0

te[0,T]

Then combining (4.23), Lemmas 3.1, 3.2 and 4.3 and the fact that ||¢(z,0)]|* < C ||[Wo, ¥ol|7,
one can obtain (4.20).

0

Lemma 4.5. Under the assumptions of Proposition 4.1, there exist small o9 > 0,69 > 0 and
vo > 0 such that if 6 < dp,e < &g and v < vy, then

sup 20,5 O + [ (1001 + 20 )t = 0, o, ol 4 + 1),
te|0
Proof. The proof is similar to that of Lemmas 4.3 and 4.4, so it is omitted here. U

Once Proposition 4.1 is proved, it remains to supplement the proof of Lemmas 2.3 and 3.1.

5. PROOF OF LEMMAS 2.3 AND 3.1

Proof of Lemma 2.3. When ¢ = >, b, Yoi, wOZ-HHg,((Om)) is small, with Lemma 2.2, the
existence, uniqueness and regularities of X', ), Z can be easily derived from the ODEs, (2.22).
Besides, the exponential decay rates of X, )’ and Z’ can follow from (1.2) and (2.9) directly.
Now we calculate the limits of these curves. For brevity, we give only the proof of X,
since the other two , (2.24) and (2.25), are similar to prove.
For any fixed y € [0, 1], > 0 and integer N > 0, define the domain

Qév(t) = {(x,7);0 <7 <t,TV(1) <z < TN (1)},
where IV (7) := 817+ X(7) + (=N +y)m, TN (1) := 537 + X(7) + 0 + (N + y)m,
Then integration by parts yields that

1
lim J Jf (8tvﬁ — (%uﬁ)dxdey =0,
N—+00 0
ON(t

which yields that

lim 1 { JFMO) v*(z,0)dz + Jt[(s;:, + XN + (TN (), 7)dr

N—+0o0 0 FZN(O) 0
TN (t) t
— J v*(z, t)da — f [(51 + &X")0* + u* (TN (1), )dr}d =0. (5.1)
') 0
For the integrals on 7 = 0 and 7 = ¢, it holds that

rN(0) N () 1
f v*(z,0)dx — f v (x, t)dr = Z I;,

N (0) N (t) i=1
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where

o
I
|
%
>
ﬂz ~—
l_iv
hsS
—~
—
|
ni
—
Na}

—
N—
N—

_l’_
sy

3
>
+
Q
—
Na)

w
=
—

K

~
SN—
jo ¥

L= | D) + 78 0f) - ol ),

One can verify that
Y (0)

N (0)
. f (1 — 4 (91) — o1 u0+a<g3>>]<x,o>]dx+fo bor (z)dz

0
¥ f = boirh (91) + dor 7, .o (g)]der + f duu(z)de

(o) Y (0)
which yields that

i, [ 1y = | " Lou(1 = 4 (91)) — dor(L — 7, 1. (90))] (@, 0))da

N—+00 0 0

| our o) + bt olen) 2, 0)dz (5.2

1 Xo+ymr 1 0
+ J f Gor(x)dxdy + f f do(x)dxdy.
0 Jo 0 JXo+ym

Since ¢g; and ¢q, have zero average, then

J J T gy = - fo J dor(x)dzdy,
L LWZ do(w)dwdy = _EL fo don()dady.

Similar calculations of I; with Lemma 2.2 yield that

1
lim J I3dy

N—+00 0

< Ce . (5.3)

In addition,
L+ Iy = =0, [07(0) = T (0)] + 0 [T7 () = T7 (1)]

(s3—s1)t+(N+y)mr+o —(s3—s1)t+(—=N+y)m—0o
- f v? (z)dx + f v3 (z)da.
( (

N+y)mr+o —N+y)m—o
Since vy (x) (resp. v5(x)) — ¥y, as ¥ — +00 (resp. —0), then one has that
rl
lim ([2 + [4)dy = —'l_}m(Sg — Sl)t. (54)
N—+w Jq

Since (v¥,uf) — (v, u,) as ¥ — +o0, the integral on I'Y in (5.1) satisfies that

1 rt

lim ) { .Jo [(s5 + X)0f + *](TN (1), T)dT}dy

N—+00
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f f s3 + XN, + u, (TN (1), 7)dydT

= (sst + X — X)v, + u,t. (5.5)
By similar calculations, the left integral on T')¥ satisfies that
1, ot
Nlim { J [(s1 + &X)0F +u* (TN (1), T)dT}dy = (s1t + X — Xp)u; + uyt. (5.6)
St )y Uy

Collecting (5.1), (5.2) and (5.4) to (5.6) gives that

[ 16wte) 0~ s = 20)) = 6 0) (1 st = X = )]

0

- J [Poi(x)g1(x — Xo) — dor(2)g3(x — Xy — 0)] dx

f J oo(x)dxdy + —f f Gor(x)dxdy — Uy (s3 — 1)t

+ 0, (83t + X — X)) + Ut — Ty(s1t + X — Xy) — wyt = O(ee™ ),

where O(e™2*!) denotes the terms satisfying |O(e™ )| < Cee 2*'. This, together with the
Rankine-Hugoniot conditions (1.2); for i = 1,3, yields (2.23) directly.
U

Proof of Lemma 3.1. Here we give only the proof of Fj, since the proofs of the other two are
similar.
First, it follows from the equation of Z’  (2.22), that

Fs(x,t) = F31(x,t) + Jx f32(y, t)dy + Z'(t) JI f33(y, t)dy, (5.7)
= Fyq(z,t) — fao(y, )y — Z'(t) | fa(y, t)dy. (5.8)

Case 1. For = < s3t, we decompose F3(z,t) according to (5.7) as follows.
Fy = p(vf, 0%)u* — p(vy, 0wy + p(0r, )z () — p(or, 0,)0,72 4 (hs)
(5366’ti 83;91) (u’j&cuti ulﬁacul)
vt v vt U

= (st [ELy + p(or, 0)ur) 72 (ha) = (s [Ely = p(or, 0r)1r) 7215 (hs) + D,

where the remainder D is the sum of products of some well-decaying terms, given by

D = Dirh(h) — Dar,, (hs) + f Dyrk(1,)dy — f Dars,, (H)dy.
— o —0

where
= 0\ axe u ﬁxu
Dy = p(”zﬁz)uz —p(vl,el)ul — K L _ L ! l7
U1 U1
) 3:1307’ T’}x -
Dy = p(vr, QT)UT — p(@h (gr)ar . H( B qu Oz U ’
Ur Uy

_ _ 0.0 U0y U _
D3 = Sl(El — El) — p(Ul, Hl)ul +p(@l, Gl)ﬂl + K Ull + % lvl l + Z’(El — Em),

_ —~ azer Ta:lt T n
Dy = s3(E, — E,.) — p(v, 0. )u, + p(0,, 0,)u, + K + uu 4 + Z'"(E, — Ep),

Uy (.
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each of which is periodic, and satisfies || D; 1.0 < Cee™2* Then it holds that

ZJ |§k x,t) ‘ dr < Ce’e 4atZJ ﬁk |ak7'z+a(h3)‘ ]dy
< 0626_4at[0 + (83 — Sl)t],
< C€2€_Zat.

With (1.5)3, one can further decompose (5.9) as follows,
F;—D = (p(vﬁ, Gﬁ)uti — p(vy, Ql)ul> — (p (vé&a), Qéfﬁ,)) ué,&a) — p(7y, él)ﬂl)

(@ eﬁ (7 0[ a 9 §+o- )
<uﬁ6 Lub ulé’ u U(SE,&U)%UE?HU))
K S
Yee, 5+0’)
+p(”< (ssw)“f&fw) ¢ (p(o7, 07 uy) — 781, (p(v3, 05)u3)
Oube ol sro) 200\ 4 0,65
—k ’U o US T§+U S
(§&+o ) 1 Us
Ul ££+o) ssw) 1 wour g (usdpus
A Te —U Tero\ ™ 5
(E &+o) 1 3
51 (e —72) (BY) + 83 (T8 — 7240) (E5)
7
- K, (5.10)
i=1

where K; represents each line on the right-hand side. Then we estimate K; to K; one by

one.
One can verify that

K, = Kl,l (Uti — Ul) + Kl,g(éu — 91) + p(vl, (9[) (uﬁ — ul)
— K3 (U?&,@ra) - 771) — K4 (‘9(35,5+g) - él) — p(v1,6)) (ufg,g.;.g) — ﬂl) .

where

1
Ky = uﬂf (Oup) (Ul + p(v*F — ), Hﬁ) dp,

0

1
Ky = uﬂf (Gop) (w1, 0, + p(6* — 6))) dp,

0

1

K3 = ué’§+g) Jo (avp) (?71 + P(U(Sg,ngg) - 771)7 Hé,ngg)) dp,

1
K4 = Ué,g+g) L (Oop) (?71, 0, + P(eé,gw) - 91)) dp,

By (2.30), one can verify that

Ujj — U = (@m — 17[)7'5(91) + (UT Um>7'§+g(gg) + Jl §£+U) 77[ + Jl, (511)
-1, _ _ _
m_@:l§4ﬂ@mg+ﬂﬁwmg—ﬂﬂ
71 _ _ _
— —(u2£+a + ul) ( — ung(gl) + ’U,rTngU(g;g)) + JQ (512)

2R
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9 g £+0' el + JQ,
_ 3 S _
ut — oy = —yTe (91) + UrTe 5 (g3) + J5 = Ul 10y — Ut + J3, (5.13)

where the remainders J; for i = 1,2, 3, are some terms which satisfy that

ZJ ‘akJ| de 2220t
k=0
Thus,
Ky = (Kip— Ki3) (Ué&a) - 171) + K11 + (K2 — Ki4) (9&7&0) - él)
+ K95 + p(vg, 0;)J5 + [p(vl, 0,) — p(u, O_Z)] (u‘é&g) - ﬂl) .
Note that K11 ~ K13, K12 ~ K;4 and p(v;, 0;) ~ p(2y,0;), then one has that

1 sat
> J 08Ky | de < e, (5.14)
k=0+—%®
Taking (5.12) into the formula of K, gives that
1 1 1 1 0T
e o agcel(_ﬁ - _) 4 (—ﬁ - S—)agc (610 — 1) + 52,
Using Lemma 2.2 and the fact that vf ~ Ué,@ro)’ one can get that
1 s3t 9
Z J ‘é’];KQ‘ dr < Ce?e 20t (5.15)
k=0+—%
Similarly, K3 satisfies that
_ 1 2 2 1 1
oK = J896[ (W) =] = (Ueero) + 7]+ agﬁul?(J —~ U_z>
2 /1 1
+ 0 (Ugeso)) (—— 5 )
U Vegio)

It follows from (5.13) that

(uti)2 —ul — (ué,gw))Q +al = Js(ut 4+ ) + (u‘é,@m) — ) (u* — “é,&a) +u— 1) .
Thus, it holds that

ZJ |08 K |” do < Ce?e20t, (5.16)
k=0
For K4, it holds that

Ko = [p (0 oo Ohcem) 2 (05 69)] 7 ()

K:l
+ Lp( s Oero) — Tero (P(Us’es))]wa (u5)
KIQ

where

1
Ky = L (Oup) ((1 - /0)7'51 (Uf) + PU(Sé,nga) 9(5 £+0)) dp ( (E+0) — 7'51 (Uiq))

+ L (op) (7 (v7), (1 = P)T¢ (OF) + P03 1)) dp (Ot 10y — T2 (67))
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S s S\ _ 5 S S S\_p —1 s
where v(&Ho)—Tg (v]) = T§’+a (v3 ) —2,, and 9(57&0)—751(91 ) = TE’M (93 ) —Hm—%Tg (ul) T£3+U (
Similarly, one can verify that

Kis = j (@p)(--)dp (72 (v5) — T)

0

| @) [ 6) = 0= Tt () s () ]

Then it follows from (2.7) that
. 2
Z f |8’;K4| dr < 054J e 2e18t=200lel gy < O§Be 20t (5.17)
k=0“R R

And K5 and Kj satisfy that

g1 (007 , o
nhe Ué,@m) [Tg( vy > (7210 (v3) = Tm)
0,05 i .
+ T£3+U< 53 ) (Tg(vf) — Um) + %ax (Tgl(uf)Tng(ug)) ]’
— 1 ax (us)Q )
—24 1K6 = = Ué,ﬁ""a) [Tgl< Ufl ) (T§+G(v§) _ Um)
O (u3)

2
+ T§’+U <v—s) (Tg(vf) - @m) — 20, (Tg(uf)Tnga(ug)) ]
3
Similar to (5.17), one can get from Lemma 2.1 and (2.7) that
. 2 2
3 f (1K + b ) o < Cate2 (5.18)
k=0“R
By Lemma 2.3, one can verify that
- 2
> f |OE K| do < CePe™, (5.19)
k=0R
Collecting (5.14) to (5.19) gives that

1 s3t
Z f ‘0’;F3‘2 dr < Ce?e 2 4 C§de 2%, (5.20)
k=0v—®

Case 2. If x > s3t, one can decompose F3 according to (5.8) and using similar arguments
as in the case 1 to obtain that

I r4o0
> f \a’;Fgf dr < Cg?e ™ 4 C§de 2%, (5.21)
k=0 s3t

We omit the proof in this case.
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APPENDIX A. PROOF OF LEMMA 2.2

Proof. For convenience, by using u — u to substitute u, one can assume that u = 0.
Denote the perturbation terms

o(z,t) =v(x,t) — v, P(x,t) = u(z,t) —u = u(x,t),
w(z,t) = E(x,t) — E, C(x,t) = O(x,t) — 0,

which satisfies

&t(ﬁ - &,w = O,
R¢ RO\ Ozt
() )]
o vt = wo () 20,
Assume that £ > 2 and
v = SUP ||¢7waC||Hk((077r)) (t)>0 (A2)

te[0,T
is small enough. Multiplying R@( — :) on (A.1)1, ¥ on (A.1), and —0 (% — %) = g on

v

(A.1)3, respectively, and summing the results together yield that

[ ~¢? + ROD (v> + %9@ (Z)] + % (0a10)? + U—IZ (0:€)?

_ 0Nyl + Lcuer + L .y
= | Sooc - r(§- )+ cia02 + He o,

where ®(s) = s — lns — 1. Tt follows from (A.2) that

d ("[1, R 0 )
L I o ' 4o 2 <0, A.
7l | ¢ + RO ( )+7_19 (0)}1“ e1 1|81, 0xC]I? < 0 (A.3)
for some constant ¢; > 0. By the conservative forms of (1.1), one has that
f (6,0, w) (2,6) =0, ¢ 0. (A1)
0
Then the Poincaré inequality yields that
o]l < allozoll, [|4]] < alldadll s wll < alldwll, (A.5)
for some constant a > 0. This, together with ¢ = 1 ! (w — —7,02) yields that
Joct? > = ot — Tl O e ol
i = AR2q?2 L R2 Lo 110z
- (v—1)° (vy—1)°
= a 2HCH2_ AR2a2 2”#’” - R2 V2||0I¢H2 (A6)
Thus, by (A.3), (A.5) and (A.6), if v > 0 is small enough, one has that
d (" 9 R 0 2 2
= — < ,
i | |50 moe () + 200 (3) | o clov ol < allonc <0, (a)
By using (A.1)1, (A.1)s is equivalent to
9
o + acfat( 0:0) + 5026,
Then multiplying this equation by ¢ and using (A.1); again, one has that
d (™| u (& 2 2
— ——(0,0)* — =0, | d 0:0|” < C |00, d:C||” A8
i || @0 - Lons| as+ caliolf <l el (A8
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Collecting (A.7) and (A.8), and using (A.5), one has that
d a 1 9 _ v R - 0 [ ,
) {Aﬁ[2¢ 47R9¢<6> +/y__19¢<§>]y2020%¢) _
b ca10u6, 2,001 + 46, < 0.

If M; > 0 is large enough, the terms in {---} in (A.9) satisfy that

Y

(Y

(9zgz5}dx

e 16y, ¢, rd|? < L (Yo < c5 6,1,C, 0011, (A.10)

which implies that

_ 4y

16,40, ¢ 2811 (1) < (I doll} + 10, Gol|*) €™ " (A.11)

Since the estimates for the higher order derivatives are standard and their exponential decay
rates can be proved in the same way with the aid of Poincaré inequality, thus we omit the
details.

O
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