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Abstract

This paper proposes a new variational model by integrating the Allen-Cahn

term with a local binary fitting energy term for segmenting images with inten-

sity inhomogeneity and noise. An inhomogeneous graph Laplacian initialization

method (IGLIM) is developed to give the initial contour for two-phase image seg-

mentation problems. To solve the Allen-Cahn equation derived from the variational

model, we adopt the exponential time differencing (ETD) method for temporal dis-

cretization, and the central finite difference method for spatial discretization. The

energy stability of proposed numerical schemes can be proved. Experiments on

various images demonstrate the necessity and superiority of proper initialization

and verify the capability of our model for two-phase segmentation of images with

intensity inhomogeneity and noise.

Key Words: Image segmentation, Allen-Cahn equation, edge detection, exponential

time differencing method, inhomogeneous graph Laplacian, energy stability

1 Introduction

Image segmentation aims to divide an image domain into disjoint areas according to a

characterization of the image within or in-between the regions. It plays a crucial role in
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computer vision, pattern recognition, and has many applications in the field of medical

image recognition, satellite remote sensing, and visual field monitoring [1, 36, 41].

Various approaches have been developed for image segmentation, wherein active con-

tour models are of particular interest. In the past few decades, active contour models

have been widely used to detect edges of objects in images [10, 14, 20, 25, 31, 40]. The

basic idea is to create an initial contour and then drive it to evolve to the edges of objects

according to certain information from the image. Generally, the information relies on the

edge [9, 10, 25] or the region [14, 28, 39, 51] of the given image. Edge-based active con-

tour models take stopping functions that mainly depend on the gradient information,

which makes results very sensitive to the initialization, boundary strength and noise

[27, 35]. In contrast with edge-based active contour models, global region-based active

contour models, such as the Mumford-Shah model [39] and the Chan-Vese (CV) model

[14, 45], have better performance on images with noise and weak boundaries. Never-

theless, most of global region-based active contour models are not applicable to images

with intensity inhomogeneity. Therefore, many local region-based models [27, 28, 29, 51]

have been proposed in the last few years. In these models, contributors of the fitting

energy at each pixel are mainly from pixels around it, which can effectively reduce the

influence of intensity inhomogeneity. For example, Li et al. proposed a local binary

fitting (LBF) model [28] and a local intensity clustering (LIC) model [27]. Both of them

can segment inhomogeneous images effectively. Recently, Zosso et al. [53] proposed the

CV-XB model, which integrates an artifact indicator function X and a smooth bias field

term into the Chan-Vese model and thus can successfully correct the bias and segment

images with noise and intensity inhomogeneity. In [35], Min et al. developed a model

by integrating the smooth bias field term into the LIC model. This model utilizes the

local constant and global smoothness priors to describe the bias field and thus can give

quite exact segmentation results. Moreover, many hybrid models employ both local and

global energy fitting terms to achieve more delicate segmentation for various images, see

e.g., [2, 44, 48] and references therein.

Although more and more active contour models with better performance have been

designed for image segmentation, the initialization and noise effect are still significant

issues. A proper selection for the initial contour can increase the probability of suc-

cessful segmentation and reduce the segmentation time, while an improper initialization

can seriously affect the model performance and lead to unacceptable segmentation re-
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sults. Generally, initial contours are selected by simply taking a threshold value of the

original image [24, 30, 50], or selecting a part of the image [14, 28, 51]. However, these

initialization methods are not convenient or flexible and likely to give improper initial

contours. When an improper initialization is applied to non-convex energy functionals,

the minimization process can easily get stuck in poor local minima. To overcome numer-

ical difficulties caused by the non-convexity, convex relaxation has been widely studied

for active contour models [3, 4, 5, 6, 7, 13, 42]. It can transfer the original energy min-

imization problem to a convex optimization problem and then find the global minima.

However, the convex relaxation may lead to the loss of non-convex boundary informa-

tion, which makes it difficult to preserve the sharpness and neatness of edges [12, 49].

As a consequence, it is well known that initialization is a vital step for active contour

models. In this work, inspired by the nonlocal edge detection initialization method in

[43], we construct an anisotropic Laplacian operator to provide a proper initial contour

for segmenting images with inhomogeneity.

In addition to the initialization problem, the robustness and efficiency of a segmen-

tation model is also a challenge for images with severe intensity inhomogeneity and

noise. In [46, 47], Wang et al. used a concave functional of characteristic functions of

segments to approximate the contour length and then proposed the iterative convolution-

thresholding method (ICTM) to minimize modified energy functionals in an efficient and

energy stable way. It is applicable to a range of active contour models. But for noise

images, the results of ICTM are not so satisfactory if the given active contour models

are sensitive to the noise. In [40], Niu et al. proposed a region-based model via local

similarity factor (RLSF), which has excellent performance on images with strong noise.

But it can not have a very delicate result for images with severe intensity inhomogeneity.

It is worth mentioning that due to the Γ-convergence theory [24, 38, 37], the Allen-Cahn

functional, which is non-convex, has also been utilized to approximate the length term

in phase-field models [19, 53]. With the Allen-Cahn term, some efficient algorithms can

be designed based on the MBO method [34, 33] or the ETD method [43]. However, it

is still an intractable problem for these algorithms to handle images with both intensity

inhomogeneity and strong noise.

In this paper, we employ the Allen-Cahn term to approximate the contour length and

propose Allen-Cahn local binary fitting (ACLBF) model based on the LBF energy for

image segmentation. It is widely known that the phase-field model can be approximately
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attributed to the solution of a diffuse interface problem. As a result, the smooth effect of

the Allen-Cahn equation, which stems from its diffusion property, enables our segmen-

tation model to reduce the influence of noise significantly. The LBF energy functional

in our model can sharpen the gradient along the boundaries. For the majority of points,

the LBF term will be forced to evolve to the correct phase. For some noise points forced

to the incorrect phase, the Allen-Cahn term helps to bring them back to correct phase

after smoothing. Combining these two terms, we obtain our desired segmentation model.

A good balance between the LBF term and Allen-Cahn term can be obtained through

adjusting corresponding parameters so that all noise can be removed, at the same time,

the accuracy near the boundary can be guaranteed. Then we introduce an IGLIM based

on edge detection to tackle the initialization problem for two-phase image segmentation.

With a proposed anisotropic Laplacian operator, our initialization method can generate

a more reliable initial contour even for images with intensity inhomogeneity and noise.

Both first- and second-order ETD schemes are designed to solve the evolving equation

derived in our model. These ETD schemes can be implemented efficiently on a uniform

mesh by Discrete Cosine Transform (DCT). Using ETD schemes, we solve the contour

evolution equation directly, which can exploit the advantage of the Allen-Cahn term to

reduce the effect of noise. Meanwhile, the energy stability of our schemes can be proved

when the stabilizer satisfies a certain condition by using similar techniques developed in

[17, 18]. Experiments show that our methods can achieve the segmentation in an effective

and efficient way, even for the images with severe intensity inhomogeneity and strong

noise. This paper utilizes the ETD1 and ETDRK2 schemes for time discretization. For

more details about higher-order ETD schemes, one can refer to [22, 52]. In addition,

some ETD schemes of arbitrary accuracy have recently been proposed. We recommend

interested readers to [15, 26].

The rest of this paper is organized as follows. In section 2, we give a detailed descrip-

tion of the proposed ACLBF model. IGLIM is introduced to generate the initial contour

and an alternating minimization method is used to solve the ACLBF model in section

3. Numerical examples are given in section 4 to show the performance of the developed

algorithms. Finally, the paper ends with some conclusions in section 5.
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2 Allen-Cahn local binary fitting model

In this section, a phase-field approach to the LBF model is considered to achieve seg-

mentation for images with intensity inhomogeneity and noise.

As shown in [28], the LBF energy functional is given based on the level set method.

In the LBF model, each pixel x ∈ Ω in an image is equipped with a local binary fitting

energy, which is defined as follows:

eLBFx (φ, f1(x), f2(x)) = λ1

∫
Ω

H(φ(y))Kσ(x− y)|I(y)− f1(x)|2dy

+ λ2

∫
Ω

(1−H(φ(y)))Kσ(x− y)|I(y)− f2(x)|2dy.

Here, φ(x) is the level set function and the active contour is represented by its zero

level set. λ1 and λ2 are non-negative parameters. H(x) is the Heaviside function and

I : Ω → R is a given gray level image. f1(x) and f2(x) are functions used to fit image

intensities near the point x and Kσ(x) is the Gaussian kernel:

Kσ(x) =
1

(2π)σ2
e−

|x|2

2σ2 , σ > 0.

Then the energy functional of LBF model is given by

ELBF (φ, f1, f2) = µeLBF +

∫
Ω

δ(φ(x))|∇φ(x)|dx+ ν

∫
Ω

1

2
(|∇φ| − 1)2dx, (2.1)

where the fitting term eLBF (φ, f1(x), f2(x)) is the integral of eLBFx over Ω:

eLBF (φ, f1(x), f2(x)) =

∫
Ω

eLBFx (φ, f1(x), f2(x)) dx

= λ1

∫
Ω

∫
Ω

H(φ(y))Kσ(x− y)|I(y)− f1(x)|2dydx

+ λ2

∫
Ω

∫
Ω

(1−H(φ(y)))Kσ(x− y)|I(y)− f2(x)|2dydx.

The second term of (2.1) formulated by φ(x) is an approximation of the contour length

and δ(x) represents the Dirac delta function, which is the derivative of H(x) in the

distribution sense. The last term of (2.1) is a penalty term to constrain |∇φ| = 1,

which is used for the re-initialization. µ is a non-negative parameter used to control

the contribution of the fitting energy to the energy functional and ν is a non-negative

parameter used to tune the penalty force.
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By introducing the Allen-Cahn functional to the LBF model, we propose the ACLBF

model to solve segmentation problems of images with intensity inhomogeneity and noise.

The energy functional of the ACLBF model is defined as follows:

E(u, f1, f2) = µeLBF (u, f1, f2) +

∫
Ω

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx. (2.2)

Here, ε > 0 is a diffusion parameter and W (u) is given by:

W (u) = sin2(
π

2
(u+ 1)).

As pointed in [24], for binary phase-fields u ∈ {−1, 1},∫
Ω

(
ε

2
|∇u|2 +

1

ε
sin2(

π

2
(u+ 1))

)
dx

ε→0+−−−→
Γ

C

∫
Ω

|∇u|dx,

where C is a constant independent on u and
∫

Ω
|∇u|dx is a common approximation of

the contour length [13]. The two terms in (2.2) correspond to the first two terms in the

LBF energy functional (2.1). The last penalty term in (2.1) can be removed because

re-initialization is not required for the phase-field model. In the ACLBF model, the

segmented edges are represented by the zero level set of u.

The advantages of the ACLBF model can be concluded as follows. Firstly, the LBF

fitting energy term can help to segment images with intensity inhomogeneity effectively.

Secondly, the phase-field approach can reduce the noise effect significantly in comparison

with the level set method. Moreover, the re-initialization is not required. Finally, we

can easily design energy stable numerical methods for this phase-field model.

3 The numerical scheme

In this section, we will give a detailed description of the numerical scheme proposed

for the ACLBF model. An alternating minimization method will be used to minimize

the energy functional (2.2). As mentioned in section 1, how to give the initial data

is a vital step for segmentation of images with intensity inhomogeneity. To tackle the

initialization issue, we introduce IGLIM, which can find exact partial edges in images

and subsequently select them as initial contours.

6



3.1 Inhomogeneous graph Laplacian initialization method

[43] shows that it is very effective to solve region-based active contour models for image

segmentation when taking edges detected by gradient-based detection methods as the

initial contour. Inspired by this, we propose IGLIM to generate the initial contour for

our numerical scheme to solve the ACLBF model for inhomogeneous images. Generally,

gradient-based edge detection methods can be grouped into two categories [11]. Some

are based on the first-order derivative [16] and the others are based on the second-

order derivative [8, 32]. These edge detection methods are early techniques for detecting

edges in images and easy to implement. For second-order derivative based edge detection

methods, signs of the Laplacian values defined on pixels will change through the edge due

to the rapid change of the image intensity. Therefore, the edge should consist of all these

zero-cross points of Laplacian. While for images with intensity inhomogeneity, classical

discrete Laplacian operators may fail to obtain correct edges of objects in images since

the image intensity may not change so rapidly. Other traditional gradient-based edge

detection operators can not give satisfactory results for inhomogeneous images either. We

will introduce the IGLIM algorithm below, which can give appropriate initial contours

for region-based active contour models. This initialization method contains two steps.

Firstly, we introduce an inhomogeneous Laplacian operator by which most edges can be

determined even for images with intensity inhomogeneity. Then a denoising method is

applied to remove the misclassification caused by noise.

3.1.1 Inhomogeneous graph Laplacian operator

Let Ω be a 2D discrete image domain, and I be an image defined on it with M1 ×M2

pixels. Denote a pixel x0 = (i, j) ∈ Ω, I(x0) by Ii,j. We define the inhomogeneous graph

Laplacian operator L as

L(x0) =
8∑

k=1

ckI
k
i,j − Ii,j, (3.1)

where Iki,j is intensity value of the k-th neighbour point of Ii,j, more precisely,

I1
i,j = Ii−1,j−1, I

2
i,j = Ii−1,j, I

3
i,j = Ii−1,j+1, I

4
i,j = Ii,j+1,

I5
i,j = Ii+1,j+1, I

6
i,j = Ii+1,j, I

7
i,j = Ii+1,j−1, I

8
i,j = Ii,j−1,
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and

ck =
eλ(Ii,j−Iki,j)2∑8
k=1 e

λ(Ii,j−Iki,j)2
, λ is a given non-negative parameter.

In the expression of inhomogeneous Laplacian operator L, ck is between 0 and 1.

And the larger difference between Ii,j and Iki,j is, the bigger value of ck would be. Com-

pared with the classical discrete Laplacian, the inhomogeneous graph Laplacian operator

enlarges the influence of points with big “difference” from the central point Ii,j (Points

with big “difference” are more likely to be edge points or noise).

Remark 3.1. If λ = 0, then the inhomogeneous graph Laplacian (3.1) degenerates to a

homogeneous discrete Laplacian operator, i.e.,

L(x0) =
8∑

k=1

1

8
Iki,j − Ii,j

=
1

8
(Ii−1,j + Ii+1,j + Ii,j−1 + Ii,j+1 − 4Ii,j)

+
1

8
(Ii−1,j−1 + Ii+1,j+1 + Ii+1,j−1 + Ii−1,j+1 − 4Ii,j).

We need to approximate the zero-cross points of the inhomogeneous Laplacian oper-

ator to obtain rough initial edges. Some relevant definitions are stated below.

Definition 3.1. Let k1, k2 be two small non-negative numbers.

1. If L(x0) ≤ −k1, L(x0) is defined as negative.

2. If L(x0) ≥ k2, L(x0) is defined as positive.

3. The set of all zero-cross points of L is denoted as

S = {x|x has at least one neighbor point y such that the sign of

L(y) is different from L(x)}.

4. S has following two subsets:

Positive Laplacian edge points set: Sp = {x|x ∈ S, L(x) ≥ k2},

Negative Laplacian edge points set: Sn = {x|x ∈ S, L(x) ≤ −k1}.
(3.2)

The boundary of the object can be divided into an inner boundary and an outer

boundary. The difference is that the pixels on the inner boundary belong to the object

while those on the outer boundary belong to the background. In our method, the edge

points are divided into two groups. One of Sp and Sn consists of pixels on the inner

boundary and the other one consists of pixels on the outer boundary. Generally, we

choose the inner boundary to be the rough initial contour.
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Remark 3.2. One can determine which of Sp and Sn corresponds to the inner boundary

according to the intensity information of the object. If the intensity of the object is

smaller than that of the background, i.e. the object is darker than the background, then

Sp consists of pixels on the inner boundary. Otherwise, Sn corresponds to the inner

boundary.

3.1.2 A denoising method based on the connectivity of edge points

Although the inhomogeneous graph Laplacian operator can give rough edges for images

with intensity inhomogeneity, noise in images can affect its performance heavily. To

solve this problem, a denoising method is proposed here to remove the possible noise

pixels in the rough initial contour obtained from the inhomogeneous graph Laplacian

operator. This denoising method is motivated by the fact that an edge should have

connectivity, which means that points of edges connect with each other, while the noise

doesn’t possess this property. As a result, we can remove most noise points from the

rough initial contour by judging their connectivity. In our denoising method, we mainly

consider the diagonal connectivity of edge points. The diagonally connected points are

defined as follows:

Definition 3.2. Suppose that Sp (Sn) consists of pixels on the inner boundary. When

x = (i, j) ∈ Sp (Sn), the neighbor areas are divided into four parts:

S1 = {(i− 1, j − 1), (i, j − 1), (i− 1, j)}, S2 = {(i− 1, j + 1), (i, j + 1), (i− 1, j)},

S3 = {(i+ 1, j − 1), (i, j − 1), (i+ 1, j)}, S4 = {(i+ 1, j + 1), (i, j + 1), (i+ 1, j)}.

We call x ∈ Sp (Sn) a diagonally connected point if both S1 and S4 or both S2 and S3

have at least one pixel that also belongs to Sp (Sn).

To eliminate noise in the rough initial contour, we keep all the diagonally connected

points in Sp (Sn) and remove the other points from Sp (Sn). The denoising process needs

to be repeated M times where M is a pre-setting small integer.

Remark 3.3. All the edge points are connected with each other but not all of them

are diagonally connected, and thus a few of them will be removed from the rough initial

contour points set Sp (Sn) after denoising. But the majority of edge points will remain

in Sp (Sn). Meanwhile, a few noise points can be diagonally connected with each other
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but most of them are not, and thus most of noise points will be removed from Sp (Sn)

after denoising. The reason why we consider the diagonal connectivity rather than the

common connectivity is that the former one is less likely to appear on noise points, which

implies that we can remove more noise points by judging the diagonal connectivity.

Now combining the inhomogeneous graph Laplacian operator and the denoising

method yields the IGLIM. The algorithm for IGLIM is organized in 1:

Algorithm 1: IGLIM

Step 1: Compute the inhomogeneous Laplacian value of each pixel by (3.1).

Step 2: Set k1 and k2. Determine Sp and Sn according to Definition 3.1.

Step 3: Take Sp (Sn) as a rough initial contour.

Step 4: Go through every pixel in Sp (Sn) and judge whether it is diagonally con-

nected. If not, remove it from Sp (Sn).

Step 5: Set an appropriate integer M , and repeat Step 4 for M times.

Step 6: Output Sp (Sn) as the initial contour.

3.1.3 Initialization of the ACLBF model

It can be seen that the Sp or Sn given by IGLIM is a set of curves. However, curves are

not the best choice for the initialization of our model, for which a single curve is prone

to disappear quickly due to the existence of the diffusive interface term
∫

Ω
ε
2
|∇u|2dx.

Therefore, we extend all points in the initial contour points set Sp (Sn) from one single

point to a small region. The way we extend a point in Sp (Sn) is to add into it all

its neighbor points y whose inhomogeneous graph Laplacian values are not negative

(positive), i.e., y /∈ Sn (Sp).

Let

Rp = {y|y /∈ Sn and y has at least one neighbor point x ∈ Sp},

Rn = {y|y /∈ Sp and y has at least one neighbor point x ∈ Sn},

and then the final region extended from Sp (Sn) is Sp ∪Rp (Sn ∪Rn). Finally, the initial

value u0 for the ACLBF model is given by

u0(i, j) =

{
1, if (i, j) ∈ Sp ∪Rp (Sn ∪Rn),

−1, otherwise.
(3.3)
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3.2 Energy minimization

We will adopt an alternating minimization method to minimize the energy functional of

the ACLBF model (2.2). The initial contour obtained in 3.1 will be used to start the

alternating minimization iteration.

3.2.1 An iterative method for energy minimization

In this part, we will demonstrate the specific procedure of our iterative method for

minimizing the energy functional (2.2). It consists of two parts. We first fix u and

minimize (2.2) with respect to the functions f1(x) and f2(x). By variation calculus, one

can show that the functions f1(x) and f2(x) are given by

f1(x) =
Kσ(x) ∗ [H (u(x)) I(x)]

Kσ(x) ∗H (u(x))
, f2(x) =

Kσ(x) ∗ [(1−H (u(x))) I(x)]

Kσ(x) ∗ [1−H (u(x))]
. (3.4)

In calculation, the Heaviside function H(x) is approximated by the following smooth

function

Hε1(x) =
1

2
[1 +

2

π
arctan(

x

ε1

)]. (3.5)

Correspondingly, the function used to approximate δ(x) is defined as:

δε1(x) = H ′ε1(x) =
1

π

ε1

ε2
1 + x2

. (3.6)

Next, keeping f1 and f2 fixed, and minimizing the energy functional (2.2) with respect

to u, lead to the Allen-Cahn equation:

ut = ε∆u− 1

ε
W ′(u)− µδε1 (u) (λ1e1 − λ2e2) , (3.7)

where

e1 =

∫
Ω

Kσ(y − x) |I(x)− f1(y)|2 dy, e2 =

∫
Ω

Kσ(y − x) |I(x)− f2(y)|2 dy.

Let x ∈ Ω, the value of ek at x is evaluated by:

ek(x) = (Kσ ∗ f 2
k )(x)− 2I(x)(Kσ ∗ fk)(x) + I2(x)(Kσ ∗ 1Ω)(x), k = 1, 2,

where 1Ω is the characteristic function of Ω and ∗ represents the discrete convolution

operator.
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3.2.2 Exponential time differencing method

To solve the Allen-Cahn equation (3.7) efficiently and accurately, we will use the ETD

methods for temporal discretization and the central finite difference method for spatial

discretization with the homogeneous Neumann boundary condition.

Let h be the spacing distance between two adjacent pixels. By taking the central finite

difference discretization of (3.7) in space, we obtain the following ordinary differential

equations (ODE) system:

Ut = −LhU +N(U), (3.8)

where

Lh = SI − εDh, N(U) = SU − 1

ε
W ′(U)− µδε1 (U) (λ1e1 − λ2e2) .

Here, U = [Uk]
M1M2
k=1 ∈ RM1M2 is the semi-discrete numerical solution after spatial dis-

cretization using column-wise ordering and the k-th equation of (3.8) corresponding to

(i, j)−th point in Ω has the following relation:

k = i+M1(j − 1), i = 1, 2, · · · ,M1, j = 1, 2, · · · ,M2.

Dh is the 2D discrete Laplacian matrix obtained from the central finite difference dis-

cretization of ∆:

Dh =
1

h2
(IM2 ⊗ ΛM1 + ΛM2 ⊗ IM1),

where IMi
is an Mi ×Mi identity matrix and

ΛMi
=



−1 1 0

1 −2 1
. . . . . . . . .

1 −2 1

0 1 −1


Mi×Mi

, i = 1, 2.

I is an (M1M2) × (M1M2) identity matrix identity matrix. S > 0 is a constant called

the stabilizer.

Solving this ODE system, we obtain

U (tn+1) = e−Lh∆tU (tn) +

∫ ∆t

0

e−Lh(∆t−s)N (U (tn + s)) ds.
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If we approximate N (U(tn + s)) by N(U(tn)), then we obtain the first-order ETD

(ETD1) scheme:

Un+1 = e−Lh∆tUn + ∆tφ0(Lh∆t)N (Un) , (3.9)

where

φ0(Lh∆t) =

∫ ∆t

0

e−Lh(∆t−s)ds = (Lh∆t)
−1
(
I − e−Lh∆t

)
.

If we approximate N (U (tn + s)) by a linear approximation

N (U (tn + s)) ≈
(

1− s

∆t

)
N (U (tn)) +

s

∆t
N
(
Ũ (tn+1)

)
, s ∈ [0,∆t],

where Ũ(tn+1) is an approximation of U(tn+1) obtained by (3.9), we obtain the second-

order ETD Runge-Kutta (ETDRK2) scheme:
Ũn+1 = e−Lh∆tUn + ∆tφ0(Lh∆t)N (Un)

Un+1 = eLh∆tUn

+ ∆t
{
φ0(Lh∆t)N (Un) + φ1(Lh∆t)

[
N
(
Ũn+1

)
−N (Un)

]}
,

(3.10)

where

φ1(Lh∆t) =

∫ ∆t

0

s

∆t
e−Lh(∆t−s)ds = (Lh∆t)

−2
(
Lh∆t− I + e−Lh∆t

)
.

In fact, the ETD schemes can be solved by Discrete Cosine Transform (DCT). For more

information see e.g.,[21, 23]. The time complexity is only O((M1M2) log(M1M2)) at time

step. Consequently, it is remarkably efficient to apply the ETD schemes for solving the

evolving equation (3.7).

The algorithm for minimizing the energy functional is organized in 2.

Algorithm 2: The ETD-based iterative method for ACLBF

Step 0: Generate an initial function U0 = u0 by (3.3) based on IGLIM in 1.

Step 1: Substitute u = Un into (3.4) and calculate fn1 and fn2 .

Step 2: Obtain Un+1 from Un by the ETD1 (or ETDRK2) scheme.

Step 3: Set n = n+ 1 and repeat Step 1 and Step 2 until the evolution is stationary.

In 2, the stopping criterion is that the contour evolution is stationary, which means

the contour does not move anymore. In practice, the iteration will be stopped if the

contour is identical to that in the last iteration.
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3.2.3 Discrete energy stability

For given f1 and f2, the Allen-Cahn equation (3.7) holds the energy stability

dE

dt
≤ 0.

In the following part, we will show that ETD1 and ETDRK2 schemes can preserve the

discrete energy stability. For a rectangular image with M1 × M2 pixels, order pixels

column by column and the k-th pixel denoted by xk corresponding to (i, j) ∈ Ω has the

following relations: the discrete energy Eh(U, f1, f2) is defined as follows

Eh(U, f1, f2) =

M1M2∑
k=1

1

ε
W (Uk) + µ

M1M2∑
k=1

(λ1Hε1(Uk)e1(xk) + λ2(1−Hε1(Uk))e2(xk))

− ε

2
UTDhU.

Lemma 3.1. For any fixed f1 and f2, when the stabilizer satisfies S > G
2

with

G :=‖ Ñ ′ ‖∞, Ñ(U) = SU −N(U),

we have

ETD1 : Eh(U
n+1, f1, f2) ≤ Eh(U

n, f1, f2), ∀∆t > 0,

ETDRK2 : Eh(U
n+1, f1, f2) ≤ Eh(U

n, f1, f2) + Ch−
1
2 (h2 + ∆t)2, ∀0 < ∆t < 1,

where C ≥ 0 is a constant and independent of ∆t and h.

Proof. We only prove the boundedness of Ñ ′. With the boundedness of Ñ ′, the remaining

part of the proof is similar to the proofs of Theorem 5.1 and Theorem 5.2 in [17].

By a simple calculation, we can obtain

Ñ ′(U) =
1

ε
W ′′(U) + µδ′ε1 (U) (λ1e1 − λ2e2)

=
1

ε
W ′′(U)− 2µε1

π

U

(ε2
1 + U2)2

(λ1e1 − λ2e2) ,

where

W ′′(U) =
π2

2
cos(π(u+ 1)).

It is easy to check that there exists a constant G1 = π2

2ε
+ 1 such that

‖ 1

ε
W ′′(U) ‖∞< G1.

14



And for any fixed f1 and f2, there exists a positive constant G2, which is independent of

U such that ∥∥∥∥2µε1

π

U

(ε2
1 + U2)2

(λ1e1 − λ2e2)

∥∥∥∥
∞
< G2, ∀U ∈ (−∞,∞).

Therefore, ‖ Ñ ′ ‖∞< G1 +G2.

The theorem below shows that the total discrete energy is stable for both ETD1 and

ETDRK2 schemes during the whole iteration process, provided that the stabilizer S is

sufficiently large.

Theorem 3.2. Given fn1 and fn2 , if S > G
2

, then we have for ETD1,

Eh(U
n+1, fn+1

1 , fn+1
2 ) ≤ Eh(U

n, fn1 , f
n
2 ), ∀∆t > 0; (3.11)

and for ETDRK2,

Eh(U
n+1, fn+1

1 , fn+1
2 ) ≤ Eh(U

n, fn1 , f
n
2 ) + Ch−

1
2 (h2 + ∆t)2, ∀0 < ∆t < 1, (3.12)

where C ≥ 0 is a constant and independent of ∆t and h.

Proof. Through Lemma 3.1, we can get

Eh(U
n+1, fn+1

1 , fn+1
2 ) ≤ Eh(U

n, fn+1
1 , fn+1

2 ).

To obtain the inequality (3.11), it suffices to show that

Eh(U
n, fn+1

1 , fn+1
2 ) ≤ Eh(U

n, fn1 , f
n
2 ).

Indeed, this is a direct consequence of variation calculus. Thus the inequality (3.11)

holds. The discrete energy stability for ETDRK2 (3.12) can be derived in a similar

way.

4 Experimental results

This section displays experiments to test the energy stability of our algorithm and demon-

strate the effectiveness of IGLIM and the ACLBF model for segmenting various images.

We observe that the total iteration number of the ETDRK2 scheme is generally less than

that of the ETD1 scheme for each simulation in our experiments and moreover, Qiao et
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al. find that ETDRK2 has better performance than ETD1 on image segmentation in

terms of efficiency and accuracy in [43]. Therefore, unless otherwise specified, all images

are segmented by the ACLBF model with ETDRK2 methods. All numerical experiments

are implemented on a laptop with 2.60-GHz CPU, 16GB RAM, and MATLAB R2020a.

4.1 Energy stability test

First, we are going to test the energy stability of the algorithms designed for our model.

Fig. 4.1 shows segmentation results and the discrete energy evolution for a vessel image

solved by the ACLBF model with ETD1 and ETDRK2 schemes. The segmentation

result of the ETD1 scheme, which is almost the same as that of the ETDRK2 scheme,

is represented in Fig. 4.1(b). Two energy diagrams of ETD1 and ETDRK2 schemes are

displayed in Fig. 4.1(c) and Fig. 4.1(d), respectively. The smallest iteration numbers

to obtain segmentation results by ETD1 and ETDRK2 schemes are marked by red

points on the energy curves. One can observe that the ACLBF model solved by the

ETDRK2 scheme needs 19 iterations (CPU time: 0.222315s) for the segmentation, which

is much more efficient than ETD1 (37 iterations, CPU time: 0.251346s). Moreover, the

energy diagrams indicate that our algorithms are discrete energy stable. In this energy

stability test, parameters for IGLIM are set as: λ = 50, k1 = k2 = 0.01,M = 1 and

Sn is chosen as the initial contour, and parameters for the ACLBF model are set as:

λ1 = λ2 = 1, µ = 80, σ = 3, h = 0.01,∆t = 0.1, ε = 0.5, ε1 = 0.5. At each iteration, S is

chosen to be G
2

+ 1 to guarantee the energy stability.

4.2 Initialization comparison

The LBF model can effectively segment inhomogeneous images, but the segmentation

result may be seriously affected by initialization. In this part, we segment three images by

solving the LBF model with the level set method, ICTM, and our phase-field approach.

Initial contours of the first two methods are given by selecting different parts of the

images. The corresponding results are shown in (a)-(d) of Fig. 4.2. Then we compare

segmentation results of the ACLBF model with initialization by IGLIM and by selecting

a part of the images, which are exhibited in (e) and (f) of Fig. 4.2. It can be seen

that all these methods are sensitive to initialization when solving the LBF model for

segmentation and solving the ACLBF model with initial contours from IGLIM gives

16



(a) The original image (b) The segmentation result by ETD1 (ETDRK2)
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(c) Energy diagram of ETD1
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(d) Energy diagram of ETDRK2

Figure 4.1: Segmentation results and energy diagrams obtained by ETD1 and ETDRK2

schemes.

satisfactory segmentation results. Table 4.2 shows the iteration numbers and the CPU

time for the three methods successfully segmenting the three images. One can see that

iteration numbers of the ACLBF model solved by the ETDRK2 scheme are smaller than

those of the other two methods, while ICTM costs less CPU time if appropriate initial

contour is given.

4.3 Experiments on images with intensity inhomogeneity

Next, we solve the ACLBF model for segmentations of various images, including images

with intensity inhomogeneity. At first, two synthetic images with severe intensity inho-

mogeneity are used to test the performance of the ACLBF model with IGLIM. Next, we
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(a) (b) (c) (d) (e) (f)

Figure 4.2: (a) and (b) the results of LBF model solved by level set method with proper

and improper initial contours, respectively; (c) and (d) the segmentation results of LBF

model solved by ICTM with proper and improper initial contours, respectively; (e) the

result of ACLBF model with IGLIM and (f) the results of ACLBF model with improper

initial contours. Initial contours are represented by blue outlines, and the results are

highlighted by red ones.

Images
Level set ICTM ACLBF-ETDRK2

Ite. Time(s) Ite. Time(s) Ite. Time(s)

Row1 124 0.378146 51 0.087089 35 0.314895

Row2 69 0.164980 43 0.053831 18 0.145300

Row3 29 0.106062 12 0.035150 8 0.112060

Table 4.1: Comparison of the iteration number and running time in Fig. 4.2.

apply our model to two medical images, magnetic resonance images of a human brain

and an angiogram of a blood vessel. Then we verify the capability of the ACLBF model

and IGLIM on two real natural images. The parameters settings are displayed in Table

4.3.

There are some strategies for the parameters setting. For IGLIM, λ is always set as

50. Generally, k1 and k2 are both set as 0.01. But for images with inconspicuous edges,

k1, k2 can be set smaller to capture more edges. Conversely, they can be tuned to be

larger numbers to avoid excessive detection if the edges are apparent. The value of M

mainly depends on the noise level. One can choose a relatively large M for images with
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strong noise. According to Remark 3.2, Sp is generally chosen as the initial contour if

the intensity of the object is smaller than that of the background. Otherwise, Sn is taken

as the initial contour.

For ACLBF, h,∆t, and ε are parameters in the discrete Allen-Cahn term and we

fix h = 0.01,∆t = 0.1 and ε = 0.5 in the experiments. The spatial step h controls the

smoothness of the segmentation result. Smaller h can help to recognize smooth bound-

aries and remove noise. By contrast, larger h can obtain a more delicate segmentation for

some unsmooth boundaries. On the other hand, λi(i = 1, 2), ε1 and σ are parameters in

the LBF term. λi(i = 1, 2) are corresponding to the coefficients in front of the evolving

forces of internal and external regions. In most cases, we set λ1 = λ2 = 1. σ is the

standard deviation in the Gaussian kernel. As shown in [29], a more accurate segmen-

tation result can be obtained for images with inhomogeneity if σ is small. Furthermore,

a reasonably large σ is more suitable for many real-world images of which the intensity

inhomogeneity is not so severe. It is also pinpointed in [29] that a large ε1 can fasten

curve evolution due to the fast emergence of new contours at strong edges while a small

ε1 will have higher accuracy in the final contour location. In [29], ε1 is always chosen as

1 while in this paper it is chosen as 0.5 or 1.

All the results are exhibited in Fig. 4.3. In each row, five figures are displayed to

illustrate the whole segmentation process, where the original image is shown in the first

figure, the second one is the rough initial contour derived from the inhomogeneous graph

Laplacian operator, the third one indicates regions extended from initial contours after

denoising, i.e., Sp ∪ Rp (Sn ∪ Rn), and the last one shows the final segmentation result

of the ACLBF model. The contours are highlighted in red.

The experiment results indicate that initial contours given by IGLIM are reliable and

almost precisely lie on the boundary of the object, which enables the ACLBF model to

segment images effectively and efficiently, even for images with intensity inhomogeneity.

4.4 Experiments on images with varying levels of noise

To demonstrate the robustness of our algorithm on segmentation of images with noise, we

test the performance of the ACLBF model on five images corrupted by different levels of

Gaussian noise. Fig. 4.4 exhibits segmentation results of the ACLBF model and several

celebrated models for these images. As the level of noise increases, the identification of
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Figure 4.3: First column: original images; Second column: rough initial contours;

Third column: regions extended from initial contours after denoising; Fourth column:

segmentation results. From top to bottom, the iteration number is 25, 42, 21, 35, 9 and

17, respectively.
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Images
IGLIM ACLBF

λ ki M initial

con-

tour

λi µ σ h ∆t ε ε1 S

Row1 50 k1 = k2 = 0.01 1 Sp λ1 = λ2 = 1 500 1 0.01 0.1 0.5 1 10*µε1

Row2 50 k1 = k2 = 0.002 5 Sp λ1 = λ2 = 1 500 1 0.01 0.1 0.5 0.5 10*µε1

Row3 50 k1 = k2 = 0.01 5 Sp λ1 = 1, λ2 = 2.5 500 6 0.01 0.1 0.5 0.5 150*µε1

Row4 50 k1 = k2 = 0.01 3 Sn λ1 = λ2 = 1 150 3 0.01 0.1 0.5 0.5 60*µε1

Row5 50 k1 = k2 = 0.1 0 Sp λ1 = λ2 = 1 500 5 0.01 0.1 0.5 1 500*µε1

Row6 50 k1 = k2 = 0.1 0 Sp λ1 = λ2 = 1 500 10 0.01 0.1 0.5 1 500*µε1

Table 4.2: Parameters settings for images in Fig. 4.3.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.4: Comparison with other models of segmentation results of images with

different noise levels (The variance from the first row to the last row: 50, 100, 300). (a)

Original image; segmentation results of (b) LBF model solved by level set method; (c)

LBF model solved by ICTM; (d) RLSF model; (e) CV-XB model; (f) the model in [35];

(g) the ACLBF model.

the blood vessel becomes more challenging. Our results of the ACLBF model are still

reliable for relatively strong noise.
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4.5 Experiments on images with both intensity inhomogeneity

and noise

Finally, we evaluate the ACLBF model on three images with both intensity inhomogene-

ity and strong Gaussian noise. Results of the RLSF model and our model are shown

in Fig.4.5. Table 4.5 records the iteration number and CPU time for the RLSF model

and ACLBF model. Experiment results reveal that the ACLBF model, which combines

the advantages of the LBF model and phase-field term, has a strong capability of seg-

menting images with intensity inhomogeneity and noise. One can see that the iteration

number of the ETDRK2 scheme is generally less than that of the ETD1 scheme for each

segmentation result. In addition, the ETDRK2 scheme also performs better in terms of

CPU time.

Images
RLSF ACLBF-ETD1 ACLBF-ETDRK2

Ite. Time(s) Ite. Time(s) Ite. Time(s)

(a)

Row1 550 5.016371 18 0.168486 13 0.137160

Row2 800 7.218534 19 0.158388 15 0.156374

Row3 460 4.192593 18 0.171649 12 0.136397

Row4 360 3.265598 13 0.122694 12 0.126147

Row5 700 7.312978 21 0.162694 14 0.153064

(d)

Row1 290 2.060543 14 0.124064 8 0.115751

Row2 240 1.654115 21 0.147375 12 0.138367

Row3 240 1.700579 36 0.198531 22 0.153823

Row4 270 1.980383 68 0.262130 34 0.184207

Row5 270 1.899098 58 0.232933 39 0.205767

Table 4.3: Iteration number and CPU time for experiments in Fig.4.5.

5 Conclusion

In this paper, we proposed a novel IGLIM for the initial edge detection. Wherein the

inhomogeneous graph Laplacian operator can be regarded as an anisotropic Laplacian

operator that can recognize most edges of images with intensity inhomogeneity. And the

noise-removal method is applied to remove part of irrelevant noise in the initial contour.

22



(a) (b) (c) (d) (e) (f)

Figure 4.5: (a) and (d) the original images with different Gaussian noise level (The vari-

ance from the first row to the last row: 100, 200, 300, 500 for (a) and 0.001 ∗ 2552, 0.005 ∗
2552, 0.01 ∗ 2552, 0.015 ∗ 2552 for (d)); (b) and (e) corresponding segmentation results

produced by the RLSF model; (c) and (f) corresponding segmentation results of the

ACLBF model.
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Then to achieve a better segmentation of images with noise, we adopt a phase-field

approach to the LBF model. Based on IGLIM, our proposed method avoids artificial

selection of the initial value and obtains a satisfactory segmentation result by solving the

derived Allen-Cahn equation. Besides, the ETD schemes we adopt have energy stability.

The ETDRK2 method usually gives better results with less CPU time in the simulation.

Numerical experiments exhibit that this model with IGLIM can handle various images

effectively and efficiently. Comparison made to other models shows the necessity of the

IGLIM and the strong ability of our phase-field approach for segmenting images with

noise. In fact, our IGLIM and phase-field approach can be applied to many other models

that have issues with robustness on the initialization and noise. Currently, our method

can only solve two-phase image segmentation problems because it is difficult to judge

which phase the edges obtained by IGLIM belong to when dealing with multi-phase

images. In the future, we will employ some classification techniques to generalize our

IGLIM to multi-phase image segmentation problems.
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