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UPPER BOUNDS ON MIXING TIME OF FINITE MARKOV CHAINS

JOHN RHODES AND ANNE SCHILLING

Dedicated to Ron Graham and Vaughan Jones

Abstract. We provide a general framework for computing upper bounds on mixing times of
finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining
results by Brown and Diaconis with our previous work on stationary distributions of finite Markov
chains. Stationary distributions can be computed from the Karnofsky–Rhodes and McCammond
expansion of the right Cayley graph of the finite semigroup underlying the Markov chain. Using
loop graphs, which are planar graphs consisting of a straight line with attached loops, there are
rational expressions for the stationary distribution in the probabilities. From these we obtain
bounds on the mixing time. In addition, we provide a new Markov chain on linear extension of a
poset with n vertices, inspired by but different from the promotion Markov chain of Ayyer, Klee
and the last author. The mixing time of this Markov chain is O(n logn).

1. Introduction

A Markov chain is a model that describes transitions between states in a state space according to
certain probabilistic rules. The defining characteristic of a Markov chain is that the transition from
one state to another only depends on the current state and the elapsed time, but not how the system
arrived there. In other words, a Markov chain is “memoryless”. Markov chains have an abundance
of applications, from data analysis, population dynamics to traffic models.

For a Markov chain, the stationary distribution Ψ is the long-term limiting distribution. Math-
ematically speaking, it is the eigenvector of the transition matrix T of the Markov chain with
eigenvalue one. That is

TΨ = Ψ.

An important question is how quickly does the Markov chain converge to the stationary distribution.
In Markov chain theory, distance is usually the total variation distance or half the L1-norm in classical
analysis. If Ω is the state space, the total variation distance between two probability distributions
ν and µ is defined as

‖ν − µ‖ = max
A⊆Ω

|ν(A)− µ(A)|.

For a given small ǫ > 0, the mixing time tmix is the smallest t such that

‖T tν − Ψ‖ 6 ǫ,

independent of the initial distribution ν.
In seminal work of Bidigare, Hanlon and Rockmore [8], which was continued by Diaconis, Brown,

Athanasiadis, Björner, Chung and Graham, amongst others [15, 9, 14, 10, 11, 3, 18, 44], the special
family of semigroups, now known as left regular bands first studied by Schützenberger [45] in the
forties, was applied to random walks or Markov chains on hyperplane arrangements. In his 1998 ICM
lecture [20], Diaconis discussed these developments. In Section 4.1, entitled What is the ultimate
generalization?, he asks how far the semigroup techniques can be taken.
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Figure 1. The right Cayley graph RCay(S,A) of the semigroup that gives the
Markov chain in (1.1) with generators A = {1, 2, 3}.

Every finite state Markov chain M has a random letter representation, that is, a representation
of a semigroup S acting on the left on the state space Ω. See for example [31, Proposition 1.5]

and [6, Theorem 2.3]. In this setting, there is a transition s
a

−→ s′ with probability 0 6 xa 6 1,
where s, s′ ∈ Ω, a ∈ S and s′ = a.s is the action of a on the state s. It is enough to consider the
semigroup S generated by the elements a with xa > 0, called the generating set A. For example,
the Markov chain with state space Ω = {1, 2} and transition diagram

(1.1) 1 2

2, 3

1

1, 3

2

can be associated to the semigroup with right Cayley graph depicted in Figure 1. The conceptual
reason why a Markov chain described using the left action of a semigroup can be analyzed using
the right Cayley graph is that if time goes left (due to the left action), then coupling from the past
corresponds to right multiplication. The transition matrix in this Markov chain is

T =

(

x1 x1 + x3

x2 + x3 x2

)

.

In the pursuit of finding Diaconis’ ultimate generalization [20], the arguments in Brown and Di-
aconis [15] were generalized to Markov chains for R-trivial semigroups [6]. In [39, 38], the current
authors developed a general theory for computing the stationary distribution for any finite Markov
chain. The theory uses semigroup methods such as the Karnofsky–Rhodes and McCammond ex-
pansion of a semigroup. These expansions give rise to loop graphs which immediately yield Kleene
expressions for all paths from the root of the graph to elements in the minimal ideal of the semigroup.
The Kleene expressions in turn give rational expressions for the stationary distribution.

In this paper we apply the findings of [39, 38] to study upper bounds on the mixing time of
the Markov chain. In particular, Theorems 2.4 and 2.5 provide upper bounds for the mixing time
directly from the rational expression of the stationary distribution in the case when the minimal
ideal of the semigroup is left zero. This general theory is applied to specific examples (Tsetlin library,
edge flipping on a line Markov chain, and a new Markov chain on linear extensions) in Section 3.

The paper is organized as follows. In Section 2, we develop the main theory. In Section 2.6,
we present our main theorems regarding the upper bounds on the mixing time (see Theorems 2.4
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and 2.5). We discuss the relation to the Shannon entropy in Section 2.7. In Section 2.8, we refine
bounds on the mixing time using certain statistics that were developed in [6, 5]. In Section 2.9,
we consider semigroups syntactic at zero. In particular, we prove in Theorem 2.14 that the upper
bounds on the mixing time do not change by replacing the semigroup by its syntactic image. In
Section 2.10, we relate observations on mixing time to d-testable languages. Finally, in Section 3
we consider specific examples such as the Tsetlin library [17], edge flipping on a line [15, 18], and a
new Markov chain on linear extensions of a poset with n vertices, which is inspired by but different
from the promotion Markov chain [4]. This new Markov chain has a mixing time of O(n logn) as
compared to the mixing time of the model of Bubley and Dyer [16] with mixing time O(n3 logn).

Acknowledgments. We are grateful to Arvind Ayyer, Darij Grinberg, John Hunter, Stuart Margo-
lis, Igor Pak, Dan Romik, Eric Severson, Benjamin Steinberg, and Andrew Waldron for discussions.
The last author was partially supported by NSF grants DMS–1760329, DMS–1764153, and DMS–
205335. This material is based upon work supported by the Swedish Research Council under grant
no. 2016-06596 while the author was in residence at Institut Mittag–Leffler in Djursholm, Sweden
during Spring 2020.

An extended abstract of this paper has appeared in the proceedings for FPSAC 2021 [40].

2. Mixing time

Let T be the transition matrix of a finite Markov chain. Assuming that the Markov chain is
ergodic (meaning that it is irreducible and aperiodic), by the Perron–Frobenius Theorem there
exists a unique stationary distribution Ψ and T tν converges to Ψ as t → ∞ for any initial state ν.
A Markov chain is irreducible if the graph of the Markov chain is strongly connected. It is aperiodic
if the gcd of the cycle lengths in the graph of the Markov chain is one. In fact, the stationary
distribution is the right eigenvector of eigenvalue one of T

TΨ = Ψ.

The mixing time measures how quickly the Markov chain converges to the stationary distribution.
For a given small ǫ > 0, tmix is the smallest t such that

‖T tν − Ψ‖ 6 ǫ.

We begin this section by reviewing methods to compute upper bounds on mixing times in Sec-
tion 2.1 (see in particular Theorem 2.1), relations between ideals and semaphore codes and how this
relates to mixing time in Section 2.2, and the Markov and Chernoff inequalities to bound mixing
time in Sections 2.3 and 2.4. The semigroup methods of [39, 38] to compute rational expressions
of the stationary distribution of a Markov chain in terms of the probabilities xa for the generators
a ∈ A of the semigroup are reviewed in Section 2.5. Our main new results for the upper bounds of
the mixing times in terms of truncations of the rational expressions of the stationary distribution
(Theorem 2.4) and using a Cauchy–Euler operator (Theorem 2.5) are stated in Section 2.6. In
Section 2.7 we discuss the relation between Shannon entropy and mixing time. Sections 2.8-2.10
are devoted to new results in special settings, for example for monoids which are syntactic at zero
(Theorem 2.14) and d-testable languages (Remark 2.21).

2.1. Upper bound. Brown and Diaconis [15] [14, Theorem 0] showed, for Markov chains associated
to left regular bands, that the total variational distance from stationarity after t steps is bounded
above by the probability Pr(τ > t), where τ is the first time that the walk hits a certain ideal. The
arguments in Brown and Diaconis [15] can be generalized to arbitrary finite Markov chains (not just
those related to left regular bands). To state the details, we need some more notation.

Let M(S,A) be a finite state Markov chain with state space Ω and transition matrix T associated
to the semigroup S with generators A with probabilities 0 < xa 6 1 for a ∈ A.

A two-sided ideal I (or ideal for short) is a subset I ⊆ S such that uIv ⊆ I for all u, v ∈ S1,
where S1 is the semigroup S with identity 1 added (even if S already contains an identity). If I, J



4 J. RHODES AND A. SCHILLING

are ideals of S, then IJ ⊆ I ∩ J , so that I ∩ J 6= ∅. Hence every finite semigroup has a unique
nonempty minimal ideal denoted K(S).

Assume that the minimal ideal K(S) is left zero, that is, xy = x for all x, y ∈ K(S). This
assumption implies that the Markov chain on the minimal ideal (given by the left action) is ergodic.
Let τ be the random variable which is the time that the random walk is absorbed into the minimal
ideal K(S).

Theorem 2.1. [6] Let S be a finite semigroup whose minimal ideal K(S) is a left zero semigroup
and let T be the transition matrix of the associated Markov chain. Then

‖T tν −Ψ‖ 6 Pr(τ > t).

Proof. By [6, Corollary 3.5(3)], we have

‖T tν −Ψ‖ 6 P ⋆t(S \K(S)),

where P ⋆n denotes the n-th convolution power of P . By [6, Eq. (4.6)], the right hand side equals
Pr(τ > t). �

2.2. Ideals and semaphore codes. Let A be a finite alphabet, A+ the set of all nonempty words
in the alphabet A, and A⋆ the set of all words in the alphabet A.

As shown in [41], ideals in A+ are in bijection with semaphore codes [7]. A prefix code is a subset
of A+ such that all elements are incomparable in prefix order (meaning that no element is the prefix
of any other element of the code). A semaphore code S is a prefix code such that AS ⊆ SA⋆. There
is a natural left action on a semaphore code. If u ∈ S ⊆ A+ and a ∈ A, then au has a prefix in S
(and hence a unique prefix of au). The left action a.u is the prefix of au that is in S. Assigning
probability 0 6 xa 6 1 to a ∈ A, the left action on a semaphore code S defines a Markov chain with
a countable state space S.

The bijection between ideals I ⊆ A+ and semaphore codes S over A is given as follows (see [41,
Proposition 4.3]). If u = a1a2 . . . aj ∈ I ⊆ A+, find the (necessarily unique) index 1 6 i 6 j such
that a1 . . . ai−1 6∈ I, but a1 . . . ai ∈ I. Then a1 . . . ai is a code word and the set of all such words
forms the semaphore code S. Conversely, given a semaphore code S, the corresponding ideal is SA⋆.

In this setting, τ can be interpreted as the random variable given by the length of the semaphore
code words. Let S be a semaphore code and I the ideal under the bijection described above. A
semaphore code word s = s1s2 . . . sℓ has the property that s ∈ I, but s1s2 . . . sℓ−1 6∈ I. Hence τ can
be interpreted as the random variable given by the length ℓ.

Next we discuss two ways to approximate Pr(τ > t) using Markov’s and Chernoff’s inequality.

2.3. Markov’s inequality. By Markov’s inequality (see for example [31, 19]), we have

(2.1) Pr(τ > t) 6
E[τ ]

t+ 1
,

where E[τ ] is the expected value for τ , the first time the walk hits the ideal. We have

(2.2) E[τ ] =

∞
∑

a=1

Pr(τ > a).

2.4. Chernoff’s inequality. Chernoff’s inequality uses the moment generating function combined
with Markov’s inequality (2.1) to give an upper bound on Pr(τ > t). More precisely,

Pr(τ > t) = Pr(esτ > est) for s > 0.

Hence by Markov’s inequality (2.1)

Pr(τ > t) 6
E[esτ ]

est

and since this is true for all s > 0

Pr(τ > t) 6 min
s>0

{

E[esτ ]

est

}

.
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2.5. Rational expressions for stationary distributions. Let M(S,A) be the Markov chain
associated to the finite semigroup S with generators in A. Assume that its minimal ideal K(S) is
left zero, so that K(S) can be taken as the state space Ω of the Markov chain. Denote by S(S,A)
the semaphore code associated to K(S) (see Section 2.2). For a word s ∈ A+, we denote by [s]S the
image of the word in the alphabet A in S. The following theorem is stated in [39, Corollaries 2.23
& 2.28].

Theorem 2.2. [39] If K(S) is left zero, the stationary distribution of the Markov chain M(S,A)
labeled by w ∈ K(S) is given by

(2.3) Ψw(x1, . . . , xn) =
∑

s∈S(S,A)

[s]S=w

∏

a∈s

xa.

In [39, 38], we developed a strategy using loop graphs to compute the expressions in Theorem 2.2
as rational functions in the probabilities xa for a ∈ A. This is done in several steps:

(1) We used the McCammond and Karnofsky–Rhodes expansion Mc ◦ KR(S,A) of the right
Cayley graph RCay(S,A) of the semigroup S with generators A. In this paper we do not
require the details of these definitions, except that the right Cayley graph as well as its
expansions are rooted graphs with root 1. The Karnofsky–Rhodes expansion is another right
Cayley graph, whereas the McCammond expansion is only an automata. For the precise
definition of the Karnofsky–Rhodes expansion, we refer the reader to [34, Definition 4.15],
[33, Section 3.4], [38, Section 2.4], and [42, Section 2]. For the definition of the McCammond
expansion, we refer the reader to [34, Section 2.7] and [38, Section 2.5]. The Markov chain
M(S,A) is a lumping [31] of the Markov chains associated to the expansions.

(2) The stationary distributions of the Markov chains associated to the expansions can be ex-
pressed using loop graphs G, see [38]. A loop graph is a straight line path from 1 to an
endpoint s with directed loops of any finite length attached recursively to any vertex (be-
sides 1 and s). In this way [38, Theorem 1.4]

(2.4) Ψw(x1, . . . , xn) =
∑

G

ΨG(x1, . . . , xn),

where the sum is over certain loop graphs G with end point s such that [s]S = w. Here [38,
Definition 1.3]

(2.5) ΨG(x1, . . . , xn) =
∑

p

∏

a∈p

xa,

where the sum is over all paths p in G starting at 1 and ending in s.
(3) There is a Kleene expression for the set of all paths from 1 to s in G. The Kleene expression

immediately yields a rational expression for the stationary distribution ΨG(x1, . . . , xn) and
hence Ψw(x1, . . . , xn) by (2.4).

Remark 2.3. An important property of the above construction is that in the series expansion of
the rational expression for Ψw(x1, . . . , xn) (resp. ΨG(x1, . . . , xn)) the total degree of each term
corresponds to the length of the underlying semaphore code word in (2.3) (resp. the underlying
path in G in (2.5)).

2.6. Mixing time via truncation of Kleene expressions. As stated in Theorem 2.1, Pr(τ > t)
provides an upper bound on the mixing time in the setting that K(S) is left zero. As discussed
in Section 2.2, τ can be interpreted as the random variable given by the length of the semaphore
code words or paths in the loop graph. To compute Pr(τ > t), one needs to compute the sum of
probabilities of all paths of length weakly greater than t. By Remark 2.3, the length of the paths
is given by the total degree in the probability variables x1, . . . , xn for the generators a1, . . . , an of
the semigroup S. Hence we obtain Pr(τ > t) by truncating the rational function for the stationary
distribution to total degree weakly bigger than t.
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Let Ψ>t
w (x1, . . . , xn) be the truncation of the formal power series associated to the rational function

Ψw(x1, . . . , xn) to terms of degree weakly bigger than t and let Ψ<t
w (x1, . . . , xn) be the truncation of

the formal power series associated to the rational function Ψw(x1, . . . , xn) to terms of degree strictly
smaller than t. Note that

Ψw(x1, . . . , xn) = Ψ<t
w (x1, . . . , xn) + Ψ>t

w (x1, . . . , xn).

Theorem 2.4. Suppose the Markov chain satisfies the conditions of Theorem 2.1. If Ψw(x1, . . . , xn)
is represented by a rational function such that each term of degree ℓ in its formal power sum expansion
corresponds to a semaphore code word s of length ℓ with [s]S = w, we have

Prw(τ > t) =
Ψ>t

w (x1, . . . , xn)

Ψw(x1, . . . , xn)
= 1−

Ψ<t
w (x1, . . . , xn)

Ψw(x1, . . . , xn)
.

For each w ∈ K(S), we can also give an explicit formula for the expected number of steps Ew[τ ]
it takes to reach the endpoint of w using the Cauchy–Euler operator.

Theorem 2.5. Suppose the Markov chain satisfies the conditions of Theorem 2.1. If Ψw(x1, . . . , xn)
is represented by a rational function such that each term of degree ℓ in its formal power sum expansion
corresponds to a semaphore code word s of length ℓ with [s]S = w, we have

Ew[τ ] =

(

n
∑

i=1

xi

∂

∂xi

)

lnΨw(x1, . . . , xn).

Remark 2.6. Note that the formal expression for Ψw(x1, . . . , xn) cannot be manipulated using that
x1 + · · ·+ xn = 1 when using Theorems 2.4 and 2.5.

Proof of Theorem 2.5. Let the formal power sum expression for the rational function Ψw(x1, . . . , xn)
be as follows

Ψw(x1, . . . , xn) =
∑

m1,...,mn>0

cm1,...,mn
xm1
1 · · ·xmn

n .

Then formally

(

n
∑

i=1

xi

∂

∂xi

)

lnΨw(x1, . . . , xn) =

(

∑n

i=1 xi
∂

∂xi

)

Ψw(x1, . . . , xn)

Ψw(x1, . . . , xn)

=

∑

m1,...,mn>0 cm1,...,mn
(m1 + · · ·+mn)x

m1
1 · · ·xmn

n
∑

m1,...,mn>0 cm1,...,mn
xm1
1 · · ·xmn

n

.

Note that a term xm1
1 · · ·xmn

n of degree m1 + · · · + mn corresponds to a semaphore code word of
length m1 + · · ·+mn. Hence cm1,...,mn

(m1 + · · ·+mn)x
m1
1 · · ·xmn

n /Ψw(x1, . . . , xn) is the length of
the path times the probability of having taken a path with mi steps along the i-th generator. The
sum over all such terms is precisely Ew[τ ]. �

Remark 2.7. Let PrG(τ > t) be the probability that the length of the paths in the loop graph G
from 1 to the end point s is weakly bigger than t. Then by analogous argument as above, we also
have

(2.6) PrG(τ > t) =
Ψ>t

G (x1, . . . , xn)

ΨG(x1, . . . , xn)
= 1−

Ψ<t
G (x1, . . . , xn)

ΨG(x1, . . . , xn)

and

(2.7) EG[τ ] =

(

n
∑

i=1

xi

∂

∂xi

)

lnΨG(x1, . . . , xn).

Example 2.8 (Single loop). Suppose the path in the loop graph G from 1 to the ideal is a straight
line with a single loop
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1

r s

where the loop is taken with probability p and the step to the ideal r → s with probability 1 − p.
Then the probability that one starts at 1 and hits the element s in the ideal in precisely t steps is

PrG(τ = t) = (1− p)pt−2 for t > 2.

Hence

(2.8) PrG(τ > t) =

∞
∑

j=t

PrG(τ = j) = (1− p)pt−2
∞
∑

j=0

pj = (1− p)pt−2 1

1− p
= pt−2 for t > 2.

The expectation value is

(2.9) EG[τ ] =

∞
∑

t=1

PrG(τ > t) = 1 +

∞
∑

t=2

pt−2 = 1 +
1

1− p
.

Indeed by Markov’s inequality

tpt−2
6 1 +

1

1− p
for all t > 2.

Now let us use (2.6) to compute PrG(τ > t). Suppose that the step 1 → r is labelled by the
generator 1, the loop from r to r is labelled 2, and the step r → s is labelled 3. Then the Kleene
expression for the paths from 1 to s is

12⋆3.

Let the probability for generator i be xi for i ∈ {1, 2, 3}. Then by [39]

ΨG(x1, x2, x3) =
x1x3

1− x2
= x1x3

∞
∑

j=0

xj
2.

By (2.6), we obtain PrG(τ > t) = 1 for t = 0, 1 and

PrG(τ > t) =
x1x3

∑∞
j=t−2 x

j
2

x1x3

∑∞
j=0 x

j
2

= xt−2
2 for t > 2.

This agrees with (2.8), where x2 = p.
Next let us use (2.7) to compute EG[τ ]

EG[τ ] =

(

x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)

lnΨG(x1, x2, x3) = 2 +
x2

1− x2
= 1 +

1

1− x2
,

which agrees with (2.9) when x2 = p.

2.7. Shannon entropy and exponential bounds. It turns out that the mixing time has close
ties to information theory and in particular Shannon’s entropy. See [43] and [24, Chapter 3] as
references on information theory.

Let X be a random variable with probability distribution p(x). The amount of information of an
elementary event x is log 1

p(x) . Therefore, the average amount of information about X is given by

the expected value, known as Shannon’s entropy

(2.10) H(X) = E[log
1

p
] =

∑

x∈X

p(x) log
1

p(x)
.

Shannon’s entropy features in the asymptotic equipartition property or entropy ergodic theorem,
which can be stated as follows [46] (see also [43]). Let x = (x1, . . . , xt) be a long sequence of indepen-
dent and identically distributed outcomes with probability distribution p(x). By the independence,



8 J. RHODES AND A. SCHILLING

p(x) is given by the product

p(x) = p(x1)p(x2) · · · p(xt) =
∏

x∈X

p(x)t(x),

where t(x) is the number of xi equal to x. Since t is large, by the law of large numbers

t(x)

t
≈ p(x),

which implies

(2.11) p(x) ≈
(

∏

x∈X

p(x)p(x)
)t

= e−tH(X).

In other words, for very large (but fixed) t, the value of the probability of a given “typical” sequence
x = (x1, x2, . . . , xt) is likely to be close to the constant e−tH(X).

The precise formulation of the asymptotic equipartition property is the Shannon–McMillan–
Breiman Theorem [46, 35, 12] (see also [24, Chapter 4]). Applied to P ⋆t(S \K(S)) in Theorem 2.1,
this gives an exponential bound on ‖T tν−Ψ‖. In probability, this is also known as the Convergence
Theorem (see [31, Theorem 4.9]).

Theorem 2.9 (Convergence Theorem). Suppose T is the transition matrix of an ergodic Markov
chain with stationary distribution Ψ. Then there exist constants α ∈ (0, 1) and C > 0 such that

‖T tν −Ψ‖ 6 Cαt.

A concept related to entropy is the entropy rate. It is defined as the rate of information innovation

H ′ = lim
t→∞

H(Xt | Xt−1, . . . , X1).

When Xi is stationary, the entropy rate is equal to the average entropy per symbol

H = lim
t→∞

H(X1, . . . , Xt)

t
,

that is H ′ = H .
Since an ergodic Markov chain has a unique stationary distribution Ψ, the entropy rate is inde-

pendent of the initial distribution. If the Markov chain is defined on the finite (or countable) state
space Ω, then

H ′ = −
∑

s,s′∈Ω

Ts,s′Ψs′ log(Ts,s′).

A simple consequence of this definition is that indeed a stochastic process with independent and
identically distributed random variables has an entropy rate that is the same as the entropy of any
individual member of the process.

2.8. Mixing time via decreasing statistics. In [6, 5], a technique was developed for an upper
bound on the mixing time using a decreasing statistics on the semigroup underlying the Markov
chain.

Lemma 2.10. [6, Lemma 3.6] Let M be an irreducible Markov chain associated to the semigroup
S and probability distribution 0 6 p(s) 6 1 for s ∈ S. We assume that {s ∈ S | p(s) > 0} generates
S. Let Ψ be the stationary distribution and f : S → N be a function, called a statistic, such that:

(1) f(ss′) 6 f(s) for all s, s′ ∈ S;
(2) if f(s) > 0, then there exists s′ ∈ S with p(s′) > 0 such that f(ss′) < f(s);
(3) f(s) = 0 if and only if s ∈ K(S).
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Then if p = min{p(s) | s ∈ S, p(s) > 0} and L = f(1), we have that

‖T tν −Ψ‖TV 6

L−1
∑

i=0

(

t

i

)

pi(1− p)t−i 6 exp

(

−
(tp− (L− 1))2

2tp

)

,

for any probability distribution ν on S, where the last inequality holds as long as t > (L− 1)/p.

The bound
L−1
∑

i=0

(

t

i

)

pi(1 − p)t−i 6 exp

(

−
(tp− (L− 1))2

2tp

)

works well for p close to 1
2 . A better bound for 0 < L−1

t
< p is given by [2]

L−1
∑

i=0

(

t

i

)

pi(1− p)t−i 6 exp

(

−t D
(L− 1

t

∥

∥

∥ p
)

)

,

where

D(a ‖ p) = a log
a

p
+ (1− a) log

1− a

1− p
.

This can be rewritten as
L−1
∑

i=0

(

t

i

)

pi(1− p)t−i 6

(p

a

)ta
(

1− p

1− a

)t(1−a)

,

where a = L−1
t

.

2.9. Syntactic at 0. Syntactic monoids were introduced in mathematics and computer science as
the smallest monoid that recognizes a given formal language, see for example [48]. Here we develop
this idea in the context of the mixing time.

Recall that for a semigroup S, denote by S1 the semigroup S with a new added identity 1 (even
if a one already exists).

Definition 2.11. Let S be a semigroup with zero 0. Define the congruence on s1, s2 ∈ S by

(2.12) s1 ≡ s2 if and only if
(

for any x, y ∈ S1 xs1y = 0 ⇐⇒ xs2y = 0
)

.

Then S is called syntactic at zero if the congruence (2.12) has singleton classes, that is,

S/ ≡ ∼= S.

We call S/ ≡ the syntactic image of S, which is syntactic at zero. In other words, the syntactic
semigroup associated to S is the smallest image under the homomorphism f : S → S/ ≡ such that
f−1(0) = 0.

Example 2.12. Consider the semigroup S = {0, 1, 2, . . . , n}, where multiplication is taking the
minimum. The ≡-classes are given by {1, 2, . . . , n} and {0}. Hence, the syntactic semigroup S/ ≡
associated to S is isomorphic to {0, 1} with multiplication being minimum.

Example 2.13. The Rees matrix semigroup (S; I, I ′;P ) is indexed by a semigroup S, two non-
empty sets I and I ′, and a matrix P indexed by I and I ′ with entries pi′,i ∈ S (see for example [39,
Section 3.4]). It is the set I × S × I ′ with multiplication

(i, s, i′)(j, t, j′) = (i, spi′,jt, j
′).

The Rees matrix semigroup with zero (S; I, I ′;P )� is the set I × S × I ′ ∪ {�}, where the entries in
P are in S ∪ {�}, with multiplication

(i, s, i′)(j, t, j′) =

{

(i, spi′,jt, j
′) if pi′,j 6= �,

� otherwise.
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Then the syntactic image of (S; I, I ′;P )� is isomorphic to ({1}; Ĩ, Ĩ ′; P̃ ), where P̃ is a matrix of 0
and 1 without equal rows or columns.

It turns out that we can replace a semigroup with zero with its syntactic image without changing
the upper bound on the mixing time of the underlying Markov chain, but the stationary distribution
can change.

Theorem 2.14. Let (S,A) be a finite semigroup S with zero and generators A, whose minimal ideal
K(S) is a left zero semigroup. Then the Markov chains associated to (S,A) and (S/ ≡, f(A)) have
the same upper bound Pr(τ > t) on the mixing time.

Remark 2.15.

(1) If the probability associated to the generator a ∈ A is xa, then the probability associated to
the generator b ∈ f(A) is

∑

a∈f−1(b) xa.

(2) Note that the stationary distributions of the Markov chains associated to (S,A) and
(S/ ≡, f(A)) may differ.

Proof of Theorem 2.14. Let S be the semaphore code corresponding to the ideal K(S). Then for
a codeword s ∈ S, f(s) is a codeword in the semaphore code corresponding to K(S/ ≡). If the
probabilities match up as in Remark 2.15, the random variable τ matches and hence the upper
bound on the mixing time determined from Pr(τ > t) matches. �

Theorem 2.14 is powerful in the sense that the upper bound on the mixing time for Markov
chains with potentially complicated stationary distributions can be deduced from those for small
semigroups which are syntactic at zero.

Example 2.16. Let us continue with Example 2.12. The semigroup (S,A) with S = {0, 1}, A =
{a, b} and a = 0, b = 1 is syntactic. The minimal ideal K(S) is A⋆aA⋆ and the semaphore code is
S = b⋆a = {bja | j > 0}. The left action on S is given by

a · bja = a (reset to a),

b · bja = bj+1a (free),

with stationary distribution

Ψbja = xj
bxa for j > 0.

Note that

E[τ ] =

∞
∑

j=0

(j + 1)xj
bxa = xa

∂

∂xb





∞
∑

j=0

xj+1
b



 = xa

∂

∂xb

xb

1− xb

=
xa

(1− xb)2
=

1

xa

.

In contrast, let us compute

Pr(τ > t) =
∞
∑

j=t

xj
bxa =

xax
t
b

1− xb

= xt
b.

Indeed Pr(τ > t) 6 E[τ ]
t+1 as in Example 2.8.

Example 2.17. We can amend Example 2.16 by making the semigroup finite and aperiodic by
imposing bw = bw+1. Using the methods in [39] (or comparing the in-flow with the out-flow), the
stationary distribution can be derived to be

Ψbja = xj
bxa for 0 6 j < w,

Ψbwa =
xax

w
b

1− xb

.

The associated syntactic semigroup is ({0, 1}, A), which means by Theorem 2.14 that the upper
bound on the mixing time is unchanged, even though the stationary distribution is different.
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Example 2.18. Let (S,A) be an arbitrary finite semigroup with generators A = {a1, . . . , ak} (with
or without zero). Let S� be the semigroup with a zero � adjoined. Then

(

S�/ ≡
)

= ({�, 1}, A ∪ {�}).

In this setting the stationary distribution can be complicated, however the upper bound on the
mixing time is trivial by Theorem 2.14

Pr(τ > t) = (1 − x�)
t.

Example 2.19. Consider the Rees matrix semigroup S = B(2) of [39, Example 3.3] with generators
A = {a, b}, where a = (1, 2) and b = (2, 1). The minimal ideal K(S) is A⋆{aa, bb}A⋆ with semaphore
code

S = {(ab)⋆aa, (ba)⋆bb, b(ab)⋆aa, a(ba)⋆bb}.

The left action on S is given by

a · (ab)jaa = aa (reset),

a · (ba)jbb = a(ba)jbb (free),

a · b(ab)jaa = (ab)j+1aa (free),

a · a(ba)jbb = aa (reset),

and similarly with a and b interchanged. Note that

Pr(τ > 2k) =

∞
∑

j=k

(x2
a + x2

b + xa + xb)(xaxb)
j =

(xaxb)
k(x2

a + x2
b + 1)

1− xaxb

= 2(xaxb)
k,

Pr(τ > 2k + 1) =

∞
∑

j=k

(x2
a + x2

b + x2
axb + x2

bxa)(xaxb)
j =

(xaxb)
k(x2

a + x2
b + xaxb)

1− xaxb

= (xaxb)
k,

which by Theorem 2.1 gives an upper bound on the mixing time.

Example 2.20. Consider the Rees matrix semigroup (see Example 2.13) with I = I ′ = {1, 2},
S = {0, 1},

P =

(

1 1
0 1

)

,

and generators A = {a, b} with a = (1, 1, 2) and b = (2, 1, 1). The minimal ideal is A⋆aaA⋆ with
semaphore code S = b⋆(abb⋆)⋆aa. The left action on S is given by

a · bj

(

ℓ
∏

k=1

abbek

)

aa =

{

abj
(

∏ℓ
k=1 abb

ek

)

aa if j > 0 (free),

aa if j = 0 (reset),

b · bj

(

ℓ
∏

k=1

abbek

)

aa = bj+1

(

ℓ
∏

k=1

abbek

)

aa (free).

In this case, the bound on the mixing time is given by

Pr(τ > k) = x2
a

∑

j>k−1

⌊ j
2 ⌋
∑

i=0

(

j − i

i

)

xi
ax

j−i
b .
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2.10. Ideals and d-testable languages. As we have seen, ideals are important in the study of
Markov chains in the context of semigroups. In addition, ideals are closely related to semaphore
codes.

Let (Sj , A) be two semigroups with zero for j = 1, 2 with the same generating set A and Ij the
ideal of strings in A+ that is zero in (Sj , A) for j = 1, 2. Let Sj for j = 1, 2 be the semaphore code
associated to the ideal Ij . Recall that through the left action of A+ on Sj we have two Markov
chains.

Remark 2.21 (Ideal principle). If I1 ⊆ I2, the upper bound on the mixing time of the Markov
chain associated to S2 is smaller or equal to the upper bound on the mixing time of the Markov
chain associated to S1.

Remark 2.21 is true since by [6, Corollary 3.5(3)] the mixing time is bounded above by P ⋆t(S \
K(S)) (see Theorem 2.1). If I1 ⊆ I2, we hence have

P ⋆t(S2 \ I2) 6 P ⋆t(S1 \ I1),

since Ij consists of all words in A+ which are zero in Sj .
By Remark 2.21 we want to study Markov chains with the smallest ideals as they have the worst

mixing time. To this end, we will study the complete lattice of ideals of A⋆. All ideals (including ∅)
of A⋆ form a complete lattice under union and intersection.

Lemma 2.22. Every nonempty ideal I has a descending chain

I ⊃ A⋆t1A
⋆ ⊃ A⋆t2A

⋆ ⊃ · · · ⊃ A⋆tkA
⋆ ⊃ · · · .

Proof. Since I 6= ∅, there exists an element t1 ∈ I. The unique smallest length element in A⋆t1A
⋆ is

of length |t1|. Choose t2 ∈ A⋆t1A
⋆ with |t2| > |t1|. Then A⋆t1A

⋆ ⊃ A⋆t2A
⋆ and repeat. �

Some ideals I have an infinite ascending chain

I ⊂ I1 ⊂ I2 ⊂ · · ·

and some do not. Let A = {a, b}. Then A⋆ \ {a}, for example, does not have an infinite ascending
chain. On the other hand (compare also with Example 2.20)

A⋆aaA⋆ ⊂ A⋆aaA⋆ ∪ A⋆abaA⋆ ⊂ · · · ⊂
k
⋃

j=0

A⋆abjaA⋆ ⊂ · · ·

does.
Every ideal I ⊆ A+ has a unique set of minimal generators, namely all t = a1a2 · · · aℓ−1aℓ ∈ I

such that a1 · · · aℓ−1 6∈ I and a2 · · ·aℓ 6∈ I. Hence by Lemma 2.22, the smallest ideals are of the
form A⋆tA⋆, where |t| is big. Since by Remark 2.21 smaller ideals have worse upper bounds on the
mixing times, we would like to analyze ideals of the form A⋆tA⋆, where |t| is large. This is related
to d-testable languages, which are finite ideals generated by

⋃n

i=1 A
⋆tiA

⋆, see [49].
Let t ∈ A+. The minimal automata Test(t) accepting the language A⋆tA⋆ for t = a1a2 . . . aℓ is

given as follows. There are ℓ + 1 states: 1, a1, a1a2, . . . , a1 . . . aℓ−1, a1 . . . aℓ ≡ 0. We have q
a

−→ qa

if both q and qa are prefixes of t and otherwise q
a

−→ 1.
Using [38, Definition 3.5], Test(t) can be transformed into a loop graph with loops labeled by

words w ∈ A+ such that |w| 6 ℓ, w = w1 · · ·wk is not a prefix of t, but w1 · · ·wk−1 is a prefix of t.
Let us denote the set of all such words Wt. Hence the Kleene expression for the paths in Test(t) is
(∪w∈Wt

{w})⋆ t and hence the stationary distribution is

Ψt =
xa1 · · ·xaℓ

1−
∑

w∈Wt

∏

a∈w xa

.

By Theorem 2.5 we obtain

Et[τ ] = ℓ+

∑

w∈Wt
|w|
∏

a∈w xa

1−
∑

w∈Wt

∏

a∈w xa

,
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which gives an upper bound on the mixing time using the Markov inequality (2.1). Theorem 2.4
can also be used to obtain an upper bound on the mixing time using the series expansion of Ψt.

Remark 2.23. The loop graphs in [38] are not allowed to have loops at vertex 1. Here we do allow
loops at 1. To remedy the situation, one could rename 1 by 1 and have an edge with probability 1
from 1 to 1.

Example 2.24. Let A = {a, b} and t = aba. Then Test(t) can be depicted by

1

a ab aba = 0
a b a
a

b

b a, b

The corresponding loop graph is

1

a ab aba

•

••

a b a
b

aa

a

b

b

Hence the stationary distribution is

Ψaba =
x2
axb

1− xb − x2
a − xax2

b

.

By Theorem 2.5, this hence gives

Et[τ ] = 3 +
xb + 2x2

a + 3xax
2
b

1− xb − x2
a − xax2

b

.

Example 2.25. Now let us take A = {a, b} and t = aℓ. In this case Wt = {akb | 0 6 k < ℓ} and
hence

Ψt =
xℓ
a

1−
∑ℓ−1

k=0 x
k
axb

with an upper bound for the mixing time given by

Et[τ ] = ℓ+

∑ℓ−1
k=0(k + 1)xk

axb

1−
∑ℓ−1

k=0 x
k
axb

using (2.1).

3. Examples

In this section, we analyze the mixing time of several examples using the methods developed
in Section 2. In Section 3.1 we derive upper bounds for the mixing time of the famous Tsetlin
library [17] and in Section 3.2 for edge flipping on a line [18]. In Section 3.3, we provide a new
Markov chain on linear extension of a poset with n vertices, inspired by but different from the
promotion Markov chain of Ayyer, Klee and the last author. The mixing time of this Markov chain
is O(n log n) (Theorem 3.11).
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1

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

1 2 3

2
3

1
2

3

1

3
2 1

1 2 3

1, 2 1, 3 2, 3

1, 2, 3

Figure 2. The right Cayley graph RCay(S,A) with S = P (3) and A = {1, 2, 3}.
Transition edges are drawn in blue.

3.1. The Tsetlin library. The Tsetlin library [17] is a Markov chain whose states are all permuta-
tions Sn of n books (on a shelf). Given π ∈ Sn, construct π

′ ∈ Sn from π by removing book a from

the shelf and inserting it to the front. In this case write π
a

−→ π′. Let 0 < xa 6 1 be probabilities
for each 1 6 a 6 n such that

∑n

a=1 xa = 1. In the Tsetlin library Markov chain, we transition

π
a

−→ π′ with probability xa. The stationary distribution for the Tsetlin library was derived by
Hendricks [26, 27] and Fill [22]

(3.1) Ψπ =

n
∏

i=1

xπi

1−
∑i−1

j=1 xπj

for all π ∈ Sn.

The stationary distribution was derived using right Cayley graphs and their Karnofsky–Rhodes and
McCammond expansions in [39, Section 3.1].

Consider the semigroup P (n), which consists of the set of all non-empty subsets of {1, 2, . . . , n}.
Multiplication in P (n) is union of sets. We pick as generators A = [n] := {1, 2, . . . , n}. Then the
right Cayley graph RCay(P (n), [n]) is the Boolean poset with 1 as root. The right Cayley graph
for P (3) is depicted in Figure 2. Except for the loops at a given vertex, all edges are transitional.
Hence Mc ◦KR(P (n), [n]) = KR(P (n), [n]) is a tree with leaves given by the permutations Sn of [n].
The case n = 3 is depicted in Figure 3.

To obtain an upper bound on the mixing time, we compute E[τ ] from the Karnofsky–Rhodes
expansion of the right Cayley graph. The ideal consists of the leaves of the tree KR(P (n), [n]), which
are labeled by permutations in Sn. Recall that E[τ ] can be computed via (2.2). Any path from 1

to the ideal is of length at least n. Hence Pr(τ > t) = 1 for 1 6 t 6 n.
Now for concreteness consider the loop graph G associated to the path from 1 to 12 . . . n in

Mc◦KR(P (n), [n]). The contributions of the loops can be treated in a similar fashion to Example 2.8.
The Kleene expression for all paths from 1 to 12 . . . n is given by

11⋆2{1, 2}⋆3{1, 2, 3}⋆ . . . {1, 2, . . . , n− 1}⋆n.

Hence we obtain (compare with (3.1))

ΨG(x1, . . . , xn) =
x1 · · ·xn

(1 − x1)(1 − x1 − x2) · · · (1− x1 − · · · − xn−1)

and by Theorem 2.5

(3.2) EG[τ ] = n+
x1

1− x1
+

x1 + x2

1− x1 − x2
+ · · ·+

x1 + · · ·+ xn−1

1− x1 − · · · − xn−1
,
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1

1 2 3

12 13 21 23 31 32

123 132 213 231 312 321

1 2 3

2 3 1 3 1 3

3 2 3 1 2 1

1 2 3

1, 2 1, 3 1, 2 2, 3 1, 3 2, 3

1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

Figure 3. Mc ◦ KR(P (3), [3]) = KR(P (3), [3]), which is the Karnofsky–Rhodes
expansion of the right Cayley graph of Figure 2.

which can also be checked directly. If xi =
1
n
for all 1 6 i 6 n, we hence have

(3.3) EG[τ ] = n+
1

n− 1
+

2

n− 2
+ · · ·+

n− 1

1
= n

(

n
∑

i=1

1

i

)

.

The last equality can be proved by induction on n. It is well-known that the sequence tn =
∑n

i=1
1
i
−

ln(n) approaches the Euler–Mascheroni constant γ as n → ∞. Therefore

E[τ ] = EG[τ ] 6 n ln(n) + nγ

and by (2.1)

‖T tν − π‖ 6
n ln(n) + nγ

t+ 1
.

Nestoridi [36] has proven upper/lower bounds for the mixing time of the separation distance.
Pike [37] has discussed the eigenfunctions of the transition matrix. Note that, given the rational
expression of the stationary distribution (3.1), our methods work for general weights xi. Truncating
the degree of the expansion of the stationary distribution (3.1) gives a precise expression for an
upper bound of the mixing time by Theorem 2.4.

3.2. Edge flipping on a line. In [39, Section 3.2], we treated the Markov chain obtained by edge
flipping on a line using the semigroup methods of [39]. Take a line with n+ 1 vertices. Each vertex
can either be 0 or 1. So the state space is Ω = {0, 1}n+1 of size 2n+1. Pick edge i for 1 6 i 6 n
(between vertices i and i + 1) with probability xi. Then with probability 1

2 make the adjacent
vertices both 0 (respectively both 1). Let us call this Markov chain M. This Markov chain is a
Boolean arrangement [8] for which the stationary distribution was derived in [15] and which was
also analyzed in [18].

In [39, Section 3.2], we analyzed the stationary distribution in a similar fashion to the Tsetlin
library by considering the semigroup P±(n), which is the set of signed subsets of [n]. That is, take
a subset of [n] and in addition associate to each letter a sign + or −. Right multiplication of such a
subset X by a generator x ∈ [±n] := {±1, . . . ,±n} is addition of x to X if neither x nor −x are in
X and otherwise return X . The minimal ideal in the Karnofsky–Rhodes expansion of this monoid
is the set of signed permutations S±

n . In the Markov chain on the minimal ideal, we transition from

π
a

−→ π′ with probability ya for a ∈ [±n], where π′ is obtained from π by prepending a to π and
removing the letter a or −a from π. The stationary distribution associated to π ∈ S±

n was computed
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to be

(3.4) ΨKR(P±(n),[±n])
π =

n
∏

i=1

yπi

1−
∑i−1

j=1(yπj
+ y−πj

)
.

The stationary distribution for a word s ∈ Ω for the Markov chain M is a lumping (or sum) of the

Ψ
KR(P±(n),[±n])
π in (3.4). By the same analysis as in Section 3.1 the mixing time for M is of order

O(n ln(n)).

3.3. Promotion Markov chain. Let P be a partially ordered set , also known as a poset , on n
elements with partial order 4. A partial order must be reflexive (a 4 a for all a ∈ P ), antisymmetric
(a 4 b and b 4 a implies a = b for a, b ∈ P ), and transitive (a 4 b and b 4 c implies a 4 c for
a, b, c ∈ P ). We assume that the elements of P are labeled by integers in [n] := {1, 2, . . . , n} such
that if i, j ∈ P with i 4 j then i 6 j as integers. Let L := L(P ) be the set of linear extensions of P
defined as

L(P ) = {π ∈ Sn | i ≺ j in P =⇒ π−1
i < π−1

j as integers}.

In computer science, linear extensions are also known as topological sortings [29, 30]. Computing
the number of linear extensions is an important problem for real world applications [28]. For example,
it relates to sorting algorithms. Suppose one wants to schedule a sequence of tasks based on their
dependencies. Specifying that a certain task has to come before another task gives rise to a partial
order. A linear extension gives a total order in which to perform the jobs. In social sciences, linear
extensions are used in voting procedures [23, 1], where voters rank the candidates according specified
traits (view on foreign policies, view on domestic policies etc). A recursive formula for the number
of linear extensions for a given poset P was given in [21]. Brightwell and Winkler [13] showed
that counting the number of linear extensions is #P -complete. Bubley and Dyer [16] provided an
algorithm to (almost) uniformly sample the set of linear extensions of a finite poset of size n with
mixing time O(n3 logn). In [4], the promotion Markov chain was introduced, which is a random
walk on the linear extensions of a finite poset P . Here we discuss a variant of the promotion Markov
chain which has mixing time of order O(n log n).

3.3.1. The model. We now explain the promotion Markov chain introduced in [4]. For a given poset
P with n vertices, the state space of the promotion Markov chain is the set of linear extensions

L(P ). For π, π′ ∈ L(P ), we transition π
∂j

−→ π′ with probability xπj
if π′ = ∂jπ, where ∂j is the

promotion operator. The promotion operator is defined in terms of more elementary operators τi
(1 6 i < n) which appeared in [25, 32, 47] and was used explicitly to count linear extensions in [21].
Let π = π1 . . . πn ∈ L(P ) be a linear extension of P in one-line notation. Then

(3.5) τiπ =

{

π1 . . . πi−1πi+1πi . . . πn if πi and πi+1 are not comparable in P ,

π1 . . . πn otherwise.

In other words, τi acts non-trivially on a linear extension if interchanging entries πi and πi+1 yields
another linear extension. Then the promotion operator on L(P ) is defined as

(3.6) ∂j = τ1τ2 · · · τj−1.

Note that we use a different convention here to [4], where ∂j = τjτj+1 · · · τn−1. Our convention here
is compatible with the conventions for the Tsetlin library as in Section 3.1, where we moved letters
to the front of the word rather than the end of the word.

Example 3.1. Let P be the poset on four vertices defined by its covering relations {(1, 4), (2, 4), (2, 3)}.
Then its Hasse diagram is the following:
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2143

2134

1234

2314

1243

3

32

1

1

2

2

4

4 1

4 2

3

3

3 2

4 1

1

4

Figure 4. The promotion Markov chain digraph for the poset in Example 3.1.

r r

1 2

r r

4 3

❅
❅
❅

This poset has five linear extensions

(3.7) L(P ) = {1234, 1243, 2134, 2143, 2314}.

The promotion Markov chain for P is depicted in Figure 4, where the vertices are the linear extensions
and an arrow labelled by i from π to π′ indicates that π′ = ∂iπ.

We may represent the promotion operator ∂i by a |L(P )|× |L(P )|-dimensional matrix, where row
k and column j contains 1 if the j-th linear extension in (3.7) is mapped to the k-th linear extension
in (3.7) under ∂i; the rest of the entries are zero. For example, ∂1 is represented by the matrix













1 0 1 0 1
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.
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The right Cayley graph of the monoid generated by the matrices for the promotion operators
∂1, ∂2, ∂3, ∂4 is depicted in Figure 5. The vertices in the right Cayley graph are labeled by reduced
words in the generators. For example [1, 4, 1] stands for the element ∂1∂4∂1.

We prove some useful properties of the right Cayley graph of the semigroup S generated by ∂i
for 1 6 i 6 n.

Proposition 3.2. Any element in K(S) can be written as ∂w1 · · ·∂wn−1 , where w1, . . . , wn−1 ∈
{1, 2, . . . , n} are distinct. In particular, the length of any reduced word for the elements in K(S) is
less than n.

Proof. Each element in K(S) corresponds to a linear extension in L(P ). For a given π ∈ L(P ),
we now construct a word w1 . . . wn−1 with distinct letters such that π = ∂w1 · · ·∂wn−1π

′ for all
π′ ∈ L(P ). In particular, this means that ∂w1 · · · ∂wn−1 ∈ K(S).

Write π = π1 . . . πn in one-line notation and set π(1) = π. Construct π(m+1) from π(m) for

1 6 m < n as follows. Set i
(m)
1 = 1 and then recursively find the smallest i

(m)
j+1 > i

(m)
j such that

π
(m)

i
(m)
j

≺ π
(m)

i
(m)
j+1

if possible. If there is no such i
(m)
j+1, set k

(m) = j. Define wm = π
(m)

i
(m)

k(m)

. Next construct

π(m+1) from π(m) by removing π
(m)
1 and replacing π

(m)

i
(m)
j

by π
(m)

i
(m)
j−1

for 2 6 j 6 k(m).

Next we show that π = ∂w1 · · ·∂wn−1π
′ for any π′ ∈ L(P ), proving that ∂w1 · · · ∂wn−1 ∈ K(S)

corresponding to the linear extension π. We will do so by induction on n. For n = 2, P is
either the antichain with vertex 1 incomparable to vertex 2 or 2 is bigger than 1. In the first
case, there are two linear extension π = 12 or 21. The algorithm determines w = π1 and indeed
∂π1(12) = ∂π1(21) = π1π2 = π. In the second case, there is only one linear extension π = 12 and
the algorithm determines w = 2. Indeed ∂2(12) = 12.

Now assume by induction that the algorithm works for posets with strictly less than n vertices.
In particular, for π(2) from the algorithm π(2) = ∂w2 · · · ∂wn−1π

′ for any linear extension π′ of the
poset P ′ obtained from P by deleting the vertex w1. Also, by induction w2, . . . , wn−1 are distinct
and different from w1. Note that w1 is a maximal element in P . Hence for any linear extension π′ of
P , we have that ∂w2 · · ·∂wn−1π

′ is a linear extension of P such that removing the letter w1 results in

π(2). Let σ ∈ L(P ) be such a linear extension, that is, σ \ w1 = π(2). Consider the saturated chain
π1 = a1 ≺ a2 ≺ · · · ≺ ak = w1 in P from π1 to w1. Such a chain exists by the definition of w1. In
π(2) and hence also in σ the letter ak−1 is the rightmost letter that is covered in P by w1. This is
since by the algorithm to construct π(2), the letter ak−1 replaced the letter ak = w1 in π. In σ, the
letter w1 must sit to the right of the letter ak−1 since ak−1 ≺ w1. Hence, when acting with ∂w1 on
σ, the letter w1 interchanges with all letters to its left until it reaches the letter ak−1. By the action
of τi as in (3.5), the letter w1 will stay in the position where ak−1 was in σ and then the letter ak−1

starts moving left. The letter ak−2 is the rightmost letter in σ that is covered by ak−1 in P , again
by the definition of the algorithm. The letter ak−1 replaces the letter ak−2 and ak−2 starts moving
left and so on. Finally, the letter a1 = π1 moves into first position. Hence ∂w1σ = π. This proves
the claim. �

Example 3.3. Take the poset from Example 3.1 and the linear extension π = 1243. Set π(1) = π.
The first sequence of increasing entries in π(1) is given by the underlined entries

1243.

Hence w1 = 4 and π(2) = 213. The next sequence of increasing entries is given by

213.

Hence w2 = 3 and π(3) = 12. Next we find the increasing sequence 12, so that w3 = 1. Indeed,
comparing with Figure 5, we see that

∂4∂3∂1 = ∂1∂4∂1
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Figure 5. Right Cayley graph for the promotion Markov chain of Example 3.1.
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is in K(S).
Note that the above algorithm does not always give a shortest path to the ideal in the right

Cayley graph. For example, if π = 2143 the algorithm gives

2143 → 123 → 23 → 2,

so that w1w2w3 = 413. From Figure 5, we see that ∂4∂1∂3 = ∂4∂1 is in K(S).

The (unnormalized) stationary distribution of the promotion Markov chain was computed in [4,
Theorem 4.5]. Recall that our conventions are different from [4].

Theorem 3.4. [4, Theorem 4.5] The (unnormalized) stationary distribution for the promotion
Markov chain Ψπ for π ∈ L(P ) for a finite poset P with n = |P | is given by

(3.8) Ψπ =
n
∏

i=1

1

1− (xπ1 + · · ·+ xπi−1)
.

Despite the fact that by Proposition 3.2 the right Cayley graph is shallow in the sense that each
vertex is at most n−1 steps away from the minimal ideal and the existence of an explicit formula for
the stationary distribution, this is not enough to give a tight bound on the mixing time. The reason
is that the expression for Ψπ does not have the property required in Theorems 2.4 and 2.5 that
each term of degree ℓ in its formal power sum expansion corresponds to a semaphore code word s of
length ℓ. Furthermore, the R-classes (or strongly connected components) in the right Cayley graph
can become very big, especially when P has a maximal element. This makes it hard to analyze the
mixing time for the promotion Markov chain in general. Here we propose a new Markov chain on
linear extensions of a poset which gives rise to an R-trivial semigroup (where all strongly connected
components have size one).

3.3.2. A variant of the promotion Markov chain. As before let P be a poset with n elements and
L(P ) the set of linear extensions of P . Denote by W(P ) the set of subwords of linear extensions in
L(P ) and set A = [n]. We define a semigroup on W(P ) as follows. Let w ∈ W(P ) and a ∈ A. Then
define

(3.9) wa =

{

w if a ∈ w,

straight(wa) if a 6∈ w.

Here straight(wa) is defined as follows. If wa is a subword of a linear extension of P , then
straight(wa) = wa. If not, write w = w1 . . . wk and find the largest 1 6 j1 6 k such that a ≺ wj1 in
P . Interchange wj1 and a. Repeat by finding the largest 1 6 j2 < j1 such that a ≺ wj2 . Interchange
wj2 and a. Repeat until no further element bigger than a exists to the left. The result is straight(wa).

Example 3.5. Take the poset P of Example 3.1, w = 234 ∈ W(P ), and a = 1. We have 1 ≺ 4, so
j1 = 3. Both 2 and 3 are incomparable to 1, so we find straight(wa) = 2314 ∈ L(P ).

Lemma 3.6. Let a ∈ A and w ∈ W(P ) such that a 6∈ w. Then straight(wa) ∈ W(P ).

Proof. Since j1 is largest such that a ≺ wj1 , either wj ≺ a or wj and a are incomparable for
j1 < j 6 k. If wj ≺ a by transitivity we find that wj ≺ wj1 which contradicts the fact that
w ∈ W(P ). Hence a is incomparable with wj for all j1 < j 6 k. Suppose wj1 ≺ wj for some
j1 < j 6 k. Then again by transitivity, we have a ≺ wj . This contradicts the maximality of j1. Hence
wj1 is incomparable to wj for all j1 < j 6 k. Therefore awj1+1 · · ·wkwj1 ∈ W(P ). Repeating similar
arguments for the next segments (interchanging a with wj2 etc), we find straight(wa) ∈ W(P ). �

Proposition 3.7. The set W(P ) together with the product defined in (3.9) forms a semigroup.

Proof. Note that by the proof of Lemma 3.6, the letters inbetween any letters that are interchanged
by the product are incomparable to the interchanged letters. By transitivity, if there are three letters
that are interchanged, say wi . . . wj . . . wk with wk ≺ wj ≺ wi, it does not matter in which order
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Figure 6. The right Cayley graph of (W(P ), A) for the poset of Example 3.1.

this is done, the end results is wk . . . wj . . . wi. This proves that the product is associative and hence
W(P ) is a semigroup with the product in (3.9). �

Let us now define (W(P ), A) to be the semigroup with product (3.9) and generators A = [n].

Theorem 3.8. The semigroup (W(P ), A) is R-trivial.

Proof. In the product, the length of the word can either stay the same or increase. When the length
stays the same, the word does not change. This proves that (W(P ), A) is R-trivial. �

Example 3.9. The right Cayley graph of (W(P ), A) for the poset of Example 3.1 is given in
Figure 6.

Note that the minimal ideal of (W(P ), A) is the set of linear extensions L(P ) of the poset P . Let
M(W(P ), A) be the Markov chain on L(P ) induced by the semigroup (W(P ), A). More precisely,
we transition from π ∈ L(P ) to aπ ∈ L(P ) with probability xa.

Proposition 3.10. M(W(P ), A) is ergodic.

Proof. Note that ππ′ = π for all π, π′ ∈ L(P ). Hence the graph of the Markov chain is strongly
connected and hence it is irreducible. Furthermore, if π = π1 . . . πn ∈ L(P ), then π1π = π, which
means the Markov chain is aperiodic. �

The stationary distribution for M(W(P ), A) is given by

Ψπ =
∑

σ∈Sn

[σ]W(P )=π

(

n
∏

i=1

xσi

1−
∑i−1

j=1 xσj

)

for all π ∈ L(P ).

Theorem 3.11. The expected value E[τ ] for M(W(P ), A) is bounded above by n ln(n) + nγ.

Proof. For a word w ∈ W(P ), its length |w| = k is bounded by 0 6 k 6 n. For a word of
length |w| = k, there are n − k transition arrows in RCay(W(P ), A) originating at w, given by
all the letters that do not appear in w. Hence by the same arguments as for the Tsetlin library
E[τ ] 6 n ln(n) + nγ. �

Remark 3.12. Note that the Markov chain M(W(P ), A) is not identical to the promotion Markov
chain. For example, left multiplication by 4 on 2143 in (W(P ), {1, 2, 3, 4}) for the poset in Exam-
ple 3.1 yields 2143, whereas we see from Figure 4 that in the promotion Markov chain 2143 goes to
1243 under ∂4. The full Markov chain transition diagram is given in Figure 7.

Theorem 3.11 shows that the mixing time for M(W(P ), [n]) is of order O(n log n). Of course,
this does not take the computational complexity of computing the product (3.9) into account. For
a word of length k, this involves up to k swaps.
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Figure 7. The Markov chain M(W(P ), [4]) for the poset of Example 3.1.

References

[1] Michael Ackerman, Sul-Young Choi, Peter Coughlin, Eric Gottlieb, and Japheth Wood. Elections with partially
ordered preferences. Public Choice, 157(1/2):145–168, 2013.

[2] R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution. Bull. Math. Biol., 51(1):125–
131, 1989.

[3] Christos A. Athanasiadis and Persi Diaconis. Functions of random walks on hyperplane arrangements. Adv. in
Appl. Math., 45(3):410–437, 2010.

[4] Arvind Ayyer, Steven Klee, and Anne Schilling. Combinatorial Markov chains on linear extensions. J. Algebraic
Combin., 39(4):853–881, 2014.

[5] Arvind Ayyer, Anne Schilling, Benjamin Steinberg, and Nicolas M. Thiéry. Directed nonabelian sandpile models
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XXIII:43–77, 2018.
[44] Franco Saliola. Eigenvectors for a random walk on a left-regular band. Adv. in Appl. Math., 48(2):306–311, 2012.
[45] Maurice-Paul Schützenberger. Sur certains treillis gauches. C. R. Acad. Sci. Paris, 224:776–778, 1947.
[46] Claude Elwood Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423

and 623–656, 1948.

http://arxiv.org/abs/1104.2301


24 J. RHODES AND A. SCHILLING

[47] Richard P. Stanley. Promotion and evacuation. Electron. J. Combin., 16(2, Special volume in honor of Anders
Björner):Research Paper 9, 24, 2009.

[48] Howard Straubing. Finite automata, formal logic, and circuit complexity. Progress in Theoretical Computer
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