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GEOMETRIC APPROACHES ON PERSISTENT HOMOLOGY

HENRY ADAMS AND BARIS COSKUNUZER

Abstract. We introduce several geometric notions, including the width of a homology
class, to the theory of persistent homology. These ideas provide geometric interpretations
of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the “life
span” or “persistence” of a homology class. As a case study, we analyze the power filtration
on unweighted graphs, and provide explicit bounds for the life spans of homology classes in
persistence diagrams in all dimensions.

1. Introduction

In this paper, we investigate persistent homology notions by using geometric topology
techniques. In the past decade, topological data analysis (TDA) has grown substantially,
and has proven to be quite useful to understand many phenomena described via different
types of data [16]. During this period, the theoretical foundations of TDA have mostly
benefited from algebraic topology, as it was born in part in that domain. Here, we bring
new perspectives, ideas, and terminology to help interpret these powerful methods by using
its sister field, geometric topology.

In some applications of topology, persistent homology is considered mostly as a black
box by data scientists, where it produces features to be applied to the problem at hand.
These features appear as a persistence diagram PDk, summarizing the k-dimensional holes
that appear. While persistence diagrams are known to describe these k-dimensional holes,
and their life spans are interpreted as the “size” of these k-dimensional holes, a rigorous
mathematical definition for the size of these homology classes has not yet been given in all
settings.

In this paper, we give explicit interpretations of the outcomes of persistence diagrams in
terms of the geometry of the data. In order to establish these geometric notions, we chose
the simplest setup, where the distances change discretely, i.e. unweighted graphs with the
power filtration. We give an explicit geometric description of the persistence diagrams in this
case. In other words, we show how the persistence diagram of the power filtration measures
the sizes of holes. While we mainly focus on unweighted graphs with the power filtration
as a case study, the techniques we introduce here are general, and they can be adapted to
different settings related to persistent homology.

Our main results are as follows: For any dimension k ≥ 2, and for any k-cycle σ with birth
b and death d in the k-dimensional persistence diagram (b, d) ∈ PDk, we ask if there are
upper bounds for d/b in terms of the volume ‖σ‖ (question 5.2), and we prove upper bounds
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for d/b and in terms of the width ω(σ) (theorem 6.4). On the other hand, for k = 1, we
give a complete, explicit description of the persistence diagrams in terms of the lengths of a

lexicographically shortest basis of 1-cycles {γi}, i.e., PD1 = {( 1,
⌈
|γi|
3

⌉
} (theorem 3.3). Note

that in the related settings of (continuous) metric graphs and geodesic spaces, analogous
versions of this result about 1-dimensional persistence were proven in [29, 49].

While proving these theorems, we introduce several new geometric notions into the setting
of persistent homology, e.g. min-max technique, sweepouts, width of a homology class, thick-

thin decomposition, injectivity radius, bracelets. The width can be interpreted as the size of a
homology class, and we establish its relationship with the life spans in persistence diagrams.
In particular, our results show that for a k-cycle σ with birth and death (b, d) ∈ PDk, the
ratio d/b corresponds to the size of the k-dimensional cavity σ as measured by the “width” of
the homology class σ. Our width approach further relates the size of a homology class with
Gromov’s filling radius of a k-manifold [30]; see [40] and section 8.1 for further discussion.

From the point of view of TDA on graphs, our results show that higher persistence dia-
grams indeed contain useful information about the graph. In many applications, researchers
only consider the 0- and 1-dimensional persistence diagrams PD0 and PD1 because they are
computationally cheaper. Our results and examples indicate that the diagrams PDk capture
valuable and geometrically interpretable information about the graph’s properties also for
dimension k ≥ 2. See section 8.4 for further discussion.

The organization of the paper is as follows. In section 2, we overview the related work
in the subject, and describe the setting for power filtrations of unweighted graphs. We give
a complete description of the 1-dimensional persistence diagram PD1 in terms of lengths
of 1-cycles in section 3. In section 4, we give some interesting examples to motivate our
study of higher-dimensional homology. In section 5, we ask how the life spans of 2-cycle and
k-cycles are related to their area and volume. Here, we introduce the notions of thick-thin
decomposition, injectivity radius, bracelet, and the volume of a homology class. In section 6,
we upper bound the life spans of 2-cycles by a notion called the width. In this section, we
introduce the geometric notions of the min-max technique, sweepouts, and the width of a
homology class. In section 7, we generalize our width result to all homological dimensions.
Finally, in section 8, we give some concluding remarks.

2. Background

2.1. Related Work on Vietoris–Rips Complexes. If G is a connected graph, then its
vertex set can be equipped with the structure of a metric space, where the distance between
any two vertices is the (integer) length of the shortest path between them. The power
filtration of a graph that we study in this paper, namely the clique complexes of the graph
powers ofG, is nothing other than the Vietoris–Rips simplicial complex filtration of the vertex
set of G. As Vietoris–Rips complexes transform a metric space into a simplicial complex,
they were invented by Vietoris to provide a cohomology theory for metric spaces [34, 39, 48].

If G is a Cayley graph of a group (constructed with respect to a chosen set of generators),
then the clique complexes of the graph powers of G are the Vietoris–Rips complexes of the
group when equipped with the word metric. Indeed, Vietoris–Rips complexes were used
in geometric group theory by Rips as a natural way to thicken a space, and to show that
torsion-free hyperbolic groups have Eilenberg–MacLane spaces with finitely many cells [12].
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In applied and computational topology, Vietoris–Rips complexes are used to thicken a data
set X in order to approximate its underlying shape. The shape of a dataset is often reflective
of important patterns within [16]. Indeed, connected components correspond to segments
of the data that could be analyzed separately, circles correspond to periodic or recurrent
phenomena, and higher-dimensional features represent further structure in the data. The
Vietoris–Rips complex VR(X ; r) on metric space X contains X as its vertex set, and a finite
subset of X as a simplex if its diameter is at most r. Since we do not know a priori how to
choose the thickening scale r, the idea of persistent homology is to compute the homology
of the Vietoris–Rips complex of data set X over a large range of scale parameters r and to
trust those topological features which persist. The persistence or life span of a feature is
typically defined as its death scale minus its birth scale, and sometimes defined as its death
scale divided by its birth scale (as we will use here). It is understood that the persistence of
a k-dimensional feature is related to its “geometric size”; in this paper we make this intuitive
notion more precise.

The motivation for using Vietoris–Rips complexes in applied topology is a remarkable
theorem due to Latschev [38]: for M a closed Riemannian manifold, for scale r sufficiently
small depending on the curvature of M , and for data set X close to M in the Gromov–
Hausdorff distance, we have a homotopy equivalence VR(X ; r) ≃ M . This result is an
analogue of the Nerve Theorem [11] for Vietoris–Rips complexes, and it has been expanded
upon by the manifold reconstruction results in [21, 26, 42, 19], which also rely on the scale
being chosen to be sufficiently small. But as the main idea of persistence is to allow r to
vary, the assumption that scale r is kept sufficiently small typically fails in practice.

Indeed, the situation that data scientists are confronted with is that they are given a
data set X noisily sampled from an unknown shape M . Without knowing M , they do not
how to pick the scale parameter r small enough for the above reconstruction guarantees to
hold. As a result, they instead let the scale parameter r in the Vietoris–Rips complexes
VR(X ; r) vary from zero to large. Hence data scientists construct Vietoris–Rips complexes
at large scale parameters on top of their data (and there is efficient software designed to
do this [7]), even though we do not yet have a mathematical understanding of how these
simplicial complexes behave at large scales. The circle is essentially the only manifold M
for which the homotopy types of VR(M ; r) are known at all scale parameters r [2], and its
proof is built upon approximating the circle via denser and denser graphs [1, 5]. Could the
homotopy types of Vietoris–Rips complexes of n-spheres or other manifolds also be proven
via graph approximations?

Applied and computational topology is recently being connected more tightly to quan-
titative topology, especially the filling radius. The filling radius of a manifold M was
used by Gromov to prove the systolic inequality, which provides a lower bound for the
volume of an essential manifold M in terms of the length of the shortest non-contractible
loop [30, 32]. In subsequent work, Katz determined the filling radius of spheres and projec-
tive spaces [35, 36, 37]. The recent work [40, 43] by Lim, Mémoli, and Okutan shows that
Vietoris–Rips complexes are strongly connected to quantitative topology: if M is a mani-
fold, then the top-dimensional bar in the persistent homology for the Vietoris–Rips complex
filtration has a death time determined by the filling radius. This same paper proves that any
persistent homology bar in the Vietoris–Rips filtration of a metric space X has persistence
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(birth minus death) upper bounded by the spread of X . We instead give bounds on the life
span which depend on the individual homology class under consideration.

We view our work, bounding the life spans of the k-dimensional homology holes in Vietoris–
Rips complexes of unweighted graphs, as being a first step towards injecting ideas from
geometric topology into this conversation. Several key ideas from geometric topology, such
as the width and thick-thin decompositions, may not be so well-known to applied topolo-
gists. Nevertheless, in the setting of unweighted graphs, these ideas provide more precise
geometric interpretations for the lengths of persistent homology features. To generalize our
techniques to most data analysis settings, we will need to allow non-integer distances: ideas
in coarse geometry allowing one to approximate a metric spaces via graphs [14, 15] may
enable generalizations along these lines.

2.2. Power Filtration for Unweighted Graphs. To study the size of a homology class
from the perspective of geometric topology, we consider the setting of the power filtration
on unweighted graphs, as it provides a discrete and simple setup. First, we describe some
preliminary notions related to homology and to the power filtration on unweighted graphs.

Homology. For L a simplicial complex and for k ≥ 0, let Hk(L) denote the simplicial ho-
mology of L, taken with coefficients in Z/2Z. With Z/2Z coefficients, we can represent any
k-chain as a set of simplices, i.e. as a sum of simplices where all (nonzero) coefficients are
equal to one, which simplifies arguments. Recall that if Ck(L) is the set of all k-chains,
then we have a boundary map ∂ : Ck(L) → Ck−1(L) that satisifes ∂ ◦ ∂ = 0. A k-cycle is a
k-chain σ satisfying ∂σ = 0 (which we also may write as ∂σ = ∅ since we are using Z/2Z
coefficients).

While we use Z/2Z-coefficients throughout the paper, we expect that many of the ideas
can be adapted to other homology coefficients with the necessary modifications made.

Metric on G. Throughout the paper, we assume that G is a finite simple graph that is
connected. For such a graph G, let V = {vi} be the set of vertices in G, and let E = {eij}
be the edges in G, where eij represents the edge between the vertices vi and vj if it exists.
We define the metric ρ : V × V → R on the vertex set V by assigning length 1 to all edges
in G. In particular, if mij is the smallest number of edges required to get from vi to vj
in G, then the distance between vi and vj is defined as ρ(vi, vj) = mij . Notice that as we
assumed G is connected, we have ρ(vi, vj) < ∞ for any vertices vi and vj. Let diam(G) =
max{ρ(vi, vj) | vi, vj ∈ V} be the diameter of G, which we will sometimes denote as D. From
the topological data analysis perspective, we use the set of vertices V as our point cloud,
and we use the edges E to define our metric on this point cloud.

Power Filtration. Let Gn be the graph induced by G by adding edges {eij} between vertices
vi, vj with ρ(vi, vj) ≤ n. In other words, we do not change the nodes of G, but if there are
vertices at distance ≤ n in G, then in the graph Gn we have an edge between these vertices.
By convention, we set G0 to be the graph with vertex set V and with no edges. We will call
this new graph Gn the nth power of G; see fig. 1.

Let Ĝn be the clique complex of Gn. In more detail, Ĝn contains an m-simplex spanning
the vertices vi0, vi1 , . . . , vim if for any ij , ik with 0 ≤ j, k ≤ m, we have ρ(vij , vik) ≤ n. In

particular, if there exists a triangle of three edges in Gn, then in Ĝn we fill the triangle with
a 2-simplex. Similarly, if there are 4 vertices each pairwise connected to each other by edges

4



G G2 G3

Figure 1. Graph Powers. A graph G = G1 and its graph powers. Red edges are
added in G2, and green ones are added in G3. Note G3 is the complete graph on 7 vertices
since D = diam(G) = 3. Hence, all higher powers are same, i.e. Gn = G3 for n ≥ 3.

in Gn, then in Ĝn we fill it with a tetrahedron, and so on for simplices of all dimensions. We

remark that Ĝn is the Vietoris–Rips complex of the metric space V (with the shortest-path
metric described above) at scale n. Furthermore, we can safely restrict attention to integer
scale parameters, since any shortest path distance in G is a nonnegative integer. By allowing
n to vary, we obtain the following power filtration induced by the graph G.

Ĝ0 ⊂ Ĝ1 ⊂ Ĝ2 ⊂ . . . ⊂ ĜD−1 ⊂ ĜD

Notice that Ĝ0 is equal to the set of vertices V in G. Simplicial complex Ĝ1 = Ĝ is the
clique complex of the original graph G. To form Ĝ2, we add new edges and cliques to Ĝ1

accordingly. In particular, if ρ(vi, vj) = 2, then a new edge ẽij is added to Ĝ1. Similarly, if
there is a set of vertices {vi0 , . . . , vik} where the pairwise distances are at most n, then there

exists a k-simplex σ = [vi0 , . . . , vik ] in Ĝn. Note also that Ĝn is the (|V|− 1)-simplex for any
n ≥ D = diam(G), and hence is contractible.

For k ≥ 0, we take k-dimensional homology Hk with coefficients in Z/2Z. The points in a
persistence diagram represent the birth and death times of a homology class. In particular,
let PDk(G) denote the persistence diagram for the k-dimensional homology of the power
filtration of the graph G [26, 27, 51]. Then, any persistence diagram point (b, d) ∈ PDk(G)

represents a k-cycle σ that is born in Ĝb, and that first becomes homologous to earlier

features in Ĝd. In other words, n = b is the birth time for σ, while n = d is the death time
for σ.

More explicitly, after applying homology with coefficients in the field Z/2Z to the power
filtration, we obtain the following persistence module, i.e. the following sequence of vector
spaces equipped with linear maps in-between:

Hk(Ĝ
0) → Hk(Ĝ

1) → Hk(Ĝ
2) → . . . → Hk(Ĝ

D−1) → Hk(Ĝ
D).

It follows from [51] or [17, 28] that this persistence module decomposes uniquely (up to
reordering) as a direct sum ⊕N

i=1Ibi,di with bi ∈ {0, . . . , D}, di ∈ {0, . . . , D} ∪ {∞}, and
bi < di. In this direct sum, each term Ibi,di is an interval sequence of the form

0 → . . . → 0 → Z/2Z → . . . → Z/2Z → 0 → . . . → 0,
5



where the first copy of the field Z/2Z appears in index bi, where the last copy of the field
Z/2Z appears in index di − 1,1 where all linear maps between adjacent copies of Z/2Z are
the identity map, and where all other linear maps are the zero map. Then, the persistence
diagram PDk(G) is defined as the multiset PDk(G) = {(bi, di) | 1 ≤ i ≤ N}, meaning that
we have N different points in the persistence diagram, each of the form (bi, di) for 1 ≤ i ≤ N .

The persistence diagram for 0-dimensional homology with the power filtration, namely

PD0(G), is easy to understand. In more detail, while rank(H0(Ĝ
0)) = |V| is the number of

vertices, we have rank(H0(Ĝ
n)) = 1 for any n ≥ 1 since G is connected. This means that

PD0(G) consists of |V| − 1 birth-death pairs of the form (b, d) = (0, 1), and one birth-death
pair of the form (b, d) = (0,∞). So PD0(G) = {(0, 1)|V|−1, (0,∞)}. Here, (b, d)m means
that the multiplicity of the point (b, d) is equal to m, or in other words, that the persistence
diagram PD0(G) consists of m copies of the point (b, d).

3. PD1(G): Persistence Diagrams in Dimension 1

Let G be a finite connected graph. In this section, we give an explicit description of the
1-dimensional persistence diagram PD1(G) of the graph G in terms of the lengths of certain
loops. The persistence diagrams PDk(G) in homological dimensions k = 0 and 1 are the
most frequently used in applications, and the most efficient diagrams to compute.

A path of length l in G is a sequence of vertices v0, v1, . . . , vl−1, vl such that each [vi, vi+1]
is an edge in G for 0 ≤ i ≤ l− 1. If vl = v0, then this is furthermore a loop of length l in G.

Lemma 3.1. Let G be a finite connected graph. Every point in PD1(G) has birth time b = 1,
and so PD1(G) = {(1, di)}i for some collection of death times di.

Proof. This lemma follows from [1, Fact 2.1], but we give a stand-alone proof. Let (b, d) ∈
PD1(G). Clearly b ≥ 1, since Ĝ0 is a disjoint collection of vertices.

We claim that a loop α in Ĝn for n ≥ 1 is homotopy equivalent in Ĝn to a loop in

G ⊆ Ĝ1. Let e = [w−, w+] be an edge in α with ρ(w−, w+) = t for 1 ≤ t ≤ n. If
t = 1, then we leave e unchanged. Otherwise, let {w−, v1, v2, . . . , vt−1, w

+} be the vertices
along the shortest path from w− to w+ in G. Then, σ = [w−, v1, . . . , vt−1, w

+] is a t-

simplex in Ĝn. Furthermore, the edge e = [w−, w+] is homotopy equivalent in σ to the path
τ = [w−, v1] ∪ [v1, v2] ∪ . . . ∪ [vt−2, vt−1] ∪ [vt−1, w

+], while fixing the endpoints. Note that

the path τ is in Ĝ. Therefore, by applying this process to each edge in α, we see that α

is homotopy equivalent in Ĝn to a loop in G ⊆ Ĝ1. This shows that if (b, d) is a point in
PD1(G), then we have b = 1.

Since every point in PD1(G) is born at b = 1, we know that PD1(G) = {(1, di)}i for some
collection of death times di. �

Let ⌈.⌉ be the ceiling function, i.e. ⌈x⌉ is the smallest integer greater than or equal to x.

Lemma 3.2. A loop γ of length l in the finite connected graph G is null-homotopic in Ĝn

for n ≥ ⌈ l
3
⌉.

1In the case when the last copy of the field Z/2Z appears in index D, then by convention we set di = ∞.

For power filtrations, since ĜD is contractible, we obtain only a single persistence diagram point with death
value ∞, which appears as a single bar of the form (b, d) = (0,∞) in PD0(G).
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v4
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v7

∆6

∆0

∆3

Figure 2. Spanning Disks. On the left, the graph G has a (blue) loop of length 8. On
the right, this loop is filled by the simplices ∆0, ∆3, ∆6, and the gray triangle.

Proof. It suffices to prove the case n = ⌈ l
3
⌉. See fig. 2. As γ is a loop in G of length

l, we can write γ = [v0, v1] ∪ . . . ∪ [vl−2, vl−1] ∪ [vl−1, v0]. Note that ∆0 := [v0, v1, . . . vn],
∆n := [vn, vn+1, . . . v2n], and ∆2n := [v2n, v2n+1, . . . , vl−1, v0] are each simplices in the clique

complex Ĝn. Furthermore, note that the edge [v0, vn] is homotopy equivalent in ∆0 to
the (shortest) arc in γ with the same endpoints, and similarly for the edge [vn, v2n] in ∆n,

and for the edge [v2n, v0] in ∆2n. Therefore γ is homotopy equivalent in Ĝn to the loop

[v0, vn] ∪ [vn, v2n] ∪ [v2n, v0], which is null-homotopic in the clique complex Ĝn as it is filled

by the triangle [v0, vn, v2n]. Therefore γ is null-homotopic in Ĝn. �

Denote the first Betti number of the graph G by m = rank(H1(G)). Let the loops
{γ1, γ2, . . . , γm} generate a basis for H1(G), and let li be the length of the loop γi. We
call γ1, . . . , γm a lexicographically shortest basis of H1(G) if the non-decreasing sequence of
lengths l1 ≤ l2 ≤ l3 ≤ . . . ≤ lm is lexicographically smallest among all bases for H1(G).
See [29, 49] for further discussion on this definition. We are now ready to give the full
description of PD1(G).

Theorem 3.3. Let G be a finite connected graph. Let γ1, . . . , γm be a lexicographically

shortest basis of H1(G), the first homology of G, and let each γi have length li. Then

PD1(G) = {( 1,
⌈
li
3

⌉
) | 1 ≤ i ≤ m}.

Since G is a simple graph, all loops have length at least 3. In the lexicographically shortest
basis γ1, . . . , γm, some of the lengths l1 ≤ l2 ≤ . . . ≤ lm may be equal to 3. If so, then they
contribute a persistence diagram point (b, d) = (1,

⌈
3
3

⌉
) = (1, 1) along the diagonal; such

points along the diagonal are typically ignored as the death time is equal to the birth time.

Indeed, these loops of length 3 appear in the power filtration at stage Ĝ1, when they are
immediately filled in since the clique complex contains a 2-simplex filling-in each triangle of
three edges.

This theorem should be thought of as an analogue of Theorem 8.10 of [49] and Theorem 1.1
of [29], which give a similar characterization for the 1-dimensional persistent homology of
Vietoris–Rips or Čech complexes of metric graphs and geodesics spaces, and indeed we use
these results in our proof. Metric graphs and geodesic spaces are non-discrete metric spaces.
By contrast, our result characterizes the 1-dimensional persistent homology of Vietoris–Rips
complexes of the discrete vertex subset of an unweighted graph.
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Our proof of theorem 3.3 relies not only on lemmas 3.1 and 3.2, but also some technical
machinery (Vietoris–Rips complexes of geodesic spaces, persistence modules that are indexed
over the real numbers instead of over a discrete set, and morphisms between persistence
modules [8, 29, 49]) that is not needed in the rest of our paper. Therefore, we defer the proof
of theorem 3.3 to appendix A.

Remark 3.4. theorem 3.3 can be interpreted as saying that PD1(G) detects the number of

the essential loops in the clique complex Ĝ, along with their lengths. In other words, any
element (1, d) ∈ PD1(G) with d > 1 represents that there exists an essential loop of length

≈ 3d in the clique complex Ĝ.

4. PDk(G): Persistence Diagrams in Dimension 2 and Higher

So far, we have given an explicit description of the 0- and 1-dimensional persistent ho-
mology for power filtrations, PD0(G) and PD1(G), in terms of geometric properties of the
graph G. In this part, we discuss higher-dimensional persistence diagrams, before providing
one-sided generalizations of the k = 0 and k = 1 results to higher dimensions in the following
sections.

Notice that in our setting, the birth times for all topological features in dimensions 0 and
1 are known by construction. Indeed, all of the 0-dimensional birth times are 0 while all the
1-dimensional birth times are 1, i.e. PD0(G) = {(0, dj)}j and PD1(G) = {(1, di)}i. We start
by noting that a direct generalization of theorem 3.3 to 2-dimensional persistent homology
PD2(G) is not true, since not all 2-dimensional features have the same birth scale. We will
show this by using the following interesting examples.

(a) The graph
C6

(b) The eight maximal 2-simplices in Ĉ2
6

Figure 3. Power filtration of the graph C6.

Example 4.1. Let C6 be the cycle of length 6, namely the graph with 6 vertices and 6

edges, arranged in a loop (fig. 3-left). Since this graph has no triangles, we have Ĉ1
6 = C6.

Furthermore, the simplicial complex Ĉ2
6 is homeomorphic to the 2-sphere S2. Indeed, there

are 8 maximal simplices in Ĉ2
6 (fig. 3-right), and they are all 2-simplices. Six of these 2-

simplices, near the boundary of the cycle, glue together to form a cylinder. The remaining
two “equilateral” 2-simplices in fig. 3-right get attached as “top” and “bottom” faces, forming

a 2-sphere. In fact, Ĉ2
6 is the boundary of an octahedron. Since Ĉ3

6 is a 5-simplex and hence
contractible, we have that PD2(C6) = {(2, 3)}.

A more general explanation of this 2-sphere topology in Ĉ2
6 is that C2

6 contains all possible
edges except that it is missing edges between the “antipodal” vertices. Therefore the clique

complex Ĉ2
6 can be thought of as the boundary of the cross-polytope on six vertices in R

3,
i.e., the boundary of the convex hull of the six vertices

(±1, 0, 0), (0,±1, 0), (0, 0,±1).
8



Since this cross-polytope is a 3-ball, its boundary is homeomorphic to a 2-sphere.

Example 4.2. Let H be a graph with 8 vertices and 18 edges as shown in fig. 4-left. Then

the simplicial complex Ĥ1, namely the clique complex of H , is topologically a sphere. Since
any two vertices are at distance at most 2 apart in the shortest path metric on G, the clique
complex Ĥ2 is a 7-simplex, which is contractible. This shows that PD2(H) = {(1, 2)}. Notice
that PD1(H) = ∅ for this example.

H

v1
v2

v3v4

v7

v6 v5

v8

Q

Figure 4. On the left, graph H is the skeleton of a unit cube with diagonals in each
face (8 vertices and 18 edges). On the right, the graph Q is the 1-skeleton of a unit cube (8
vertices and 12 edges).

More generally than the prior example, let T be any simplicial complex triangulation of
a k-sphere that is a clique complex, i.e., that is a flag triangulation of the sphere. (For
example, T cannot be the boundary of the (k+1)-simplex, as that is not a clique complex.)
If graph G is the 1-skeleton of triangulation T , then PDk(G) contains a homology class born
at b = 1.

Example 4.3. Let Q be a graph with 8 vertices and 12 edges as shown in fig. 4-right. Graph

Q is the 1-skeleton of a unit cube. Notice that Q̂1 = Q as there are no triangles in Q.

Interestingly, Q̂2 is homeomorphic to the 3-sphere S3. In order to see this, note that Q2

contains all possible edges except that it is missing edges between the “antipodal” vertices v1
and v8, v2 and v7, v3 and v6, and v4 and v5. Therefore the clique complex Q̂2 is the boundary
of the cross-polytope on 8 vertices in R

4. Since this cross-polytope is a 4-ball, its boundary
is homeomorphic to a 3-sphere. See [3, 18, 46] for further analyses of the clique complexes
of hypercube graphs.

Since any two vertices are at distance at most 3 apart in the shortest path metric on Q, it

follows that Q̂3 is contractible. We therefore have that PD2(Q) is the empty diagram, while
PD3(Q) = {(2, 3)}.

In the examples above, we have following persistence diagrams for 2-dimensional homology:

PD2(H) = {(1, 2)} PD2(C6) = {(2, 3)}.
These show that in higher dimensions (k ≥ 2), the birth times may not be same for all
k-cycles, as we had in general for PD1(G) with the 1-dimensional persistent homology of
power filtrations of graphs. So, a direct generalization of theorem 3.3 to higher homological
dimensions is not possible. While the examples above show that the birth times may not be
constant for higher homologies, how large can the birth times be?

9



Question 4.4. For k ≥ 2, can PDk(G) have an element with birth time ≥ k + 1 ?

The answer to this question is “Yes.” In [1, Corollary 6.7], Adamaszek gives a complete
picture of the topological types of clique complexes of the powers of cyclic graphs. Let Cn be
the cycle graph of length n. Then, Adamaszek proves that the clique complex of the third
power of C9 has the homotopy type Ĉ3

9 ≃ ∨2S2, yielding a birth time b = 3 in PD2(C9).

More generally, Ĉn
3n ≃ ∨n−1S2 and Ĉr

3n ≃ S1 for 1 ≤ r ≤ n − 1, which implies a birth time

b = n in PD2(C3n). In higher dimensions, Ĉ5
14 ≃ S3 which implies a birth time b = 5 in

PD3(C14). These examples show that the birth times for k-dimensional topological features
can appear very late in the filtration for k ≥ 2. The constant birth time property is special
to dimensions k = 0 and k = 1 for power filtrations of graphs.

These examples also show that an explicit description of PDk(G), as we have when k = 0
or when k = 1 (see theorem 3.3), is difficult for k ≥ 2. However, in the following sections,
we will discuss the next best thing: upper bounds for the life spans of higher-dimensional
homology classes σ of the form d/b < Cσ for any feature (b, d) ∈ PDk(G) corresponding to
homology class σ, and we will give geometric interpretations of these bounds.

Remark 4.5 (Multiplicative Persistence). In persistent homology, the persistence (life span)
of a k-homology class σ with (b, d) ∈ PDk(X ) is typically defined as d − b, and it is in-
terpreted as the size of the cavity that σ represents in the point cloud (or given data) X .
Intuitively, while the death time d estimates the radius of the cavity (homology class), the
birth time b estimates how quickly the cavity forms, i.e. the closer the points are that form
the homology class, the earlier the birth time. There is, however, another notion called
multiplicative persistence defined as d/b to describe the life spans of a topological feature
σ [10]. This quantity is scale invariant, i.e. similar shapes in different scales will produce sim-
ilar multiplicative persistence life spans. For more discussion on multiplicative persistence,
see [10, Section 3]. In the literature, the use of multiplicative persistence (or persistence in
logarithmic scale) is common [10, 22, 44, 45, 13]. Multiplicative persistence is also better
suited for the estimates in our main results (theorems 6.4 and 7.1).

5. Conjectured Upper Bounds for Life Spans via Volume

In this section we describe a possible connection between thick-thin decompositions and
life spans of persistent homology features. We make conjectures regarding upper bounds
on the death scales of persistent homology classes in terms of the volume of a minimal
representative. Most of the terms and ideas introduced in this section are well-established
notions in geometric topology [47, 25, 9]. They provide useful geometric intuition and the
inspiration for the ideas in the next section, section 6, where we prove a bound by introducing
a notion called the width of the cycle, which basically measures the “thickness” of the cycle.

Let G be a graph, and let Ĝn be the clique complex of Gn, the nth power of G. Let

Ĝ0 ⊂ Ĝ1 ⊂ . . . ⊂ ĜD be the power filtration of G as defined in section 2.2. Let σ be a 2-
dimensional homology class corresponding to the persistence diagram point (b, d) ∈ PD2(G),

and let S be a 2-cycle in Ĝb that generates σ and that has as few 2-simplices as possible. We
denote this number of 2-simplices as |σ|, the area of the homology class σ. As an example, S
may be a genus-g surface (g ≥ 0). But more generally S need not be a manifold: S could be
a torus S1 × S1 with one component circle S1 × {x} collapsed to a point, or S could be the
wedge sum of two surfaces, etc. We ask if one can provide upper bounds on the death scale
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d by showing that S is nullhomologous in Ĝn, for some n that depends on the geometry of
S.

Sthin

Sthin

Sthin

S

Sthin

Figure 5. Thick-Thin Decomposition. S has four thin components.

First, we describe a related geometric notion: a thick-thin decomposition, which decom-
poses a surface into its “thick” and “thin” parts; see fig. 5. The thick-thin decomposition
is well-known in hyperbolic geometry in a different context, where it is called the Margulis
Lemma [9]. In that setting, the topology of the thin parts of a hyperbolic manifold is well-
understood, and one can focus on the thick parts to understand the topology of the whole
manifold. We ask if a similar idea could be useful in our context.

One can consider a thick-thin decomposition of our 2-cycle S as follows. Roughly speaking,
the injectivity radius inj(v) at a vertex v ∈ S could be defined as the radius r so that the
ball in S about v radius r does not “overlap with itself” in S, i.e. as the largest integer such
that that the ball in S about v of radius r is homeomorphic to a disc for all 1 ≤ r ≤ inj(v).
See fig. 6-left. We say that w is a pinch point of S if inj(w) = 0, as shown in fig. 6-right.
We can now decompose S into two parts, S = Σ− ∪Σ+, where the thin part Σ− contains all
vertices with injectivity radius inj(v) ≤

√
|σ|, and where the thick part Sthick

m contains all

vertices with inj(v) ≥
√
|σ|.

Further decompose Σ− and Σ+ into connected pieces Σ−
j , and Σ+

k . Let n ≈
√

|σ| · b. We

would like to cap off each piece to obtain the 2-cycles Σ̂−
j and Σ̂+

k , which we would like to

show are nullhomologous in Ĝn. Then, the refined decomposition S =
∑

j Σ̂
−
j +

∑
k Σ̂

+
k as a

sum of nullhomologous 2-cycles would give that S is nullhomologous in Ĝn. See fig. 7. Each
ball of radius greater than

√
|σ| about a vertex v in a thin subsurface Σ−

j “overlaps with

v

S

bracelet
ball(v)

v0

Figure 6. (Left) Ball about v and a bracelet. (Right) Pinch point.
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Σ−

1

Σ−

2

Σ−

3

Σ−

4

S
Σ+

1

Σ+

2

Σ+

3 Σ̂−

1

Σ̂−

2

Σ̂−

3

Σ̂−

4

Σ̂+

1

Σ̂+

2

Σ̂+

3

Figure 7. Thick-Thin Decomposition of surface S. Capping off each Σ±
i with

blue disks in Ĝn produces each 2-cycle Σ̂±
i .

itself”, creating at least one loop in this ball of bounded circumference (see fig. 6-left). A
name for such a loop is a bracelet, since it formed by wrapping a (topologically trivial) ball
until it overlaps itself, in the same way that some bracelets are topological intervals wrapped
around to form a circle on one’s wrist. We would like show that the vertex set of each such
bracelet forms a complete simplex in Ĝn, and that these simplices glue together to form a

contractible simplicial complex, meaning that Σ̂−
j is nullhomologous in Ĝn. Handling the

pinch points will require care. For the thick parts, since balls of radius at most
√

|σ| about a
vertex v in a thick portion are embedded, one would like to prove an isoperimetric inequality
lower bounding the number of 2-simplices in such a ball. Then, once such a ball contains as
many 2-simplices as there are in Σ+

k , this provides an upper bound on the diameter of Σ+
k ,

potentially showing that Σ̂+
k will be nullhomologous in Ĝn. This leads us to the following

question.

Question 5.1. Let (b, d) ∈ PD2(G) correspond to the 2-dimensional homology class σ. Let

|σ| be the minimal number of 2-simplices in a 2-cycle generating this homology class. Then

is d ≤ C2

√
|σ| · b for some constant C2?

Similarly, one could try to adapt the notion of thick-thin decompositions to higher dimen-
sions, and try to use the volume to bound the diameter of equatorial hypersurfaces in the
thick parts.

Question 5.2. Let (b, d) ∈ PDk(G) correspond to the k-dimensional homology class Ω. Let

|Ω| be the volume of this homology class, i.e. the minimal number of k-simplices in a k-cycle

generating this homology class. Then is d ≤ Ck
k
√

|Ω| · b for some constant Ck depending only

on k?

We end this section with two simple examples of thick and thin surfaces. These examples
illustrate the relationship between the life span and the thickness of the surfaces. One
example shows that we can have large area surfaces with very short life spans in the power
filtration, so area could only possibly be used as an upper bound for life span, and not as a
lower bound.

Example 5.3 (Thick Surface and Long Life Span). Consider the example in fig. 8-left: A
tetrahedron σ of edge length m. This is an example of a thick surface whose injectivity
radius is large, and depending on m. The total area is |σ| = 4m2. The 2-cycle σ is born at
b = 1, and its death scale is at least as large as d ≥ m

2
, meaning that its multiplicative life

span is at least d/b ≥ m
2
.

12



(a) Tetrahedron

(b) Thin long box

Figure 8. Thick and Thin Surfaces. The graph G underlying the tetrahedron gives
a thick surface, and has a long life span comparable to

√
Area. The graph G inducing a thin

long box has a short life span in PD2(G), even though it has very large area.

We give a sketch (but not a complete proof) of why the death scale is at least as large as
d ≥ m

2
. Embed the graph G in R

3 as the 1-skeleton of a (triangulated) regular tetrahedron
whose barycenter is at the origin in R

3. By extending linearly to simplices, this provides
a map Ĝn → R

3 for all n ≥ 0; this map Ĝn → R
3 is not an embedding once Ĝn contains

simplices above dimension 3. One can show that the death time d is at least as large as
the smallest scale parameter n such that the map Ĝn → R

3 hits the origin ~0 in R
3. Indeed

if this map misses the origin, then up to homotopy it is a retract onto R
3 \ {~0} ≃ S2,

and therefore is surjective onto the 2-dimensional homology of S2. (See [4, Proposition 5.3]
and [6, Corollary 21] for related ideas.) Furthermore, one can show that the smallest n such

that the map Ĝn → R
3 hits the origin in R

3 is the diameter of a (smaller) tetrahedron whose
vertices are placed at or near the four centers of each of the four 2-dimensional faces of the
(larger) tetrahedron represented by graph G, and that this smaller tetrahedron has diameter
at least as large as m/2.

Example 5.4 (Thin Surface and Short Life Span). The second example is given in fig. 8-
right: a thin long box σ of dimension 1 × 1 × m. This is an example of a thin surface
with small injectivity radius for all vertices not at the ends of the cylinder. The total area
(number of triangles) of σ is 8m + 4, i.e. |σ| = 8m + 4. However, for any m a 2-cycle σ is
born at b = 1, and dies at d = 2, i.e. (b, d) = (1, 2). Hence, its multiplicative life span is
d/b = 2. However, in section 6 we will describe a new geometric notion, the “width” of a
surface, which will provide a better upper bound for the life span of this 2-cycle.

The example of the thin long box shows that an upper bound on the life span based on
area leaves room for improvement. In the following section, we pursue an idea motivated
by this example: upper bounding the life span of a persistent homology feature using the
“width” of a generator.

6. Upper Bound for Life Spans via Width

There is another natural way to define the thickness of a surface in geometric topology:
the width [31]. In the literature, this is also called the Urysohn width (see remark 7.2).
There are several ways to define this notion. Here, we use sweepouts and the min-max
technique to give an easy introduction to this concept. By applying this idea to our context,
we prove an upper bound on the life span of persistent homology features. In this section we
restrict attention to 2-dimensional homology, before considering k-dimensional homology in
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section 7. Throughout the paper, we use Z/2Z-coefficients for homology for simplicity, but
our proofs can be adapted to the other field coefficients with the corresponding modifications.

First, we need to describe a metric that we use in our proof. Let G be a finite simple
graph that is connected, and let V be its vertex set. Recall that we have defined a metric
ρ : V ×V → R by letting ρ(v, v′) be the length of the shortest path in G between v and v′. A

related metric is defined by ρn(v, v
′) = ⌈ρ(v,v′)

n
⌉. To see that ρn indeed defines a metric, note

that ρn(v, v
′) is simply the length of the shortest path between v and v′ in the graph in Gn.

Clearly ρ1 = ρ, but typically we get a different metric ρn whenever n ≥ 2. For example, let G
be the graph from fig. 4-right, and let n = 2. Then using the vertex labels from fig. 4-right,
we have ρ(v1, v3) = 2, whereas ρ2(v1, v3) = 1 since there is an edge from v1 to v3 in G2. The
metric ρn is the metric that will be most relevant in sections 6 and 7.

From geometric point of view, the difference between the metrics ρ and ρn is related to
the notions of intrinsic and extrinsic distances of a subspace inside a larger ambient space.
For example, consider the unit circle as a subspace of the larger ambient space R

2. In the
circle, the intrinsic distance between a point and its antipode is π, which is the length of
the path between these points in the circle. By contrast, the extrinsic distance between two
antipodal points is equal to 2, the diameter of the circle in R

2. By definition, the intrinsic
distance is always less than or equal to the extrinsic distance. In our case, we have a nested
sequence of increasing spaces Ĝ1 ⊂ Ĝ2 ⊂ . . . ⊂ Ĝn ⊂ . . . ⊂ ĜD. As n increases, the space
of possible paths between two vertices in the vertex set V increase, and therefore it may be
possible to find shorter paths in the larger space.

6.1. Min-Max Technique. The min-max technique is basically a way to measure the thick-
ness of a surface (or k-manifold). The idea is to look at the surface from each direction, and
to find the direction in which the surface looks “the thinnest.” In order to look at the surface
from each direction, we define sweepouts [23].

Let σ be a 2-dimensional homology class (with Z/2Z coefficients) with birth and death

times (b, d) ∈ PDk(G). Then, we can represent σ by some 2-dimensional cycle S in Ĝb that
generates the homology class σ. Before defining the width of a homology class, we need to
define the width of these cycles.

Let V(S) be the set of vertices that are in at least one 2-simplex of S. For v ∈ V(S), let
fv : V(S) → R be the function defined by fv(w) = ρb(v, w), where ρb is the shortest path

distance in Gb (recall ρb(v, w) := ⌈ρ(v,w)
b

⌉). Note f−1
v (i) is the set of all vertices in V(S) at

distance i (with respect to ρb) from v. Let the eccentricity ev be the distance to a farthest
vertex from v, namely ev = maxw∈V(S) ρb(v, w).

Definition 6.1 (Sweepouts). Let S be a 2-cycle in Ĝb and let v ∈ V(S) be a vertex. The
sweepout of S, Λ(v), partitions V(S) into collections of vertices at distance i from v, namely
Λ(v) = {f−1

v (i) | 0 ≤ i ≤ ev}.
The collection of slices f−1

v (i) in a sweepout cuts S into layers; see fig. 9. Readers familiar
with applied topology will recognize some similarities with sublevelset persistent homology,
although with sweepouts the focus is on levelsets moreso than on sublevelsets.

For Y ⊆ V, we define the diameter of Y to be the distance between the farthest two
vertices in Y , namely diam(Y ) := maxv,v′∈Y ρb(v, v

′). Note that if diam(Y ) ≤ t for some
t > 0, then ρb(v, v

′) ≤ t for all v, v′ ∈ Y , meaning that ρ(v, v′) ≤ t · b for all v, v′ ∈ Y .
14



v

w

S

Figure 9. Sweepouts. Blue sweepout Λ(v) = {f−1
v (i)}i, and red sweepout

Λ(w) = {f−1
w (i)}i.

This means that the finite set Y is simplex in Ĝt·b. We will use this fact in the proof of
theorem 6.4.

By using the sweepouts of S, we define the width of S [24], and hence the width of a
homology class, as follows:

Definition 6.2 (Width of a Homology Class). Let S be a 2-cycle in Ĝb. Define the width

ω(S) as the minimum, over all sweepouts of S, of the maximal diameter of a slice in the
sweepout:

ω(S) = min
v∈V(S)

max
Λ(v)

{diam(f−1
v (i))}.

Let σ be a homology class in H2(Ĝ
b). Then, we define the width of σ as

ω(σ) = min
S∈σ

ω(S),

where the minimum is taken over all 2-cycles S in Ĝb that generate the homology class σ.

0

1

2

3

4

5

6

7

8

N1

N2

N4

N6

S

fv

v

Figure 10. Filter Function. Slicing via a filter function: Ni := f−1
v (i)

We are minimizing among maximum slices of S in all sweepouts; see fig. 9. This is called
the min-max technique in minimal surface theory [23]. In metric geometry, this notion
corresponds to the Urysohn 1-width (see remark 7.2).
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v0

N1

N2

N3

N5

N6

N7

N8

N4

S

Â7

Â5

Â3

U7 U7

Figure 11. On the left, Λ(v) is the sweepout with the smallest maximal slice
N4, i.e. ω(S) = diam(N4). On the right, we cap off each slab Ai with the caps

Ui−1 and Ui, to obtain the 2-cycle Âi in Ĝ(ω(σ)+1)b. As the 1-cycle Z7 associated
to the slice N7 contains two loops, note the 2-chain U7 contains two disks.

Remark 6.3 (Subtleties in the Width Definition). An important point in the width definition
is that the diameter is defined using shortest paths in Gb, not using shortest paths in G,
and not using shortest paths in the individual slices (which need not even be connected; see
fig. 10).

6.2. Bounding Life Spans via Width. The following theorem bounds the life span of a
2-dimensional topological feature in terms of its width. The main idea of the proof is to slice
the manifold up into small diameter pieces (slabs) by using the best sweepout.

Theorem 6.4. Let (b, d) ∈ PD2(G) correspond to the 2-dimensional homology class σ. Let

ω(σ) be the width of the 2-dimensional homology class σ in Ĝb. Then,

d ≤ (ω(σ) + 1)b.

Proof. Let S be a 2-cycle in Ĝb minimizing the width of σ, i.e. ω(S) = ω(σ). Let v ∈ V(S)
be such that Λ(v) is a minimizing sweepout, meaning that we have diam(f−1

v (i)) ≤ ω(S) for
all 0 ≤ i ≤ ev, where ev is the eccentricity of v in S. We use the notation Ni := f−1

v (i). See
fig. 11-left.

Let the slab Ai, for 1 ≤ i ≤ ev, be the set of 2-simplices in S with vertices in Ni−1 ∪ Ni.
In particular, the slab Ai is the portion of S between the slices Ni−1 and Ni; see fig. 11.

We claim S =
∑ev

i=1Ai as a sum of 2-chains. Indeed, any 2-simplex τ in S is also a simplex

in Ĝb, and therefore its vertices are at distance at most 1 apart in the shortest-path metric
ρb on the graph Gb. This implies that τ is in Ai for some i. Indeed, for any two vertices
u, u′ ∈ τ , we have |fv(u) − fv(u

′)| = |ρb(v, u) − ρb(v, u
′)| ≤ ρb(u, u

′) ≤ 1 by the triangle
inequality. The equality S =

∑ev
i=1Ai implies that ∅ = ∂S =

∑ev
i=1 ∂Ai, where the sum is

taken with coefficients in Z/2Z.
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An edge τ can satisfy τ ∈ ∂Ai ∩ ∂Aj for i < j only if j = i+1, in which case τ is a subset
of Ni. Therefore the equality ∅ =

∑ev
i=1 ∂Ai implies that there exist 1-cycles Zi for 0 ≤ i ≤ ev

(with Z0 = ∅ = Zev) such that each edge in Zi is a subset of Ni, and ∂Ai = Zi−1 +Zi for all
1 ≤ i ≤ ev.

As diam(Ni) ≤ ω(σ), Ni generates a complete simplex in Ĝω(σ)b ⊆ Ĝ(ω(σ)+1)b. As this
simplex is contractible, the 1-cycle Zi is the boundary of some 2-chain Ui whose simplices
are all subsets of Ni.

Define the 2-cycles Âi = Ai ∪ Ui−1 ∪ Ui for 1 ≤ i ≤ ev. The 2-chains Ui−1 and Ui cap
off the lower boundary Zi−1 and the upper boundary Zi of Ai; see fig. 11-right. Note that

Âi is indeed a cycle, namely ∂Âi = ∅, which follows from the fact that ∂Ai = Zi−1 + Zi =

∂Ui−1 + ∂Ui. We have S =
∑ev

i=1 Âi, since the caps Ui cancel in pairs.
We consider the diameter of Ni−1 ∪ Ni. For any pair of vertices u, w ∈ Ni−1 ∪ Ni, either

both belong to slice Ni−1, or both belong to slice Ni, or one vertex belongs to each. If
both vertices belong to the same Nj , then ρb(u, w) ≤ diam(Nj) ≤ ω(σ). If u ∈ Ni−1 and
w ∈ Ni, then let w′ be a vertex in Ni−1 with ρb(w,w

′) = 1. Since ρb(u, w
′) ≤ ω(σ), we have

ρb(u, w) ≤ ω(σ) + 1. Therefore, diam(Ni−1 ∪Ni) ≤ ω(σ) + 1.
As diam(Ni−1 ∪Ni) ≤ ω(Ω)+1, the vertex set Ni−1 ∪Ni forms a simplex in the simplicial

complex Ĝ(ω(σ)+1)b. Therefore, Âi is nullhomologous in Ĝ(ω(σ)+1)b. Since S =
∑ev

i=1 Âi as

2-cycles, it follows that S is nullhomologous in Ĝ(ω(σ)+1)b. So d ≤ (ω(σ) + 1)b. �

Remark 6.5 (Slicing Technique). Notice that the main idea of the proof above is to slice the
surface S into small diameter subsurface “slabs” {Ai}. We call this the “Slicing Technique”.
We note that this is similar to ideas also used by Virk in the context of Vietoris–Rips
complexes to prove [50, Theorem 7.1]; see in particular Figure 6 within. In the following
section, we generalize the slicing technique to any dimension, and we use the width to prove
an upper bound on the persistent homology life spans in general homological dimensions.

Remark 6.6 (Improving the Upper Bound). Notice that in both question 5.1 and theorem 6.4,

our main technical approach is to chop the original surface S in Ĝb into small diameter pieces
Σi with diam(Σi) ≤ t for some t > 0. Then, as each piece generates a complete simplex on its

vertices in Ĝt·b, it will be trivially nullhomologous in Ĝt·b. Here, we use a rough estimate to
get nullhomologous surfaces. On the other hand, in [40, Proposition 9.1], the authors prove
that the “spread” gives an upper bound on the persistence d − b for any persistence bar in
the Vietoris–Rips filtration, where for a geodesic space X one has spread(X) ≤ 2

3
diam(X).

It might be possible to adapt this spread result for geodesic spaces to our discrete setting,
and improve our estimates using a notion of width that considers the spread (instead of the
diameter) of each slice.

7. PDk(G): Generalization to Higher Dimensions

The ideas in the proof theorem 6.4 are suitable to generalize to higher dimensions, which
we do in this section.

Let Ω be a k-dimensional homology class, with Z/2Z coefficients, with birth and death

times (b, d) ∈ PDk(G). Then, we can represent Ω by some k-dimensional cycle M in Ĝb that
generates the homology class Ω. Before defining the width of a homology class, we need to
define the width of these cycles.
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Let V(M) be the set of vertices contained in at least one k-simplex of M , and let v ∈
V(M). Let fv : V(M) → R be the function defined by fv(w) = ρb(v, w), where ρb is the
shortest path distance in the graph Gb. Note f−1

v (i) is the set of all vertices in V(M) at
distance i from v. Let the eccentricity ev be the distance to a farthest vertex from v, namely
ev = maxw∈V(M) ρb(v, w).

The sweepout Λ(v) partitions V(M) into collections of vertices at distance i from v, namely

Λ(v) = {f−1
v (i) | 0 ≤ i ≤ ev}. We define the width of the k-dimensional cycle M in Ĝb as

the minimum, over all sweepouts, of the maximum diameter (using the metric ρb) of a slice
in the sweepout:

ω(M) = min
v

max
Λ(v)

{diam(f−1
v (i))}.

As before, in order to define the width of a homology class, we minimize the width among
the cycle representatives M of Ω in Ĝb. That is, ω(Ω) = minM∈Ω ω(M). We can give the
generalization of the theorem as before.

Theorem 7.1. Let (b, d) ∈ PDk(G). Let ω(Ω) be the width of the k-

dimensional homology class Ω in Ĝb. Then,

d ≤ (ω(Ω) + 1)b.

Proof. We apply the “Slicing Technique” developed in the proof of theorem 6.4 to higher
dimensions. Let M be a k-cycle minimizing the width of Ω, and let v ∈ V(M) be such that
Λ(v) is a minimizing sweepout of M . We use the notation Ni := f−1

v (i) for 0 ≤ i ≤ ev.
For 1 ≤ i ≤ ev, let the slab Ai be the set of k-simplices in M with vertices in Ni−1∪Ni. To

see that M =
∑ev

i=1Ai, note that any k-simplex τ in M is also a simplex in Ĝb, and therefore
its vertices are at distance at most 1 apart in the shortest-path metric ρb. By the triangle
inequality, this implies that τ is in Ai for some i. The equality M =

∑ev
i=1Ai implies that

∅ = ∂M =
∑ev

i=1 ∂Ai, where the sum is taken with coefficients in Z/2Z.
A (k−1)-simplex τ can satisfy τ ∈ ∂Ai∩∂Aj for i < j only if j = i+1, in which case τ is

a subset of Ni. Therefore the equality ∅ =
∑ev

i=1 ∂Ai implies that there exist (k − 1)-cycles
Zi for 0 ≤ i ≤ ev (with Z0 = ∅ = Zev) such that each simplex in Zi is a subset of Ni, and
such that ∂Ai = Zi−1 + Zi for all 1 ≤ i ≤ ev.

As diam(Ni) ≤ ω(Ω), Ni generates a complete simplex in Ĝω(Ω)b ⊆ Ĝ(ω(Ω)+1)b. Since
this simplex is contractible, the (k − 1)-cycle Zi is the boundary of some k-chain Ui whose
simplices are all subsets of Ni.

We define the k-cycle Âi = Ai∪Ui−1∪Ui, which caps off the lower boundary Zi−1 and the

upper boundary Zi of Ai. Note Âi is indeed a cycle since ∂Ai = Zi−1 + Zi = ∂Ui−1 + ∂Ui

implies ∂Âi = ∅. We have M =
∑ev

i=1 Âi, since the caps Ui cancel in pairs.
We claim that diam(Ni−1 ∪ Ni) ≤ ω(Ω) + 1. For any pair of vertices u, w ∈ Ni−1 ∪ Ni,

either both belong to slice Ni−1, or both belong to slice Ni, or one vertex belongs to each.
If both vertices belong to the same Nj, then ρb(u, w) ≤ diam(Nj) ≤ ω(Ω). If u ∈ Ni−1 and
w ∈ Ni, then let w′ be a vertex in Ni−1 with ρb(w,w

′) = 1. Since ρb(u, w
′) ≤ ω(Ω), we have

ρb(u, w) ≤ ω(Ω) + 1.
As diam(Ni−1 ∪Ni) ≤ ω(Ω)+1, the vertex set Ni−1 ∪Ni forms a simplex in the simplicial

complex Ĝ(ω(Ω)+1)b. Therefore, each Âi is nullhomologous in Ĝ(ω(Ω)+1)b, and so M =
∑ev

i=1 Âi

is nullhomologous in Ĝ(ω(Ω)+1)b. It follows that d ≤ (ω(Ω) + 1)b. �
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Remark 7.2 (Urysohn Widths). Notice that in the above theorem, we used the same width
notion defined for 2-cycles, now in the context of k-cycles. For a k-manifold M , this is called
Urysohn 1-width ω1(M), as it is induced by the codimension-1 sweepouts f−1(t) induced by
f : M → R. If one use instead a function F : M → R

m, then the sweepouts F−1(x) will
be codimension-m submanifolds; a similar definition gives us the Urysohn m-width ωm(M)
of the manifold [31]. It is known that for a closed k-manifold, the widths are monotone,
namely ω1(M) ≥ ω2(M) ≥ . . . ≥ ωk−1(M) ≥ ωk(M) = 0. It is conjectured that the (k − 1)-
width ωk−1(M) is closely related to Gromov’s filling radius [33]. So, by generalizing the
arguments above, one might get better estimates by using ωk−1(M). See section 8.2 for
further discussion.

8. Final Remarks

Our aim in this paper is two-fold. First, we aim to bring fresh ideas from geometric topol-
ogy to address subtle questions in applied topology and topological data analysis. Second,
we hope to attract the attention of geometric topologists to the emerging field of applied
topology by showing how these tools are effective, as there are many more problems to be
tackled. In the following, we give some concluding remarks, and discuss further directions.

8.1. Geometric Interpretation of PDk(G). In this paper, for a given k-dimensional topo-
logical feature (homology class) Ω in the power filtration of a graph G, we study the relation
between its representation (b, d) in the persistence diagram PDk(G) and its geometric size.
Here, the geometric size can be interpreted as the volume or as the width of the homology
class Ω.

Upon going over the ideas in sections 5 to 7, one sees that a persistent homology class
can persist as much as its size allows it to. Even though in dimension 1 the length of
the homology class gives a good interpretation of this notion of size, in higher dimensions
the volume can be a weak way to measure this. A better notion is the width, which one
can consider as a filling diameter of the homology class. The thick and thin surfaces in
example 5.3 and example 5.4 are the key to understanding the width idea as the filling
diameter of a homology class. In the thin long box example, even though the area is large,
the life span is very small. The reason is that the width better measures the size of the
3-dimensional body filling this surface. In the thin long box case, the diameter of a largest
embedded ball in this filling 3-dimensional body is very small, which informally represents
the width idea we are describing here. In particular, since we do not have a well-defined
way to describe this filling 3-body, we define the width by using the geometry of the surface.
From this point of view, the width we use can informally be related to Gromov’s notion of
the filling radius [30], also used in [40].

8.2. Lower Bounds for Life Spans. In this paper, we only give upper bounds for the life
spans of homology classes in persistent homology. Of course, the next natural question is
the lower bounds via area or width, or via some new geometric notion.

Unfortunately, as the thin long box example in example 5.3 shows, the area cannot be
used for a lower bound for the life spans. One can make the area of the thin parts of the
surface as big as one wants without effecting its life span.

However, the width would be a good candidate to get a lower bound for the life span. As
we discussed in previous section, the life spans are directly related to the notion of the filling
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diameter of the surface (or k-dimensional homology class). It is believed that the width and
Gromov’s filling radius of a closed manifold are closely related [33, 31] (see remark 7.2). In
particular, the life span informally represents the diameter of the largest embedded ball in
the 3-dimensional body filling our surface. From that perspective, the width notion mostly
captures this idea, potentially giving route towards a lower bound via width. In our paper,
we use width in a simple way to chop the surface into small diameter surfaces. However, it
might be possible to adapt higher Urysohn widths notion to this context (remark 7.2) to get
a lower bound for life spans, by injecting ideas from metric geometry where higher Urysohn
widths are used to obtain lower bound for Gromov’s filling radius [41].

8.3. Generalization to Point Clouds and Other Filtrations. In the language of Vietoris–
Rips complexes, the main result of our paper can be summarized as follows. If G is an
unweighted connected finite graph, then in the persistent homology of the Vietoris–Rips
complex of its vertex set, the death time d of a k-dimensional homology class Ω is at most
(ω(Ω)+1)b, where ω(Ω) is the width of Ω (theorem 7.1). As one can notice, many geometric
ideas introduced in this paper, like the thick-thin decomposition, min-max, or sweepouts,
can be generalized to the point cloud setting, or to other filtrations. We therefore expect
there to be generalizations of the above result to the setting of Vietoris–Rips, Čech, or wit-
ness complexes of more general point clouds. Depending on the filtration, the interpretation
and measure of size of these quantities bounding the life span of a homology class will be
different, but nevertheless we expect that the notions developed in this paper will help to
effectively summarize the information obtained in persistence diagrams.

In order to generalize these techniques to the point cloud setting, the first main obstacle
to overcome is the varying distances between points in the cloud. In our case, we took a
simple discrete metric for our point cloud (vertices of the graph) induced by shortest paths
in an unweighted graph. However, recent advances in coarse geometry could be the key to
generalize these geometric notions to more general metric spaces and point clouds [14, 15].
For example, suppose that X is a geodesic metric space that can be closely approximated
in the Gromov-Hausdorff distance by a graph G in which all edges have the same length.
Then the stability of persistent homology [21, 20] implies that the persistent homology of
the Vietoris–Rips complexes of X are close to the persistent homology of the Vietoris–Rips
complexes of G, which is governed by our results.

The paper [40] connects the Vietoris–Rips filtration to the filling radius of a space. Given
a metric space X , this same paper proves that any persistent homology bar in the Vietoris–
Rips filtration of a metric space X has a length bounded from above by the spread of X . As
the spread only depends on the metric space X , it gives the same bound for all homology
classes (in all homological dimensions). In our work, in the setting of unweighted graphs,
we instead give refined bounds depending on the size of each individual homology class. We
speculate that some of our techniques may prove useful in the setting of more general metric
spaces.

8.4. TDA on Graphs. We focused on the setting of power filtrations of graphs to first
study persistent homology in a discrete setting, in order to learn what might happen in
more general contexts. That said, our results show that higher persistence diagrams carry
valuable information about graph properties. In particular, even elementary graphs like
the cyclic graphs [1], or the small examples in section 4, have nontrivial higher-dimensional
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persistence diagrams. These higher persistence diagrams can be effective to detect hidden
patterns in real life datasets, such as widths of k-dimensional cavities.

Because of the computational cost of the power filtration, researchers applying TDA on
graphs sometimes prefer sublevel (superlevel) filtrations defined by a filter function to study
graph properties. Instead, the power filtration considers the graph vertices as a point cloud
where the distances are given by the graph, meaning that the power filtration captures the
shape of the graph, just like Vietoris–Rips complexes capture the shape of a point cloud.
Power filtrations can be a crucial tool to employ in graph classification problems, and related
questions. As mentioned above, the higher persistence diagrams can contain crucial geomet-
ric information about graph cavities. The main drawback here is that computing the power
filtration for graphs and their higher-dimensional persistence diagrams is computationally
expensive. However, by using the ideas developed in this paper, there is hope to compute or
bound these higher persistence diagrams more efficiently.
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Appendix A. Proof of theorem 3.3

Our proof of theorem 3.3 relies on Vietoris–Rips complexes of geodesic spaces and persis-
tence modules that are indexed over the real numbers instead of over a discrete set, which
we introduce now. Our treatment is brief, since everywhere else in the paper we instead
consider filtrations and persistence modules indexed over a finite index set. However, we
point the reader to references containing more information, including [8, 29, 49].

The Vietoris–Rips complex of a metric space is a filtration indexed over a real-valued scale
parameter.

Definition A.1. For X a metric space and r ≥ 0, the Vietoris–Rips simplicial complex

VR(X ; r) has X as its vertex set, and contains a finite subset σ ⊆ X as a simplex if
diam(σ) ≤ r.

Note that for any r ≤ r′, we have VR(X ; r) ⊆ VR(X ; r′). After applying homology Hk

with coefficients in Z/2Z, we obtain a persistence module indexed over the real numbers
r ≥ 0, namely the collection of vector spaces {Hk(VR(X ; r))}r≥0 equipped with linear maps
Hk(VR(X ; r)) → Hk(VR(X ; r′)) for all r ≤ r′. If X is a compact metric space, then one can
define the k-dimensional persistence diagram associated to the Vietoris–Rips filtration [21],
which (by a slight abuse of notation) we denote by PDk(X).

For G a finite connected graph, we let VR(G; r) denote the Vietoris–Rips simplicial com-
plex of the vertex set V of G, equipped with the shortest path metric ρ. We have an equality

of simplicial complexes VR(G; r) = Ĝ⌊r⌋ for any r ≥ 0, where ⌊r⌋ is the greatest integer
smaller than or equal to r.

Let G be the metric graph associated to the finite connected graph G. To obtain G,
start with the vertex set V of G, and then glue on a continuous interval [0, 1] of length 1
for each edge in G. One can equip with G with a metric structure such that the distance
between any two points (not necessarily vertices) is the length of a shortest path between
them. In particular, G is a geodesic metric space that contains an infinite number of points
on each edge of G, and that admits an isometric embedding from the vertex set of G; see [14]
and [12, Section 1.9] for more information. Since G is finite, the metric space G is compact,
and therefore for any integer k we have a k-dimensional persistent homology diagram PDk(G)
coming from the Vietoris–Rips filtration of G [21].
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Proof of theorem 3.3. Let G be a finite connected graph. Let {γ1, . . . , γm} be a lexicograph-
ically shortest basis of H1(G), where each γi has length li. So l1 ≤ l2 ≤ l3 ≤ . . . ≤ lm. We
must show that

PD1(G) = {( 1,
⌈
li
3

⌉
) | 1 ≤ i ≤ m}.

By lemma 3.1, we know that PD1(G) = {(1, di)}i for some collection of death times di. We
must show that di = ⌈ li

3
⌉ for 1 ≤ i ≤ m.

The high-level structure of the proof will be as follows. The persistence diagram of the met-
ric graph PD1(G) is known, by [49, Theorem 8.10]. (We refer the reader to [29, Theorem 1.1]
for an analogous result with Čech complexes.) The papers [49, 29] are the inspiration for
theorem 3.3, and we rely on their results in this proof. We will use morphisms of persistence
modules [8] to pass from knowledge of the known persistence diagram PD1(G) to knowledge
of the unknown diagram PD1(G).

A loop γ in the finite graph G is a sequence of adjacent edges v0v1, v1v2, . . . , vn−2vn−1,
vn−1v0 in G that start and end at the vertex v0. By replacing each discrete edge vivi+1 in
the finite graph G with the continuous path across this edge in the metric graph G, we
obtain an associated loop γ of the same length in the metric graph G. Note that G is a
1-dimensional simplicial complex triangulation of the metric space G. By the equivalence
between simplicial homology and singular homology, the rank of H1(G) is equal to the rank
of H1(G).

Furthermore, the equivalence between simplicial homology and singular homology gives
equivalence of lexicographically shortest bases, as follows. If γ1, . . . , γm is a lexicographically
shortest basis for H1(G), then γ1, . . . , γm is a lexicographically shortest basis for H1(G) with
the same lengths l1 ≤ l2 ≤ l3 ≤ . . . ≤ lm. Theorem 8.10 of [49] gives a complete description of
the 1-dimensional persistent homology: the 1-dimensional persistence diagram of VR(G; r)
is given by PD1(G) = {(0, li

3
) | 1 ≤ i ≤ m}, where the lengths li are from a lexicographically

shortest basis for G.
For any r ≤ r′, we have a commutative diagram

VR(G; r) VR(G; r′)

VR(G; r) VR(G; r′)

where the vertical maps are induced by the isometric inclusion of metric spaces from the
vertex set of G into the metric space G. This means that we have a morphism of persistence
modules, f : H1(VR(G;−)) → H1(VR(G;−)); see [8] for more background on morphisms
between persistence modules. The main result we will need is [8, Proposition 5.3], which
says that if f is a morphism of persistence modules and if (b, d) is a point in the persistence
diagram of the domain of f whose generator (at any scale between b and d) gets mapped to
the generator for a point (b′, d′) in the persistence diagram of the codomain of f , then we have
the inequality b′ ≤ b < d′ ≤ d. In our context, this means the following, with (b′, d′) = (0, li

3
)

and with b = 1. Since the loop γi in G maps under the inclusion VR(G; r) →֒ VR(G; r) to the
homology class generated by the loop γi (for any 1 ≤ r < li), and since γi corresponds to the
point (0, li

3
) ∈ PD1(G), then γi generates a bar (1, di) ∈ PD1(G) that satisfies 0 ≤ 1 < li

3
≤ di,

for 1 ≤ i ≤ m. As each di is an integer, we furthermore have di ≥ ⌈ li
3
⌉. By lemma 3.2, the
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cycle γi is null-homotopic in Ĝn for n ≥ ⌈ l
3
⌉, which implies di ≤ ⌈ li

3
⌉. Together, these give

di = ⌈ li
3
⌉, and so PD1(G) = {(1, ⌈ li

3
⌉) | 1 ≤ i ≤ m}. �
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