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ABSTRACT. Robust models in mathematical finance replace the classical single probability measure by a sufficiently

rich set of probability measures on the future states of the world to capture (Knightian) uncertainty about the “right”

probabilities of future events. If this set of measures is nondominated, many results known from classical dominated

frameworks cease to hold as probabilistic and analytic tools crucial for the handling of dominated models fail. We

investigate the consequences for the robust model when prominent results from the mathematical finance literature are

postulate. In this vein, we categorise the Kreps-Yan property, robust variants of the Brannath-Schachermayer Bipolar

Theorem, Fatou representations of risk measures, and aggregation in robust models.
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1. INTRODUCTION

This paper studies questions related to model uncertainty in nondominated frameworks. Model uncertainty or

Knightian uncertainty refers to situations in which the mechanism behind the realisation of economic or financial

outcomes is ambiguous or impossible to be known. Mathematically, these are usually modelled by a nonempty
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set P of probability measures on a measurable space (Ω,F ) of relevant future states which can be classified as

follows:

(a) Pure risk: P= {P} is a singleton.

(b) Dominated uncertainty: The set P is dominated by a single reference probability measure P on (Ω,F ), i.e.

each P-null event N ∈ F satisfies supQ∈PQ(N) = 0.

(c) Nondominated uncertainty: There is no dominating probability measure for P.

Often models of nondominated uncertainty appear under the label robust; see [18, 23, 62, 71] and the references

therein. They are subject to crucial limitations though; as Bouchard & Nutz [18] remark:

The main difficulty in our endeavor is that [P] can be nondominated which leads to the failure of various tools of

probability theory and functional analysis ... As a consequence, we have not been able to reach general results by using

separation arguments in appropriate function spaces ... [18, p. 824]

The mentioned probabilistic and analytic toolbox under dominated uncertainty tends to strongly rely on the conti-

nuity of a dominating probability measure P. Arguments based thereon facilitate many studies in financial math-

ematics. To give examples, law-invariant financial metrics such as Value-at-Risk fall in category (a) of pure risk,

while financial applications that require a change of measure—as for instance in the context of the Fundamental

Theorem of Asset Pricing (FTAP)—fall in category (b). In the latter case, the exhaustion principle is still applicable

(see, e.g., the proof of the Halmos-Savage Theorem).

The literature knows a number of prominent ad hoc circumventions of the lack of a dominating measure in situation

(c).

• Cohen’s [28] Hahn property, a specific structure of the underlying measure space in relation to the occur-

ring probabilities;

• The assumption that the uncertainty structure is tree-like and that Ω is Polish, which in turn admits dynamic

programming and measurable selection arguments, see [7, 12, 16, 18, 19];

• Focusing on particularly well-behaved state spaces like the Wiener space, cf. [63, 70, 71].

This strand of literature imposes sufficient conditions to guarantee that some nondominated robust model is a

tractable setting for particular applications. In stark contrast, the present manuscript takes the opposite mathemati-

cal standpoint. Its reverse perspective tackles the question which structural consequences for the triplet (Ω,F ,P)

can be derived from assuming that certain desired results from the mentioned probabilistic and analytic toolbox

are available. In other words, the paper addresses the usual mathematical question of necessity of sufficient condi-

tions. We shall see that this leads to an additional subcategory (c’) of nondominated uncertainty (c) which in this

explicitness seems to be missing in the mathematical finance literature so far.

(c’) Supported uncertainty: There is an alternative set Q of probability measures on (Ω,F ) which is equivalent

to P (an event N ∈ F is P-polar, i.e. supP∈PP(N) = 0, if and only if it is Q-polar, i.e. supQ∈QQ(N) = 0),

and such that each measure Q ∈Q is supported.

The supports required in (c’) are not to be understood in a statewise or topological, but in an order sense (cf.

Definition 2.1), and they are only unique up to P-polar events. We shall say that a set P as described in (c’) is of

class (S), while the alternative set of supported probability measures Q is a supported alternative to P.

Results that are well known in situations (a)–(b) above and whose robust counterparts we shall study from a reverse

perspective encompass the
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• Kreps-Yan property (essential for the FTAP and studied in Section 5.3)

• Brannath-Schachermayer Bipolar Theorem (see Section 4, used in the literature for utility maximisation

problems)

• feasibility of aggregation procedures (important for superhedging, dynamic arbitrage pricing, and utility

maximization, see Sections 5.2 and 5.5)

• Fatou representations of convex monetary risk measures (also relevant for the FTAP, see Section 5.4).

This classification is an attempt at an axiomatic reply to the quoted question of [18] and can inform debates of

specific models in robust finance.

Mathematically, our approach is closely related to [38, 54] in its use of the so-called P-quasi-sure (P-q.s.) order

as key. This order on function spaces is defined using the upper envelope c := supP∈PP(·) of P. While both

L∞
P equipped with the usual P-almost-sure order and its robust counterpart L∞

c equipped with the P-q.s. order

are Banach lattices, they differ substantially on the order level. A not overly deep, but crucial observation is the

following. Consider any measure µ : F → [0,∞] whose null sets are precisely the P-polar events. Such a measure

always exists, for instance µ := ∑P∈PP.1 Then the P-q.s. and the µ-almost-everywhere order agree, and the robust

space L∞
c can always be seen as a classical L∞

µ -space, where the measure µ is not σ -finite if P does not belong to

category (b). While this point of view tends to be missing in the extant mathematical finance literature (whose

natural objects of interest are probability measures), it has proved fruitful in robust statistics if the measure µ can

be chosen to be reasonably well-behaved; cf. [51]. Indeed, category (c’) realises if µ and the alternative Q to P

can be chosen such that each Q ∈Q has a density with respect to µ ; cf. Lemma 3.6. The support of Q ∈Q is the

domain of positivity of that density. Being an alternative to P, the Q-q.s. and P-q.s. orders coincide.

Intuitively, it is clear that the supportedness of each Q ∈ Q makes the Q-q.s. order, and thus the P-q.s. order,

tractable in many ways. For instance, Section 3.2.1 explains that function spaces defined over a set P of class

(S) necessarily are an infinite Cartesian product. Section 3.2 relates it to several economically motivated case

studies drawn from the literature. Moreover, it will turn out to be necessary for the validity of the aforementioned

theorems in a robust setting. Not least, the class (S) property serves as a bracket for parts of the extant literature on

robust models: For instance, the models in [28, 71] are of class (S). Section 5.2 will demonstrate that indeed any

model P which admits aggregation, as is the case in [28, 71], must be of class (S). Aggregation means that any

consistent family of random variables (XP)P∈P, can be aggregated to a single random variable X in the sense that

P(X = XP) = 1, P ∈ P. Aggregation is also closely related to the existence of essential suprema, i.e. Dedekind

completeness of L∞
c . We will also show that the standing assumption of [38, 54] that cac

∗ = L∞
c (where cac denotes

the space of finite signed measures whose total variation measures do not charge P-polar events) is unnatural in

ZFC and better replaced by P being of class (S) and L∞
c being Dedekind complete; cf. Section 5.5.

Concluding this discussion and anticipating our results in a nutshell, we shall establish the following equivalences:

Kreps-Yan property ⇐⇒ P dominated

Robust Brannath-Schachermayer Bipolar Theorem ⇐⇒ P of class (S)

Essential suprema and aggregation ⇐⇒ P of class (S) & L∞
c Dedekind complete

Fatou representation of risk measures ⇐⇒ P of class (S) & L∞
c Dedekind complete

1 µ := ∑P∈PP is defined by µ(A) = sup{∑P∈P′ P(A) |P′ ⊂P finite}, A ∈ F .
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In view of the importance of Dedekind completeness/aggregation, Appendix C focuses on the question whether

aggregation can be made possible by relaxing the notion of measurability and enlarging the underlying σ -algebra

F . It turns out that this is only the case under specific circumstances.

Finally, we like to draw attention to a strong link between the fields of robust finance and robust statistics which

to our knowledge has not been sufficiently addressed in the extant literature. The consideration of nondominated

sets of probabilistic models relevant for a statistical experiment goes back at least to [21], extending the theory of

sufficiency developed by Halmos & Savage. Beside the groundbreaking contribution of [49], we refer to a rich

strand of literature given by, for instance, [39, 40, 50, 65, 67, 72]. In particular, [51] and the monographs [33, 34]

serve as important references for the present paper.

The paper is structured as follows: Section 2 and Appendices A–B contain explanatory and technical material.

Section 3 discusses the class (S) property thoroughly, and Section 3.2 illustrates its occurence in several economic

case studies. Sections 4 and 5 contain the characterisation of the robust counterparts of the well-known tools from

mathematical finance mentioned above.

2. SOME NOTATION AND QUASI-SURE ORDERS

We shall rely heavily on lattice theory. A very brief overview is given in Appendix A. For more information we

refer to the monographs [1, 2, 3, 58].

Set functions: Throughout the paper (Ω,F ) denotes an arbitrary measurable space. By ba we denote the real

vector space of all additive set functions µ : F → R with bounded total variation norm denoted by TV . ba is a

vector lattice when endowed with the setwise order: for µ ,ν ∈ ba, µ �F ν holds if, for all A ∈ F , µ(A) ≤ ν(A).

The triplet (ba,�F ,TV ) is a Banach lattice.

Given nonempty subsets S and T of ba, we say T dominates S (S≪T) if for all N ∈F satisfying supν∈T |ν |(N)=

0 we have supµ∈S |µ |(N) = 0. Here and in the following, |µ | ∈ ba+ denotes the total variation of µ with respect to

�F ,

|µ |(A) = sup{µ(B)−µ(A\B) | B ∈ F , B ⊂ A}.

S and T are equivalent (T≈S) if S≪ T and T≪S. For the sake of brevity, for µ ∈ ba we shall write S≪ µ ,

µ ≪ T, and µ ≈S instead of S≪{µ}, {µ} ≪ T, and {µ} ≈S, respectively.

The vector space of all countably additive signed measures with finite total variation, ca, is the space of all µ ∈ ba

such that, for any sequence (Ai)i∈N ⊂ F of pairwise disjoint events,

µ
( ∞⋃

i=1

Ai

)
=

∞

∑
i=1

µ(Ai).

∆(F ) denotes the set of probability measures on (Ω,F ) and the letters P, Q, and R are henceforth used to denote

nonempty subsets of ∆(F ). Fixing such a set P we write c for the induced upper probability c : F → [0,1] defined

by c(A) = supP∈PP(A). An event A ∈ F is P-polar if c(A) = 0. A property holds P-quasi surely (q.s.) if it holds

outside a P-polar event. We set bac := {µ ∈ ba | µ ≪P} and cac := ca∩bac. cac+ := {µ ∈ cac | 0�F µ} denotes

the set of all measures µ ≪P. Both ca and cac are TV -closed bands within ba. Hence, (cac,�F ,TV ) is a Banach

lattice in its own right.

Function spaces: Consider the R-vector space L 0 := L 0(Ω,F ) of all real-valued random variables f : Ω → R

as well as its subspace N := { f ∈ L 0 | c(| f | > 0) = 0}. The quotient space L0
c := L 0/N contains equivalence
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classes X of random variables up to P-q.s. equality comprising representatives f ∈ X . The space L0
c carries the

P-quasi-sure order as natural vector space order: X ,Y ∈ L0
c satisfy X � Y if, for all f ∈ X and all g ∈ Y , f ≤ g

P-q.s. In order to facilitate notation we suppress the dependence of � on c or P. Each measurable function f

induces an equivalence class [ f ] ∈ L0
c . (L0

c ,�) is a vector lattice, and for X ,Y ∈ L0
c , f ∈ X , and g ∈Y , the minimum

X ∧Y is the equivalence class [ f ∧ g] generated by the pointwise minimum f ∧ g, whereas the maximum X ∨Y

is the equivalence class [ f ∨ g] generated by the pointwise maximum f ∨ g. For an event A ∈ F , χA denotes the

indicator of the event while 1A := [χA] denotes the generated equivalence class in L0
c .

An important subspace of L0
c which we will study thoroughly is the space L∞

c of equivalence classes of P-q.s.

bounded random variables, i.e.

L∞
c := {X ∈ L0

c | ∃m > 0 : |X | � m1Ω}.

It is an ideal in L0
c and even a Banach lattice when endowed with the norm

‖X‖L∞
c

:= inf{m > 0 | |X | � m1Ω}, X ∈ L∞
c .

If P = {P} is given by a singleton, we write L0
P and L∞

P instead of L0
c and L∞

c . Also, the quasi-sure order in this

case is as usual called almost-sure order, and properties hold P-almost surely (P-a.s.). The spaces L0
µ and L∞

µ for

general measures µ are defined analogously. L0
c+ and L∞

c+ denote the positive cones of L0
c and L∞

c , respectively. At

last, for /0 6= C ⊂ L0
c and A ∈ F , we write

1AC := {1AX = [χA f ] | X ∈ C , f ∈ X}.

Supported measures: The existence of a support of a measure µ ∈ cac will play a key role in the development of

the present paper. This concept is also known in statistics, see [39, Definition 1.1].

Definition 2.1. Let P⊂ ∆(F ) be nonempty.

(1) A measure µ on (Ω,F ) is supported if there is an event S(µ) ∈ F such that

(a) µ(S(µ)c) = 0;

(b) whenever N ∈ F satisfies µ(N ∩S(µ)) = 0, then N ∩S(µ) is P-polar.

The set S(µ) is called the (order) support of µ .

(2) A signed measure µ ∈ cac is supported if its modulus |µ | with respect to the setwise order �F is supported.

(3) We set

scac := {µ ∈ cac | µ supported},

the vector lattice of all supported signed measures in cac, and scac+ := scac ∩ cac+.

It is easy to verify that if two events S,S′ ∈ F satisfy conditions (a) and (b) in Definition 2.1(1), then χS = χS′

P-q.s., i.e. the symmetric difference S△S′ is P-polar. The order support S(µ) is usually not unique as an event,

but only unique up to P-polar events. In the following, S(µ) therefore denotes an arbitrary version of the order

support. We emphasise that order supports are an order-theoretic concept and may not agree with the topological

support of a measure as defined in [1, p. 441].

As illustration, consider a dominated set P⊂ ∆(F ). Let P∗ ≈P be a probability measure. In particular, the P-q.s.

and the P∗-a.s. order agree. Then each P ∈ P is supported with S(P) = { f > 0}, where f ∈ dP
dP∗ is an arbitrary

version of the Radon-Nikodym derivative dP
dP∗ . We shall later see that the existence of supports is in fact related to

a generalisation of domination called majorisation, cf. Definition 3.4.
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As mentioned in the introduction, we freely use results from mathematical statistics. There, the triplet E :=

(Ω,F ,P) is referred to as experiment. Nondominated statistical experiments are comprehensively studied in

[21, 39, 51], the references therein, or in the monographs [50, 72], and we shall draw from these findings through-

out the paper.

3. SUPPORTED UNCERTAINTY

In this section we will introduce supported uncertainty, the so-called class (S) property of P; see Definition 3.3

below. Note, however, that usually not all measures are supported in the nondominated case.

Example 3.1. Consider the unit interval Ω = [0,1] equipped with the Borel-σ -algebra F = B([0,1])). Let P =

{δω | ω ∈ [0,1]} be the set of all Dirac measures. Then the P-q.s. order is simply the pointwise order on L∞
c .

However, the Lebesgue measure λ is not supported: for any S ∈ B([0,1]) with λ (Sc) = 0 and for any countable

subset /0 6= N ⊂ S we have λ (N) = 0, but 1N 6= 0 in L0
c .

3.1. The class (S) property. We begin with the following simple fact about supportedness.

Lemma 3.2. Let P⊂ ∆(F ) be nonempty and let µ ∈ ca+.

(1) µ is supported if and only if there is an event S ∈ F such that µ(Sc) = 0 and 1S � 1A in L0
c holds for all

A ∈ F with the property µ(Ac) = 0. In that case, S is a version of S(µ).

(2) Set C := {1A | A ∈ F , µ(Ac) = 0} ⊂ L∞
c . If infC exists in L∞

c , then there is an event S ∈ F such that

1S = infC .

In that case, µ is supported if and only if S satisfies µ(Sc) = 0.

Proof.

(1) Suppose that µ is supported as defined in Definition 2.1. Then any version S(µ) of that support satisfies

µ(S(µ)c) = 0. Let A ∈ F such that µ(Ac) = 0. Then µ(Ac ∩ S(µ)) = 0 and thus Ac ∩ S(µ) is P-polar.

Therefore

1S(µ) = 1A∩S(µ)+1Ac∩S(µ) = 1A∩S(µ) � 1A.

Conversely, let S ∈ F be as described. Suppose N ∈ F satisfies µ(N ∩ S) = 0. As µ(N ∪ Sc) = 0 and thus

1S � 1S\N by assumption on S we infer that 1S = 1S\N . Hence, 1N∩S = 1S −1S\N = 0. By Definition 2.1(1), S

is a version of the support.

(2) The existence of the set S ∈F is a direct consequence of Lemma B.1. If µ is supported and S(µ) is its support,

then 1S(µ) � infC = 1S holds by (1). As 1S(µ) ∈ C , we also have 1S � 1S(µ). Hence, 1S = 1S(µ) has to hold.

Conversely, if µ(Sc) = 0, S is the support of µ by (1).

�

Example 3.1 suggests that asking for supportedness of all measures in cac is a requirement which is too strong in

the context of nondominated models. We thus introduce the weaker class (S) property of P.

Definition 3.3. Let P⊂ ∆(F ) be nonempty. P is of class (S) if there is an equivalent set of probability measures

Q≈P such that each Q ∈Q is supported, i.e. Q⊂ scac. In that case we call Q a supported alternative to P.
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As mentioned above, the class (S) property is closely related to a generalised form of domination called majorisa-

tion:

Definition 3.4. Let P⊂ ∆(F ) be nonempty. P is majorised by a (not necessarily σ -finite) measure µ on (Ω,F )

if each P ∈P has a µ-density, i.e. for all P ∈P there is a non-negative measurable function f : Ω → [0,∞) such

that

∀A ∈ F : P(A) =

∫

A
f dµ .

Remark 3.5. The class (S) property is stable under equivalence. Indeed, if P is of class (S) and another set

P′ ⊂ ∆(F ) satisfies P ≈ P′, then P′ is of class (S) as well. This implication does not hold for the property of

majorisation: P being majorised does not imply that P′ is majorised. This observation is also motivated by the

tendency of mathematical finance applications to work on equivalence classes of probability measures.

The link between the class (S) property and majorisation is the following:

Lemma 3.6. For nonempty P⊂ ∆(F ), the following are equivalent:

(1) P is of class (S).

(2) There is an equivalent set of probability measures Q≈P which is majorised.

If Q⊂ ∆(F ) is as in (2), scac is the band generated by Q both in cac and in ca.

Proof. The equivalence of (1) and (2) follows from the fact that Q is majorised if and only if each Q ∈ Q is

supported, see [39, Remark 1.1(a)] or [51, Theorem 1]. We now prove the last assertion. To this end, consider the

ambient space ca. Let c̃ denote the upper probability generated by Q. By [51, Theorem 1],

band(Q) = {µ ∈ cac̃ | |µ | has an order support}= scac̃,

where band(Q) denotes the band generated by Q in ca. As Q≈P, we have both cac̃ = cac and scac̃ = scac, and

the claimed identity is proved. Now cac is a band in ca itself ([51, Lemma 1]) and Q ⊂ scac ⊂ cac. Hence, the

same equality holds for the band in cac generated by Q. �

Given nonempty P⊂ ∆(F ),a subset T⊂ scac+ is a maximal disjoint system if

(i) 0 /∈ T,

(ii) for all µ ,ν ∈ T with µ 6= ν we have that µ ∧ν = 0,

(iii) ν = 0 whenever ν ∈ scac+ satisfies µ ∧ν = 0 for all µ ∈ T.

If scac is nontrivial—for instance, if P is of class (S) (Lemma 3.6)—a maximal disjoint system in scac+ exists by

Zorn’s Lemma. Such maximal disjoint systems play a fundamental role for the results of [51], and we will use

them in the guise of the next lemma.

Lemma 3.7. Suppose P is of class (S). Then there exists a supported alternative Q≈P such that, for all Q 6= Q′,

Q∧Q′ = 0 holds in cac. Equivalently, 1S(Q)∧1S(Q′) = 0 in L∞
c .

Proof. Let T ⊂ scac+ be a maximal disjoint system. Set Q := {µ(Ω)−1µ | µ ∈ T}. For Q ∈Q, we consider the

Q-expectation EQ[·] on L∞
c , which is order continuous by Proposition B.3(3) and whose so-called carrier is given

by C(EQ[·]) = 1S(Q)L
∞
c ; cf. Appendix A and Proposition B.3(2). For Q,Q′ ∈Q with Q 6= Q′, the fact that Q∧Q′ = 0

now is equivalent to 1S(Q)∧1S(Q′) = 0 by [2, Theorem 1.81]. �
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We will refer to Q from Lemma 3.7 as a disjoint supported alternative. The existence of a disjoint supported

alternative has appeared in [28] and studies based thereon as the so-called Hahn property of P. A set P of

probability measures has the Hahn property if P is of class (S) and there is a disjoint supported alternative Q to P

with the property F (Q) =F (P) which admits a family (S(Q))Q∈Q of pairwise disjoint versions of the associated

supports. Here, we use the following notation: Given a set S of measures on (Ω,F ), the S-completion of F is

the σ -algebra

F (S) :=
⋂

µ∈S

σ(F ∪n(µ)), (3.1)

where n(µ) := {A ⊂ Ω | ∃N ∈ F : µ(N) = 0, A ⊂ N} denotes the µ-negligible sets, µ ∈S. A set A ⊂ Ω belongs

to F (S) if and only if for all µ ∈S there is Bµ ∈ F such that A△Bµ = (A\Bµ)∪ (Bµ\A) ∈ n(µ).

The Hahn property of P implies that P is of class (S) by definition. Conversely, Lemma 3.7 shows that if P is of

class (S), then P satisfies a weak kind of Hahn property. However, P being of class (S) does not imply the Hahn

property (cf. [33, 216E]). In the statistics literature, the Hahn property is closely related to decomposable, Σ-finite,

or Σ-dominated experiments; cf. [51, p. 185] and [72, p. 7].

3.2. Examples for the class (S) property. We shall now discuss and verify the class (S) property in a number of

prominent case studies from mathematical finance. While the purpose is illustration, let us once again emphasise

that we do not endorse the class (S) property as an axiom robust models should satisfy. We mostly identify it as a

consequence of the validity of robust counterparts of well-known tools in mathematical finance.

3.2.1. Class (S), product spaces, and financial models. In two recent papers the FTAP and the pricing-hedging

duality under uncertainty are approached both in discrete-time markets [25] and continuous-time markets with

frictions [26]. Given a filtered probability space (Ω,F ,(Ft)t∈T,P), the price process at time t ∈ T is modelled as

a potentially infinite-dimensional vector

St = (Sθ
t )θ∈Θ ∈ ∏

θ∈Θ

L0
P,

where Sθ
t is Ft -measurable for any θ . Θ represents the set of parameters describing the uncertainty in the market

model.

We deem important to illustrate that this construction from [25, 26] indeed falls in the class (S) framework. To this

end, one enlarges the underlying measurable structure and considers

Ω̃ := Ω×Θ

Πt =
{

Aθ ×{θ} ⊂ Ω̃ | θ ∈ Θ, Aθ ∈ Ft

}
∪{ /0} (t ∈ T),

Π =
{

Aθ ×{θ} ⊂ Ω̃ | θ ∈ Θ, Aθ ∈ F
}
∪{ /0}.

Πt ,Π are π-systems generating σ -algebras F̃t and F̃ , respectively. Using Dynkin’s π-λ Theorem, we can define

Pθ (B) := P({ω ∈ Ω | (ω ,θ) ∈ B}), B ∈ F̃ .

Lemma 3.8. The family P= {Pθ | θ ∈ Θ} on (Ω̃,F̃ ) is of class (S).

The proof of the previous lemma is straightforward and follows the idea adopted in [72, Corollary 5.7.14]: indeed

the measurable sets Ωθ = Ω×{θ} are the supports of each measure Pθ , as by definition Pθ (Ωθ ) = 1 and Ωθ ∩

Ωθ ′
= /0 for θ 6= θ ′ ∈ Θ.
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Hence, the financial model given by the filtered probability space (Ω,F ,(Ft )t∈T,P), the parameter set Θ, and the

price process S can equivalently be replaced by the new measurable space (Ω̃,F̃ ), the filtration (F̃t)t∈T, and the

set P= {Pθ | θ ∈ Θ} of relevant probability measures (and of course the price process is easily redefined on this

new structure). The preceding construction is a special case of a procedure that is always possible in the class (S)

framework. Recall from Lemma 3.7 that there is a disjoint supported alternative Q to P. Consider the vector space

Y :=
{

X = (XQ)Q∈Q
∣∣ sup
Q∈Q

‖XQ‖L∞
Q
< ∞

}
⊂ ∏

Q∈Q

L∞
Q (3.2)

and set X E Y if XQ ≤ YQ Q-a.s. holds for all Q ∈ Q. Then (Y ,E) is in fact a vector lattice. If we define

jQ : L∞
c → L∞

Q by setting jQ(X) to be the equivalence class generated in L∞
Q by any representative f ∈ X , we obtain

a strictly positive lattice homomorphism

J : L∞
c → Y , X 7→ ( jQ(X))Q∈Q.

Given that Q is a disjoint supported alternative, one can verify that J(L∞
c ) is order dense and majorising in Y ,

notions introduced in Appendix A. In sum, if P is of class (S), L∞
c is lattice isomorphic to a subspace of a product

space. If P is not dominated, the latter has uncountably many coordinates.

3.2.2. Volatility uncertainty. In continuous-time financial models one of the most relevant sources of uncertainty

is related to the estimation of the volatility of price processes. We illustrate here that the model of uncertain

volatility discussed in [28, 71] falls in the class (S) framework. To this end, let P0 be the Wiener measure on the

Wiener space Ω of continuous functions ω : R+ → R with ω(0) = 0, so that the canonical process B := (Bt)t∈R+

defined by Bt(ω) = ω(t), t ∈ R+, ω ∈ Ω, is a standard Brownian motion under P0 with respect to the natural

filtration F = (Ft)t≥0 := (σ(Bs | 0 ≤ s ≤ t))t≥0. [45] proves that there is an F-adapted process 〈B〉 such that under

each probability measure P on (Ω,F ) with respect to which B is a local martingale, 〈B〉 agrees with the usual

P-quadratic variation of B P-a.s. Further, let Pobs denote the set of all probability measures P under which the

canonical process is a local martingale and for which P-a.s. 〈B〉· is absolutely continuous in t and takes positive

values. The set Pobs, however, is too large for the considerations made in [71] for various reasons. In particular,

when working under Pobs, it is impossible to establish a one-to-one correspondence between volatility processes

and probability measures. Since the uncertainty in this case stems from uncertainty about the right volatility process

such an identification is needed. This problem is overcome by considering a nonempty set V of volatility processes

σ such that the stochastic differential equation under the Wiener measure P0

dXt = σt(X)dBt (3.3)

has weak uniqueness in the sense of [71, Definition 4.1]. Given σ , this admits the selection of a unique Pσ such that

dBt = σt(B)dW σ
t Pσ -a.s., where W σ is a Pσ -standard Brownian motion. The set of probability measures P⊂Pobs

we obtain from such a set V is usually nondominated. For each such σ ∈ V , the event

S(Pσ ) := {ω ∈ Ω | ∀ t ∈ Q+ : 〈B〉t(ω) =

∫ t

0
σ 2

s (ω)ds} (3.4)

satisfies Pσ (S(Pσ )) = 1. However, note that these events generally fail condition (b) in Definition 2.1(1) if V

contains more complex ω-dependent volatility processes σ . The main difficulty is that control of their intersections

is tedious. This is precisely the reason why in [71] the authors further thin out the set of admissible volatility

processes to sets V of separable diffusion coefficients; see [71] for the details. As already noticed in [28] the
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resulting set P := {Pσ | σ ∈ V } satisfies the Hahn property discussed above. Hence, P is of class (S). More

precisely, the events S(Pσ ) in (3.4) can be shown to be order supports of the Pσ , σ ∈ V , so that P is in fact its own

supported alternative. The main setting of interest in [71] thus embeds in our framework of probabilities of class

(S).

3.2.3. Innovation. Our next case study deals with innovation economics and its relation to Knightian uncertainty.

We consider a model suggested in [4, p. 2247], which posits that innovation adds newly explored states given by

a measurable space (Sn,Fn) to a set of known states given by the measurable space (So,Fo), So,Sn being two

nonempty sets. The combined state space Ω has the shape

Ω = So ×Sn

and is endowed with a product-σ -algebra F = Fo ⊗Fn. While the agents in the model are subject to mere risk

on the known states, the newly discovered states add uncertainty. In order to capture this phenomenon with a set P

of relevant probability measures, one uses the projection Xi : ω = (s1,s2) 7→ si, i = 1,2, and a probability measure

π on (So,Fo) that we interpret as the first marginal. One then sets

P := {P ∈ ∆(F ) | P◦X−1
1 = π}.

Suppose first that So is discrete, that π has full support on So, and that Fn contains all singletons. Consider

Q := {π ⊗δs2
| s2 ∈ Sn} ⊂P. (3.5)

Note that, for fixed s∗ ∈ Sn and Q := π ⊗δs∗ , Q(N) = 0 holds if and only if there is no s1 ∈ So such that (s1,s∗) ∈ A.

Hence, supQ∈QQ(N) = 0 holds for N ∈ F if and only if N = /0. This implies P≈Q. One verifies that π ⊗δs∗ ∈Q

is supported by So ×{s∗}, and thus P is of class (S) with supported alternative Q in this case.

Similarly, we can consider a case in which So is not necessarily discrete and π is arbitrary, but Fn still contains all

singletons. To a certain degree, we limit uncertainty by postulating independence of coordinate projections X1 and

X2. This leads to a redefinition of the set of relevant probability measures as

P := {P ∈ ∆(F ) | P is a product measure andP◦X−1
1 = π}.

Q from (3.5) again satisfies P′ ≈Q. Indeed, supQ∈QQ(N) = 0 if and only if all sections Ns2
:= {s1 ∈ So | (s1,s2) ∈

N)} are π-nullsets. Hence, Fubini’s Theorem implies that P(N) = 0 for any P ∈P. Thus also in this case P is of

class (S).

3.2.4. Typical paths. The third case study in which we can—rather trivially—verify the class (S) property follows

a recent strand of literature [10, 24, 41] on superhedging that is inspired by [59]. It hinges on the very definition

of a superhedge. A notion which is independent of any concrete choice of probability model is usually referred

as “pointwise”: the superhedging strategy has to dominate in every state, or under every realisation of a concrete

path. As discussed in [10, 41], such a price tends to be unreasonably high and ignores more precise information an

investor might have.

As an alternative, one considers an event Ξ ∈ F within a state space (Ω,F ) (usually a path space) of “typical” or

relevant states/paths. The superhedging is then only demanded in states ω ∈ Ξ belonging to the prediction set. As

elaborated in [10], a canonical probabilistic description of this situation is given by

P := {P ∈ ∆(F ) | P(Ξ) = 1}.
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Let A be the collection of all atoms of F , i.e. all events A ⊂ Ξ such that each measurable subset B ⊂ A satisfies

B ∈ { /0,A}. Atoms are identical or disjoint. Let us also impose the following technical assumption:

Assumption 3.9. For all /0 6= B ∈ F there is /0 6= A ∈ A such that A ⊂ B.

The assumption is satisfied if, for instance, all singletons are measurable. A disjoint supported alternative to P is

now given by selecting ωA ∈ A, A ∈ A , and setting Q := {δωA
| A ∈ A , A ⊂ Ξ}.

3.2.5. Robust binomial model. One of the most prominent models for robust discrete-time financial markets is the

structure proposed in [18] whose basics we briefly recall in the following. Consider a finite time horizon T ∈ N,

time points t ∈ T := {0, ...,T}, and a space Ω = Ω̃T of paths within a Polish space Ω̃. The uncertainty structure is

tree-like; relevant probability measures are prescribed for each time point t ∈ T and each historical path up to time

t. More precisely, set Ω0 to be a singleton and Ωt := Ω̃t , 0 6= t ∈ T. Let Ft denote the universal completion of the

Borel σ -algebra B(Ωt).
2 For t = 0, . . . ,T −1 and ω ∈ Ωt fixed, Pt(ω) ⊂ ∆

(
B(Ω̃)

)
is a prescribed convex set of

probability measures on the node (t,ω). In this context the main difficulty is proving that

graph(Pt) = {(ω ,P) | ω ∈ Ωt , P ∈Pt(ω)}

is analytic in order to apply measurable selection techniques. To our knowledge, this requirement is verified only

in few concrete examples in the literature. We concentrate our attention to one of them, namely the robust binomial

model presented in [16].3

In this example, we set Ω̃ = (0,∞), T = {0, . . . ,T}, Ω = (0,∞)T , Ω0 = {1}, and Ωt = (0,∞)t , 0 6= t ∈ T. Any

ω ∈Ω (resp. ω ∈Ωt ) is represented by a tuple ω =(x1, . . . ,xT ) (resp. ω = (x1, . . . ,xt)). We introduce a price process

(St)t∈T defined by S0 = 1 and St+1 = St ·Yt+1. Here Yt+1 : (0,∞)→ (0,∞) is a bijective map for all t ∈ {0, . . . ,T −1}.

∆ := ∆(B((0,∞))) abbreviates the set of Borel probability measures on (0,∞). For any t ∈ {0, . . . ,T − 1}, let

ut ,Ut ,dt ,Dt ,πt ,Πt : Ωt → [0,∞) be Borel measurable random variables such that for any ω ∈ Ωt the following

inequalities hold:

(i) 0 < πt(ω)≤ Πt(ω)< 1;

(ii) dt(ω)≤ Dt(ω) and ut(ω)≤Ut(ω);

(iii) 0 < dt(ω)< 1 <Ut(ω).

These requirements allow to define a random set Et(·) := [ut(·),Ut(·)]× [dt(·),Dt(·)]× [πt(·),Πt(·)], t ∈ T. In turn,

the probability measures in question are constructed as follows. For any ω ∈ Ωt , consider the set of binomial laws

Lt+1(ω) = {πδu +(1−π)δd | (u,d,π) ∈ Et(ω)} respecting the constraints given by Et(ω). Define

Qt+1(ω) = {Q ∈ ∆ | Q◦Y−1
t+1 ∈ Lt+1(ω))},

i.e. the probabilities under which Yt+1 has a Bernoulli-like distribution from Lt+1(ω). Next let Pt+1(ω) =

conv(Qt+1(ω)). [16, Lemma 4.3] shows that both sets graph(Qt+1) and graph(Pt+1) are analytic, t = 0, . . . ,T −1,

matching the main requirement necessary to apply the results in [18]. In particular Qt+1,Pt+1 admit measur-

able selectors, i.e., there are universally measurable stochastic kernels Qt+1 : Ωt → ∆ and Pt+1 : Ωt → ∆ such that

2 The universal completion of B(Ωt) is the σ -algebra obtained by choosing F = B(Ωt) and S= ∆(B(Ωt)) in (3.1).
3 We conjecture that it is not possible to show that the general structure in [18] is of class (S). In any case, this question is beyond the

scope of the present paper.
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Qt+1(ω) ∈Qt+1(ω), Pt+1(ω) ∈Pt+1(ω) for any ω ∈ Ωt . At last, the family of multiperiod probabilities P or Q

on Ω := ΩT are introduced as

P := {P = P1 ⊗P2 ⊗ . . .⊗PT | Pt(·) ∈Pt(·), t ∈ T},

Q := {Q = Q1 ⊗Q2 ⊗ . . .⊗QT | Qt(·) ∈Qt(·), t ∈ T},

where the measures P = P1 ⊗P2⊗ . . .⊗PT are defined as

P(A) =

∫ ∞

0
. . .

∫ ∞

0
1A(x1, . . . ,xT )PT (x1, . . . ,xT−1;dxT ) · · · ·P2(x1;dx2) ·P1(dx1), A ∈ B(Ω).

The following proposition illustrates how the robust binomial model falls in the setup of the present paper (see

Appendix D for a proof).

Proposition 3.10. Let F := FT be the universal completion of the Borel σ -algebra B(Ω). The family P on

(Ω,F ) is of class (S) with Q being its supported alternative.

3.3. scac 6= cac is often the case. In this section we demonstrate that scac 6= cac is the case in a broad class of

examples over Polish spaces. We also discuss the relation of this observation to the procedure of aggregating

Bayesian experts in [5]. The assumption that the underlying Ω is Polish is common in financial applications, a fact

also illustrated by Section 3.2.5. Recall that if Ω is Polish and F denotes its Borel-σ -algebra, then also ∆(F ) is

Polish ([1, Theorem 15.15]). As a preparation for Proposition 3.11 below, recall that a subset P of a Polish space is

perfect if it is closed and if, for every σ ∈ P, the closure of P\{σ} is P.

Proposition 3.11. Let Ω be Polish, F be the Borel-σ -algebra on Ω, and P⊂ ∆(F ) be nonempty. Suppose there

is a set /0 6=R⊂ ∆(F )∩ scac which is perfect in ∆(F ), and which satisfies

∀Q,Q′ ∈R : Q 6= Q′ =⇒ 1S(Q)∧1S(Q′) = 0.

Then there is a probability measure µ ∈ cac\scac. The assertion also holds if perfectness of R is replaced by the

assumption that R is an uncountable Borel or analytic set, respectively.

Proof. Let R be the mentioned subset of ∆(F )∩ scac. Then there is a continuous injective map Q• : {0,1}N →

∆(F ) with {Qσ | σ ∈ {0,1}N} ⊂ R; cf. [47, Theorem 6.2]. The Cantor space {0,1}N is tacitly assumed to be

endowed with the discrete product topology which is Polish. For any E ∈F , the function {0,1}N ∋ σ 7→Qσ (E), is

Borel measurable as a composition of the continuous map Q• and the Borel measurable function ∆(F )∋ µ 7→ µ(E)

([1, Lemma 15.16]). Let π be any non-atomic Borel probability measure on {0,1}N, whose existence is guaranteed

by [1, Theorem 12.22]. Consider

µ : F → [0,1], E 7→
∫

{0,1}N
Qσ (E)π(dσ). (3.6)

µ is a probability measure dominated by P. Assume for contradiction that µ is supported. Let σ ∈ {0,1}N be

arbitrary. For all {0,1}N ∋ σ ′ 6= σ , we have 1S(Qσ )∧1S(Qσ ′) = 0 in L∞
c , whence Qσ ′(S(Qσ )) = 0 follows. By (3.6),

µ(S(µ)∩S(Qσ )) = Qσ (S(µ)∩S(Qσ ))π({σ}) = 0.

The definition of a support shows that 1S(µ)∩S(Qσ ) = 0 in L∞
c . As σ was chosen arbitrarily, Qσ (S(µ)) = Qσ (S(µ)∩

S(Qσ )) = 0 for all σ ∈ {0,1}N, contradicting µ(S(µ)) = 1. At last, any uncountable Borel or analytic subset of

∆(F ) contains a nonempty perfect set; see [47, Theorems 13.6 & 29.1]. �
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We now illustrate Proposition 3.11 in the context of volatility uncertainty as in Section 3.2.2.

Example 3.12. Assume that the set V of volatility processes in Section 3.2.2 contains the constant volatility

processes κ : R+ ∋ t 7→ κ , 0 < κ1 ≤ κ ≤ κ2. Set P := {Pσ | σ ∈ V }. We recall that each Pσ is supported with

order support

S(Pσ ) := {ω ∈ Ω | ∀ t ∈ Q+ : 〈B〉t(ω) =
t∫

0

σs(ω)2ds} ∈ F , σ ∈ V ,

so that S(Pκ) := {ω ∈ Ω | ∀ t ∈ Q+ : 〈B〉t(ω) = κ2t}, κ ∈ [κ1,κ2]. One easily verifies that the set R := {Pκ | κ ∈

[κ1,κ2]} ⊂ ∆(F )∩ scac is uncountable and closed in the topology of weak convergence on ∆(F ). Moreover, for

κ1 ≤ κ < κ ′ ≤ κ2, 1S(Pκ ) ∧ 1
S(Pκ′ ) = 0 P-q.s. We thus are precisely in the situation of Proposition 3.11. Let π be

any non-atomic probability measure on [κ1,κ2]. Arguing as in the proof that the measure in (3.6) is not supported

and using Proposition B.3, one shows inter alia that for any choice of a strictly increasing utility function u : R→ R

the functional

φ :
L∞

c → R,

X 7→
∫ κ2

κ1
EPκ [u(X)]π(dκ),

(3.7)

is not order (semi)continuous.

Functionals of shape (3.7) have a natural interpretation in the framework of [5], where a set of probability mea-

sures P models the opinions of Bayesian experts concerning the probabilities of relevant events. These experts

are consulted by a decision maker (DM) with utility function u : R → R about a given alternative X ∈ L∞
c . In

combination, each expert opinion leads to an expected utility evaluation, the set of all such evaluations being

{EP[u(X)] | P ∈ P}. Faced with the problem of how to process this set, the DM aggregates it with a weighted

average. Special cases of such weighted averages are integrating u(X) with respect to a measure as in (3.6), or

the expression
∫ κ2

κ1
EPκ [u(X)]π(dκ) in (3.7) with weighting probability π . Such aggregation procedures can, e.g.,

underpin risk measurement procedures; cf. [5, Section 5].

Our discussion in the present case study raises an important issue. A priori, one cannot distinguish whether expected

utility with respect to a probability measure as in (3.6) is an aggregation of the opinions of other experts, or the

evaluation of the opinion of a single expert. The two perspectives can be distinguished though if the demand that

expert opinions be supported is imposed. It is not too far-fetched that relevant expertise leads to a set of relevant

scenarios as collected by an order support. While the evaluation X 7→ EP[u(X)] for a single expert is then order

continuous and therefore regular, the aggregation functional may unsurprisingly lose this property.

4. BRANNATH-SCHACHERMAYER BIPOLAR THEOREM UNDER UNCERTAINTY

Bipolar theorems play an important role in utility optimisation, see the seminal paper by [48] under dominated

uncertainty and the recent approach in [11] for non-dominated uncertainty. In this section we classify robust vari-

ants of the Brannath-Schachermayer Bipolar Theorem [20, Theorem 1.3]. Its application to utility maximization

in nondominated models is part of ongoing research.

Consider the space L0
c as well as a convex and solid set /0 6= C ⊂ L0

c+. C being solid means that X ∈ C and

0 � Y � X together imply Y ∈ C . In a dual approach to utility maximization C would equal the set nonnegative

investment opportunities which may be superhedged at the cost of one unit of currency. The one-sided polar of C
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is

C
⋄ :=

{
µ ∈ cac+

∣∣∀X ∈ C :

∫
X dµ ≤ 1

}
.

Classically, C ⋄ corresponds to the set of arbitrage-free pricing rules in the context of utility maximisation. Now

consider the following properties of C :

(BS1) C is order closed; cf. Appendix A.

(BS2) C = {X ∈ L0
c+ | ∀µ ∈ C ⋄ :

∫
X dµ ≤ 1}.

(BS3) C = {X ∈ L0
c+ | ∀µ ∈ C ⋄∩ scac :

∫
X dµ ≤ 1}.

If P≈ P∗ for a probability measure P∗ ∈ ∆(F ), the Brannath-Schachermayer Bipolar Theorem [20, Theorem 1.3]

states that a convex and solid set C ⊂ L0
c+ satisfies (BS2) if and only if it is closed with respect to convergence in

probability under P∗. The following lemma is straightforward to prove though.

Lemma 4.1. For P∗ ∈ ∆(F ) and a solid subset C ⊂ L0
P∗+, the following are equivalent:

(1) C is closed with respect to convergence in probability under P∗.

(2) C is order closed, i.e., satisfies (BS1).

Following the formulation of [38, Theorem 14], equivalences between (BS1) and (BS2) or (BS3) can therefore be

rightly called robust variants of the Brannath-Schachermayer Bipolar Theorem, the focus of the present section.

[38, Theorem 14] to our knowledge provides the first such robust extension of the Brannath-Schachermayer Bipolar

Theorem under the assumption that cac
∗ = L∞

c ; cf. [38, p. 1361]. Also, (BS3) a priori implies (BS2) because of the

inclusion scac ⊂ cac.

Theorem 4.2. Let P⊂ ∆(F ) be nonempty.

(1) The following are equivalent:

(i) P is of class (S).

(ii) For all convex and solid sets /0 6= C ⊂ L0
c+, (BS1) and (BS3) are equivalent.

(2) The following are equivalent:

(i) scac = cac.

(ii) For all convex and solid sets /0 6= C ⊂ L0
c+, (BS1) and (BS2) are equivalent.

For the sake of transparency, we single out one implication in the following lemma.

Lemma 4.3. Suppose P is of class (S). Then (BS1) implies (BS3).

Proof. Under the class (S) property, scac separates the points of L∞
c (Proposition B.5(1)). In particular, τ :=

|σ |(L∞
c ,scac) is an order-continuous locally convex-solid Hausdorff topology.4 Suppose /0 6= C ⊂ L0

c+ is order

closed. The inclusion

C ⊂ {X ∈ L0
c+ | ∀µ ∈ C ⋄∩ scac :

∫
X dµ ≤ 1}

4 For the definition of locally-convex solid topologies, see [3, p. 172]. Given a vector lattice X and an ideal Y ⊂X ∼, the associated ab-

solute weak topology |σ |(X ,Y )-topology is generated by the lattice seminorms X ∋ x 7→ 〈|x|, |y|〉, and the dual space of (X , |σ |(X ,Y ))

is Y ([2, Definition 2.32 & Theorem 2.33]). In particular, if P is of class (S) so that 〈L∞
c ,scac〉 is a dual pair, the topologies |σ |(L∞

c ,scac)

and σ(L∞
c ,scac) have the same closed convex sets.
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holds by the definition of C ⋄. Conversely, consider the set D := C ∩L∞
c . D is nonempty (because for each X ∈ C

and k ∈ N, X ∧ k1Ω ∈ D by solidity), convex, solid, and order closed. By [38, Lemma 2], D is τ-closed and

therefore also σ(L∞
c ,scac)-closed. If we set σD (µ) := supY∈D

∫
Y dµ , µ ∈ scac, the Bipolar Theorem [1, Theorem

5.103] implies

D = {X ∈ L∞
c | ∀µ ∈ scac : σD (µ)≤ 1 ⇒

∫
X dµ ≤ 1}.

Fix µ ∈ scac with σD (µ)≤ 1. Let f be a version of
dµ

d|µ | and set B := { f > 0}, i.e. the positive part µ+ of µ satisfies

dµ+ = f 1B d|µ |. Then

σD (µ
+) = sup

X∈D

∫
X f 1B d|µ |= sup

X∈D

∫
(X1B)dµ ≤ σD(µ)≤ 1. (4.1)

Here we have used that D is solid. Now, for Y ∈ L∞
c+, we have

∫
Y dµ ≤ 1 for all µ ∈ scac with σD (µ) ≤ 1 if and

only if
∫

Y dµ ≤ 1 for all µ ∈ scac+ with σD (µ)≤ 1. We have proved

D =
{

Y ∈ L∞
c+

∣∣∀µ ∈ D
⋄∩ scac :

∫
Y dµ ≤ 1

}
. (4.2)

Finally, C ⋄ = D⋄ and hence C ⋄∩ scac = D⋄ ∩ scac follows with monotone convergence. Using order closedness

and solidity of C in the last equality, we infer

{X ∈ L0
c+ | ∀µ ∈ C

⋄∩ scac :

∫
X dµ ≤ 1}= {X ∈ L0

c+ | ∀k ∈ N∀µ ∈ C
⋄∩ scac :

∫
(X ∧ k1Ω)dµ ≤ 1}

= {X ∈ L0
c+ | ∀k ∈ N : X ∧ k1Ω ∈ D}= C .

This is (BS3). �

Proof of Theorem 4.2. For statement (1), let /0 6= C ⊂ L0
c+ be convex and solid. If (i) holds and C satisfies (BS1),

C satisfies (BS3) by Lemma 4.3. Conversely, suppose (Xα)α∈I ⊂ C is a net such that Xα
o
→ X ∈ L0

c+;
o
→ denotes

order convergence, cf. Appendix A. For k > 0 arbitrary, we infer (Xα ∧ k1Ω)α∈I ⊂ C and Xα ∧ k1Ω
o
→ X ∧ k1Ω. By

Proposition B.3(3), scac can be identified with the order-continuous dual (L∞
c )

∼
n of L∞

c . Hence, we obtain for all

µ ∈ C ⋄∩ scac that ∫
(X ∧ k1Ω)dµ = lim

α∈I

∫
(Xα ∧ k1Ω)dµ ≤ 1.

Taking the limit k ↑ ∞ on the left-hand side,
∫

X dµ ≤ 1 holds for all µ ∈ C ⋄ ∩ scac. Hence, if C has property

(BS3), it also has property (BS1).

Now assume that (ii) holds. In order to show that P is of class (S), it suffices to verify that for all A ∈ F with

c(A)> 0 there is µ ∈ scac+ such that µ(A)> 0. Consider the convex, solid, and order-closed set

C := {X ∈ L0
c+ | X1A = 0}.

By (BS3), C = {X ∈ L0
c+ | ∀µ ∈ C ⋄ :

∫
X dµ ≤ 1}. Suppose we find 0 6= µ0 ∈ C ⋄. Then

sup
t>0

tµ0(A
c) = sup

t>0

∫
t1Ac dµ0 ≤ 1,

which is only possible if µ0(A
c) = 0. Hence, µ0(A) = µ0(Ω) > 0. Otherwise, if C ⋄ = {0}, C = L0

c+ has to hold

and c(A) = 0, a case that we have excluded.
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We now focus on the equivalence in (2). Suppose first that (i) holds. As cac separates the points of L∞
c , Proposi-

tion B.5(1) implies that P is of class (S). By (1), (BS1) and (BS3) are equivalent properties of convex and solid

sets /0 6= C ⊂ L0
c+. (BS3) is in turn equivalent to (BS2) under (i).

Now assume that (ii) holds. In order to show that scac = cac, it suffices to show that each µ ∈ cac+ is supported. To

this end, consider a net (Xα)α∈ I such that 0 � Xα ↑ X ∈ L∞
c in order. Clearly,

∫
Xα dµ ↑ supα∈I

∫
Xα dµ =: s ∈ R+.

Define

C := {Y ∈ L0
c+ |

∫
Y dµ ≤ s},

a solid and convex subset of L0
c+. Moreover, one verifies that C has property (BS2), which means that C is order

closed as well (BS1). As (Xα)α∈I ⊂ C , we infer that that X ∈ C and that
∫

X dµ = s. This shows order continuity

of µ or equivalently supportedness of µ by Proposition B.3(3). �

The following concluding corollary can be understood as a bridge to our discussion of the Fatou property of risk

measures below. Recall that a subset /0 6= C ⊂ L∞
c is solid if, for all X ,Y ∈ L∞

c , Y ∈ C and |X | � |Y | together imply

X ∈ C .

Corollary 4.4. Let P⊂ ∆(F ) be nonempty.

(1) The following are equivalent:

(i) P is of class (S).

(ii) A convex and solid set /0 6= C ⊂ L∞
c is order closed iff it is σ(L∞

c ,scac)-closed.

(2) The following are equivalent:

(i) scac = cac.

(ii) A convex and solid set /0 6= C ⊂ L∞
c is order closed iff it is σ(L∞

c ,cac)-closed.

Proof. (1)(i) implies (1)(ii): C is order closed iff D := {|X | | X ∈ C } is order closed. By Theorem 4.2, D is order

closed if and only if

D = {X ∈ L0
c+ | ∀µ ∈ D

⋄∩ scac :

∫
X dµ ≤ 1}.

Since
∫
|X |dµ ≤ 1 if and only if

∫
XY dµ ≤ 1 holds for all Y ∈ L∞

c with ‖Y‖L∞
c
≤ 1 we obtain

C = {X ∈ L∞
c | |X | ∈ D}=

⋂

µ∈D⋄

⋂

Y∈L∞
c : ‖Y‖L∞

c
≤1

{X ∈ L∞
c | ∫ XY dµ ≤ 1}.

The latter set is σ(L∞
c ,scac)-closed. Conversely, every σ(L∞

c ,scac)-closed convex and solid set is order closed

because scac corresponds to the order continuous dual of L∞
c .

(1)(ii) implies (1)(i): Suppose A ∈F satisfies µ(A) = 0 for all µ ∈ scac+. In particular, for each µ ∈ scac and each

s ∈ R, ∫
s1A dµ =

∫
s1A

dµ
d|µ |d|µ |= 0.

We have to show that c(A) = 0. To this end, consider the convex, solid, and order-closed set

C := {X ∈ L∞
c | |X |1A = 0}.

By (1)(ii) C is σ(L∞
c ,scac)-closed. The Separating Hyperplane Theorem allows to represent C as

{X ∈ L∞
c | ∀µ ∈ scac : σC (µ)< ∞ =⇒

∫
X dµ ≤ σC (µ)},
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where σC (µ) := supX∈C

∫
X dµ ≥ 0. Thus we infer that R ·1A ⊂C . Recalling the definition of C , c(A) = 0 follows.

This entails that P is of class (S).

(2)(i) implies (2)(ii): If (i) holds, P is again of class (S). By (1), a convex and solid set /0 6= C ⊂ L∞
c is order closed

iff it is σ(L∞
c ,scac)-closed. The assertion follows because σ(L∞

c ,scac) = σ(L∞
c ,cac).

(2)(ii) implies (2)(i): That each µ ∈ cac is supported given that assertion (2)(ii) holds is derived like in the proof of

Theorem 4.2. �

Remark 4.5. A remarkable model-free bipolar theorem in the spirit of Brannath-Schachermayer has recently been

shown and applied in [9]. It shares certain traits with the results of this section (the focus on the positive cone of

a function space, solidity and convexity of the sets in question), but there are also substantial differences. Firstly,

the functions in question may attain the value +∞. The authors therefore have in mind the ambient set of extended

real-valued measurable functions that are bounded below. This is not a real vector lattice. Secondly, the underlying

measurable space has a topological structure. Thirdly, while the concept of “liminf-closedness” in [9] is seemingly

related to sequential order closedness (i.e., a set contains every limit of its order-convergent sequences; see also [9,

Remark 6]), a full comparison to (BS1) is not possible because of the lacking vector lattice structure.

5. SUPERHEDGING, AGGREGATION, AND THE FATOU PROPERTY UNDER UNCERTAINTY

The present section is devoted to issues around superhedging, aggregation, and various aspects of the Fatou property

of convex risk measures on L∞
c . All those topics are closely related, and the central question whose answer turns

out to be crucial for dealing with the mentioned topics is under which condition L∞
c carries a weak* topology.

5.1. When does L∞
c carry a weak* topology? First and foremost, we need to recall that a vector lattice (X ,�) is

Dedekind complete if every nonempty C ⊂ X which has an upper bound y ∈X , i.e. x � y holds for all x ∈ C , has

a supremum, i.e. a least upper bound denoted by supC . If X also has the countable sup property, that is, for every

set C ⊂ X whose supremum exists, there is a countable subset D ⊂ C such that supD = supC , X is said to be

super Dedekind complete. For a moment consider a single probability measure P∗ on (Ω,F ). It is well known

that L∞
P∗ is super Dedekind complete, see e.g. [72, Theorem 1.2.10]. This fact is often used when dealing with

(essential) suprema as it allows to realise such a supremum along a monotone sequence provided the underlying set

of random variables is (upwards) directed; e.g., see the proofs of [35, Theorems 9.9, 9.22, 11.2]. More generally,

by [38, Lemma 8], Dedekind completeness of L∞
c is equivalent to Dedekind completeness of (L0

c ,�), which in turn

is equivalent to Dedekind completeness of any ideal X ⊂ L0
c with the property L∞

c ⊂ X . The same equivalences

hold for super Dedekind completeness.

Example 5.1. (1) Consider the lattice homomorphism J : L∞
c →Y ⊂∏Q∈Q L∞

Q defined in Section 3.2.1, where

P is of class (S) and Q≈P is a disjoint supported alternative. Using super Dedekind completeness of L∞
Q,

Q ∈ Q, Y is shown to be Dedekind complete. Hence L∞
c is also Dedekind complete if J is onto and L∞

c

therefore lattice isomorphic to a product space. Otherwise, we can invoke [2, Theorem 1.41] to observe

that Y is the so-called Dedekind completion of L∞
c ; cf. Appendix A.

(2) Consider the context of volatility uncertainty introduced in Section 3.2.2. In light of our discussion in

Section 5.2, [71, Section 5] shows that L∞
c is Dedekind complete if the underlying σ -algebra is sufficiently

enriched. This procedure is also commented on in the additional Appendix C.
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As a first step, we prove a result of potential independent interest which we could not find in the literature. Note that

the primal space Y in the following Proposition 5.2 is not assumed to be a lattice. The notion of archimedeanity is

introduced in Appendix A.

Proposition 5.2. Suppose (Y ,‖ · ‖
Y
) is a normed space whose dual space is given by an Archimedean Banach

lattice (X ,�,‖ · ‖
X
). If X+ is weak* closed, then X is Dedekind complete.

Proof. We can always assume Y ⊂ X ∗ = X ∼ using the canonical isometry. In particular, we may view Y as

a subset of a vector lattice. As X is Archimedean, it admits a Dedekind completion (X δ ,E), and there is an

injective lattice homomorphism J : X → X δ such that the image J(X ) is an order dense and majorising vector

sublattice of X δ ; cf. [2, Theorem 1.41]. It can be verified that the function

‖ · ‖
X δ : X

δ → R+, ℓ 7→ inf{‖X‖X | X ∈ X , |ℓ|E J(X)},

is a lattice norm on (X δ ,E).

Now, for all ℓ ∈ X δ we would like to construct a linear functional T (ℓ) ∈ Y ∗ = X . To this end, we first consider

T (ℓ)(µ) := inf
X∈X :ℓEJ(X)

µ(X), ℓ ∈ X
δ
+ , µ ∈ X

∗
+ ,

and note that T (ℓ)(µ) ∈ R+ due to J(X ) being majorising in X δ . Moreover, this map is positively homogeneous

in µ . Setting Cℓ := {X ∈ X | ℓE J(X)}, we have for µ ,ν ∈ X ∗
+ that

T (ℓ)(µ +ν) = inf
X∈Cℓ

µ(X)+ν(X)≥ inf
X ,Y∈Cℓ

µ(X)+ν(Y) = T (ℓ)(µ)+T (ℓ)(ν).

Furthermore,

T (ℓ)(µ)+T (ℓ)(ν) ≥ inf
X ,Y∈Cℓ

(µ +ν)(X ∧Y)≥ inf
Z∈Cℓ

(µ +ν)(Z) = T (ℓ)(µ +ν).

In conclusion, T (ℓ)(µ +ν) = T (ℓ)(µ)+T (ℓ)(ν). Observe also that

|T (ℓ)(µ)|= inf
X∈Cℓ

µ(X)≤ inf
X∈Cℓ

‖X‖X · ‖µ‖X ∗ = ‖ℓ‖X δ ‖µ‖X ∗ , ℓ ∈ X
δ
+ , µ ∈ X

∗
+ . (5.1)

Now, for ℓ∈X δ
+ and µ ∈X ∗, we set T (ℓ)(µ) = T (ℓ)(µ1)−T(ℓ)(µ2) for arbitrary µ1,µ2 ∈X ∗

+ with µ = µ1−µ2.

Using the additivity of T (ℓ) on X ∗
+ for ℓ ∈ X δ

+ , one proves that T (ℓ) is well defined and linear on X ∗. At last,

considering ℓ ∈ X δ , we define a linear functional by T (ℓ)(µ) := T (ℓ+)(µ)−T (ℓ−)(µ), µ ∈ X ∗, and obtain the

following generalisation of (5.1):

|T (ℓ)(µ)| ≤ |T (ℓ+)(µ)|+ |T (ℓ−)(µ)| ≤ T (ℓ+)(|µ |)+T (ℓ−)(|µ |) ≤ ‖ℓ‖X δ ‖µ‖X ∗ .

In particular, T (ℓ)|Y can be identified with an element in X .

Next, note that the assumption that X+ is weak* closed together with the Hahn-Banach Separation Theorem

implies the existence of a set Z ⊂ Y such that

X+ =
⋂

µ∈Z

{X ∈ X | µ(X)≥ 0}. (5.2)

In particular, Z ⊂ X ∗
+ has to hold and X �Y is equivalent to µ(X)≥ µ(Y ) for all µ ∈ Z .

For Dedekind completeness of X , it suffices to show that a nondecreasing and order bounded net (Xα)α∈I ⊂

X has a supremum in X . Without loss of generality, we may assume (Xα)α∈I ⊂ X+. As (J(Xα))α∈I is also
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nondecreasing and order bounded, we can set ℓ∗ := supα∈I J(Xα) in X δ . T (ℓ∗)|Y defines an element of Y ∗. As

Y ∗ = X by assumption, there exists X∗ ∈ X such that

∀µ ∈ Y : T (ℓ∗)(µ) = µ(X∗).

Also, for all µ ∈ Z , all α ∈ I, and all Y ∈ Cℓ∗ ,

µ(Xα)≤ µ(Y ).

Taking the infimum over all Y ∈ Cℓ∗ on the right-hand side and rearranging the inequality, we infer

µ(X∗−Xα) = T (ℓ∗)(µ)−µ(Xα)≥ 0.

By (5.2), X∗ is an upper bound of {Xα | α ∈ I}. If Y ∈ X is an upper bound of {Xα | α ∈ I}, ℓ∗ E J(Y ) has to

hold in X δ . We infer that µ(X∗) = T (ℓ∗)(µ) ≤ µ(Y ) for all µ ∈ Z . Arguing as before, X∗ � Y follows, which

concludes the proof that X∗ = supα∈I Xα in X . �

The following theorem establishes the relation between L∞
c carrying a weak* topology and the conjunction of P

being of class (S) and L∞
c being Dedekind complete.

Theorem 5.3. Let P be a set of probability measures on (Ω,F ). Then the following are equivalent:

(1) P is of class (S) and L∞
c is Dedekind complete.

(2) L∞
c is the dual space of scac.

(3) L∞
c is the dual space of a normed vector lattice.

(4) L∞
c is the dual space of a Banach lattice.

(5) L∞
c is perfect, i.e. ((L∞

c )
∼
n )

∼
n = L∞

c via the embedding (A.1).

(6) L∞
c carries a locally convex-solid order-continuous Hausdorff topology and is Dedekind complete.

For the proof of Theorem 5.3 we will need to introduce the following notions:

Definition 5.4. Let (Ω,F ) be a measurable space.

(1) A semi-finite5 measure µ : F → [0,∞] is localisable if the Boolean algebra {1A | A ∈ F} ⊂ L∞
µ is Dedekind

complete: for each nonempty set A ⊂ F there is B ∈ F such that µ(1A > 1B) = 0 for all A ∈ A , and

µ(1B > 1C) = 0 holds for every event C ∈ F with that property.

(2) A nonempty set P of probability measures on (Ω,F ) is weakly dominated if it is majorised by a localisable

measure µ .

Proof of Theorem 5.3. (1) implies (2): By [34, 363M, Theorem], Dedekind completeness of L∞
c is equivalent to

Dedekind completeness of the Boolean algebra {1A | A ∈ F} ⊂ L∞
c . If P is of class (S), Lemma 3.6 implies the

existence of a majorised set of probability measures Q≈P. The latter is weakly dominated by the equivalence of

(B.6) and (B.1) in [51, Theorem 2]. By (B.7) in the same result, the localisable majorising measure can be chosen

as µ = ∑Q∈QQ for any disjoint supported alternative Q to P. Moreover, using (A.3) in [51], scac my be identified

with L1
µ . Finally, by [33, 243G, Theorem], L∞

c = L∞
µ = (L1

µ)
∗ = scac

∗.

(2) implies (3): This follows from the fact that scac ⊂ bac is an ideal and thus a lattice in its own right.

(3) implies (4): The norm completion of a normed vector lattice is a Banach lattice. Moreover, the dual space is

preserved under norm completion.

5 A measure µ : F → [0,∞] is semi-finite if, for all B ∈ F with µ(B) = ∞, there is A ∈ F such that A ⊂ B and 0 < µ(A)< ∞.
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(4) implies (5): Let (Y ,E,‖ · ‖
Y
) be a Banach lattice whose dual is (L∞

c ,�,‖ · ‖L∞
c
). Using [58, Proposition 1.3.7],

we again observe Y ∗ = Y ∼. By [2, Theorem 1.67], this entails Dedekind completeness of L∞
c . Moreover, as Y

separates the points of L∞
c , it is lattice isomorphic to a sublattice of (L∞

c )
∼
n by (A.1); cf. [3, p. 62]. Consequently,

(L∞
c )

∼
n separates the points of L∞

c . Combine this with the monotonic completeness of L∞
c to deduce that L∞

c is perfect

([58, Theorem 2.4.22]).

(5) implies (6): Perfectness of a space is known to imply Dedekind completeness; cf. [3, p. 63]. Moreover, as

(L∞
c )

∼
n separates the points of ((L∞

c )
∼
n )

∼
n , the assumption implies that the convex-solid order-continuous topology

|σ |(L∞
c ,(L

∞
c )

∼
n ) is Hausdorff.

(6) implies (1): Let τ be the locally convex-solid order-continuous Hausdorff topology on L∞
c whose existence is

claimed in (6). Then the dual space (L∞
c ,τ)

∗—which separates the points of L∞
c because of the Hausdorff property—

may be identified with an ideal of (L∞
c )

∼
n by assumption and [2, Theorem 2.22]. The latter space therefore also

separates the points of L∞
c . In conclusion, (6) implies the class (S) property of P by Proposition B.5(1). �

5.2. Superhedging, essential suprema, and aggregation versus class (S) and Dedekind completeness. In the

following we relate the topic of Section 5.1 to superhedging, the existence of essential suprema, and eventually

the aggregation of random variables. Given a suitable filtered robust model (Ω,(Ft)t∈T,F ,P) (T = {0, . . . ,T}

or T = [0,T ]) and a random endowment X at terminal time T , a natural attempt is to make sense of the following

formula:

Yt := esssup
Q∈P

EQ[X |Ft ], t ∈ T. (5.3)

Provided (Yt)t∈T is a well-defined process, some version will typically turn out to be a well-behaved P-supermartin-

gale which in turn can be decomposed into a type of P-martingale and a remainder term. The P-martingale allows

the interpretation as the value process of some investment strategy and thus corresponds to a desired superhedge,

see for instance [64]. (5.3) is commonly understood as there being a random variable Yt such that, for each P ∈P,

Yt = esssup
Q∈P(t,P)

EQ[X |Ft ] P-a.s., (5.4)

where P(t,P) := {Q ∈P | ∀A ∈ Ft : Q(A) = P(A)}. Note that the essential supremum on the right-hand side of

(5.4) is defined as usual under the probability P. Thus the existence of Yt as in (5.4) is a special case of aggregating

random variables as described in [71]:

Since for each probability measure we have a well developed theory, for simultaneous stochastic analysis, we

are naturally led to the following problem of aggregation. Given a family of random variables or stochastic

processes, XP, indexed by probability measures P, can one find an aggregator X that satisfies X = XP, P-

almost surely for every probability measure P? ... Once aggregation is achieved, then essentially all classical

results of stochastic analysis generalize ... [71, p. 1854]

Indeed, the feasibility of aggregating suitably consistent random variables—which motivates [28, 71]—is essential

in many applications of quasi-sure analysis, cf., e.g., [56, 64, 70]. The same question is also tackled earlier in

robust statistics [72] following [40, Definition 2.3], its most relevant application being the equivalence of pairwise

sufficiency and sufficiency (cf. [72, Theorem 1.5.5]). We adopt the terminology from this line of literature.

Definition 5.5. Let P⊂ ∆(F ) be a nonempty set of probability measures and let R⊂ ∆(F )∩ cac.

(1) A family (XQ)Q∈R ⊂ L0
c is R-consistent if, for all F⊂R with |F|= 2, there is XF ∈ L0

c such that, for all Q ∈ F,

Q(XQ = XF) = 1.
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(2) A family (XQ)Q∈R ⊂ L0
c is R-coherent if there is X ∈ L0

c such that, for all Q ∈ R, Q(X = XQ) = 1. The

equivalence class X is called an aggregator of (XQ)Q∈R ⊂ L0
c .

Clearly, R-coherence necessitates R-consistency. The important question is whether and under which condition

R-consistency suffices to ensure R-coherence. It is known that this question is closely related to the subject of

Section 5.1. Indeed, for instance [52, Lemme 4] shows that, for R≈P, the statement

(AG) (XQ)Q∈R ⊂ L0
c is R-consistent iff (XQ)Q∈R ⊂ L0

c is R-coherent

is equivalent to L∞
c being the dual space of band(R), the band generated by R in cac. In the latter case, property

(3) in Theorem 5.3 is satisfied. This shows that the aggregation property (AG) is another equivalent to (1)–(6)

in Theorem 5.3. In particular, aggregation and thus the existence of an essential supremum and of superhedging

strategies following [71] is equivalent to P being of class (S) and L∞
c being Dedekind complete.

5.3. Super Dedekind completeness and the Kreps-Yan property. Recall the definition of super Dedekind com-

pleteness in Section 5.1. As mentioned there, super Dedekind completeness is an important feature used in many

proofs of results under dominated uncertainty. We know that Dedekind completeness of L∞
c is still possible when

P is nondominated (see Example 5.1), and in fact a crucial property in view of superhedging and aggregation of

random variables (see Section 5.2). Thus a natural question is whether we might also save the stronger property

of super Dedekind completeness of L∞
c for nondominated P. However, Proposition 5.6 below shows that this is

impossible. Indeed, L∞
c is super Dedekind complete if and only if P≈ P∗ for a single probability measure P∗, and

hence L∞
c = L∞

P∗ . Moreover, we will study the close relation between the Kreps-Yan property under uncertainty and

super Dedekind completeness of L∞
c .

Proposition 5.6. For a nonempty set P⊂ ∆(F ), the following are equivalent:

(1) L∞
c is super Dedekind complete.

(2) P is dominated.

(3) Each measure µ ∈ cac is supported, i.e. scac = cac, and L∞
c has the countable sup property.

(4) There is a strictly positive linear functional ξ : L∞
c → R.

Note that Proposition 5.6 is a variation of and draws from [51, Theorem 5]. We also refer to the references quoted

there.

Proof. (1) implies (2): Suppose L∞
c is super Dedekind complete. Let A ⊂ F be a family of events such that

1A 6= 0 holds for all A ∈ A , and 1A ∧ 1B = 0 holds in L∞
c whenever A,B ∈ A satisfy A 6= B. By super Dedekind

completeness of L∞
c , supA∈A 1A exists in L∞

c . Moreover, we may select a countable subset B ⊂ A such that

supA∈A 1A = supB∈B 1B. Assume for contradiction that we can find A∗ ∈ A \B. Then

1A∗ = 1A∗ ∧ sup
A∈A

1A = 1A∗ ∧ sup
B∈B

1B = sup
B∈B

1A∗ ∧1B = 0,

where we have used [2, Lemma 1.5] in the penultimate equality. This contradicts the choice of A . As such, the

Boolean algebra {1A | A ∈ F} ⊂ L∞
c is of countable type; see [51, p. 187]. By [51, Theorem 5], P is dominated.

(2) implies (3): Applying a classical exhaustion argument to the dominated set P, the dominating measure P∗ can

be chosen as a countable convex combination of elements in P which satisfies P∗ ≈P. L∞
c is consequently lattice

isomorphic to L∞
P∗ , which is super Dedekind complete. This also gives the countable sup property in (3). The

identity scac = cac follows from the implication (D.1) ⇒ (D.8) in [51, Theorem 5].
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(3) implies (4): For each P ∈P consider 1S(P) ∈ L∞
c . By Lemma B.2, supP∈P 1S(P) = 1Ω. By the countable sup

property, there is a sequence (Pn)n∈N ⊂ P such that 1Ω = supn∈N 1S(Pn). Using [2, Lemma 1.5] in the second

equality, we get for all N ∈ F that

1N = 1N ∧1Ω = sup
n∈N

1N ∧1S(Pn) = sup
n∈N

1N∩S(Pn). (5.5)

If 0 = Pn(N) = Pn(N ∩ S(Pn)) holds for some n ∈ N, then 1N∩S(Pn) = 0 follows from the definition of a support.

By (5.5), supn∈NPn(N) = 0 therefore implies 1N = 0. Setting

∞

∑
n=1

2−nPn =: P∗,

the linear functional EP∗ [·] is strictly positive on L∞
c . This is (4).

(4) implies (1): As L∞
c is σ -Dedekind complete (each countable order bounded subset D ⊂ L∞

c has a supremum) and

a strictly positive linear functional with values in R exists, [60, Lemma A.3] shows super Dedekind completeness.

�

We will now apply Proposition 5.6 to the Kreps-Yan property, see [66, Definition 4.7] or [43, 69]. For a detailed

discussion of the Kreps-Yan Theorem we refer to [30, Chapter 5].

Definition 5.7. Let X be a vector lattice with positive cone X+ and let τ be a locally convex-solid Hausdorff

topology on X . (X ,τ) has the Kreps-Yan property if for all convex cones C with the properties −X+ ⊂ C and

C ∩X+ = {0} for the τ-closure C of C , there is a strictly positive functional ξ ∈ (X ,τ)∗ such that ξ (x)≤ 0 for

all x ∈ C .

We recall that the Kreps-Yan property is closely related to the existence of state-price deflators, see for instance

[30, 43]. In fact, consider a financial market model given by a space of investment opportunities X and the convex

cone C ⊂X of zero-cost investments. It is natural to assume that −X+ ⊂C . A typical version of the FTAP would

state that the absence of free lunches (no arbitrage), that is C ∩X+ = {0}, is equivalent to the existence of a state

price deflator, that is a strictly positive functional ξ ∈ (X ,τ)∗ such that ξ (x)≤ 0 for all x ∈ C . Corollaries 5.8 and

5.9 below show that such theorems necessitate dominated uncertainty simply because the mentioned type of state

price deflators does not exist when P is not dominated.

Corollary 5.8. Let L∞
c ⊂X ⊂ L0

c be an ideal. Let τ be a locally convex-solid Hausdorff topology on X . If (X ,τ)

has the Kreps-Yan property, then P is dominated.

Proof. The positive cone X+ of X is closed with respect to the locally convex-solid topology τ ; cf. [3, Theorem

2.21(b)]. Applying the Kreps-Yan property to the convex cone C := −X+, we infer that (X ,�,τ) admits a

continuous strictly positive functional ξ . ξ |L∞
c

is strictly positive as well, whence dominatedness of P follows with

Proposition 5.6. �

Corollary 5.9. Let (X ,�,‖ · ‖
X
) be a Banach lattice such that L∞

c ⊂ X ⊂ L0
c is an ideal. Then the following are

equivalent:

(1) P is dominated.

(2) X has the Kreps-Yan property.
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Proof. (1) implies (2): As in the proof of Proposition 5.6 we can choose a probability measure P̂ ≈ P which

satisfies L∞
c = L∞

P̂
⊂ X ⊂ L0

P̂
= L0

c and such that the P-q.s. order agrees with the P̂-a.s. order. Consider the P̂-

completion (Ω,F (P̂)) of (Ω,F ) as defined in (3.1). The σ -algebra F (P̂) collects all B ⊂ Ω with the property

that, for appropriate A,N ∈F , A△B ⊂ N and P̂(N) = 0. In particular, P̂ extends uniquely to a probability measure

P̂♯ on F (P̂). One can show that L0

P̂
over (Ω,F ) and L0

P̂♯
over (Ω,F (P̂)) are lattice isomorphic. Hence, we can

assume without loss of generality that the underlying σ -algebra F is P̂-complete (i.e. F =F (P̂)), which qualifies

(X ,�,‖ · ‖
X
) to be a Banach ideal space in the sense of [69]. [69, Theorem 1] shows that (2) holds.

(2) implies (1): This is Corollary 5.8. �

Remark 5.10. In [43, Section 2], it is shown that the Banach lattice

(ℓ1(R+),≤,‖ · ‖ℓ1(R+)
),

where ℓ1(R+) comprises all functions f : R+ → R satisfying

‖ f‖ℓ1(R+) := supF⊂R+ finite ∑ω∈F | f (ω)|< ∞,

and ≤ denotes the pointwise order, does not have the Kreps-Yan property. The linear functional

ξ :
ℓ1(R+)→ R,

f 7→ ∑ω∈R+
f (ω),

is strictly positive though. In light of Corollary 5.9, the decisive feature of this example is that there is no σ -algebra

F and a set P⊂ ∆(F ) such that the associated upper probability c satisfies L∞
c ⊂ X ⊂ L0

c .

5.4. The Fatou property of risk measures. In this subsection, we consider convex risk measures ρ defined on

the space L∞
c , i.e., functions ρ : L∞

c → R with the following properties:

(a) convexity.

(b) monotonicity: X � Y implies ρ(X)≤ ρ(Y ).

(c) cash-additivity: For all X ∈ L∞
c and all m ∈ R, ρ(X +m1Ω) = ρ(X)+m.

In order to justify the choice of monotonicity, we interpret the elements of L∞
c as losses net of gains. It is well

known that the defining properties of a convex risk measure ρ : L∞
c → R imply that its acceptance set,

Aρ := {X ∈ L∞
c | ρ(X)≤ 0},

is nonempty, ‖ · ‖L∞
c
-closed, convex, and monotone in that X �Y and Y ∈Aρ together imply X ∈Aρ (slightly adapt

[35, Proposition 4.6]). Also ρ may be recovered from Aρ via

ρ(X) = inf{m ∈ R | X −m ∈ Aρ}, X ∈ L∞
c .

One of the most widely studied topics in the theory of risk measures are so-called robust representations. Of

particular interest is a representation of the convex risk measure ρ as a worst-case expected net loss EQ[X ] with

respect to various conceivable probability measures Q on (Ω,F ) whose plausibility is expressed by an adjustment

α(Q). That is,

(F1) There is a function α : cac ∩∆(F )→ R∪{∞} bounded from below such that α 6≡ ∞ and

ρ(X) = sup
Q∈∆(F ): Q≪P

EQ[X ]−α(Q), X ∈ L∞
c .

6

6 Probability measures Q appearing in such a representation have to satisfy Q ≪P as c(X = 0) = 1 implies ρ(X) = 0.
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The relevant question is what necessary and sufficient conditions guarantee the existence of representations as in

(F1). If P is dominated, and hence there is a probability measure P≈P, the answer to this question is well known.

Indeed, an important result from risk measure theory (e.g., [35, Theorem 4.33]) states that a convex risk measure

ρ on L∞
c = L∞

P satisfies (F1) if and only if it has the sequential Fatou property:

For all sequences (Xn)n∈N ⊂ L∞
P which are bounded in norm and converge P-a.s. to some X ∈ L∞

P,

ρ(X)≤ liminfn→∞ ρ(Xn).

This equivalence goes back at least to [29] and has enjoyed various extensions to risk measures on larger model

spaces than L∞
P (under dominated uncertainty). [37], for instance, proves the equivalence of the sequential Fatou

property and (F1) when the underlying model space is an Orlicz space. [27] shares our reverse approach and aims

to characterise which conditions on the model space X have to be satisfied so that a continuous law-invariant risk

measure automatically has the Fatou property. Super Dedekind completeness of these model spaces for dominated

P shows that the sequential Fatou property is in fact a special case of the following general Fatou property:

(F2) ρ has the Fatou property: For all nets (Xα)α∈I and X in L∞
c ,

Xα
o

−→ X =⇒ ρ(X)≤ liminf
α∈I

ρ(Xα).
7

Observe that [15] shares with this subsection the usage of general lattice methodology. In particular, [15, Propo-

sition 24] shows that (F2) is sufficient for obtaining a robust dual representation for convex monotone functionals

on a Fréchet lattice L if, in addition, one assumes the so-called “C-property” for the weak topology σ(L,L∼
n ). The

latter is debated and has been shown to fail already in dominated ambient spaces (see [36]).

This subsection is devoted to the question how (F1) and (F2) are related if P is not dominated. A first issue arises

from the observation that scac 6= cac in general. Indeed, recall that the order-continuous dual (L∞
c )

∼
n is given by

scac (Proposition B.3(3)). Hence, in view of the order convergence in (F2), it is natural to exclude non-supported

probability measures in representation (F1):

(F3) There is a function β : scac ∩∆(F )→ R∪{∞} bounded from below such that β 6≡ ∞ and

ρ(X) = sup
Q∈scac∩∆(F )

EQ[X ]−β (Q), X ∈ L∞
c .

As shown below, (F3) =⇒ (F2), whereas the general implication (F1) =⇒ (F2) fails if cac 6= scac. Also note that

the—to our knowledge—only proof of (F1) ⇐⇒ (F2) in dominated frameworks combines an argument attributed

to Grothendieck with the Krein-Šmulian Theorem; cf. [54, p. 1329]. Attempting to adapt this proof idea to non-

dominated frameworks, we notice that the Krein-Šmulian Theorem requires that L∞
c carries a weak* topology, so

we are back to the discussion in Section 5.1. In particular, this also motivates the following relaxation of (F1)

and (F3): Suppose (L∞
c ,‖ · ‖L∞

c
) is the dual space of a normed space (Y ,‖ · ‖

Y
)—which has to be isometrically

isomorphic to a subspace of bac equipped with the total variation norm TV .

(F4) There is a function γ : Y → R∪{∞} bounded from below such that γ 6≡ ∞ and

ρ(X) = sup
µ∈Y

∫
X dµ − γ(µ), X ∈ L∞

c .

7 [54, Theorem 4.3] studies the sequential Fatou property of quasiconvex risk measures under not necessarily dominated uncertainty and

illustrates its insufficiencies. This explains why in (F2) sequences are generalised by nets. We refer the interested reader to the discussion

in [54].
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Before we turn to the main results of this section, a remark elaborates some technical aspects.

Remark 5.11. (1) The topology σ(L∞
c ,cac) is always locally convex and Hausdorff. By the Fenchel-Moreau

Theorem, (F1) is equivalent to σ(L∞
c ,cac)-lower semicontinuity of a convex monetary risk measure. Due to

cash-additivity, the latter holds if and only if the acceptance set Aρ is σ(L∞
c ,cac)-closed.

(2) The topology σ(L∞
c ,scac) is locally convex, but Hausdorff iff P is of class (S). Without the latter, we may there-

fore not be able to invoke the Fenchel-Moreau Theorem. While a risk measure satisfying (F3) is σ(L∞
c ,scac)-

lower semicontinuous, the converse implication may not hold.

(3) (F3) implies (F1) and (F2). The first assertion is due to scac ⊂ cac. For the second, take a net (Xα)α∈I ⊂ L∞
c

order converging to X ∈ L∞
c . Since scac = (L∞

c )
∼
n (Proposition B.3(3)), we have

EQ[X ]−β (Q) = liminf
α∈I

EQ[Xα ]−β (Q)≤ liminf
α∈I

ρ(Xα)

for all Q ∈ scac ∩∆(F ). Hence,

ρ(X) = sup
Q∈scac∩∆(F )

EQ[X ]−β (Q)≤ liminf
α∈I

ρ(Xα).

The next theorem characterises when equivalences between (F2)–(F4) hold for general P under the condition that

the Krein-Šmulian Theorem remains applicable. If a generalisation of the classical result on the relation of Fatou

property and robust representations to not necessarily dominated frameworks holds ((F4) ⇐⇒ (F2)), then in fact

the equivalence (F2) ⇐⇒ (F3) follows. The latter therefore is the canonical generalisation and requires L∞
c to have

a particular structure in that scac
∗ = L∞

c .

Theorem 5.12. Suppose there is a normed space (Y ,TV )⊂ (bac,TV ) whose dual space is given by (L∞
c ,‖ · ‖L∞

c
).

(1) If, for all convex monetary risk measures ρ on L∞
c , (F2) and (F4) are equivalent properties, then scac

∗ = L∞
c .

(2) If scac
∗ = L∞

c , (F2) and (F3) are equivalent properties of convex monetary risk measures ρ on L∞
c .

Proof. For statement (1), consider the convex monetary risk measure

ρ(X) := inf{m ∈ R | X −m � 0} = inf{k ∈ R | c(X > k) = 0}.

ρ can be shown to have the Fatou property (F2) and satisfies Aρ = −L∞
c+. By assumption, ρ also satisfies (F4).

In particular, it is a σ(L∞
c ,Y )-lower semicontinuous function, whence σ(L∞

c ,Y )-closedness of the acceptance set

Aρ =−L∞
c+ follows. In particular, L∞

c+ is also σ(L∞
c ,Y )-closed. By Proposition 5.2, L∞

c is Dedekind complete.

Next we will show that the nontrivial set Z := {µ ∈ Y | ∀X ∈ L∞
c+ : ∫ X dµ ≥ 0} satisfies Z ⊂ scac. To this end,

fix µ ∈ Z as well as a net (Xα)α∈I ⊂−L∞
c+ such that Xα ↑ 0 in order. In particular, ι := supα∈I

∫
Xα dµ ≤ 0. Set

ρ̂(X) := max{ρ(X),
∫

X dµ − ι}, X ∈ L∞
c ,

a convex risk measure with property (F4). It therefore also has the Fatou property (F2). In particular,

|ι |= ρ̂(0)≤ liminf
α∈I

ρ̂(Xα)≤ 0.

Hence, ι = 0, and µ ∈ (L∞
c )

∼
n = scac by Proposition B.3(3).

The class (S) property of P now follows from Z ≈P. To verify the latter, let A ∈ F be such that µ(A) = 0 holds

for all µ ∈ Z . By (5.2), ρ(s1A)≤ 0 holds for all s > 0. Equivalently, −s1A ∈ L∞
c + holds for all s > 0. This is only

possible if c(A) = 0, which entails Z ≈P. At last, Theorem 5.3 yields scac
∗ = L∞

c .
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Let us turn to statement (2). We have already observed in Remark 5.11 that a convex monetary risk measure ρ with

property (F3) also has property (F2). Conversely, suppose a convex risk measure ρ has the Fatou property (F2).

We prove first that for each choice of r > 0 the set

Cr := {X ∈ Aρ | ‖X‖L∞
c
≤ r}

is σ(L∞
c ,scac)-closed. Without loss of generality, we may assume Cr 6= /0. As each X ∈ Cr satisfies X �−r1Ω and

Aρ is monotone, −r1Ω = infCr ∈ Cr. Now define

B := {X + r1Ω | X ∈ Cr} and B
′ := {X ∈ L∞

c | |X | ∈ B}.

Both sets are order closed and convex. Moreover, B′ is solid. Indeed, if Z ∈ B′ satisfies |Z|= r1Ω +X for some

X ∈ Cr, and Y ∈ L∞
c satisfies |Y | � |Z|, we have

X = |Z|− r1Ω � |Y |− r1Ω �−r1Ω.

Using monotonicity of Aρ and the fact that X ,−r1Ω ∈ Cr, we infer |Y | − r1Ω ∈ Cr and eventually Y ∈ B′. As

scac
∗ = L∞

c entails the class (S) property of P, Proposition 4.4(1) implies that B′ is σ(L∞
c ,scac)-closed. As B =

B′ ∩ L∞
c+, B is also σ(L∞

c ,scac)-closed. Hence, the convex set Cr = B−{r1Ω} is σ(L∞
c ,scac)-closed as well.

We may now invoke the Krein-Šmulian Theorem to see that Aρ is σ(L∞
c ,scac)-closed. Noting that, for all k ∈ R,

{X ∈ L∞
c | ρ(X) ≤ k} = Aρ + {k1Ω}, this implies that ρ is σ(L∞

c ,scac)-lower semicontinuous. As elaborated in

Remark 5.11, the Fenchel-Moreau Theorem yields (F3). �

The following corollary returns to the starting point of our discussion, axiom (F1). In fact, equivalence between

(F1) and (F2) can only be expected if the fundamental condition cac
∗ = L∞

c from [54] holds.

Corollary 5.13. Suppose L∞
c is Dedekind complete. Then the following are equivalent:

(1) For all convex monetary risk measures ρ on L∞
c , (F1) and (F2) are equivalent.

(2) cac
∗ = L∞

c .

Proof. (1) implies (2): Let 0 6= µ ∈ cac+. Then

ρ(X) := 1
µ(Ω)

∫
X dµ , X ∈ L∞

c ,

is a convex monetary risk measure which satisfies (F1) and therefore also (F2). By Proposition B.3(3), this is only

possible if µ ∈ scac. As consequently scac = cac, Dedekind completeness of L∞
c in conjunction with Theorem 5.3

finally imply cac
∗ = scac

∗ = L∞
c .

(2) implies (1): If cac
∗ = L∞

c , we have scac = cac and the equivalence of (F2) and (F3) for convex monetary risk

measures ρ : L∞
c → R (Theorem 5.12(2)). As then (F1) and (F3) are the same, the assertion is proved. �

Remark 5.14. In our investigation of the Fatou property under uncertainty we could have equivalently worked

with the larger class of quasiconvex risk measures. These are generally not cash-additive. While the mathematical

approach—verifying closedness properties of convex monotone sublevel sets—is the same, the dual representation

of a quasiconvex risk measure is less informative and transparent.
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5.5. Concrete instances of L∞
c are Dedekind complete only if P is of class (S). This concluding subsection

demonstrates how nondominated robust models test the limits of ZFC. Although there is no proof that Dedekind

completeness of L∞
c implies that P is of class (S), any concrete example of P such that L∞

c is Dedekind complete

will turn out to be of class (S); cf. Corollary 5.17.

A nonempty set X admits a solution to Banach’s measure problem if there is a diffuse probability measure π : 2X →

[0,1] on the power set 2X, i.e. π({x}) = 0 for all x ∈X. Banach’s measure problem is said to have a solution if there

is a nonempty set X which admits a solution to Banach’s measure problem. The following lemma follows with [51,

Lemmas 6 & 7, Theorem 3].

Lemma 5.15. Suppose P⊂ ∆(F ) is nonempty. Then the following are equivalent:

(1) cac
∗ = L∞

c .

(2) P is of class (S), L∞
c is Dedekind complete, and no disjoint supported alternative Q≈P admits a solution

to Banach’s measure problem.

Lemma 5.16. Consider the following statements:

(1) Banach’s measure problem has no solution.

(2) cac
∗ = L∞

c if and only if L∞
c is Dedekind complete.

(3) L∞
c is Dedekind complete only if P is of class (S).

Then (1) ⇐⇒ (2) =⇒ (3).

Proof. (1) implies (2): By [34, 363S, Theorem], (1) holds if and only if every Dedekind complete vector lattice X

satisfies X ∼
c =X ∼

n . If L∞
c is Dedekind complete, Proposition B.3 therefore implies cac = (L∞

c )
∼
c = (L∞

c )
∼
n = scac.

In particular, P is of class (S). Theorem 5.3 yields cac
∗ = L∞

c . Conversely, if cac
∗ = L∞

c , Dedekind completeness of

the latter space follows from Theorem B.5(2).

(2) implies (1): Let Ω be an arbitrary nonempty set. Consider the measurable space (Ω,2Ω) and the set P =

{δω | ω ∈ Ω} of probability measures which is of class (S). As L∞
c agrees with the space of all bounded functions

f : Ω → R and this space is Dedekind complete, (2) implies cac
∗ = L∞

c , and Lemma 5.15 implies that P does not

admit a solution to Banach’s measure problem, so neither does Ω.

At last, we have seen above that (1) implies the class (S) property of P. �

In the subsequent corollary, we say that a property is verifiable in ZFC if in ZFC one can show that it holds. The

terminology “to construct an example in ZFC” means to give an example in ZFC in which the involved properties

are verifiable.

Corollary 5.17. It is impossible to construct an example in ZFC of a measurable space (Ω,F ) and a nonempty

set P⊂ ∆(F ) such that L∞
c is Dedekind complete and additionally at least one of the following properties holds:

(1) cac
∗ 6= L∞

c .

(2) P is not of class (S).

(3) L∞
c is not the dual space of a normed space (Y ,‖ · ‖

Y
).

Proof. Suppose the construction of an example as described in (1)–(2) is possible in ZFC. According to Lemma 5.16,

Banach’s measure problem must have a solution. Similarly, if an example as in (3) exists, Theorem 5.3 implies that

one deals with a Dedekind complete space L∞
c such that P is not of class (S). Hence, also such an example proves
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that Banach’s measure problem has a solution. Let κ = |X| be the least cardinal which admits such a solution. By

[42, Corollaries 10.7 & 10.15], κ is weakly inaccessible. As such, the construction would provide a proof of the

existence of weakly inaccessible cardinals in ZFC, and such a proof is known to be impossible; cf. [44, p. 16]. �

Let us close with two important consequences of Corollary 5.17. Consider a concrete example of P for which:

• P being of class (S) and L∞
c being Dedekind complete are decidable in ZFC.8 Then L∞

c is Dedekind com-

plete only if P is of class (S) (Corollary 5.17(2)).

• L∞
c being Dedekind complete and cac

∗ = L∞
c are decidable in ZFC. Then L∞

c is Dedekind complete only if

cac
∗ = L∞

c (Corollary 5.17(1)). The latter is a crucial addendum to [55].

APPENDIX A. VECTOR LATTICES AND SPACES OF MEASURES

This appendix is a brief recap of the theory as presented in the monographs [1, 2, 3, 58].

A tuple (X ,�) is a vector lattice if X is a real vector space and � is a partial order on X with the following

properties:

• For x,y,z ∈ X and scalars α ≥ 0, x � y implies αx+ z � αy+ z.

• For all x,y ∈X there is a least upper bound z := x∨y = sup{x,y}, the maximum of x and y, which satisfies

x � z and y � z as well as z � z′ whenever x � z′ and y � z′ hold.

The existence of the absolute value |x| = x∨ (−x), the positive part x+ = x∨ 0, the negative part x− = (−x)∨ 0,

and the minimum x∧ y := inf{x,y} = −sup{−x,−y} follow. The positive cone X+ is the set of all x ∈ X such

that x � 0. If X is additionally carries a norm ‖ · ‖ which satisfies ‖x‖ ≤ ‖y‖ whenever |x| � |y|, (X ,�,‖ · ‖) is a

normed vector lattice. A normed vector lattice (X ,�,‖ · ‖) is a Banach lattice if ‖ · ‖ is complete.

Linear functionals: If for a linear functional φ : X → R each set {φ(z) | x � z � y} ⊂ R is bounded, x,y ∈ X , φ

is order bounded and belongs to the order dual X ∼ of X . The latter carries an order given by the positive cone

X ∼
+ comprising all order bounded linear functionals φ ∈ X ∼ satisfying φ(x) ≥ 0 for all x ∈ X+.

A net (xα)α∈I ⊂ X is order convergent to x ∈ X if there is another net (yα )α∈I which is decreasing (α ,β ∈ I and

α ≤ β implies yβ � yα ), satisfies infα∈I yα := inf{yα | α ∈ I}= 0, and for all α ∈ I it holds that 0 � |xα − x| � yα .

The order continuous dual is the space X ∼
n ⊂ X ∼ of all order bounded linear functionals φ which are order

continuous, i.e. φ carries an order convergent net with limit x in X to a net converging to φ(x) in R. The σ -order

continuous dual is the space X ∼
c ⊂X ∼ of all order bounded linear functionals φ which carry an order convergent

sequence with limit x in X to a convergent sequence with limit φ(x) in R. Obviously, X ∼
n ⊂X ∼

c , and both spaces

are vector lattices in their own right.

Given an ideal B ⊂ X ∼ (see below) and x ∈ X , the linear functional

ℓx : B ∋ φ 7→ φ(x) (A.1)

is order continuous on the lattice (B,�). The map ℓ• : X → B∼
n is a lattice homomorphism (i.e. it preserves the

lattice structure) and is injective if and only if B separates the points of X (i.e. φ(x) = 0 holds for all φ ∈ B only

if x = 0). A vector lattice is perfect if ℓ• : X → (X ∼
n )∼n is bijective, i.e. (X ∼

n )∼n may be canonically identified

with X .

8 A property is decidable in ZFC if said property or its negation are verifiable in ZFC.
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Vector sublattices, ideals and bands: Given a vector lattice X , a subspace Y ⊂ X is a vector sublattice if for

every x,y ∈ Y , the maximum x∨ y computed in X lies in Y . It is order dense in X if for all 0 ≺ x ∈ X we can

find some y ∈ Y such that 0 ≺ y � x. It is majorising if for every x ∈ X there is y ∈ Y such that x � y.

A vector subspace B of X with the property that, for all y ∈ B, {x ∈ X | |x| � |y|} ⊂ B, is an ideal. Every ideal

is a vector sublattice. A subset C ⊂ X is order closed if the limit of each order convergent net (xα)α∈I ⊂ C lies

in C . An ideal B ⊂ X is a band if it is an order closed subset of X . The disjoint complement of an ideal B is

defined by

B
d := {x ∈ X | ∀y ∈ B : |x|∧ |y|= 0}.

It is always a band. Given φ ∈ X ∼, its null ideal is the ideal N(φ) := {x ∈ X | |φ |(|x|) = 0}, and its carrier is

C(φ) := N(φ)d.

We call a Dedekind complete vector lattice (X δ ,E) the Dedekind completion of (X ,�) if there is a linear map

J : X → X δ such that (i) J is a strictly positive lattice homomorphism (J(|x|) = 0 for x ∈ X implies x = 0),

(ii) J(X ) is an order dense and majorising vector sublattice of X δ . X has a Dedekind completion if and only

if X is Archimedean, i.e. 1
n
x

o
−→ 0, n → ∞, for every x ∈ X+. Last, a lattice isomorphism is a bijective lattice

homomorphism.9

APPENDIX B. AUXILIARY RESULTS

Lemma B.1. Suppose that for a set of events A ⊂ F the supremum supA∈A 1A exists in L0
c . Then there is an event

B ∈ F such that

1B = sup
A∈A

1A. (B.1)

Analogously, if infA∈A 1A exists in L0
c , there is an event C ∈ F such that

1C = inf
A∈A

1A. (B.2)

Proof. For (B.1), suppose U := supA∈A 1A exists. In particular, U =U+ and U � 1Ω has to hold, i.e. 0 �U � 1Ω.

As for all n ∈ N the identity {1A | A ∈ A } = {(n1A)∧ 1Ω | A ∈ A } holds, we obtain from [2, Lemma 1.5] for all

n ∈ N

U = sup
A∈A

((n1A)∧1Ω) = nU ∧1Ω.

Note that supn∈N(nU ∧1Ω) = 1{u>0}, where u ∈U is an arbitrary representative. Hence, we may set B := {u > 0}.

(B.2) follows from (B.1) as infA∈A 1A = 1Ω − supA∈A 1Ac by [2, Lemma 1.4]. �

Lemma B.2. Suppose P ⊂ ∆(F ) is of class (S) with supported alternative Q. For all X ∈ L0
c+, supQ∈Q X1S(Q)

exists and is given by X.

Proof. Consider the set C := {X1S(Q) |Q∈Q} which is order bounded from above by X . Moreover, X is indeed the

least upper bound of C . In order to prove this, consider any upper bound Y . Then, for all Q ∈Q, X1S(Q) � Y 1S(Q),

whence we infer Q(X ≤Y ) = 1. As P≈Q, c(X > Y ) = 0. Equivalently, X � Y . �

9 The term “lattice isomorphism” is ambiguous in the literature. [2, Definition 1.30], for instance, replaces our assumption of bijectivity

by mere injectivity. By [2, p. 16], however, two vector lattices are lattice isomorphic if there is a surjective lattice isomorphism between

them. It is therefore worth pointing out that the results from [2] we use deal with lattice isomorphisms which are bijective.
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Given a Banach lattice (X ,‖ · ‖
X
), where L∞

c ⊂ X ⊂ L0
c holds, ca(X ) denotes in the following results the set of

all µ ∈ cac such that each X ∈ X is |µ |-integrable and such that

φµ(X) :=

∫
X dµ , X ∈ X ,

defines a continuous linear functional on X . sca(X ) is defined in complete analogy.

Proposition B.3. Let /0 6=P⊂ ∆(F ) and let L∞
c ⊂ X ⊂ L0

c be a Banach lattice such that X is an ideal in L0
c .

(1) ca(X ) = X ∼
c .

(2) For µ ∈ sca(X ), carrier and null ideal of φµ are given by C(φµ) = 1S(µ)X and N(φµ) = 1S(µ)cX ,

respectively. Both are bands in X .

(3) sca(X ) = X ∼
n .

Proof. For statement (1), ca(X ) ⊂ X ∼
c is clear by dominated convergence. Conversely, σ -order continuity of

φ ∈ X ∼
c ∩X ∼

+ together with the Daniell-Stone Theorem [17, Theorem 7.8.1] provides a unique finite measure µ

on F such that

φ(X) =

∫
X dµ , X ∈ X .

µ ∈ ca(X ) follows from X ∼
c ⊂ X ∼ = X ∗ where X ∼ = X ∗ is due to [58, Proposition 1.3.7]. For general

φ ∈ X ∼
c we have that φ = φ+−φ− where φ+,φ− ∈ X ∼

c ∩X ∼
+ .

Concerning statement (2), one first shows that |φµ |= φ|µ | for all µ ∈ ca(X ). As C(φµ) =C(φ|µ |), N(φµ)=N(φ|µ |),

and S(µ) = S(|µ |), we can thus assume µ ∈ sca(X )+ without loss of generality. For all X ∈ X , µ(S(µ)c) = 0

implies

φµ(|X1S(µ)c|) =

∫
|X |1S(µ)c dµ = 0.

Conversely, if X ∈ X satisfies φµ(|X |) = 0, then

0 = φµ(|X |)≥ φµ(|X |1S(µ)) =

∫
|X |1S(µ)dµ ≥ 0.

This implies |X |1S(µ) = 0 in X by property (b) in Definition 2.1(1), and X = X1S(µ)c. At last, C(φµ) = N(φµ)
d =

(1S(µ)cX )d = 1S(µ)X . Both are indeed bands. We will only prove this for 1S(µ)X . If (Xα)α∈I ⊂ 1S(µ)X is a net

which converges in order to X ∈ X , we also have Xα1S(µ) → X1S(µ) in order. However, Xα1S(µ) = Xα , and order

limits are unique. Hence, X1S(µ) = X , which means precisely that X ∈ 1S(µ)X .

At last, we turn to statement (3). sca(X ) is a lattice (Lemma 3.6) and X ∼
n is a band in X ∼=X ∗ ([58, Proposition

1.3.9]). Hence, it suffices to focus on positive elements.

Let µ ∈ sca(X )+. In order to see that φµ ∈ X ∼
n , let (Xα)α∈I be a net such that Xα ↓ 0. Then Xα1S(µ) ↓ 0. By

(2) and [2, Lemma 1.80], the carrier C(φµ ) = 1S(µ)X of the functional φµ ∈ X ∼
c has the countable sup property

when equipped with the P-q.s. order �. Thus there is a countable subnet (αn)n∈N such that Xαn
1S(µ) ↓ 0 in order,

in particular µ-almost everywhere. By monotone convergence,

0 ≤ inf
α

φµ(Xα) = inf
α

φµ(Xα1S(µ))≤ inf
n∈N

φµ(Xαn
1S(µ)) = inf

n∈N

∫
Xαn

1S(µ) dµ = 0,

whence order continuity of φµ follows.

For the converse inclusion, pick ψ ∈ (X ∼
n )+ and let µ ∈ ca(X )+ be such that ψ = φµ (see (1)). Let (X δ ,E) be

the Dedekind completion of (X ,�), which exists because X is Archimedean; see Appendix A. Let J : X →X δ
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be a lattice isomorphism such that J(X ) is order dense and majorising in X δ . The latter gives rise to a lattice

isomorphism ·̂ : X ∼
n → (X δ )∼n given on positive functionals φ ∈ (X ∼

n )+ by

φ̂ : X
δ → R, Y 7→ sup{φ(X) | X ∈ X , J(X)E Y}; (B.3)

cf. [2, Theorem 1.84] and its proof. Both the null ideal N(ψ̂) and the carrier C(ψ̂) are bands in X δ . By Dedekind

completeness of the latter space, X δ = N(ψ̂)⊕C(ψ̂). In particular, there is Y ∗ ∈ N(ψ̂) and Z∗ ∈C(ψ̂) such that

J(1Ω) = Y ∗+Z∗. J(X ) is order dense in X δ , hence one can show

Z∗ = sup{J(X) | X ∈ X , J(X)E Z∗}= sup{J(1A) | A ∈ F , J(1A)E Z∗}.

C(ψ̂) has the countable sup property, hence there is an increasing sequence (Sn)n∈N ⊂ F such that J(1Sn
) ↑ Z∗ in

X δ . We claim that S :=
⋃

n∈N Sn is a version of the support of µ . Indeed,

µ(Ω) = ψ̂(J(1Ω)) = ψ̂(Y ∗)+ ψ̂(Z∗) = ψ̂(Z∗) = lim
n→∞

µ(Sn) = µ(S).

Moreover, for N ∈ F with µ(N) = 0 and N ⊂ S, J(1N∩Sn
) ∈ N(ψ̂)∩C(ψ̂), n ∈ N, whence J(1N∩Sn

) = 0 ∈ X δ

follows. As J is strictly positive, 1N∩Sn
= 0 ∈X has to hold, and we infer 1N = supn∈N 1N∩Sn

= 0. Definition 2.1(1)

provides S = S(µ). �

Remark B.4. Proposition B.3(3) is proved in the spirit of [2, 3]. Another proof, which would in our opinion be

less accessible for readers of this paper, can be given using results in [34], in particular [34, 326O, Proposition].

Proposition B.5. Let /0 6=P⊂ ∆(F ) and let L∞
c ⊂ X ⊂ L0

c be a Banach lattice such that X is an ideal in L0
c .

(1) If sca(X ) separates the points of X , then P of class (S).

(2) The converse implication holds if the supported alternative Q can be chosen such that Q⊂ sca(X ).

Proof. For (1), suppose A ∈ F satisfies c(A) > 0. Then there is µ ∈ sca(X ) such that µ(A) = φµ(1A) > 0. This

entails that also µ+(A) > 0. The set Q := {µ(Ω)−1µ | µ ∈ sca(X )+} therefore serves as a supported alternative

to P. The proof of statement (2) is straightforward. �

APPENDIX C. ENLARGEMENTS OF σ -ALGEBRAS

This paper has uncovered the necessity of Dedekind completeness for the validity of important results from math-

ematical finance in the presence of uncertainty. On another note, many pertinent contributions—see the references

below—weaken the notion of measurability a posteriori by enlarging the underlying σ -algebra F on Ω. This

additional appendix therefore asks under which circumstances this produces the Dedekind completion of L∞
c (by

additionally changing to a new set of probability measures on the larger σ -algebra). Particular emphasis will be

put on the so-called universal completion.

Definition C.1. Given a measurable space (Ω,F ) and a nonempty P⊂ ∆(F ), an enlargement is a tuple (G ,P̂),

where G ⊃ F is a σ -algebra on Ω, and P̂⊂ ∆(G ) is such that

P̂|F := {P̂|F | P̂ ∈ P̂} ≈P.
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Denoting by ĉ the upper probability associated with P̂ and by 〈 f 〉 the equivalence class generated by an F -

measurable random variable f in L∞
ĉ

, we introduce the lattice homomorphism

JG :
L∞

c → L∞
ĉ
,

X = [ f ] 7→ 〈 f 〉.
(C.1)

An enlargement (G ,P̂) completes L∞
c if L∞

ĉ
is the Dedekind completion of L∞

c and JG (L
∞
c ) is order dense and

majorising in L∞
ĉ

.

The condition P̂|F ≈P ensures that JG is well defined and one-to-one, which is necessary if L∞
ĉ

completes L∞
c . We

shall introduce two relevant candidates for completing enlargements based on completing the original σ -algebra;

cf. (3.1). The universal enlargement (H ,PH ) is defined by H := F (∆(F )), the universal completion of F ,

and the set PH := {PH | P ∈P} of unique extensions of the initial probability measures P ∈P to (Ω,H ). The

resulting upper probability on H is denoted by cH . Each µ ∈ ca has a unique extension to H which we will denote

by µH . The PH -q.s. order on L∞
cH is denoted by �H . The universal completion of the Borel σ -algebra plays

an important role in discrete-time financial modeling under uncertainty as it admits the application of measurable

selection arguments in the iterative construction of superhedging strategies [18] or for the optimal solution of the

Merton problem [7]. Similarly in continuous time universal completions guarantee the concatenation property over

the path space (e.g. [14, 63]). Moreover, it is sometimes convenient to employ medial limits ([8, 62]).

If P is of class (S), we shall consider the supported enlargement (S ,Q♯), where S :=F (scac+) is the completion

along all supported measures, and Q♯ := {Q♯ | Q ∈Q} is the set of extensions of a supported alternative Q≈P to

S . The resulting upper probability on S is denoted by c♯, the Q♯-q.s. order on the space L∞
c♯

by �♯. Note that L∞
c♯

does not depend on the particular choice of the supported alternative Q, but any choice produces the same space.

Completions along a particular set of probability measures are crucial in [71, Section 7] and throughout [28] to

construct a conditional version of sublinear expectations. They are adopted for the pathwise construction of the

stochastic integral in [61] and the resolution of the Holmström & Milgrom contracting problem under uncertainty

[57]. In [22] the underlying σ -algebra is completed along the set P of all martingale measures for the underlying

price process in order to obtain the measurability of the so-called “arbitrage aggregator”. We also refer to [24],

where the supported alternative of finitely supported martingale measures replaces the entire class of martingale

measures considered in [22]. In the statistical literature, this procedure is called completion of an experiment; cf.

[49, 50, 51]. We particularly highlight the discussion in [51, Section 6].

A priori it is clear that H ⊂ S whenever P is of class (S).

Lemma C.2. Consider the enlargement (H ,PH ). For a signed measure µ ∈ ca, µ ∈ cac is equivalent to µH ∈

cacH , and µ ∈ scac is equivalent to µH ∈ scacH . In the latter case, S(µ) = S(µH ) holds.

Proof. Let µ ∈ ca+ and suppose N ∈ H satisfies cH (N) = 0. As H ⊂ F ({µ}), we can choose A ∈ F , A ⊂ N,

such that N\A ∈ n(µ). This entails c(A) = cH (A) = 0. Hence, we see that µ ≪ P implies µH ≪ PH . The

converse implication is clear.

Now suppose that µ ∈ scac+ and let S(µ) ∈ F be its order support. Suppose N ∈ H satisfies N ⊂ S(µ) and

µH (N) = 0. Let P ∈P. As H ⊂ F ({P}), there is A ∈ F , A ⊂ N, such that N\A ∈ n(P). From µ(A) = 0, we

infer that c(A) = 0 and that PH (N) = P(A) = 0. In conclusion, S(µ) is also the PH -q.s. order support of µH .

Conversely, note first that each finite measure ν on (Ω,H ) satisfies ν = (ν |F )H . Hence, if S(µH ) ∈ H is the
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PH -q.s. order support of µH ∈ scacH +, and S∈F satisfies S⊂ S(µH ) and S(µH )\S∈ n(µ), it is straightforward

to verify that S is a version of the P-q.s. order support of µ . �

Lemma C.3. Suppose P is of class (S) and Q is a supported alternative to P. Then S = F (Q) and JS (L∞
c ) is

order dense and majorising in L∞
c♯

.

Proof. For the identity S = F (Q), let Q,R ≈ P be supported alternatives to P and assume that R is disjoint.

Then the experiment (Ω,F ,Q) is majorised by the measure ν := ∑Q∈RQ which additionally satisfies ν ≈P. By

[51, Lemma 10],

F (Q) =
{

A ⊂ Ω | ∀F ⊂ Ω : ν(F)< ∞ ⇒ A∩F ∈ F ({ν})
}
.

As the choice of Q and R was arbitrary, this shows that S = F (Q).

For the second assertion, JS (L∞
c ) is majorising because the space contains equivalence classes of constant random

variables. For its order density, it suffices to consider B ∈ S with 1B 6= 0 in L∞
c♯

. Fix Q∗ ∈Q such that Q
♯
∗(B)> 0.

As S ⊂ F ({Q∗}), there is A ∈ F such that A ⊂ B∩S(Q∗) and Q∗(A) = Q
♯
∗(B)> 0. Hence, 0 ≺♯ 1A �♯ 1B. �

The last necessary technical lemma is due to [32, p. 45]. CH denotes the continuum hypothesis: there is no set X

whose cardinality satisfies |N|= ℵ0 < |X|< 2ℵ0 = |R|.

Lemma C.4. In ZFC+CH let P⊂ ∆(F ) be of class (S) and suppose that there is a disjoint supported alternative

to P of cardinality 0 < κ ≤ 2ℵ0 . Then cac
∗ = L∞

c if and only if P is Dedekind complete. In that case, we also have

cac = scac.

We now exclude Dedekind completeness of the universal enlargement in many situations. The result is in the spirit

of [68] and applies, for instance, in the situation of Example 3.12.

Corollary C.5. In ZFC+CH assume that P is of class (S).

(1) If there is a disjoint supported alternative of cardinality 0 < κ ≤ 2ℵ0 and if cac\scac is nonempty, then L∞
cH

is not Dedekind complete.

(2) If Ω is Polish, F is the Borel-σ -algebra on Ω, P is a set of Borel probability measures, and a disjoint

supported alternative Q contains a perfect or uncountable analytic or Borel subset R of ∆(F ), then L∞
cH

is not Dedekind complete.

Proof. For (1), P being of class (S) implies that PH is of class (S). Moreover, PH also admits a disjoint supported

alternative of cardinality κ ≤ 2ℵ
0 (Lemma C.2). Again by Lemma C.2, cac\scac 6= /0 implies cacH \scacH 6= /0. By

Lemma C.4, L∞
cH cannot be Dedekind complete.

As for (2), we first observe that ∆(F ) is Polish by [1, Theorem 15.15] and its cardinality does not exceed the

cardinality of the continuum. Hence, any disjoint supported alternative Q≈P must satisfy 0 < |Q| ≤ 2ℵ0 . Apply

Proposition 3.11(1) and use (1) above. �

The second main result complements [51, Lemma 11 & Theorem 6(b)].

Theorem C.6. Suppose P is of class (S) with supported alternative Q, and that an enlargement (G ,P̂) completes

L∞
c . Then the following assertions hold:

(1) Each µ ∈ scac extends uniquely to a µ̂ ∈ scaĉ.

(2) Each supported alternative Q≈P extends to a supported alternative Q̂ := {Q̂ | Q ∈Q} ≈ P̂.
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(3) One may assume G = G
(
Q̂
)
. More precisely, if in the situation of (2) we consider the enlargement

(G (Q̂),Q̂♯), J
G (Q̂)

is a lattice isomorphism.

Proof. To prove statement (1), note that (L∞
c )

∼
n and (L∞

ĉ
)∼n are by [2, Theorem 1.84] and its proof lattice isomorphic

via the bijection given on positive functionals φ ∈ (L∞
c )

∼
n as in (B.3). By Proposition B.3(3), (L∞

c )
∼
n = scac and

(L∞
ĉ
)∼n = scaĉ.

For (2), the set Q̂ := {Q̂ | Q ∈ Q} associated with a supported alternative Q ≈ P is a subset of scaĉ; cf. (1). In

order to see that Q̂≈ P̂, use order density of JG (L
∞
c ) in L∞

ĉ
to verify for each B ∈ G that

sup
Q∈Q

Q̂(B) = sup{φQ(X) | Q ∈Q, X ∈ L∞
c , JG (X)�G 1B}.

Here, �G denotes the P̂-q.s. order on L∞
ĉ

. The right-hand side is positive if and only if 1B 6= 0 in L∞
ĉ

.

At last, in order to verify (3), one considers the enlargement (G (Q̂),Q̂♯) of (G ,P̂) and uses Lemma C.3 to show

that Y := J
G (Q̂)

(L∞
ĉ
) is an order dense and majorising Dedekind complete sublattice of the enlarged space. By [2,

Theorem 1.40], Y is a majorising ideal, i.e. it has to agree with the enlarged space. �

Remark C.7. Theorem C.6(3) means that if Dedekind completion of L∞
c is obtained by an enlargement (G ,P̂)

and if P is of class (S), then G is at least as large as the supported completion S of F . Morally speaking, this

suggests together with Corollary C.5 that one should not expect L∞
cH to be Dedekind complete since H ( S is

possible. The universal enlargement is therefore not a sensible choice if the aim is aggregation. Note that the class

(S) assumption does not pose a severe restriction here; class (S) cannot be disproved under Dedekind completeness

(Corollary 5.17(2)).

APPENDIX D. PROOF OF PROPOSITION 3.10

P≈Q holds by construction, we therefore only need to show that every Q∈Q is supported. From the construction

in Section 3.2.5, there are stochastic kernels Qt(ω ; ·) ∈ Qt(ω) for any ω ∈ Ωt−1 and Qt(ω ; ·) ◦Y−1
t ∈ LW t(ω)

such that Q = Q1 ⊗ . . .⊗QT . Let (On)n∈N be a countable basis for the topology on (0,∞) and Cn = Oc
n. From [18,

Lemma 4.3] we observe that the set-valued map

Λ :
Ωt−1 → 2(0,∞),

ω 7→
⋂{

Cn | n ∈ N, Qt(ω ;Yt ∈Cn) = 1
}
,

is universally measurable and filters out the topological support of the distribution of Yt under Qt(ω , ·). Fix an

ω ∈ Ωt−1: By construction Qt(ω ; ·)◦Y−1
t ∈ Lt(ω), which implies Qt(ω ; ·)◦Y−1

t = π(ω)δa(ω)+(1−π(ω))δb(ω)

for some a(ω) ∈ [ut−1(ω),Ut−1(ω)] and b(ω) ∈ [dt−1(ω),Dt−1(ω)]. In particular,

Λ(ω) = {a(ω),b(ω)} = {mt−1(ω),Mt−1(ω)},

where the maps mt−1(ω) = minΛ(ω), Mt−1(ω) = maxΛ(ω) are Ft−1-measurable (with Ft−1 being the universal

completion of the Borel σ -algebra B(Ωt)). We observe that Qt(ω ; ·)◦Y−1
t = π̃(ω)δmt−1(ω)+(1− π̃(ω))δMt−1(ω).

Therefore the set S(Q) defined by

{(x0, . . . ,xT ) ∈ Ω | ∀ t ∈ {0, . . . ,T −1} : Yt+1(xt+1) = mt(x0, . . . ,xt) or Yt+1(xt+1) = Mt(x0, . . . ,xt)}
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is the candidate to be the order support of Q. Indeed, setting W 1
d (x0, . . . ,xT ) = Y1(x1)− m0, W 1

u (x0, . . . ,xT ) =

Y1(x1)−M0 and

W t
d(x0, . . . ,xT ) = Yt(xt)−mt(x0, . . . ,xt−1),

W t
u(x1, . . . ,xT ) = Yt(xt)−Mt(x0, . . . ,xt−1),

(x0, . . . ,xT ) ∈ Ω, t = 2, . . . ,T.

all W t
d ,W

t
u are F -measurable random variables, and

S(Q) :=
T⋂

t=1

(W t
d)

−1({0})∪ (W t
u)

−1({0}) ∈ F .

To show that Q(S(Q)) = 1 we observe that for any ω ∈ Ωt−1 we have by construction Qt(ω ;At) = 1 where At =

(W t
d)

−1({0})∪ (W t
u)

−1({0}). Therefore

Qt(x1, . . . ,xt−1;At) =

∫ ∞

0
1At

(x1, . . . ,xT )Qt(x1, . . . ,xt−1;dxt) = 1,

which implies

Q(At) =

∫ ∞

0
· · ·

∫ ∞

0
1At

(x1, . . . ,xT )Qt(x1, . . . ,xt−1;dxt) . . .Q1(dx1) = 1.

Finally we notice that for any Q,Q′ ∈Q either S(Q) ≡ S(Q′) or S(Q)∩ S(Q′) = /0, as every Yt is a bijection from

(0,∞) to (0,∞).
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[35] Föllmer, H., and A. Schied (2016), Stochastic Finance. 4th edition, De Gruyter.

[36] Gao, N., and F. Xanthos (2018), On the C-property and w∗-representations of risk measures. Mathematical Finance, 28(2):748–754.

[37] Gao, N., D. Leung, C. Munari, and F. Xanthos (2018), Fatou Property, Representations, and Extensions of Law-Invariant Risk Measures on General

Orlicz spaces. Finance & Stochastics, 22(2):395–415.

[38] Gao, N., and C. Munari (2020), Surplus-Invariant Risk Measures. Mathematics of Operations Research, 45(4):1342–1370.

[39] Ghosh, J. K., H. Morimoto, and S. Yamada (1981), Neyman Factorization and Minimality of Pairwise Sufficient Subfields. Annals of Statistics,

9(3):514-530.

[40] Hasegawa, M., and M. D. Perlman (1974), On the Existence of a Minimal Sufficient Subfield. Annals of Statistics, 2(5):1049–1055.
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