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convex relaxation of discrete vector-valued
optimization problems

Christian Clason∗ Carla Tameling† Benedikt Wirth‡

Abstract We consider a class of innite-dimensional optimization problems in which a distributed

vector-valued variable should pointwise almost everywhere take values from a given nite set

M ⊂ ℝ𝑚
. Such hybrid discrete–continuous problems occur in, e.g., topology optimization or

medical imaging and are challenging due to their lack of weak lower semicontinuity. To circumvent

this diculty, we introduce as a regularization term a convex integral functional with an integrand

that has a polyhedral epigraph with vertices corresponding to the values ofM; similar to the 𝐿1

norm in sparse regularization, this “vector multibang penalty” promotes solutions with the desired

structure while allowing the use of tools from convex optimization for the analysis as well as the

numerical solution of the resulting problem.

We show well-posedness of the regularized problem and analyze stability properties of its

solution in a general setting. We then illustrate the approach for three specic model optimization

problems of broader interest: optimal control of the Bloch equation, optimal control of an elastic

deformation, and a multimaterial branched transport problem. In the rst two cases, we derive

explicit characterizations of the penalty and its generalized derivatives for a concrete class of sets

M. For the third case, we discuss the algorithmic computation of these derivatives for general

sets. These derivatives are then used in a superlinearly convergent semismooth Newton method

applied to a sequence of regularized optimization problems.

We illustrate the behavior of this approach for the threemodel problemswith numerical examples.

1 introduction

Many optimization problems involve minimizing the distance of a quantity 𝑆 (𝑢) to some given 𝑧,

where 𝑢 is the optimization variable and 𝑆 (𝑢) denotes the output of some model depending on 𝑢. This

may arise either from an optimal control problem, in which we try to choose the control𝑢 such that the

state 𝑦 = 𝑆 (𝑢) – commonly the solution to a dierential equation – comes close to a desired state 𝑧, or

from an inverse problem, in which a measurement 𝑧 has been obtained via a forward operator 𝑆 from a

physical conguration 𝑢, which we try to recover. Typically 𝑢 is from an innite-dimensional function

space. To make the problem well-posed, a regularization usually has to be incorporated, which encodes

some a priori knowledge or requirement of 𝑢. Such a priori knowledge could for instance be the fact
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that 𝑢 pointwise almost everywhere takes values only from a prescribed nite setM ⊂ ℝ𝑚
for some

𝑚 ∈ ℕ, which is the situation we will focus on. Examples include topology optimization, where the

spatial material composition of a (mechanical) structure is optimized and in whichM comprises the

material parameters of the available material components, or inverse problems in which the spatial

distribution of a few known materials (or, in medical imaging, tissues with known properties) has to

be identied. Our goal is to achieve this using a convex regularization so that we can apply elegant

and powerful tools from convex optimization for its analysis and numerical solution.

Specically, in this work we consider the optimization problem

(1.1) min

𝑢∈𝑈

1

2

‖𝑆 (𝑢) − 𝑧‖2𝑌 +
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥,

where Ω ⊂ ℝ𝑛
is an open bounded domain,𝑈 = 𝐿2(Ω;ℝ𝑚) for some𝑚 ≥ 2,𝑌 is a Hilbert space, 𝑧 ∈ 𝑌 ,

𝑆 : 𝑈 → 𝑌 is a compact and Fréchet dierentiable (possibly nonlinear) operator, and the pointwise

vector multibang penalty 𝑔 : ℝ𝑚 → ℝ∪ {∞} has a convex polyhedral epigraph and superlinear growth

at innity. This extends the class of scalar problems considered in [17, 18] to the vector-valued case,

and our main interest in this article is the behavior and inuence of this vector multibang penalty on

the solution, which we will study by way of examples for three dierent operators 𝑆 (the solution

operators of the Bloch equation and of linearized elasticity as well as the graph divergence for a

branched transport model) and specic costs 𝑔 (whose graph is given by a polyhedral cone, a square

frustum, and a more general polyhedron in ℝ𝑚+1
, respectively). The basic underlying intuition for our

specic choice of the term

∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 is that this regularization in combination with a quadratic

discrepancy term increasingly promotes values of 𝑢 on lower-dimensional facets and, in particular, at

the vertices of the graph of 𝑔, since the linear growth away from a vertex will lead to a comparatively

greater increase in the penalty than the corresponding decrease in the discrepancy term. The same

mechanism is responsible for the sparsity-promoting property (i.e., the preference for 𝑢 = 0) of 𝐿1

regularization; it is also related to the fact that in linear optimization, minima are always found at

a vertex of the polyhedral feasible set. The central idea of our approach is to design the penalty 𝑔

such that these vertices correspond precisely to the elements of the setM, which we will make more

precise in the following.

Motivation Formulating the original optimal control or inverse problem directly over the set of

discrete-valued desired solutions leads to the minimization of the energy

EM (𝑢) = 1

2

‖𝑆 (𝑢) − 𝑧‖2𝑌 +
∫
Ω
𝛿M (𝑢 (𝑥)) d𝑥 with 𝛿M (𝑣) =

{
0 if 𝑣 ∈ M,

∞ otherwise.

Unfortunately, EM is not weakly lower semicontinuous [10, Cor. 2.14] so that the problem is ill-posed

(unless the inverse operator 𝑆−1 is compact into 𝐿1(Ω;ℝ𝑚), in which case the energy is strongly

coercive in 𝐿1(Ω;ℝ𝑚) and one would only require strong lower semicontinuity): generically there are

no minimizers, and controls 𝑢 with small energy EM (𝑢) will rapidly oscillate between dierent values

inM. There are (at least) two possible ways out:

(i) The rst approach adds a penalty of variations of 𝑢, for instance the total variation seminorm

‖𝑢‖𝑇𝑉 =
∫
Ω
d|∇𝑢 | or a Mumford–Shah-type regularization functional, which has the eect of

preventing oscillations and penalizing the interfaces between regions of dierent values of

𝑢. A disadvantage of this approach is that it quite explicitly regularizes the geometry of the

material distribution, which is the sought quantity. For instance, such a regularization will lead

to rounded-o interfaces that cannot have corners.

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .
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(ii) The second approach considers instead the relaxation (i.e., the lower semi-continuous envelope)

of EM , thereby admitting also mixed control values 𝑢 (𝑥) ∉M that represent mixtures of values

inM. This is an obvious disadvantage; however, it might be alleviated by adding a convex (to

ensure weak lower semicontinuity) cost

∫
Ω
𝑐 (𝑢 (𝑥)) d𝑥 that may, for instance, encode a known

preference for a certain material. If this is done before relaxation, then mixed control values will

no longer have equal costs to pure control values so that the relaxation may again lead to pure

control values 𝑢 (𝑥) ∈ M. This has for instance been observed in [17].

The additional cost regularization of the latter approach acts on the material amounts rather than the

geometry of their distribution and therefore is worthwhile studying as an alternative to the standard reg-

ularization via penalization of interfaces. Specically, the relaxation of

∫
Ω
𝛿M (𝑢 (𝑥)) d𝑥+𝛼

∫
Ω
𝑐 (𝑢 (𝑥)) d𝑥

for some 𝛼 > 0 and 𝑐 : ℝ𝑚 → ℝ nonnegative, strictly convex, and lower semicontinuous, is given by∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 with

(1.2) 𝑔 = 𝑔∗∗∞ for 𝑔∞ := 𝛼𝑐 + 𝛿M,

where the double asterisk denotes the biconjugate or convex envelope. The functions 𝑔 are precisely

those with a convex polyhedral epigraph (since this epigraph is the convex hull of the nitely many

points {(𝑣, 𝛼𝑐 (𝑣))) : 𝑣 ∈ M}, and any function 𝑔 with convex polyhedral epigraph can be obtained via

𝑐 = 𝑔/𝛼 and an appropriate choice ofM), which motivates our problem formulation (1.1). While our

theoretical results will hold for any such choice of 𝑐 , the explicit computation of 𝑔 and the numerical

solution will be carried out as in [15, 17, 18] mostly for the two specic choices

𝑐 (𝑣) = 1

2

|𝑣 |2
2

and 𝑐 (𝑣) = |𝑣 |2.

In the case of a scalar function 𝑢 (i.e., for𝑚 = 1) and the rst choice of 𝑐 , this optimization problem

reduces to the one considered in [17]; the dierence in the vector-valued case is that now several (or

even all) values inM can be assigned the same control cost, therefore allowing for multiple equally

preferred discrete values. Providing explicit and numerically implementable characterizations of the

required generalized derivatives is one of the main contributions of this work. Furthermore, we provide

an extended analysis of the stability and multibang properties of the optimal controls in the general

case.

Model problems To illustrate the broad applicability of the proposed approach, we consider as specic

examples three dierent forward operators 𝑆 and admissible setsM (the analysis in Sections 2 to 4

will be independent of these models, though, beyond some general assumptions).

The rst example follows [25], where the authors try to drive a collection of spin systems using

external electromagnetic elds to a desired spin state in the context of NMR spectroscopy or tomography.

The hardware here only allows a discrete set of control values (the radiofrequency pulse phases and

amplitudes). The underlying model is given by the Bloch equation in a rotating reference frame without

relaxation (see [27] for an introduction), which relates the magnetization vector M : [0,𝑇 ] → ℝ3
and

the applied magnetic eld B : [0,𝑇 ] → ℝ3
via the bilinear dierential equation

d

d𝑡
M(𝑡) = M(𝑡) × B(𝑡), M(0) = M0.

The goal is to shift the magnetization vector from the initial stateM0 (e.g., aligned to a strong external

eld) to a desired stateM𝑑 (e.g., orthogonal to the external eld) at time𝑇 . The control𝑢 ∈ 𝐿2((0,𝑇 );ℝ2)
enters the equation as B(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝜔), where𝜔 is a xed resonance frequency (which coincides

with the rotation frequency of the domain), and thus the (nonlinear) operator 𝑆 maps the control 𝑢

onto the magnetization vector M(𝑇 ) at time 𝑇 . For details, see Section 5.1.
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The second example deals with linearized elasticity as the most basic model of coupled PDEs as

state equations, i.e., we consider 𝑆 to be the solution operator of the elliptic problem


−2` div 𝜖 (𝑦) − _ grad div 𝑦 = 𝑢 in Ω,

𝑦 = 0 on Γ,

(2`𝜖 (𝑦) + _ div 𝑦)𝑛 = 0 on 𝜕Ω \ Γ,

with distributed control 𝑢; see Section 5.2 for details.

The third example illustrates applications to more general variational problems and concerns

multimaterial branched transport as introduced in [38]. Here, dierent materials have to be transported

through a street or pipe network, where for each material 𝑖 the amount𝑚𝑖 has to be routed from its

source 𝑥𝑖 to its sink 𝑦𝑖 . The ux along a street or pipe is described by the vector-valued function𝑢 dened

on the network, where 𝑢𝑖 describes the ux of material 𝑖 with its sign indicating the ow direction.

To avoid an uneconomic splitting of each material,M should only contain vectors corresponding to

combinations of (positive or negative, depending on direction) uxes𝑚𝑖 of dierent materials. The

cost 𝑐 may in addition favor certain combinations over others (e.g., if joint transport of two materials

is particularly economic). The operator 𝑆 here describes the divergence of the ux, and the deviation

of 𝑆𝑢 from 𝑧 =
∑

𝑖𝑚𝑖𝑒𝑖 (𝛿𝑥𝑖 − 𝛿𝑦𝑖 ) (with 𝑒𝑖 the 𝑖th standard unit vector and 𝛿𝑥 the Dirac measure at 𝑥 )

is penalized to avoid material loss.

Regarding the admissible setM, we consider for the case of the Bloch equation – again following

[25] – radially distributed control values together with the origin, i.e.,

M =

{(
0

0

)
,

(
𝜔0 cos\1
𝜔0 sin\1

)
, . . . ,

(
𝜔0 cos\𝑀
𝜔0 sin\𝑀

)}
for a xed amplitude 𝜔0 > 0 and𝑀 > 2 equidistributed phases

0 ≤ \1 < · · · < \𝑀 < 2𝜋.

In this example, all admissible control values apart from 0 have the same magnitude; it also provides a

link to classical sparsity promotion and allows a closed-form treatment of an arbitrary number of such

states.

For the case of linearized elasticity, we consider in addition an admissible set containing control

values of dierent magnitudes but not the origin. As an example, we make the concrete choice

M =

{(
1

1

)
,

(
1

−1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
2

2

)
,

(
2

−2

)
,

(
−2
2

)
,

(
−2
−2

)}
.

For multimaterial branched transport, the admissible control values are

M = {𝑢 ∈ ℝ𝑚
: 𝑢𝑖 ∈ {0,𝑚𝑖} for 𝑖 = 1, . . . ,𝑚 or 𝑢𝑖 ∈ {0,−𝑚𝑖} for 𝑖 = 1, . . . ,𝑚} ,

with 𝑚1, . . . ,𝑚𝑚 > 0 xed material amounts. Note that M only contains vectors with either all

nonnegative or all nonpositive components; components with opposite sign would represent dierent

materials owing in opposite directions, for which there is no economic preference.

Beyond illustrating the general procedure, these examples are meant to be useful prototypes that

should be directly applicable.
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Related work Convex relaxation of problems lacking weak lower semicontinuity has a long history;

here we only mention the monograph [26]. In the context of optimal control of partial dierential

equations, convex relaxation of discrete control constraints was discussed in [17, 18, 16, 19]; the latter

two treating controls in the principal coecient – leading to challenges related to homogenization

theory – in combination with total variation regularization required to overcome these challenges.

In the context of inverse problems, the use of the scalar multibang penalty as a regularization term

was investigated in [13, 24]; multibang regularization was applied to dierent imaging problems in

[33, 52]. Error estimates for the nite element approximation of such problems can be found in [14].

A similar convex relaxation approach was applied to optimal controls with switching structure in

[15]. Special cases were treated much earlier for scalar controls. In particular, ifM contains only two

points, problem (1.1) coincides with a (regularized) bang-bang control problem; see, e.g., [6, 48, 49]. For

M = {0}, the relaxation reduces to the well-known 𝐿1 norm used to promote sparse controls; see, e.g.,

[47, 11, 35].

There is a vast literature concerning pulse design in magnetic resonance imaging and spectroscopy

via optimal control of the Bloch equation, e.g., [22, 46, 43, 36, 53, 29, 30, 45]. A mathematical treatment

of this problem can be found in, e.g., [8]. Numerical methods for the computation of optimal pulses are

based on conjugate gradient methods (see, e.g., [37]), Krotov methods [51], quasi-Newton and Newton

methods with approximate second derivatives [3], and Newton methods using exact second derivatives

computed via the adjoint approach [1] (which was also the basis of the winning approaches in the 2015

ISMRM RF Pulse Design Challenge [31]). The latter is the basis for the numerical treatment in this

work. To the best of our knowledge, there is so far only a very limited number of works dealing with

the design of discrete-valued pulses, which is of interest since the hardware often allows only a nite

setM of pulses [23, 42]. In [25], this problem is treated via an extension of the approach from [36]

together with a quantization of a continuous control eld obtained via standard optimization methods.

The interest in branched transport as a nonconvex version of optimal transport arose during the

past two decades, and the textbook [7] can serve as a comprehensive starting point into the theory.

The multimaterial version that we consider here was introduced in [38] as a convexication of the

original branched transport problem. So far this approach has numerically only been exploited by

computing dual certicates for solutions to particular types of branched transport problems [39].

Organization Section 2 provides the abstract convex analysis framework, including existence of

solutions of the optimal control problem, necessary optimality conditions, as well as an appropriate

regularization for numerical purposes. Section 3 then derives stability results based on rather general

assumptions on the state operator and themultibang penalty. Section 4 gives an explicit characterization

of the convex analysis framework for the specic examples of the multibang penalty used in this work,

while Section 5 gives more detail about the model state equations and, in particular, veries for them

the previously exploited assumptions. Section 6 discusses the numerical solution using a semismooth

Newton method. Finally, Section 7 presents and discusses illustrative numerical examples for the three

model problems.

2 convex analysis framework

To obtain existence of minimizers and numerically feasible optimality conditions, we follow the general

framework of [18] (stated there for the scalar case), which we briey summarize in this section and

adapt to the vector-valued case. We refer to, e.g., [4, 44, 12] as well as [21] for a general introduction

to nonsmooth analysis and optimization. Recall that𝑈 = 𝐿2(Ω;ℝ𝑚) for some bounded open domain

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .
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Ω ⊂ ℝ𝑛
and𝑚 ≥ 2, 𝑌 is a Hilbert space, and

F : 𝑈 → ℝ ∪ {∞} , 𝑢 ↦→ 1

2
‖𝑆 (𝑢) − 𝑧‖2𝑌 ,

G : 𝑈 → ℝ ∪ {∞} , 𝑢 ↦→
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥

for 𝑔 : ℝ𝑚 → ℝ ∪ {∞} proper, convex, lower semicontinuous with dom𝑔 = coM (the convex hull

ofM) for some nite setM ⊂ ℝ𝑚
. Relating properties of the integrand 𝑔 to the corresponding

integral functional G will be crucial in what follows. For the operator 𝑆 we will require the following

assumptions:

(a1) Weak-to-weak continuity, i.e., 𝑢𝑖 ⇀ 𝑢 in𝑈 ⇒ 𝑆 (𝑢𝑖) ⇀ 𝑆 (𝑢) in 𝑌 .

(a2) Fréchet dierentiability.

Throughout, we identify the dual space𝑈 ∗ with𝑈 via the Riesz isomorphism.

We now consider the problem

(2.1) min

𝑢∈𝑈
E(𝑢) for E(𝑢) := F (𝑢) + G(𝑢) .

The following statements are analogous to [18, Props. 2.1 and 2.2] for the vector-valued case.

Proposition 2.1 (existence of minimizers). Let 𝑆 satisfy (a1). Then there exists a solution 𝑢 ∈ 𝑈 to (2.1).

Proof. Consider a minimizing sequence {𝑢𝑖}𝑖∈ℕ. Since 𝑔 is innite outside of coM, we know that

‖𝑢𝑖 ‖𝐿∞ (Ω) is uniformly bounded so thatwemay extract a subsequence, again denoted by {𝑢𝑖}𝑖∈ℕ, weakly
converging in𝑈 to some 𝑢 ∈ 𝑈 . Now

∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 is sequentially weakly lower semicontinuous by

the convexity of 𝑔, while property (a1) implies weak convergence 𝑆 (𝑢𝑖) ⇀ 𝑆 (𝑢) so that

1

2

‖𝑆 (𝑢) − 𝑧‖2𝑌 +
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 ≤ lim inf

𝑖→∞

1

2

‖𝑆 (𝑢𝑖) − 𝑧‖2𝑌 +
∫
Ω
𝑔(𝑢𝑖 (𝑥)) d𝑥 .

Hence 𝑢 must be a minimizer. �

Proposition 2.2 (optimality conditions). Let 𝑆 satisfy (a2) and let 𝑢 ∈ 𝑈 be a local minimizer of (2.1).
Then there exists a 𝑝 ∈ 𝑈 satisfying

(2.2)

{
−𝑝 = F ′(𝑢) = 𝑆 ′(𝑢)∗(𝑆 (𝑢) − 𝑧),
𝑢 ∈ 𝜕G∗(𝑝),

where 𝑆 ′(𝑢)∗ : 𝑌 → 𝑈 denotes the (Hilbert-space) adjoint of the Fréchet derivative of 𝑆 : 𝑈 → 𝑌 ,

G∗ : 𝑈 → ℝ ∪ {∞}, 𝑝 ↦→ sup

𝑢∈𝑈
〈𝑝,𝑢〉 − G(𝑢),

denotes the Fenchel conjugate of G, and 𝜕G∗ denotes its convex subdierential.

Proof. Abbreviate 𝑢𝑡 = 𝑢 + 𝑡 (𝑢 − 𝑢) for arbitrary 𝑡 > 0 and 𝑢 ∈ 𝑈 . Due to the optimality of 𝑢 we have

0 ≤ [F (𝑢𝑡 ) + G(𝑢𝑡 )] − [F (𝑢) + G(𝑢)] .

Dividing by 𝑡 and rearranging, we arrive at

0 ≤ F (𝑢𝑡 ) − F (𝑢)
𝑡

+ G(𝑢𝑡 ) − G(𝑢)
𝑡

≤ F (𝑢𝑡 ) − F (𝑢)
𝑡

+ (1 − 𝑡)G(𝑢) + 𝑡G(𝑢) − G(𝑢)
𝑡

,

where in the second inequality we used the convexity of G. Taking the limit 𝑡 → 0 and setting

𝑝 = −F ′(𝑢), we arrive at
0 ≤ 〈−𝑝,𝑢 − 𝑢〉 + G(𝑢) − G(𝑢).

As this holds for all 𝑢 ∈ 𝑈 , we have by denition of the convex subdierential that 𝑝 ∈ 𝜕G(𝑢). By the

Fenchel–Young Lemma (e.g., [21, Lem. 5.8]), this is equivalent to 𝑢 ∈ 𝜕G∗(𝑝). �
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By, e.g., [21, Thms. 4.11 and 5.5], we have the pointwise a.e. expression

(2.3) 𝜕G∗(𝑝) = {𝑢 ∈ 𝑈 : 𝑢 (𝑥) ∈ 𝜕𝑔∗(𝑝 (𝑥)) for a.e. 𝑥 ∈ Ω},

where 𝑔∗ is the Fenchel conjugate of 𝑔. It is readily seen that for 𝑔 chosen as in (1.2), 𝑔∗ is piecewise
ane and thus 𝜕𝑔∗ is single valued in each ane region, the values being precisely the elements of

M (see Section 4). More precisely, for each 𝑢 ∈ M there is an open convex polyhedron 𝑄 (𝑢) ⊂ ℝ𝑚

such that ℝ𝑚 =
⋃

𝑢∈M 𝑄 (𝑢) and 𝜕𝑔∗(𝑞) = {𝑢} for all 𝑞 ∈ 𝑄 (𝑢). This property suggests that solutions

to (2.2) generically satisfy 𝑢 ∈ M almost everywhere, which will be exploited in Section 3 to derive

corresponding stability properties of optimal controls.

Our goal is now to solve (2.2) using a semismooth Newton method in function spaces; see [34, 50]

as well as [21, Chap. 14]. This requires constructing a so-called Newton derivative that, used in place

of the non-existing Fréchet derivative of 𝜕G∗ in a Newton step for (2.2), will lead to local superlinear

convergence; see, e.g., [21, Thm. 14.1]. This is challenging in general; however, we know by, e.g., [21,

Thm. 14.10] that if (and only if) 𝑟 > 𝑠 , then a superposition operator 𝐻 : 𝐿𝑟 (Ω,ℝ𝑚) → 𝐿𝑠 (Ω;ℝ𝑚)
given by 𝑝 (𝑥) ↦→ ℎ(𝑝 (𝑥)) for a.e. 𝑥 ∈ Ω and locally Lipschitz continuous ℎ : ℝ𝑚 → ℝ𝑚

is Newton

dierentiable with Newton derivative 𝐷𝑁𝐻 (𝑝) given pointwise a.e. by an arbitrary element of the

Clarke subdierential

(2.4) 𝜕𝐶ℎ(𝑞) = co

{
lim

𝑛→∞
∇ℎ(𝑞𝑛)

}
,

where {𝑞𝑛}𝑛∈ℕ ⊂ ℝ𝑚
is a sequence of points where ℎ is dierentiable with 𝑞𝑛 → 𝑞; such a sequence

always exists in nite dimensions by Rademacher’s Theorem; see, e.g., [21, Thm. 13.26].

Since the second relation in (2.2) involves a set-valuedmapping,we rst need to apply a regularization.

Here we replace the subdierential 𝜕G∗(𝑝) by its Yosida approximation

(2.5) (𝜕G∗)𝛾 (𝑝) :=
1

𝛾

(
𝑝 − prox𝛾G∗ (𝑝)

)
: 𝑈 → 𝑈

for some 𝛾 > 0 and the proximal mapping

(2.6) prox𝛾G∗ (𝑝) := (Id+𝛾𝜕G)−1 (𝑝) = argmin

�̃�∈𝑈

1

2𝛾
‖𝑝 − 𝑝 ‖2𝑈 + G∗(𝑝),

which is single-valued and Lipschitz continuous since G∗ is convex and lower semicontinuous; see,

e.g., [21, Thm. 6.11 and Cor. 6.14]. We thus consider instead of (2.2) for 𝛾 > 0 the regularized optimality

conditions

(2.7)

{
−𝑝𝛾 = F ′(𝑢𝛾 ),
𝑢𝛾 = (𝜕G∗)𝛾 (𝑝𝛾 ) .

By (2.3), we can characterize prox𝛾G∗ and therefore 𝐻𝛾 := (𝜕G∗)𝛾 pointwise a.e. as well; we will

derive explicit pointwise expressions for the Yosida approximation and its Newton derivative for

dierent choices of the nite setM in Section 4. Furthermore, we will argue in Section 6 that 𝐻𝛾 and

hence (2.2) is in fact Newton dierentiable, thereby guaranteeing local superlinear convergence of the

corresponding semismooth Newton method.

To see the relation of (2.2) to (2.1), we rst note that the Yosida approximation (𝜕G∗)𝛾 is linked to

the Moreau envelope

(2.8) (G∗)𝛾 (𝑝) = min

�̃�∈𝑈

1

2𝛾
‖𝑝 − 𝑝‖2𝑈 + G∗(𝑝)

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .
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via (𝜕G∗)𝛾 = 𝜕(G∗)𝛾 ; see, e.g., [21, Thm. 7.9], which justies the term Moreau–Yosida regularization (of

G∗). Furthermore, from [21, Thm. 7.11], we have that

(2.9) ((G∗)𝛾 )∗(𝑢) = G(𝑢) +
𝛾

2

‖𝑢‖2𝑈

and, hence, (2.7) coincides with the necessary and sucient optimality conditions for the strictly convex

minimization problem

(2.10) min

𝑢∈𝑈
E𝛾 (𝑢) for E𝛾 (𝑢) = F (𝑢) + G(𝑢) +

𝛾

2

‖𝑢‖2𝑈 .

By the same arguments as in the proof of Proposition 2.1, we obtain the existence of a minimizer𝑢𝛾 ∈ 𝑈
and thus of a corresponding 𝑝𝛾 = −F (𝑢𝛾 ) ∈ 𝑈 .

Remark 2.3. An alternative regularization leading to Newton dierentiability is to instead apply the

Yosida approximation to the equivalent subdierential inclusion 𝑝 ∈ 𝜕G(𝑢) in (2.2). This would

correspond to replacing G in (2.1) with its (Fréchet-dierentiable) Moreau envelope G𝛾 : 𝑢 ↦→
min�̃�∈𝑈

1

2𝛾
‖�̃� − 𝑢‖2

𝑈
+ G(�̃�), thus smoothing out the nondierentiability that is responsible for the

structural properties of the penalty. In contrast, our regularization does not remove the nondierentia-

bility but merely makes the functional (more) strongly convex so that the structural features of the

multibang regularization are preserved.

We now address convergence of solutions to (2.10) as 𝛾 → 0. The following statement is a slight

generalization of [18, Prop. 4.1]. We here prove it by Γ-convergence (see [10] for a gentle introduction),
which is a classical technique to check whether the solution of a perturbed optimization problem

converges, as the perturbation tends to zero, to the solution of the unperturbed problem. The term

“perturbation” may here be interpreted in a broad sense; in the subsequent statement it is used in the

sense of a so-called singular perturbation (where the optimization problem depends on a small model

or regularization parameter that approaches zero), but in the next section it will represent perturbations

of the target state or measurement 𝑧 (and it could for instance just as well represent discretizations

of a continuous optimization problem). If a sequence E𝑛 of energies Γ-converges to some energy E
(which means that for any sequence 𝑢𝑛 → 𝑢 we have E(𝑢) ≤ lim inf𝑛→∞ E𝑛 (𝑢𝑛) and that for every 𝑢

there exists a so-called recovery sequence 𝑢𝑛 → 𝑢 with lim sup𝑛→∞ E𝑛 (𝑢𝑛) ≤ E(𝑢)) and if the E𝑛 are

uniformly coercive (or just boundedness of E𝑛 (𝑢𝑛) implies precompactness of the sequence 𝑢𝑛), then

minimizers of E𝑛 are known to converge (up to subsequences) to minimizers of E.
Proposition 2.4 (limit for vanishing regularization). Let 𝑆 satisfy (a1). Then it holds that Γ- lim𝛾→0 E𝛾 = E
with respect to weak convergence in𝑈 . As a consequence, any sequence 𝑢𝛾𝑛 of global minimizers to (2.10)
for 𝛾𝑛 → 0 contains a subsequence converging weakly in𝑈 to a global minimizer of (2.1). Moreover, this
convergence is strong.

Proof. For the Γ-limit, we rst have to show that for any sequence 𝛾𝑛 → 0 and any weakly converging

sequence 𝑢𝑛 ⇀ 𝑢 we have lim inf𝛾𝑛→0 E𝛾𝑛 (𝑢𝛾𝑛 ) ≥ E(𝑢), which is an immediate consequence of the

sequential weak lower semicontinuity of E (shown in the proof of Proposition 2.1) and of ‖ · ‖𝑈 . Second,
the required recovery sequence is just the constant sequence 𝑢𝑛 = 𝑢. Furthermore, minimizers of E𝛾
are uniformly bounded in𝑈 , since 𝑔 is innite outside the convex hull coM, which together with the

Γ-convergence is well-known to imply the weak convergence in𝑈 of minimizers of E𝛾 to minimizers

of E. Finally, for such a weakly converging sequence 𝑢𝛾𝑛 ⇀ 𝑢 of minimizers of E𝛾𝑛 we have

(2.11) E(𝑢𝛾𝑛 ) +
𝛾𝑛

2

‖𝑢𝛾𝑛 ‖2𝑈 ≤ E𝛾𝑛 (𝑢) ≤ E(𝑢𝛾𝑛 ) +
𝛾𝑛

2

‖𝑢‖2𝑈 ,

which implies ‖𝑢‖𝑈 ≥ ‖𝑢𝛾𝑛 ‖𝑈 so that the convergence 𝑢𝛾𝑛 → 𝑢 is actually strong. �

For error estimates of the Moreau–Yosida approximation in terms of 𝛾 (as well as of a nite element

discretization in the scalar case) under a regularity assumption, we refer to [14].

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .
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3 stability properties of multibang controls

We now discuss stability properties of the controls by exploiting the special structure of the optimality

conditions for the multibang control problem. In particular we consider in what sense the controls

converge as the target state converges; what can be said about controls with values inM; and when

exact controls (which achieve the target state) can be retrieved by the optimization. To keep the

notation concise, we set

(3.1) E𝑧 (𝑢) := 1

2

‖𝑆 (𝑢) − 𝑧‖2𝑌 +
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥,

where 𝑔 : ℝ→ ℝ is again proper, convex, and weakly lower semicontinuous with dom𝑔 = coM.

3.1 stability with respect to target perturbations

First, we examine how perturbations of the target 𝑧 inuence the minimizer of (2.1). This is for instance

of interest if our control problem actually represents an inverse problem, in which the measurement

𝑧 is typically slightly perturbed by noise. We will see that as 𝑧𝑛 converges strongly to 𝑧 in 𝑌 , the

corresponding minimizers converge in𝑈 in the weak sense. Strong convergence cannot be expected

in general due to worst-case scenarios in which the limit minimizer 𝑢 has a nonempty “singular arc”

(3.2) S𝑢 = {𝑥 ∈ Ω : 𝑢 (𝑥) ∉M} ,

i.e., the region in which 𝑢 does not attain any of the distinguished valuesM. However, away from that

singular arc one obtains strong convergence and, as a consequence, controls inM even for perturbed

targets. In this section we use the following additional assumptions on 𝑆 (which will be shown to hold

for our model forward operators in Section 5):

(a3) 𝑆 : 𝑈 → 𝑌 is compact.

(a4) For some Banach space 𝑉 ←↪ 𝑈 with 𝑉 ∗ ↩→ 𝐿∞(Ω;ℝ𝑚), we have

lim

�̃�⇀𝑢 in𝑈
‖ [𝑆 ′(�̃�) − 𝑆 ′(𝑢)]∗𝑦 ‖𝑉 ∗ = 0 for all 𝑦 ∈ 𝑌 .

Proposition 3.1 (Γ-convergence of objective functional). Let 𝑧𝑛 → 𝑧 in 𝑌 and 𝑆 satisfy (a1). Then with
respect to weak convergence in𝑈 , we have

Γ- lim
𝑛→∞
E𝑧𝑛 = E𝑧 .

Proof. For the lim inf inequality, let 𝑢𝑛 ⇀ 𝑢 weakly in 𝑈 , then by property (a1) and the weak lower

semicontinuity of ‖ · ‖𝑌 and the convexity of 𝑔, we have

lim inf

𝑛→∞
E𝑧𝑛 (𝑢𝑛) = lim inf

𝑛→∞
1

2

‖𝑆 (𝑢𝑛) − 𝑧𝑛 ‖2𝑌 +
∫
Ω
𝑔(𝑢𝑛 (𝑥)) d𝑥

≥ 1

2

‖𝑆 (𝑢) − 𝑧‖2𝑌 +
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 = E𝑧 (𝑢) .

For the lim sup inequality, choose 𝑢𝑛 = 𝑢 ∈ 𝑈 to obtain

lim sup

𝑛→∞
E𝑧𝑛 (𝑢𝑛) = lim sup

𝑛→∞

1

2

‖𝑆 (𝑢) − 𝑧𝑛 ‖2𝑌 +
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 = E𝑧 (𝑢) .

�
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This proposition now implies a weak stability of the control.

Corollary 3.2 (stability of control and state). Under the conditions of Proposition 3.1 and (a3), any sequence
{𝑢𝑛}𝑛∈ℕ of minimizers of E𝑧𝑛 contains a subsequence converging weakly in 𝑈 to a minimizer 𝑢 of E𝑧 .
The corresponding states 𝑦𝑛 = 𝑆 (𝑢𝑛) converge strongly in 𝑌 to 𝑦 = 𝑆 (𝑢).

Proof. Since𝑔 is innite outside coM we know that ‖𝑢‖𝐿∞ (Ω;ℝ𝑛) is uniformly bounded among all𝑢 ∈ 𝑈
with nite energy E𝑧𝑛 (𝑢), where the bound is independent of 𝑛. Thus, the E𝑧𝑛 are equimildly coercive

so that the convergence of minimizers 𝑢𝑛 follows from the Γ-convergence of the functionals. The
convergence of states 𝑦𝑛 = 𝑆 (𝑢𝑛) → 𝑦 = 𝑆 (𝑢) along the subsequence follows from 𝑢𝑛 ⇀ 𝑢 together

with properties (a1) and (a3) (weak-to-weak continuity and compactness of 𝑆 , respectively). �

Under additional assumptions, we also obtain convergence of the dual variable.

Corollary 3.3 (stability of dual). Under the conditions of Proposition 3.1 and (a1)–(a4), consider the sequence
of minimization problems min𝑢∈𝑈 E𝑧𝑛 (𝑢). The corresponding optimal controls 𝑢𝑛 , states 𝑦𝑛 , and dual
variables 𝑝𝑛 satisfy up to a subsequence

𝑢𝑛 ⇀ 𝑢 in𝑈 , 𝑦𝑛 → 𝑦 in 𝑌, and 𝑝𝑛 → 𝑝 in 𝑉 ∗,

where 𝑢 is a minimizer of E𝑧 , 𝑦 = 𝑆 (𝑢), and 𝑝 satises (2.2).

Proof. We already know 𝑢𝑛 ⇀ 𝑢 and 𝑦𝑛 → 𝑦 . By the Banach–Steinhaus theorem and (a4), [𝑆 ′(𝑢𝑛) −
𝑆 ′(𝑢)]∗ is uniformly bounded in 𝐿(𝑌 ;𝑉 ∗) and thus also 𝑆 ′(𝑢𝑛)∗. Now

�(3.3)

‖𝑝𝑛 − 𝑝‖𝑉 ∗ = ‖𝑆 ′(𝑢𝑛)∗(𝑧𝑛 − 𝑦𝑛) − 𝑆 ′(𝑢)∗(𝑧 − 𝑦)‖𝑉 ∗
≤ ‖𝑆 ′(𝑢𝑛)∗(𝑧𝑛 − 𝑦𝑛) − 𝑆 ′(𝑢𝑛)∗(𝑧 − 𝑦)‖𝑉 ∗ + ‖𝑆 ′(𝑢𝑛)∗(𝑧 − 𝑦) − 𝑆 ′(𝑢)∗(𝑧 − 𝑦)‖𝑉 ∗
≤ ‖𝑆 ′(𝑢𝑛)∗‖𝐿 (𝑌 ;𝑉 ∗) ‖𝑧𝑛 − 𝑦𝑛 − (𝑧 − 𝑦)‖𝑌 + ‖[𝑆 ′(𝑢𝑛)∗ − 𝑆 ′(𝑢)∗] (𝑧 − 𝑦)‖𝑉 ∗ → 0.

The nal result shows strong convergence of controls outside the singular arc, which will be seen to

correspond to the case where 𝜕𝑔∗(𝑝 (𝑥)) is set valued (cf. (4.7) and (4.11)).

Proposition 3.4 (locally strong convergence of control). Let the conditions of Proposition 3.1 and (a1)–(a4)
hold. Furthermore, let𝑄 be the set on which 𝜕𝑔∗ is single valued, and abbreviate Ω𝑃 = {𝑥 ∈ Ω : 𝑝 (𝑥) ∈ 𝑃}
for given 𝑃 ⊂ ℝ𝑚 . Then we have

(i) for any 𝑃 ⊂⊂ 𝑄 compact and 𝑛 large enough, 𝑢𝑛 (𝑥) = 𝑢 (𝑥) ∈ M for a.e. 𝑥 ∈ Ω𝑃 ;

(ii) 𝑢𝑛 |Ω𝑄
→ 𝑢 |Ω𝑄

strongly in 𝐿2(Ω𝑄 ;ℝ
𝑚) and 𝑢 (𝑥) ∈ M for a.e. 𝑥 ∈ Ω𝑄 .

Proof. By Corollary 3.3, we have 𝑝𝑛 → 𝑝 in 𝐿∞(Ω;ℝ𝑚). In particular, for 𝑛 large enough, for all 𝑥 ∈ Ω𝑃

the value 𝑝𝑛 (𝑥) lies in the same connected component of 𝑄 as 𝑝 (𝑥). Hence, 𝑢𝑛 (𝑥) = 𝑢 (𝑥) due to

𝑢𝑛 (𝑥) ∈ 𝜕𝑔∗(𝑝𝑛 (𝑥)) = 𝜕𝑔∗(𝑝 (𝑥)) and 𝑢 (𝑥) ∈ 𝜕𝑔∗(𝑝 (𝑥)). Since this holds for any compact subset 𝑃

of 𝑄 , we actually have pointwise convergence 𝑢𝑛 (𝑥) → 𝑢 (𝑥) for almost all 𝑥 ∈ Ω𝑄 . The uniform

boundedness of 𝑢𝑛 (since otherwise 𝑔(𝑢𝑛 (𝑥)) = ∞) then implies strong convergence by the dominated

convergence theorem. �

3.2 controls in M

Here, we examine more closely controls taking values only in M. In the following, we refer to

minimizers 𝑢 ∈ 𝑈 of E𝑧 with 𝑢 (𝑥) ∈ M for almost everywhere 𝑥 ∈ Ω as multibang controls. First, we
note that such controls allow us to achieve an energy arbitrarily close to the optimum.

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .
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Remark 3.5 (near-optimality). Under assumptions (a1) and (a3), we have

min

𝑢∈𝑈
E𝑧 (𝑢) = inf

𝑢∈𝑈
𝑢 (𝑥) ∈M a.e.

E𝑧 (𝑢) .

Indeed, let 𝑢 ∈ 𝑈 minimize E𝑧 . By the denition of 𝑔, there exists a sequence {𝑢𝑛}𝑛∈ℕ ⊂ 𝑈 with

𝑢𝑛 (𝑥) ∈ M a.e., 𝑢𝑛 ⇀ 𝑢 in 𝑈 , and
∫
Ω
𝑔(𝑢𝑛 (𝑥)) d𝑥 →

∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 . Furthermore, 𝑆 (𝑢𝑛) → 𝑆 (𝑢) in 𝑌

so that E𝑧 (𝑢𝑛) → E𝑧 (𝑢).
In the remainder of this subsection, we shall restrict ourselves to the case that

(a5) 𝑆 : 𝑈 → 𝑌 is linear,

which will only apply to the elasticity example, but not to the Bloch setting. The intuition is that the

case with multibang controls is generic (or even that targets with nonmultibang controls, i.e.,𝑢 (𝑥) ∉M
on a nonnegligible set, are nowhere dense in 𝑌 ). This is consistent with Proposition 3.4, since targets

with a singular arc of zero measure (or rather with Ω𝑄 = Ω) can be perturbed without producing a

singular arc. Below we will at least see that targets leading to multibang controls are dense in 𝑌 ; and

that the mapping 𝑧 ↦→ argmin𝑢∈𝑈 E𝑧 (𝑢) is not continuous in any target 𝑧 for which the singular arc

has positive measure.

Proposition 3.6 (approximation via multibang control). Let 𝑆 satisfy (a1)–(a5). Then for any 𝑧 ∈ 𝑌
and corresponding minimizer 𝑢 ∈ 𝑈 of E𝑧 , there exists a sequence {𝑧𝑛}𝑛∈ℕ ⊂ 𝑌 with 𝑧𝑛 → 𝑧 such
that the corresponding minimizers 𝑢𝑛 ∈ 𝑈 of E𝑧𝑛 satisfy 𝑢𝑛 (𝑥) ∈ M almost everywhere, 𝑢𝑛 ⇀ 𝑢, and
E𝑧𝑛 (𝑢𝑛) = E𝑧 (𝑢).

Sketch of proof. By (2.2), we have 𝑝 = 𝑆∗(𝑧 − 𝑆𝑢) and 𝑢 (𝑥) ∈ 𝜕𝑔∗(𝑝 (𝑥)) for almost all 𝑥 ∈ Ω. The
piecewise ane structure of 𝑔∗ : ℝ𝑚 → ℝ implies that 𝑢 (𝑥) is a convex combination of (at most)𝑚 + 1
values𝑢 𝑗 ∈ M∩𝜕𝑔∗(𝑝 (𝑥)). Thus one can nd𝑢𝑛 ⇀ 𝑢 with𝑢𝑛 (𝑥) ∈ M∩𝜕𝑔∗(𝑝 (𝑥)) for almost all 𝑥 ∈ Ω.
Choosing 𝑧𝑛 = 𝑆𝑢𝑛 + (𝑧 − 𝑆𝑢), we have 𝑧𝑛 → 𝑧 as well as 𝑝 = 𝑆∗(𝑧𝑛 − 𝑆𝑢𝑛) and 𝑢𝑛 (𝑥) ∈ 𝜕𝑔∗(𝑝 (𝑥)) for
almost all 𝑥 ∈ Ω. Hence by the convexity of the energy E𝑧𝑛 ,𝑢𝑛 is a minimizer of E𝑧𝑛 . Furthermore, one

can even choose 𝑢𝑛 such that

∫
Ω
𝑔(𝑢𝑛 (𝑥)) d𝑥 =

∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 so that E𝑧𝑛 (𝑢𝑛) = E𝑧 (𝑢) as claimed. �

Corollary 3.7 (strong convergence of control). Let the conditions of Proposition 3.6 hold. Then

(i) the targets 𝑧 admitting a multibang control 𝑢 minimizing E𝑧 are dense in 𝑌 ;

(ii) if 𝑆 is injective and the minimizer 𝑢 to E𝑧 has a singular arc of positive measure, then one cannot
have strong convergence of minimizers 𝑢𝑛 of E𝑧𝑛 for all 𝑧𝑛 → 𝑧.

Proof. The rst statement is a direct consequence of Proposition 3.6. The second statement follows

from the strict convexity of E𝑧 and thus the uniqueness of its minimizers, together with the fact that

strong convergence in𝑈 implies pointwise convergence: Indeed, let𝑢 have a singular arc S𝑢 of positive

measure and choose 𝑧𝑛 → 𝑧 such that the unique minimizers𝑢𝑛 of E𝑧𝑛 are multibang controls (which is

possible by the rst statement). If we had strong convergence 𝑢𝑛 → 𝑢 in𝑈 , then (up to a subsequence)

also 𝑢𝑛 → 𝑢 pointwise almost everywhere, in particular, on S𝑢 . This contradicts 𝑢𝑛 (𝑥) ∈ M almost

everywhere. �

3.3 retrieval of exact controls

We now consider more specically the consequence of the convex relaxation (1.2) for some nonnegative

and strictly convex 𝑐 : ℝ𝑚 → ℝ. A peculiar feature of the multibang control in this case is that for

attainable targets, i.e., if there exists a 𝑢 ∈ 𝑈 such that 𝑧 = 𝑆 (𝑢), the generating control 𝑢 can only

be recovered as a minimizer 𝑢 of the optimization problem (2.1) if 𝑐 (𝑢 (𝑥)) = min𝑣∈M 𝑐 (𝑣) almost

everywhere. This demonstrates the desirability of allowing multiple admissible control values of equal

magnitude.
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Proposition 3.8 (achievement of target). If 𝑆 satises (a2), then, for any minimizer 𝑢 ∈ 𝑈 of E𝑧 that
satises 𝑆 (𝑢) = 𝑧, it holds that 𝑔(𝑢 (𝑥)) = min𝑣∈M 𝑔(𝑣) almost everywhere. In particular, if in addition
𝑢 (𝑥) ∈ M almost everywhere, then 𝑐 (𝑢 (𝑥)) = min𝑣∈M 𝑐 (𝑣).

Proof. If 𝑆 (𝑢) = 𝑧, the rst relation in the optimality condition (2.2) together with linearity of 𝑆 ′(𝑢)
implies 𝑝 = 0. Hence, the second relation yields 𝑢 ∈ 𝜕G∗(0) and therefore 0 ∈ 𝜕G(𝑢). By (2.3), this

implies 0 ∈ 𝜕𝑔(𝑢 (𝑥)) for almost all 𝑥 ∈ Ω and therefore

(3.4) 𝑔(𝑢 (𝑥)) = min

𝑣∈ℝ𝑚
𝑔(𝑣) = inf

𝑣∈ℝ𝑚
𝑔∞(𝑣) = inf

𝑣∈M
𝛼𝑐 (𝑣) = min

𝑣∈M
𝑔(𝑣)

since min 𝑓 ∗∗ = inf 𝑓 by the properties of the convex hull; see, e.g., [4, Prop. 12.9 (iii)]. �

If, however, 𝑐 (𝑢 (𝑥)) = min𝑣∈M 𝑐 (𝑣) is not satised almost everywhere, then the generating control

𝑢 can only be recovered in the limit 𝛼 → 0. In fact, in this limit the best approximation is achieved, i.e.,

an optimal control which yields the minimum possible tracking term F . In the following, we denote

by 𝑢𝛼 the minimizer of E𝑧 (which depends on 𝛼 via the denition (1.2) of 𝑔) for given 𝛼 > 0.

Proposition 3.9 (Γ-convergence for vanishing regularization). For given 𝑧 ∈ 𝑌 , let𝑀 := inf𝑢∈𝑈 ‖𝑆 (𝑢) −
𝑧‖𝑌 and O := {𝑢 ∈ 𝑈 : ‖𝑆 (𝑢) − 𝑧‖𝑌 = 𝑀}. If 𝑆 satises (a1), then with respect to weak convergence in𝑈
we have

(3.5) Γ- lim
𝛼→0

1

𝛼

(
E𝑧 − 𝑀

2

2

)
= 𝛿O + G1,

where

(3.6) G1(𝑢) =
∫
Ω
𝑔∗∗
1
(𝑢 (𝑥)) d𝑥 for 𝑔1(𝑢) = 𝑐 (𝑢) + 𝛿M (𝑢) .

Proof. The lim sup inequality is trivial using the constant sequence; for the lim inf inequality we only

have to consider a sequence 𝑢𝛼 ⇀ 𝑢 ∉ O. In that case,

(3.7) lim inf

𝛼→0

‖𝑆 (𝑢𝛼 ) − 𝑧‖𝑌 ≥ ‖𝑆 (𝑢) − 𝑧‖𝑌 > 𝑀

so that

1

𝛼

(
min

𝑢∈𝑈

1

2

‖𝑆 (𝑢) − 𝑧‖2𝑌 +
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 − 𝑀

2

2

)
→∞.

�

Corollary 3.10 (approximation of target). Under the conditions of the previous proposition, if O ≠ ∅, then
any family {𝑢𝛼 }𝛼>0 of minimizers of E𝑧 contains a subsequence converging weakly to a minimizer 𝑢 ∈ O
of G1.

Proof. This follows from the equimild coerciveness of the energies and the Γ-convergence; see [10,
Def. 1.19 and Thm. 1.21]. �

4 vector-valued multibang penalty

To implement the general framework of Section 2, we need explicit characterizations of the Fenchel

conjugate and its subdierential as well as its Moreau–Yosida regularization for the multibang penalty

(1.2). Recall that G is dened as an integral functional for the proper, convex, and lower semicontinuous

integrand

(4.1) 𝑔 = (𝛼𝑐 (·) + 𝛿M)∗∗ = 𝑔∗∗∞ .
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We can thus proceed by pointwise computation.

We rst summarize the general procedure. Since 𝑔∗ = (𝑔∗∗∞ )∗ = (𝑔∗∞)∗∗ = 𝑔∗∞, the Fenchel conjugate
of 𝑔 is given by

(4.2) 𝑔∗(𝑞) = 𝑔∗∞(𝑞) := sup

𝑣∈ℝ𝑚

〈𝑣, 𝑞〉 − 𝑔∞(𝑣) = max

𝑣∈M
〈𝑣, 𝑞〉 − 𝛼𝑐 (𝑣) .

Hence, 𝑔∗ is the maximum of a nite number of convex and continuous functions of 𝑞, and we can

thus compute its subdierential (without computing 𝑔∗ rst!) using the maximum rule; see, e.g., [44,

Prop. 4.5.2, Rem. 4.5.3]. Setting

𝑔∗𝑣 (𝑞) := 〈𝑣, 𝑞〉 − 𝛼𝑐 (𝑣),

we have

(4.3) 𝜕𝑔∗(𝑞) = co

⋃
𝑣∈M:

𝑔∗ (𝑞)=𝑔∗𝑣 (𝑞)

𝜕𝑔∗𝑣 (𝑞) = co

{
𝑣 ∈ M : 𝑔∗(𝑞) = 𝑔∗𝑣 (𝑞)

}
with co denoting the convex hull. Obviously, the subdierential 𝜕𝑔∗ is piecewise constant. If we denote
the elements ofM by 𝑢𝑖 for 𝑖 from some index set 𝐼 , then 𝜕𝑔∗ takes the value co {𝑢𝑖1, . . . , 𝑢𝑖𝑘 } with
𝑖1, . . . , 𝑖𝑘 ∈ 𝐼 on

𝑄𝑖1 ...𝑖𝑘 =
{
𝑞 ∈ ℝ𝑚

: 𝑔∗(𝑞) = 𝑔∗𝑢𝑖 (𝑞) if and only if 𝑖 ∈ {𝑖1, . . . , 𝑖𝑘 }
}
.

For the proximal mapping

prox𝛾𝑔∗ (𝑞) := argmin

𝑤∈ℝ𝑚

1

2𝛾
|𝑤 − 𝑞 |2

2
+ 𝑔∗(𝑤) = (Id+𝛾𝜕𝑔∗)−1(𝑞)

we then make use of the equivalence

(4.4) 𝑤 = (Id+𝛾𝜕𝑔∗)−1(𝑞) ⇔ 𝑞 ∈ (Id+𝛾𝜕𝑔∗) (𝑤) = {𝑤} + 𝛾𝜕𝑔∗(𝑤)

and follow the case distinction in the maximum rule (4.3). In detail, we rst dene 𝑄
𝛾

𝑖1 ...𝑖𝑘
to be the

image of 𝑄𝑖1 ...𝑖𝑘 under (Id+𝛾𝜕𝑔∗),

𝑄
𝛾

𝑖1 ...𝑖𝑘
= (Id+𝛾𝜕𝑔∗) (𝑄𝑖1 ...𝑖𝑘 ) = 𝑄𝑖1 ...𝑖𝑘 + 𝛾 co {𝑢𝑖1, . . . , 𝑢𝑖𝑘 }.

The preimage𝑤 ∈ 𝑄𝑖1 ...𝑖𝑘 of 𝑞 ∈ 𝑄𝛾

𝑖1 ...𝑖𝑘
under (Id+𝛾𝜕𝑔∗) is thus obtained by solving the linear system

of equations

0 = 𝑔∗𝑢𝑖𝑙
(𝑤) − 𝑔∗𝑢𝑖

1

(𝑤), 𝑙 = 2, . . . , 𝑘,

𝑞 = 𝑤 + 𝛾 (_1𝑢𝑖1 + . . . + _𝑘𝑢𝑖𝑘 ),
1 = _1 + . . . + _𝑘 ,

for𝑤 ∈ ℝ𝑚
and the convex combination coecients _1, . . . , _𝑘 ∈ ℝ. Let us express the solution of this

system (obtained by inverting the system matrix; if not invertible use the minimum norm solution) as

(4.5) 𝑤 = 𝐴𝑖1 ...𝑖𝑘𝑞 + 𝑏𝑖1 ...𝑖𝑘 , _𝑙 = 𝐴𝑖1 ...𝑖𝑘 ;𝑙𝑞 + 𝑏𝑖1 ...𝑖𝑘 ;𝑙 ,

for some𝐴𝑖1 ...𝑖𝑘 ∈ ℝ𝑚×𝑚
,𝑏𝑖1 ...𝑖𝑘 ∈ ℝ𝑚

and𝐴𝑖1 ...𝑖𝑘 ;𝑙 ∈ ℝ1×𝑚
,𝑏𝑖1 ...𝑖𝑘 ;𝑙 ∈ ℝ, 𝑙 = 1, . . . , 𝑘 . The Moreau–Yosida

regularization ℎ𝛾 = (𝜕𝑔∗)𝛾 of 𝜕𝑔∗ is then given by

(4.6) ℎ𝛾 (𝑞) = (𝜕𝑔∗)𝛾 (𝑞) = 1

𝛾

(
𝑞 − prox𝛾𝑔∗ (𝑞)

)
= 1

𝛾
(𝑞 −𝐴𝑖1 ...𝑖𝑘𝑞 − 𝑏𝑖1 ...𝑖𝑘 ) .
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Since ℎ𝛾 = (𝜕𝑔∗)𝛾 is continuous and piecewise continuously dierentiable (𝑃𝐶1
), its Clarke subdier-

ential (2.4) at 𝑞 ∈ ℝ𝑚
is given by the convex hull of the derivatives of the branches active at 𝑞; see, e.g.,

[21, Thm. 14.7]. We can thus take as a Newton derivative

𝐷𝑁ℎ𝛾 (𝑞) = 1

𝛾
(Id −𝐴𝑖1 ...𝑖𝑘 ) .

To compute ℎ𝛾 (𝑞) and 𝐷𝑁ℎ𝛾 (𝑞) for an arbitrary 𝑞 ∈ ℝ𝑚
it remains to identify the set 𝑄

𝛾

𝑖1 ...𝑖𝑘
in which

𝑞 lies. To this end, note that 𝑞 ∈ 𝑄𝛾

𝑖1 ...𝑖𝑘
if and only if

_𝑙 = 𝐴𝑖1 ...𝑖𝑘 ;𝑙𝑞 + 𝑏𝑖1 ...𝑖𝑘 ;𝑙 ∈ [0, 1] for 𝑙 = 1, . . . , 𝑘 and

𝑤 = 𝐴𝑖1 ...𝑖𝑘𝑞 + 𝑏𝑖1 ...𝑖𝑘 ∈ 𝑄𝑖1 ...𝑖𝑘 ,

since𝑤 represents the preimage of 𝑞 under (Id+𝛾𝜕𝑔∗) and _1, . . . , _𝑘 represent the convex combination

coecients such that𝑤 + _1𝑢𝑖1 + . . . + _𝑘𝑢𝑖𝑘 = 𝑞. To check the condition𝑤 ∈ 𝑄𝑖1 ...𝑖𝑘 it suces to check

that there is no 𝑖 ∉ {𝑖1, . . . , 𝑖𝑘 } with 𝑔∗𝑢𝑖 (𝑤) ≥ 𝑔
∗
𝑢𝑖

1

(𝑤).
Sections 4.1 and 4.2 make this calculation explicit for the rst two choices ofM introduced in the

introduction and the quadratic cost 𝑐 (𝑣) = 1

2
|𝑣 |2

2
, which is particularly useful for generating more

ecient code. We nally address in Section 4.3 the algorithmic evaluation in the general case as

relevant for the multimaterial branched transport example.

4.1 radially distributed control values

Here, we take as setM ⊂ ℝ2
of admissible control values the vector 0 together with vectors of xed

amplitude 𝜔0 > 0 and𝑀 > 2 equidistributed phases

0 ≤ \1 < · · · < \𝑀 < 2𝜋

(where we shall assume \𝑖+1 − \𝑖 < 𝜋 for 𝑖 = 1, . . . , 𝑀 − 1 and \1 − (\𝑀 − 2𝜋) < 𝜋 ), that is,

M =

{(
0

0

)
,

(
𝜔0 cos\1
𝜔0 sin\1

)
, . . . ,

(
𝜔0 cos\𝑀
𝜔0 sin\𝑀

)}
C {𝑢0, 𝑢1, . . . 𝑢𝑀 } .

In the following it will be helpful to identify an angle \ ∈ [0, 2𝜋) with the corresponding point

®\ = (cos\, sin\ ) on the unit circle 𝑆 1. Let 𝜑𝑖 denote the midpoint between \𝑖 and \𝑖+1 (identifying

\𝑀+1 = \1 for simplicity), that is, ®𝜑𝑖 = ( ®\𝑖 + ®\𝑖+1)/| ®\𝑖 + ®\𝑖+1 |2, and introduce the circular sectors

𝐶𝑖 =

{
𝜔 ®\ ∈ ℝ2

: \ ∈ (𝜑𝑖 , 𝜑𝑖+1), 𝜔 ≥ 0

}
.

Here, \ ∈ (𝜑𝑖 , 𝜑𝑖+1) is to be understood 2𝜋-periodically, that is, 𝜑𝑀+1 is identied with 𝜑1, and (𝜑𝑖 , 𝜑𝑖+1)
with 𝜑𝑖+1 < 𝜑𝑖 is interpreted as (𝜑𝑖 , 𝜑𝑖+1 + 2𝜋).

Fenchel conjugate Using the equivalence of angles and sectors introduced above, it is straightforward

to see

〈𝑞,𝑢𝑖〉 ≥ 〈𝑞,𝑢 𝑗 〉 for all 𝑞 ∈ 𝐶𝑖 , 𝑗 ≠ 0.

Thus, inserting the concrete choice ofM into (4.2), we obtain

𝑔∗(𝑞) =
{
0 if 〈𝑞,𝑢𝑖〉 ≤ 𝛼

2
𝜔2

0
for all 1 ≤ 𝑖 ≤ 𝑀,

〈𝑞,𝑢𝑖〉 − 𝛼
2
𝜔2

0
if 𝑞 ∈ 𝐶𝑖 and 〈𝑞,𝑢𝑖〉 ≥ 𝛼

2
𝜔2

0
.
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Figure 1: Subdomains for radially distributedM

Let us therefore introduce the sets (cf. Figure 1a)

𝑄0
:=

{
𝑞 ∈ ℝ2

: 〈𝑞,𝑢𝑖〉 < 𝛼
2
𝜔2

0
for all 1 ≤ 𝑖 ≤ 𝑀

}
,

𝑄𝑖 :=
{
𝑞 ∈ 𝐶𝑖 : 〈𝑞,𝑢𝑖〉 > 𝛼

2
𝜔2

0

}
, 1 ≤ 𝑖 ≤ 𝑀,

𝑄𝑖1 ...𝑖𝑘
:=

⋂
𝑖∈{𝑖1,...,𝑖𝑘 }

𝑄𝑖 \
⋃

𝑖∉{𝑖1,...,𝑖𝑘 }
𝑄𝑖 , 0 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑀.

With this notation we obtain

𝑔∗(𝑞) =
{
0 if 𝑞 ∈ 𝑄0,

〈𝑞,𝑢𝑖〉 − 𝛼
2
𝜔2

0
if 𝑞 ∈ 𝑄𝑖 , 1 ≤ 𝑖 ≤ 𝑀.

Subdierential From the maximum rule (4.3), we directly obtain

(4.7) 𝜕𝑔∗(𝑞) =
{
{𝑢𝑖} if 𝑞 ∈ 𝑄𝑖 , 0 ≤ 𝑖 ≤ 𝑀,
co{𝑢𝑖1, . . . , 𝑢𝑖𝑘 } if 𝑞 ∈ 𝑄𝑖1 ...𝑖𝑘 , 0 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑀.

Proximal mapping Here, we proceed as follows: For each 𝑄𝑖1 ...𝑖𝑘 , we

1. compute the set 𝑄
𝛾

𝑖1 ...𝑖𝑘
:= (Id+𝛾𝜕𝑔∗) (𝑄𝑖1 ...𝑖𝑘 );

2. solve for𝑤 ∈ 𝑄𝑖1 ...𝑖𝑘 the relation 𝑞 ∈ {𝑤} + 𝛾𝜕𝑔∗(𝑤) for arbitrary 𝑞 ∈ 𝑄𝛾

𝑖1 ...𝑖𝑘
.

By (4.4), we then have 𝑤 = prox𝛾𝑔∗ (𝑞). The details are provided in Table 1, while the sets 𝑄
𝛾

𝑖1 ...𝑖𝑘
are

visualized in Figure 1b.

To explain the case 𝑄0,𝑖 , note that for 𝑞 ∈ 𝑄𝛾

0,𝑖
we must have by denition of the set 𝑄

𝛾

0,𝑖
that

(Id+𝛾𝜕𝑔∗)−1(𝑞) = 𝑞 − _𝑢𝑖 ∈ 𝑄0,𝑖 ⊂
{
𝑣 ∈ ℝ2

: 〈𝑣,𝑢𝑖〉 =
𝛼

2

𝜔2

0

}
for an appropriate choice of _ ∈ [0, 𝛾]. Thus,

〈𝑞 − _𝑢𝑖 , 𝑢𝑖〉 = 𝛼
2
𝜔2

0
and so _ =

〈𝑞,𝑢𝑖〉
𝜔2

0

− 𝛼
2

.
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Table 1: Computation of proximal map for radially distributed control values (𝑖 + 1 is to be understood

modulo𝑀)

𝑄𝑖1 ...𝑖𝑘 (Id+𝛾𝜕𝑔∗) (𝑤) 𝑄
𝛾

𝑖1 ...𝑖𝑘
(Id+𝛾𝜕𝑔∗)−1(𝑞)

𝑄0 𝑤 𝑄0 𝑞

𝑄𝑖 𝑤 + 𝛾𝑢𝑖 𝑄𝑖 + 𝛾𝑢𝑖 𝑞 − 𝛾𝑢𝑖
𝑄0,𝑖 𝑤 + 𝛾 co{0, 𝑢𝑖} 𝑄0,𝑖 + [0, 𝛾]𝑢𝑖 𝑞 −

(
〈𝑞,𝑢𝑖 〉
𝜔2

0

− 𝛼
2

)
𝑢𝑖

𝑄𝑖,𝑖+1 𝑤 + 𝛾 co{𝑢𝑖 , 𝑢𝑖+1} 𝑄𝑖,𝑖+1 + 𝛾 co{𝑢𝑖 , 𝑢𝑖+1} 𝑞 − 𝛾 (𝑢𝑖+𝑢𝑖+1)
2

− 〈𝑞,𝑢𝑖−𝑢𝑖+1 〉 (𝑢𝑖−𝑢𝑖+1)|𝑢𝑖−𝑢𝑖+1 |2
2

𝑄0,𝑖,𝑖+1 𝑤 + 𝛾 co{0, 𝑢𝑖 , 𝑢𝑖+1} 𝑄0,𝑖,𝑖+1 + 𝛾 co{0, 𝑢𝑖 , 𝑢𝑖+1} 𝛼

(
𝜔0

|𝑢𝑖+𝑢𝑖+1 |2

)
2

(𝑢𝑖 + 𝑢𝑖+1)

Likewise, for 𝑞 ∈ 𝑄𝛾

𝑖,𝑖+1 we must have

(Id+𝛾𝜕𝑔∗)−1(𝑞) = 𝑞 − _𝑢𝑖 − (𝛾 − _)𝑢𝑖+1 ∈ 𝑄𝑖,𝑖+1 ⊂ (𝑢𝑖 − 𝑢𝑖+1)⊥

for some _ ∈ [0, 𝛾]. Thus,

0 = 〈𝑞 − _𝑢𝑖 − (𝛾 − _)𝑢𝑖+1, 𝑢𝑖 − 𝑢𝑖+1〉 = 〈𝑞,𝑢𝑖 − 𝑢𝑖+1〉 + (𝛾
2
− _) |𝑢𝑖 − 𝑢𝑖+1 |22

and so

_ =
𝛾

2

+ 〈𝑞,𝑢𝑖 − 𝑢𝑖+1〉
|𝑢𝑖 − 𝑢𝑖+1 |2

2

.

Finally, note that 𝑄0,𝑖,𝑖+1 = {𝛼 ( 𝜔0

|𝑢𝑖+𝑢𝑖+1 |2 )
2(𝑢𝑖 + 𝑢𝑖+1)} only contains a single element, which must

therefore be equal to (Id+𝛾𝜕𝑔∗)−1(𝑞) for all 𝑞 ∈ 𝑄𝛾

0,𝑖,𝑖+1.

Moreau–Yosida regularization Inserting the above into denition (4.6) of the Moreau–Yosida regu-

larization yields

(4.8) (𝜕𝑔∗)𝛾 (𝑞) =



0 if 𝑞 ∈ 𝑄𝛾

0
,

𝑢𝑖 if 𝑞 ∈ 𝑄𝛾

𝑖
,(

〈𝑞,𝑢𝑖 〉
𝛾𝜔2

0

− 𝛼
2𝛾

)
𝑢𝑖 if 𝑞 ∈ 𝑄𝛾

0,𝑖
,

𝑢𝑖+𝑢𝑖+1
2
+ 〈𝑞,𝑢𝑖−𝑢𝑖+1 〉 (𝑢𝑖−𝑢𝑖+1)

𝛾 |𝑢𝑖−𝑢𝑖+1 |2
2

if 𝑞 ∈ 𝑄𝛾

𝑖,𝑖+1,

𝑞

𝛾
− 𝛼

𝛾

(
𝜔0

|𝑢𝑖+𝑢𝑖+1 |2

)
2

(𝑢𝑖 + 𝑢𝑖+1) if 𝑞 ∈ 𝑄𝛾

0,𝑖,𝑖+1.

Finally, in a numerical implementation it will be necessary to eciently identify for a given 𝑞 ∈ ℝ2

the set 𝑄
𝛾

𝑖1 ...𝑖𝑘
in which it is contained. To this end, determine 𝑖𝑞, 𝑗𝑞, 𝑘𝑞 ∈ {1, . . . , 𝑀} via

𝑞 ∈ 𝐶𝑖𝑞 , 𝑞 − 𝛾𝑢𝑖𝑞 ∈ 𝐶 𝑗𝑞 , 𝑞 −
( 〈𝑞,𝑢𝑖𝑞 〉

𝜔2

0

− 𝛼
2

)
𝑢𝑖𝑞 ∈ 𝐶𝑘𝑞 ,

and set

𝜌𝑞 := 〈𝑞,𝑢𝑖𝑞 〉 , 𝜎𝑞 := 〈𝑞 − 𝛾

2
(𝑢𝑖𝑞 + 𝑢 𝑗𝑞 ), 𝑢𝑖𝑞 + 𝑢 𝑗𝑞 〉.

Now it is straightforward to identify the correct subdomain via

𝑄
𝛾

0
=

{
𝑞 ∈ ℝ2

: 𝜌𝑞 < 𝛼
2
𝜔2

0

}
,

𝑄
𝛾

𝑖
=

{
𝑞 ∈ ℝ2

: 𝜌𝑞 > ( 𝛼
2
+ 𝛾)𝜔2

0
, 𝑖𝑞 = 𝑖, 𝑗𝑞 = 𝑖

}
,

𝑄
𝛾

0,𝑖
=

{
𝑞 ∈ ℝ2

:
𝛼
2
𝜔2

0
≤ 𝜌𝑞 ≤ ( 𝛼

2
+ 𝛾)𝜔2

0
, 𝑖𝑞 = 𝑖, 𝑘𝑞 = 𝑖

}
,

𝑄
𝛾

𝑖,𝑖+1 =
{
𝑞 ∈ ℝ2

: {𝑖, 𝑖 + 1} = {𝑖𝑞, 𝑗𝑞}, 𝜎𝑞 > 𝛼𝜔2

0

}
,

𝑄
𝛾

0,𝑖,𝑖+1 =
{
𝑞 ∈ ℝ2

: {𝑖, 𝑖 + 1} = {𝑖𝑞, 𝑖𝑞 + sign(𝑢𝑖𝑞 × 𝑞)}, 𝑘𝑞 ≠ 𝑖𝑞, 𝜎𝑞 ≤ 𝛼𝜔2

0

}
.
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Newton derivative We can take as a Newton derivative of (4.8) at 𝑞 any element of the convex hull

of the derivatives of the branches active at 𝑞; we choose here

(4.9) 𝐷𝑁ℎ𝛾 (𝑞) =



0 if 𝑞 ∈ 𝑄𝛾

𝑖
,

1

𝛾𝜔2

0

𝑢𝑖𝑢
𝑇
𝑖 if 𝑞 ∈ 𝑄𝛾

0,𝑖
,

1

𝛾 |𝑢𝑖−𝑢𝑖+1 |2
2

(𝑢𝑖 − 𝑢𝑖+1) (𝑢𝑖 − 𝑢𝑖+1)𝑇 if 𝑞 ∈ 𝑄𝛾

𝑖,𝑖+1,

1

𝛾
Id if 𝑞 ∈ 𝑄𝛾

0,𝑖,𝑖+1.

4.2 concentric corners

We now address the case of admissible control values of dierent magnitudes, where we consider for

the sake of an example the concrete set

(4.10)

M =

{(
1

1

)
,

(
1

−1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
2

2

)
,

(
2

−2

)
,

(
−2
2

)
,

(
−2
−2

)}
=

{
𝑢1
1,1, 𝑢

1

1,−1, 𝑢
1

−1,1, 𝑢
1

−1,−1, 𝑢
2

1,1, 𝑢
2

1,−1, 𝑢
2

−1,1, 𝑢
2

−1,−1
}
.

Fenchel conjugate Again insertingM into (4.2), we see that the maximum is attained either by 𝑣 =

(𝑞1/|𝑞1 |, 𝑞2/|𝑞2 |) or by 𝑣 = 2(𝑞1/|𝑞1 |, 𝑞2/|𝑞2 |), where in the case 𝑞𝑖 = 0 we may dene 𝑞𝑖/|𝑞𝑖 | ∈ {−1, 1}
arbitrarily. Hence we obtain after some algebraic manipulations

𝑔∗(𝑞) = max {|𝑞 |1 − 𝛼, 2|𝑞 |1 − 4𝛼} =
{
|𝑞 |1 − 𝛼 if |𝑞 |1 ≤ 3𝛼,

2|𝑞 |1 − 4𝛼 if |𝑞 |1 ≥ 3𝛼.

Subdierential From (4.3), we directly obtain

𝜕𝑔∗(𝑞) = co

⋃
𝑖∈{1,2}:

𝑔∗ (𝑞)=𝑔∗𝑖 (𝑞)

𝜕𝑔∗𝑖 (𝑞) for

{
𝑔∗
1
(𝑞) = |𝑞 |1 − 𝛼,

𝑔∗
2
(𝑞) = 2|𝑞 |1 − 4𝛼.

In the above we have

𝜕𝑔∗
1
(𝑞) =

(
sign(𝑞1)
sign(𝑞2)

)
, 𝜕𝑔∗

2
(𝑞) = 2

(
sign(𝑞1)
sign(𝑞2)

)
,

where sign denotes the set-valued sign of convex analysis, i.e., sign(0) = [−1, 1]. Therefore we obtain

𝜕𝑔∗(𝑞) =


𝜕𝑔∗

1
(𝑞) if |𝑞 |1 < 3𝛼

𝜕𝑔∗
2
(𝑞) if |𝑞 |1 > 3𝛼

co{𝜕𝑔∗
1
(𝑞), 𝜕𝑔∗

2
(𝑞)} if |𝑞 |1 = 3𝛼

 =

(
sign(𝑞1)
sign(𝑞2)

)
·


1 if |𝑞 |1 < 3𝛼,

2 if |𝑞 |1 > 3𝛼,

[1, 2] if |𝑞 |1 = 3𝛼.

For economy, let us introduce for 𝑖, 𝑗, 𝑘 ∈ {−1, 0, 1} the sets

𝐼𝑘 =


(−∞, 0) if 𝑘 = −1,
{0} if 𝑘 = 0

(0,∞), if 𝑘 = 1,

and 𝑄𝑖 𝑗𝑘 =
{
𝑞 ∈ ℝ2

: 𝑞1 ∈ 𝐼𝑖 , 𝑞2 ∈ 𝐼 𝑗 , |𝑞 |1 − 3𝛼 ∈ 𝐼𝑘
}
.

A visualization is given in Figure 2a. Note that the index 0 always indicates a lower-dimensional

structure; in particular, we have

𝑄0𝑗𝑘 ⊂ 𝑄−1, 𝑗,𝑘 ∩𝑄1, 𝑗,𝑘 , 𝑄𝑖0𝑘 ⊂ 𝑄𝑖,−1,𝑘 ∩𝑄𝑖,1,𝑘 , 𝑄𝑖 𝑗0 ⊂ 𝑄𝑖, 𝑗,−1 ∩𝑄𝑖, 𝑗,1.
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(a) subgradient 𝜕𝑔∗

𝑞2
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𝑄
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𝑄
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𝑄
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(b) Moreau–Yosida regularization (𝜕𝑔∗)𝛾

Figure 2: Subdomains for concentric corners, where 1̄ is written for −1 to simplify notation (the line

dimensions are provided in Figure 3)

𝑞2

𝑞13𝛼

3𝛼

−3𝛼

−3𝛼

(a) subgradient 𝜕𝑔∗

[ (𝑞1)

𝛾

2𝛾

3𝛼 + 𝛾
3𝛼 + 2𝛾

𝑞2

𝑞1

(b) Moreau–Yosida regularization (𝜕𝑔∗)𝛾

Figure 3: Dimensions for Figure 2

Using this notation, we can write the subdierential as

(4.11)

𝜕𝑔∗(𝑞) =
{
𝑢
(𝑘+3)/2
𝑖 𝑗

if 𝑞 ∈ 𝑄𝑖 𝑗𝑘 , 𝑖, 𝑗, 𝑘 ∈ {−1, 1},
co

{
𝑢
(𝑡+3)/2
𝑟𝑠 : 𝑟, 𝑠, 𝑡 ∈ {−1, 1}, |𝑟 − 𝑖 |, |𝑠 − 𝑗 |, |𝑡 − 𝑘 | ≤ 1

}
if 𝑞 ∈ 𝑄𝑖 𝑗𝑘 , 0 ∈ {𝑖, 𝑗, 𝑘},

which provides more insight into its structure. In particular, on each lower-dimensional 𝑄𝑖 𝑗𝑘 the

subdierential is the convex hull of the subdierentials on the adjacent two-dimensional sets.

Proximal mapping To obtain the Moreau–Yosida regularization of 𝜕𝑔∗ for 𝛾 > 0, we proceed as above

by rst noting that𝑤 = (Id+𝛾𝜕𝑔∗)−1(𝑞) ∈ 𝑄𝑖 𝑗𝑘 holds if and only if

𝑞 ∈ (Id+𝛾𝜕𝑔∗) (𝑄𝑖 𝑗𝑘 ) =: 𝑄𝛾

𝑖 𝑗𝑘
.

A visualization of these sets is provided in Figure 2b; we postpone their discussion to the end of the

section and rst calculate the specic value of the proximal mapping based on (4.4) together with the

case distinction in the subdierential.
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Let𝑤 ∈ 𝑄𝑖 𝑗𝑘 and correspondingly 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
for some 𝑖, 𝑗, 𝑘 ∈ {−1, 0, 1}.

(i) If 𝑖, 𝑗, 𝑘 ∈ {−1, 1} we have (Id+𝛾𝜕𝑔∗) (𝑤) = 𝑤 + 𝛾𝑢 (𝑘+3)/2
𝑖 𝑗

so that

(Id+𝛾𝜕𝑔∗)−1(𝑞) = 𝑞 − 𝛾𝑢 (𝑘+3)/2
𝑖 𝑗

for 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
with 𝑖, 𝑗, 𝑘 ∈ {−1, 1}.

(ii) If two of 𝑖, 𝑗, 𝑘 are zero, (Id+𝛾𝜕𝑔∗)−1(𝑞) must be the single unique element of 𝑄𝑖 𝑗𝑘 and thus

(Id+𝛾𝜕𝑔∗)−1(𝑞) =
{
0 if 𝑞 ∈ 𝑄𝛾

0,0,−1,

3𝛼 (𝑖, 𝑗) if 𝑞 ∈ 𝑄𝛾

𝑖,𝑗,0
with 𝑖 = 0 or 𝑗 = 0.

(iii) If 𝑖 = 0 and 𝑗, 𝑘 ≠ 0, then for𝑤 ∈ 𝑄0𝑗𝑘 we have

(Id+𝛾𝜕𝑔∗) (𝑤) = 𝑤 + 𝛾 co
{
𝑢
(𝑘+3)/2
−1, 𝑗 , 𝑢

(𝑘+3)/2
1, 𝑗

}
= 𝑤 + 𝛾 𝑘 + 3

2

( [−1, 1], 𝑗) .

Thus for 𝑞 ∈ 𝑄𝛾

0𝑗𝑘
we have (Id+𝛾𝜕𝑔∗)−1(𝑞) = 𝑞 − 𝛾 𝑘+3

2
(_, 𝑗), where _ ∈ [−1, 1] is such that

𝑞 − 𝛾 𝑘+3
2
(_, 𝑗) ∈ 𝑄0𝑗𝑘 ⊂ {0} ×ℝ. Therefore _ = 2

𝛾 (𝑘+3)𝑞1 and

(Id+𝛾𝜕𝑔∗)−1(𝑞) =
(
0, 𝑞2 − 𝛾 𝑘+3

2
𝑗

)
for 𝑞 ∈ 𝑄𝛾

0𝑗𝑘
with 𝑗, 𝑘 ∈ {−1, 1}.

Analogously,

(Id+𝛾𝜕𝑔∗)−1(𝑞) =
(
𝑞1 − 𝛾 𝑘+3

2
𝑖, 0

)
for 𝑞 ∈ 𝑄𝛾

𝑖0𝑘
with 𝑖, 𝑘 ∈ {−1, 1}.

(iv) If 𝑘 = 0 and 𝑖, 𝑗 ≠ 0, then for𝑤 ∈ 𝑄𝑖 𝑗0 we have

(Id+𝛾𝜕𝑔∗) (𝑤) = 𝑤 + 𝛾 co
{
𝑢1𝑖 𝑗 , 𝑢

2

𝑖 𝑗

}
= 𝑤 + 𝛾 [1, 2] (𝑖, 𝑗) .

Thus for𝑞 ∈ 𝑄𝛾

𝑖 𝑗0
we have (Id+𝛾𝜕𝑔∗)−1(𝑞) = 𝑞−𝛾_(𝑖, 𝑗), where _ ∈ [1, 2] is such that𝑞−𝛾_(𝑖, 𝑗) ∈

𝑄𝑖 𝑗0 ⊂ {𝑤 ∈ ℝ2
: |𝑤 |1 = 3𝛼}. Therefore _ =

|𝑞 |1−3𝛼
2𝛾

and

(Id+𝛾𝜕𝑔∗)−1(𝑞) = 𝑞 − |𝑞 |1−3𝛼
2
(𝑖, 𝑗) for 𝑞 ∈ 𝑄𝛾

𝑖 𝑗0
with 𝑖, 𝑗 ∈ {−1, 1}.

It remains to discuss the sets 𝑄
𝛾

𝑖 𝑗𝑘
. Rather than list all sets explicitly, we instead provide a procedure

for determining for a given 𝑞 ∈ ℝ2
the corresponding subdomain, which is what is actually required for

the numerical implementation. For that purpose, let us introduce the function (compare the illustration

in Figure 3b)

[ (𝑥) =


𝛾 if 𝑥 < 3𝛼 + 𝛾,
𝑥 − 3𝛼 if 3𝛼 + 𝛾 ≤ 𝑥 ≤ 3𝛼 + 2𝛾,
2𝛾 if 𝑥 > 3𝛼 + 2𝛾 .

With this function we have 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
for 𝑖, 𝑗, 𝑘 given by

𝑖 =

{
0 if |𝑞1 | ≤ [ ( |𝑞2 |),
sign(𝑞1) otherwise,

𝑗 =

{
0 if |𝑞2 | ≤ [ ( |𝑞1 |),
sign(𝑞2) otherwise,

𝑘 =


−1 if |𝑞 |∞ < 3𝛼 + 𝛾 and |𝑞 |1 < 3𝛼 + 2𝛾,
1 if |𝑞 |∞ > 3𝛼 + 2𝛾 or |𝑞 |1 > 3𝛼 + 4𝛾,
0 otherwise.
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Moreau–Yosida regularization Inserting this into the denition (4.6) of the Moreau–Yosida regular-

ization yields

(4.12) (𝜕𝑔∗)𝛾 (𝑞) =



𝑢
(𝑘+3)/2
𝑖 𝑗

if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
with 𝑖, 𝑗, 𝑘 ≠ 0,

1

𝛾
(𝑞 − 3𝛼 (𝑖, 𝑗)) if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
with |𝑖 | + | 𝑗 | + |𝑘 | = 1,

( 1
𝛾
𝑞1,

𝑘+3
2
𝑗) if 𝑞 ∈ 𝑄𝛾

0𝑗𝑘
with 𝑗, 𝑘 ≠ 0,

( 𝑘+3
2
𝑖, 1

𝛾
𝑞2) if 𝑞 ∈ 𝑄𝛾

𝑖0𝑘
with 𝑖, 𝑘 ≠ 0,

|𝑞 |1−3𝛼
2𝛾
(𝑖, 𝑗) if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗0
with 𝑖, 𝑗 ≠ 0.

Newton derivative Finally, we can again take as a Newton derivative any element of the Clarke

gradient; here, we choose

(4.13) 𝐷𝑁ℎ𝛾 (𝑞) =


0 if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
with 𝑖, 𝑗, 𝑘 ≠ 0,

1

𝛾
Id if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
with |𝑖 | + | 𝑗 | + |𝑘 | = 1,

1

𝛾
( 𝑗, 𝑖)𝑇 ( 𝑗, 𝑖) if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗𝑘
with |𝑖 | + | 𝑗 | = 1, 𝑘 ≠ 0,

1

2𝛾
(𝑖, 𝑗)𝑇 (𝑖, 𝑗) if 𝑞 ∈ 𝑄𝛾

𝑖 𝑗0
with 𝑖, 𝑗 ≠ 0.

4.3 general multibang control

For more than two control dimensions or arbitrary setsM an explicit calculation quickly becomes

complicated. However, note that 𝑄𝑖1 ...𝑖𝑘 is actually empty for most index collections {𝑖1, . . . , 𝑖𝑘 }, so that

the number of conditions to be checked in an algorithmic evaluation can be greatly reduced. Indeed, by

construction the sets𝑄𝑖1 ...𝑖𝑘 are nothing else but the preimages under 𝑔∗ of the faces of the (polyhedral)
graph of 𝑔∗. Thus, nding all nonempty𝑄𝑖1 ...𝑖𝑘 is equivalent to enumerating all faces of the graph of 𝑔∗,
which for given choices of 𝑐 and the 𝑢𝑖 can be done by existing face enumeration algorithms such as

[28]. Hence the general procedure outlined in the beginning of this section can be implemented for

givenM = {𝑢𝑖 : 𝑖 ∈ 𝐼 } and 𝑐 as follows:

1. Use the algorithm from [28] to list all faces of

epi𝑔∗ = {(𝑞, 𝑡) ∈ ℝ𝑚+1
: 𝑡 ≥ 〈𝑢𝑖 , 𝑞〉 − 𝛼𝑐 (𝑢𝑖) for 𝑖 ∈ 𝐼 }.

where a face is identied by the indices {𝑖1, . . . , 𝑖𝑘 } ⊂ 𝐼 whose constraints are active on that face;

these index collections are exactly those for which 𝑄𝑖1 ...𝑖𝑘 is nonempty.

2. For each face 𝔣 = {𝑖1, . . . , 𝑖𝑘 }, compute 𝐴𝔣, 𝑏𝔣 and 𝐴𝔣;𝑙 , 𝑏𝔣;𝑙 from (4.5).

3. To evaluate ℎ𝛾 at a vector 𝑞 ∈ ℝ𝑚
, calculate𝑤𝔣 = 𝐴𝔣𝑞 + 𝑏𝔣 and _𝔣;𝑙 = 𝐴𝔣;𝑙𝑞 + 𝑏𝔣;𝑙 for each face 𝔣.

Identify the (unique) face 𝔣 such that 0 ≤ _𝔣;𝑙 ≤ 1 for all 𝑙 and 𝑔𝑢𝑖
1

(𝑞) > 𝑔𝑢𝑖 (𝑞) for 𝑖1 ∈ 𝔣 and all

𝑖 ∉ 𝔣. Then set

ℎ𝛾 (𝑞) =
1

𝛾
(𝑞 −𝐴𝔣𝑞 − 𝑏𝔣) and 𝐷𝑁ℎ𝛾 =

1

𝛾
(Id−𝐴𝔣).

We point out that the computationally most expensive step – enumerating the faces of epi𝑔∗, which
requires solving a linear program – is independent of 𝑞 and 𝛾 and can thus be precomputed.

5 state equation

In this section, we specify in more detail ourmodel state operators and verify that assumptions (a1)–(a4)

of Sections 2 and 3 are satised for our model problems.
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5.1 bloch equation

As ourmotivating model problem, we consider the Bloch equation in a rotating reference frame without

relaxation

d

d𝑡
M(𝜔) (𝑡) = M(𝜔) (𝑡) × B(𝜔) (𝑡), M(𝜔) (0) = (0, 0, 1)𝑇 ,

which describes the temporally evolving magnetization M(𝜔) ∈ ℝ3
of an ensemble of spins rotat-

ing at the same resonance oset frequency 𝜔 (called isochromat), starting from a given equilibrium

magnetization. The time-varying eective magnetic eld B(𝜔) (𝑡) is of the form

B(𝜔) (𝑡) = (𝜔𝑥 (𝑡), 𝜔𝑦 (𝑡), 𝜔)𝑇 ,

where 𝑢 (𝑡) := (𝜔𝑥 (𝑡), 𝜔𝑦 (𝑡)) ∈ ℝ2
can be controlled. The aim is to achieve a magnetizationM(𝜔) (𝑇 ) =

M𝑑 within the time interval Ω = [0,𝑇 ] for a list of oset frequencies𝜔1, . . . , 𝜔 𝐽 . In terms of our previous

notation we thus set

(5.1) 𝑆 : 𝐿2(Ω;ℝ2) → (ℝ3) 𝐽 , 𝑢 ↦→
[
M(𝜔1) (𝑇 ), . . . ,M(𝜔 𝐽 ) (𝑇 )

]
.

This choice of 𝑆 satises the assumptions (a1)–(a4); see Appendix a.

5.2 linear elasticity

In this case, Ω ⊂ ℝ2
represents an elastic body xed at Γ ⊂ 𝜕Ω (with positive Hausdor measure

H 1(Γ) > 0), where we assume Γ and 𝜕Ω \ Γ to be smooth or Ω to be a convex polygon with Γ being the

union of some faces. The elastic body is subject to a controlled body force 𝑢 : Ω → ℝ2
. The resulting

displacement 𝑦 : Ω → ℝ2
is governed by the equations of linearized elasticity with Lamé parameters

` and _,

(5.2)


−2` div 𝜖 (𝑦) − _ grad div 𝑦 = 𝑢 in Ω,

𝑦 = 0 on Γ,

(2`𝜖 (𝑦) + _ div 𝑦)𝑛 = 0 on 𝜕Ω \ Γ,

where 𝑛 denotes the unit outward normal, 𝐷𝑦 = [∇𝑦1 |∇𝑦2]𝑇 is the displacement gradient, and 𝜖 (𝑦) =
𝐷𝑦+𝐷𝑦𝑇

2
is the symmetrized gradient. Dening

𝐻 1

Γ (Ω) :=
{
𝑣 ∈ 𝐻 1(Ω;ℝ2) : 𝑣 = 0 on Γ

}
,

we may take

(5.3) 𝑆 : 𝐻 1

Γ (Ω)∗ → 𝐻 1

Γ (Ω), 𝑢 ↦→ 𝑦 solving (5.2).

The solution operator 𝑆 of the linear elasticity problem is well known to be a bounded linear operator

from𝑈 = 𝐿2(Ω;ℝ2) into 𝐻 1

Γ (Ω) ↩→ 𝐿2(Ω;ℝ2) =: 𝑌 ; see, e.g., [9]. This immediately implies weak-to-

weak continuity and Fréchet dierentiability with 𝑆 ′(𝑢) = 𝑆 for all 𝑢 ∈ 𝑈 . Similarly, 𝑆 ′(𝑢)∗ = 𝑆∗ for
all 𝑢 ∈ 𝑈 , and it is readily checked that 𝑆 is actually self-adjoint so that 𝑆∗ = 𝑆 . As a consequence

we have ran 𝑆 ′(𝑢)∗ = ran 𝑆 ↩→ 𝐿∞(Ω;ℝ2). Indeed, in the case of polygonal domains Ω this follows

from ran 𝑆 ⊂ 𝐻 3/2(Ω;ℝ2) by [41, Thm. 2.3], and in the case of piecewise smooth domains with smooth

traction boundary it follows from ran 𝑆 ⊂ 𝐻 2(Ω;ℝ2) by [40, Thm. 8]. Summarizing, this choice of 𝑆

satises assumptions (a1)–(a5).
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5.3 multimaterial branched transport

Here Ω represents a street or pipe network, i.e., a graph that is typically (but not necessarily) embedded

in ℝ2
or ℝ3

. If we assume a constant material ux along the graph edges, the description simplies

to the following: Let 𝐺 = (𝑉 , 𝐸) be a directed graph with vertex set 𝑉 and edge set 𝐸 representing

a transport network. We endow 𝐸 with the 𝜎-algebra generated by the (nitely many) elements of

𝐸 and dene 𝐿2(𝐸;ℝ𝑚) as the space of measurable functions from 𝐸 to ℝ𝑚
with the inner product

(𝑢, 𝑣)𝐿2 =
∑

𝑒∈𝐸 ℓ (𝑒)𝑢 (𝑒) · 𝑣 (𝑒) (where ℓ (𝑒) denotes the length of 𝑒). The space 𝐿2(𝑉 ;ℝ𝑚) is dened
analogously. The function 𝑢 ∈ 𝐿2(𝐸;ℝ𝑚) describes the ux of𝑚 dierent materials along each edge,

and the operator 𝑆 is the graph divergence, i.e., the dierence of outux and inux at each vertex,

𝑆 : 𝐿2(𝐸;ℝ𝑚) → 𝐿2(𝑉 ;ℝ𝑚), 𝑆𝑢 (𝑥) =
∑︁

𝑒∈𝐸 incident to 𝑥

𝑢 (𝑒) −
∑︁

𝑒∈𝐸 emanating from 𝑥

𝑢 (𝑒) .

The target function 𝑧 ∈ 𝐿2(𝑉 ;ℝ𝑚) is zero except at the sources and sinks of each material 𝑖 , where 𝑧𝑖
takes the value𝑚𝑖 and −𝑚𝑖 , respectively. For this nite-dimensional linear operator 𝑆 , (a1)–(a5) are

automatically fullled. Note that an innite-dimensional setting would likewise be possible; in this

case one could choose Ω as the graph embedding and 𝑆 : 𝐿2(Ω;ℝ𝑚) → 𝐻−𝑠 (Ω;ℝ𝑚) with 𝑠 > 1 as the

distributional divergence on Ω. Let us also mention that the regularization

∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 in the above

setting reduces to

∑
𝑒∈𝐸 ℓ (𝑒)𝑔(𝑢 (𝑒)), which represents the total transport costs.

6 numerical solution

We now discuss the numerical solution of the regularized system (2.7) via a semismooth Newton

method.

6.1 bloch equation

As is usual for time-dependent state equations, we avoid a full space-time discretization by following a

reduced approach, i.e., we consider in place of (2.7) the equation

(6.1) 𝑢𝛾 − 𝐻𝛾 (−F ′(𝑢𝛾 )) = 0.

Recall that 𝐻𝛾 is a superposition operator dened via

[𝐻𝛾 (𝑝)] (𝑥) = ℎ𝛾 (𝑝 (𝑥)) for a.e. 𝑥 ∈ Ω

withℎ𝛾 = (𝜕𝑔∗)𝛾 given by (4.8). By Proposition a.3, we have−F ′(𝑢𝛾 ) = 𝑆 ′(𝑢𝛾 )∗(𝑧−𝑆 (𝑢𝛾 )) ∈ 𝐿∞(Ω;ℝ2)
and, hence,we can consider𝐻𝛾 : 𝐿𝑟 (Ω;ℝ2) → 𝐿2(Ω;ℝ2) for any 𝑟 > 2. Sinceℎ𝛾 is Lipschitz continuous

and piecewise dierentiable, semismoothness of 𝐻𝛾 follows from [50, Thm. 3.49] with a Newton

derivative given by

[𝐷𝑁𝐻𝛾 (𝑝)ℎ] (𝑥) = 𝐷𝑁ℎ𝛾 (𝑝 (𝑥))ℎ(𝑥) for a.e. 𝑥 ∈ Ω

and 𝐷𝑁ℎ𝛾 dened in (4.9).

Further, note that 𝑆 is twice continuously dierentiable. Indeed, this follows by an analogous

argument as for Fréchet dierentiability in the proof of Proposition a.1: Using the same notation, the

second derivative applied to test directions 𝜑,𝜓 ∈ 𝐿2(Ω;ℝ2) will be given by 𝑆 ′′(𝑢) (𝜑,𝜓 ) = W(𝑇 ) =
(W1(𝑇 ), . . . ,W𝐽 (𝑇 )) with{

d

d𝑡
W𝑗 (𝑡) = 𝐵𝜔 𝑗

𝑢 (𝑡)W𝑗 (𝑡) + 𝐵0𝜑 (𝑡)𝛿M
(𝜔 𝑗 )
𝜓
(𝑡) + 𝐵0

𝜓
(𝑡)𝛿M(𝜔 𝑗 )

𝜑 (𝑡) , 𝑡 ∈ [0,𝑇 ],

W𝑗 (0) = 0,
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where 𝑆 ′(𝑢) (𝜑) = (𝛿M(𝜔1)
𝜑 (𝑇 ), . . . , 𝛿M(𝜔 𝐽 )

𝜑 (𝑇 )) with 𝛿M(𝜔)𝜑 satisfying (a.2). This equation has exactly

the same structure as (a.2), and thus the argument for showing

|𝑆 ′(�̃�) (𝜑) − 𝑆 ′(𝑢) (𝜑) − 𝑆 ′′(𝑢) (�̃� − 𝑢, 𝜑) |2 = ‖𝜑 ‖𝐿2 (Ω;ℝ2)𝑂 (‖�̃� − 𝑢‖2𝐿2 (Ω;ℝ2) )

works analogously. Since 𝑆 is twice continuously dierentiable, we can apply the chain rule, e.g., from

[50, Thm. 3.69], to obtain

𝐷𝑁 (𝐻𝛾 ◦ (−F ′)) (𝑢)𝜑 = −𝐷𝑁𝐻𝛾 (−F ′(𝑢))F ′′(𝑢)𝜑

for any 𝜑 ∈ 𝐿2(Ω;ℝ2). A semismooth Newton step is thus given by 𝑢𝑘+1 = 𝑢𝑘 + 𝛿𝑢, where 𝛿𝑢 is the

solution to

(6.2)

(
Id+𝐷𝑁𝐻𝛾 (−F ′(𝑢𝑘 ))F ′′(𝑢𝑘 )

)
𝛿𝑢 = −𝑢𝑘 + 𝐻𝛾 (−F ′(𝑢𝑘 )),

which can be obtained, e.g., using a matrix-free Krylov subspace method such as GMRES.

Recall that following Proposition a.2 and [1], 𝑝 = −F ′(𝑢) can be evaluated by solving the adjoint

equations

(6.3)

{
− d

𝑑𝑡
P(𝜔 𝑗 ) (𝑡) = 𝐵𝜔𝑢 (𝑡)P(𝜔 𝑗 ) (𝑡), 𝑡 ∈ [0,𝑇 ],

P(𝜔 𝑗 ) (𝑇 ) = M(𝜔 𝑗 )
𝑢 (𝑇 ) − (M𝑑 ) 𝑗

for 𝑗 = 1, . . . , 𝐽 and setting

𝑝 (𝑡) =
𝐽∑︁
𝑗=1

((
M(𝜔 𝑗 )

𝑢 (𝑡)
)
3
P(𝜔 𝑗 )
2
(𝑡) −

(
M(𝜔 𝑗 )

𝑢 (𝑡)
)
2
P(𝜔 𝑗 )
3
(𝑡)(

M(𝜔 𝑗 )
𝑢 (𝑡)

)
3
P(𝜔 𝑗 )
1
(𝑡) −

(
M(𝜔 𝑗 )

𝑢 (𝑡)
)
1
P(𝜔 𝑗 )
3
(𝑡)

)
=

𝐽∑︁
𝑗=1

(
M(𝜔 𝑗 )

𝑢 (𝑡)𝑇𝐵1P(𝜔 𝑗 ) (𝑡)
M(𝜔 𝑗 )

𝑢 (𝑡)𝑇𝐵2P(𝜔 𝑗 ) (𝑡)

)
for 𝑡 ∈ [0,𝑇 ], where for the sake of brevity, we have set

𝐵1 :=
©«
0 0 0

0 0 −1
0 1 0

ª®¬ , 𝐵2 :=
©«
0 0 −1
0 0 0

1 0 0

ª®¬ .
Similarly, the application of F ′′(𝑢)𝜑 for given 𝑢, 𝜑 ∈ 𝐿2(Ω;ℝ2) is given by

F ′′(𝑢)𝜑 =

𝐽∑︁
𝑗=1

(
𝛿M(𝜔 𝑗 )

𝜑 (𝑡)𝑇𝐵1P(𝜔 𝑗 ) (𝑡) +M(𝜔 𝑗 )
𝑢 (𝑡)𝑇𝐵1𝛿P(𝜔 𝑗 ) (𝑡)

𝛿M(𝜔 𝑗 )
𝜑 (𝑡)𝑇𝐵2P(𝜔 𝑗 ) (𝑡) +M(𝜔 𝑗 )

𝑢 (𝑡)𝑇𝐵2𝛿P(𝜔 𝑗 ) (𝑡)

)
,

where 𝛿M(𝜔)𝜑 (the directional derivative of M(𝜔) with respect to 𝑢) is given by the solution of the

linearized state equation (a.2) and 𝛿P(𝜔) (the directional derivative of P(𝜔) with respect to 𝑢) is given

by the solution of the linearized adjoint equation{
− d

d𝑡
𝛿P(𝜔) (𝑡) = 𝐵𝜔𝑢 (𝑡)𝛿P(𝜔) (𝑡) + 𝐵0𝜑 (𝑡)P(𝜔) (𝑡), 𝑡 ∈ [0,𝑇 ],

𝛿P(𝜔) (𝑇 ) = 𝛿M(𝜔)𝜑 (𝑇 ).

This characterization can be derived using formal Lagrangian calculus and rigorously justied using

the implicit function theorem; see, e.g., [32, Chapter 1.6].
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Since the forward operator 𝑆 is nonlinear, the problem (2.10) is nonconvex. Hence, convergence

of the semismooth Newton method (6.2) to a minimizer 𝑢𝛾 requires a second-order sucient (local

quadratic growth) condition at 𝑢𝛾 for 𝛾 > 0 small, which is dicult to verify. Furthermore, we need to

deal with the fact that Newton methods converge only locally, with the convergence region shrinking

with 𝛾 . For this reason, we perform a continuation in 𝛾 , i.e., we solve (2.7) for a sequence 𝛾1 > 𝛾2 > · · ·
of regularization parameters, each time using the result for 𝛾𝑛 as initialization for the iteration with

𝛾𝑛+1. In addition, we include in each step of the semismooth Newton method a line search for 𝛿𝑢 based

on the residual norm of the reduced optimality condition (6.1). While globalization of nonsmooth

Newton methods is a delicate issue that we do not want to address in this work, we remark that this

heuristic approach seems to work well for this problem in practice.

We nally address the discretization of (6.2). The Bloch equation is discretized using a Crank–

Nicolson method, where the states M(𝜔) are discretized as continuous piecewise linear functions

with values M(𝜔)𝑚 := M(𝜔) (𝑡𝑚) for discrete time points 𝑡1, . . . , 𝑡𝑁𝑢
, and the control 𝑢 is treated as a

piecewise constant function, i.e., 𝑢 =
∑𝑁𝑢

𝑚=1
𝑢𝑚𝜒 (𝑡𝑚−1,𝑡𝑚 ] (𝑡), where 𝜒 (𝑎,𝑏 ] is the characteristic function

of the half-open interval (𝑎, 𝑏]. To obtain a consistent scheme, where discretization and optimization

commute, the adjoint state P(𝜔) in (6.3) is discretized as piecewise constant using an appropriate

time-stepping scheme [5], and the linearized state 𝛿M(𝜔) and the linearized adjoint state 𝛿P(𝜔) are
discretized in the same way as the state and adjoint state, respectively; see [1].

6.2 linearized elasticity

For the case of linearized elasticity, we can proceed exactly as in [15, 17]. First, note that due to the

embedding 𝐻 1

Γ (Ω) ↩→ 𝐿𝑝 (Ω;ℝ2) for 𝑝 > 2, the superposition operator 𝐻𝛾 (for ℎ𝛾 := (𝜕𝑔∗)𝛾 now given

by (4.12)) is again semismooth with Newton derivative 𝐷𝑁𝐻𝛾 (for 𝐷𝑁ℎ𝛾 now given by (4.13)).

To obtain a symmetric Newton system, we reduce (2.7) to the state 𝑦𝛾 = 𝑆 (𝑢𝛾 ) and the dual variable

𝑝𝛾 . Since 𝑆 is a bounded linear operator, we have 𝑆 ′(𝑢) = 𝑆 and therefore by the denition of 𝑆 obtain{
𝐴∗𝑝𝛾 = 𝑧 − 𝑦𝛾 ,
𝐴𝑦𝛾 = 𝐻𝛾 (𝑝𝛾 ),

where 𝐴 denotes the elliptic linear dierential operator arising from the system (5.2) of linearized

elasticity. Consequently, we consider

(6.4) 𝐹 (𝑦, 𝑝) :=
(
𝑦 − 𝑧 +𝐴∗𝑝
𝐴𝑦 − 𝐻𝛾 (𝑝)

)
=

(
0

0

)
,

where 𝐹 : 𝑌 ×𝑈 ∗ → 𝑌 ×𝑈 . Since the regularized optimal state 𝑦𝛾 and the adjoint state 𝑝𝛾 are in𝐻
1

Γ (Ω),
we may consider 𝐹 : 𝐻 1

Γ (Ω) ×𝐻 1

Γ (Ω) → 𝐻 1

Γ (Ω)∗ ×𝐻 1

Γ (Ω)∗. For a semismooth Newton step, we obtain

(𝛿𝑦, 𝛿𝑝) by solving

(6.5)

(
Id 𝐴∗

𝐴 −𝐷𝑁𝐻𝛾 (𝑝𝑘 )

) (
𝛿𝑦

𝛿𝑝

)
=

(
𝑧 − 𝑦𝑘 −𝐴∗𝑝𝑘
−𝐴𝑦𝑘 + 𝐻𝛾 (𝑝𝑘 )

)
for given (𝑦𝑘 , 𝑝𝑘 ), and we set 𝑦𝑘+1 = 𝑦𝑘 + 𝛿𝑦 and 𝑝𝑘+1 = 𝑝𝑘 + 𝛿𝑝 .

Due to the linearity of the state equation (and hence convexity of the problem), the convergence of

the semismooth Newton method for every 𝛾 > 0 to a minimizer of (2.10) can be shown exactly as in

[15, 17]. As in the case of the Bloch equation, we include a continuation in 𝛾 as well as a line search

based on the residual norm in (6.4).
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For the discretization, we consider (6.4) in its weak form

(6.6)

(∫
Ω
2`𝜖 (𝑝) : 𝜖 (𝜑) + _ div(𝑝) div𝜑 + (𝑦 − 𝑧)𝜑 d𝑥∫
Ω
2`𝜖 (𝑦) : 𝜖 (𝜓 ) + _ div 𝑦 div𝜓 − ℎ𝛾 (𝑝)𝜓 d𝑥

)
=

(
0

0

)
for all 𝜑,𝜓 ∈ 𝐻 1

Γ (Ω). We now discretize the state 𝑦 , the adjoint state 𝑝 , and the test functions 𝜑ℎ,𝜓ℎ
using piecewise linear nite element functions 𝑦ℎ, 𝑝ℎ, 𝜑ℎ,𝜓ℎ ∈ 𝑉ℎ , where 𝑉ℎ ⊂ 𝐻 1

Γ (Ω) denotes the
space of piecewise linear, ℝ2

-valued functions on a uniform triangulation of Ω. Analogously to

[15, 17], we employ exact quadrature for all terms except for

∫
Ω
ℎ𝛾 (𝑝ℎ)𝜓ℎ d𝑥 , which we approximate by∫

Ω
𝐼ℎ (ℎ𝛾 (𝑝ℎ))𝜓ℎ d𝑥 for the piecewise linear nodal interpolation operator 𝐼ℎ . Thus, letting 𝜑1, . . . , 𝜑𝑁ℎ

denote a nodal basis of 𝑉ℎ and introducing the mass and stiness matrices

𝑀ℎ =

(∫
Ω
𝜑𝑖 · 𝜑 𝑗 d𝑥

)
𝑖 𝑗

, 𝐿ℎ =

(∫
Ω
𝜖 (𝜑𝑖) : 𝜖 (𝜑 𝑗 ) d𝑥

)
𝑖 𝑗

, 𝐾ℎ =

(∫
Ω
div𝜑𝑖 · div𝜑 𝑗 d𝑥

)
𝑖 𝑗

,

as well as 𝐴ℎ = 2`𝐿ℎ + _𝐾ℎ and the vector 𝑍ℎ = (
∫
Ω
𝑧 · 𝜑1 d𝑥, . . . ,

∫
Ω
𝑧 · 𝜑𝑁ℎ

d𝑥)𝑇 , the discrete version
of (6.6) reads (

𝐴𝑇
ℎ
p +𝑀ℎy − 𝑍ℎ

𝐴ℎy −𝑀ℎℎ𝛾 (p)

)
=

(
0

0

)
,

and (6.5) becomes (
𝑀ℎ 𝐴𝑇

ℎ

𝐴ℎ −𝑀ℎ𝐷𝑁ℎ𝛾 (p𝑘 )

) (
𝛿y
𝛿p

)
=

(
𝑍ℎ − y𝑘 −𝐴𝑇

ℎ
p𝑘

−𝐴ℎy𝑘 +𝑀ℎℎ𝛾 (p𝑘 )

)
,

where y = (𝑦𝑖)𝑖 and p = (𝑝𝑖)𝑖 are the nodal values of 𝑦ℎ and 𝑝ℎ , and where ℎ𝛾 (p) = (ℎ𝛾 (𝑝𝑖))𝑖 and
𝐷𝑁ℎ𝛾 (p) = (𝐷𝑁ℎ𝛾 (𝑝𝑖)𝛿𝑖 𝑗 )𝑖 𝑗 .

6.3 multimaterial branched transport

Here we again follow the same approach as for the Bloch equation, that is, we solve the equation

0 = 𝑢𝛾 − 𝐻𝛾 (−F ′(𝑢𝛾 )) = 𝑢𝛾 − 𝐻𝛾 (𝑆∗(𝑧 − 𝑆𝑢𝛾 )) .

Since 𝑢𝛾 and 𝑆∗(𝑧 − 𝑆𝑢𝛾 ) are nite-dimensional, the equation is Newton-dierentiable with Newton

step 𝑢𝑘+1 = 𝑢𝑘 + 𝛿𝑢 for 𝛿𝑢 the solution of(
Id+𝐷𝑁𝐻𝛾 (𝑆∗(𝑧 − 𝑆𝑢𝑘 ))𝑆∗𝑆

)
𝛿𝑢 = −𝑢𝑘 + 𝐻𝛾 (𝑆∗(𝑧 − 𝑆𝑢𝑘 )) .

Due to the discrete nature of the domain, this is a more challenging problem than for the Bloch equation

and therefore requires a more involved path-following. Specically, during the outer iteration we adapt

the reduction factor for 𝛾 to keep convergence of the semismooth Newton method within a small

number of steps, increasing it if the method requires too many steps (or does not converge at all) and

reducing it if the method converges very quickly. In addition, we again employ a line search in 𝛿𝑢.

7 numerical examples

We illustrate the proposed approach for the two model problems described in Section 5 and the two

specic multibang penalties described in Section 4. The MATLAB code used to generate these examples

is available online [20].
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Figure 4: Control and state for the Bloch model problem:𝑀 = 3

7.1 bloch equation

The rst example is based on the optimal excitation of isochromats in nuclear magnetic resonance

imaging [25], where the aim is to shift the magnetization vectorM at time 𝑇 from initial alignment

with a strong external magnetic eld, i.e., M(0) = (0, 0, 1)𝑇 , to the saturated state M𝑑 = (1, 0, 0)𝑇 using

a radiofrequency pulse 𝑢 (𝑡) = (𝜔𝑥 (𝑡), 𝜔𝑦 (𝑡))𝑇 . To follow the physical setup, we scale the controls

as 𝑢 (𝑡) = 𝛾𝐵1�̃� (𝑡), where 𝛾 ≈ 267.51 is the gyromagnetic ratio (in MHz per Tesla) and 𝐵1 = 10
−2

is

the strength of the modulated magnetic eld (in milliTesla); the gures always show the unscaled

control �̃�. The control cost parameter (which in this setting can be interpreted as a penalty on the

specic absorption rate of the radio energy) is set to 𝛼 = 10
−1
. In all examples, the Bloch equation is

discretized with 𝑁𝑢 = 1000 time intervals; the implementation of the discrete (linearized) Bloch and

adjoint equations is taken from [2]. The semismooth Newton iteration is then applied and terminated

if the relative or absolute norm of the residual in the optimality condition drops below 10
−7

or if

500 iterations are exceeded. The Newton step is solved via GMRES without restarts and without

preconditioning, which is terminated if the relative residual drops below 10
−10

or if 1000 iterations are

exceeded. The continuation in the Moreau–Yosida regularization is started with 𝛾0 = 10
2
and reduced

by a factor of 1/2 until 𝛾min = 10
−10

is reached or the semismooth Newton iteration fails to converge.

We remark that in a practical implementation, these strict xed tolerances should be replaced as in

inexact Newton methods by adaptive criteria based on residuals in the outer loops.

We begin with a single isochromat with 𝜔 = 10
−2𝛾 . Figure 4 shows the resulting optimal control �̃�

and magnetization evolution M(𝜔) (𝑡) for 𝑀 = 3 equally spaced radially distributed desired control

values with magnitude 𝜔0 = 1 and phases \1 = −𝜋 , \2 = −𝜋/3, \3 = 𝜋/3, which are marked by colored

dashed lines. At any time 𝑡 ∈ [0,𝑇 ], the optimal control �̃� (𝑡) = (𝜔𝑥 (𝑡), 𝜔𝑦 (𝑡)) can be seen to only take

values fromM as desired. (For easier visual comprehension, �̃� (𝑡) is plotted as a continuous curve

so that a jump from one value inM to another is shown as a connecting line.) Indeed, most of the

time we have �̃� = 𝑢0 = 0, periodically intermitted by short time intervals where �̃� takes the values

𝑢1, 𝑢2, 𝑢3 ∈ M in a periodically rotating order. Each of these time intervals coincides in the state

trajectory with a change in 𝑀𝑧 , while the 𝑀𝑧 component of M(𝜔) stays constant during �̃� = 0. The

nal magnetization M(𝜔) (𝑇 ) shows a very close attainment of the target M𝑑 . The situation is very

similar for𝑀 = 6 with 𝜔0 = 1 and \ ∈ {−𝜋,−2𝜋/3,−𝜋/3, 0, 𝜋/3, 2𝜋/3}; see Figure 5. In both cases, all

nonzero desired control values are made use of equally.
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Figure 5: Control and state for the Bloch model problem:𝑀 = 6

Table 2 summarizes the convergence behavior for the case𝑀 = 3. For a representative selection of

values of 𝛾 , it shows the number of semismooth Newton iterations, the average number of GMRES

iterations needed to solve a Newton step, the number of times a step of length less than 1 was taken,

and the number of nodes 𝑡𝑚 for which 𝑢𝛾 (𝑡𝑚) ∉M. For moderate values of 𝛾 (approximately 𝛾 > 10
−6

in this case), very few iterations of both the semismooth Newton method and the inner GMRES method

are required to reach the solution. If 𝛾 is decreased further, however, the problem starts becoming

signicantly more dicult, requiring an increasing number of Newton iterations that, in addition,

require a damping to lead to a decrease of the residual. These damped steps typically are taken after a

few initial full steps and continue until the region of superlinear convergence is reached, after which the

iteration terminates after a small number of full steps. The average number of GMRES steps, however,

remains small. For 𝛾 < 9.313 · 10−8, the maximal number of semismooth Newton iterations is no longer

sucient to reach the given tolerance. However, the nal row of the table demonstrates that already

for 𝛾 ≈ 10
−5

(where the convergence is still fast), the control is already almost perfectly multibang.

We now consider the simultaneous control of 𝐽 = 4 isochromats with 𝜔 = 10
−2𝛾 · (1, 2, 3, 4). Figure 6

shows the result if the same targetM𝑑 = (1, 0, 0)𝑇 is specied for all isochromats. Again, we have a very

close attainment of the target, and again the control is zero most of the time, intermitted by regularly

spaced intervals in which nonzero control values fromM are used. This time, not all nonzero values

fromM occur, but just 𝑢2 and 𝑢3 (indicated by the red and turquoise dashed lines). In addition there

are ve time points at which control values outsideM are adopted, visible in the graph as short spikes

Table 2: Convergence behavior for the example in Figure 4: number of semi-smooth Newton steps,

average number of GMRES iterations to solve a Newton step, number of times a line search

was required, and number of nodes 𝑡𝑚 with 𝑢𝛾 (𝑡𝑚) ∉M
𝛾 1 · 102 2 2 · 10−1 1 · 10−2 2 · 10−3 2 · 10−4 1 · 10−5 2 · 10−6 9 · 10−8

# SSN 3 3 4 5 5 5 4 100 101

avg. # GMRES 3 7 7.5 7.4 7.8 8.2 3.8 3.1 4.3

# line search 0 0 0 0 0 0 0 98 99

# not MB 1000 1000 862 376 191 44 3 3 3
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Figure 6: Control and state for the Bloch model problem:𝑀 = 6, 𝐽 = 4

emanating from �̃� = 0. (Note, though, that these values still show the desired angles, merely at smaller

than desired magnitudes.) This may be due to the fact that in this example, the Newton method has

failed to converge already for 𝛾 < 2 · 10−6. In the more realistic case where only a single isochromat – in

this case 𝑗 = 3 – is supposed to be excited (i.e.,M𝑑 = (1, 0, 0)𝑇 forM(𝜔3)
andM𝑑 = (0, 0, 1)𝑇 otherwise),

we again obtain a pure multibang control (see Figure 7).

7.2 linearized elasticity

We now address the behavior in the context of optimal control of elliptic partial dierential equations

for the model equations of two-dimensional linearized elasticity. Here, we choose Ω = [0, 1] × [0, 2]
and Γ = [0, 1] × {0}, which models an elastic beam clamped at the bottom. The Lamé parameters are

set to ` = 𝐸
2(1+a) and _ = 𝐸a

(1+a) (1−2a) for the elastic modulus 𝐸 = 20 and the Poisson ratio a = 0.3. We

use a uniform structured mesh with 129 vertices in each direction. Since the state equation is linear,

we use a direct solver for the Newton step. The Newton iteration is terminated if the active sets (i.e.,

the case distinctions in the denition of the Moreau–Yosida regularization) for each node coincide

for two consecutive iterations, or if 50 iterations are exceeded. The continuation in the regularization

parameter 𝛾 is performed as for the Bloch equation.

Figure 8 shows the results for six dierent choices of target, multibang penalty, and control cost

parameter. In Figures 8a to 8d, the target displacement 𝑧 (𝑥) = 𝑅(𝑥 − ( 1
2
, 1)𝑇 ) − 𝑥 corresponds to a

rotation 𝑅 ∈ 𝑆𝑂 (2) of the solid around its center. Figures 8a and 8b use the penalty from Section 4.1

for 𝛼 = 10
−3
, while Figures 8c and 8d use the penalty from Section 4.2 for 𝛼 = 10

−5
and 𝛼 = 10

−3
,

respectively. In all cases, the obtained control makes use of all control values inM and aligns them

with the rotation. Furthermore, the center of the force vortex always lies slightly to the top right of the

rotation center of the target state; this allows a stronger overall rightward force in the lower part of the

solid to compensate for the clamping at the bottom. Note that unlike the case of (additional) gradient

regularization of the control, small patches or sharp corners of the domains with homogeneous force

are allowed.

Figure 8e shows that the control is not guaranteed to take values inM; here, the target displacement

𝑧 is the displacement induced by a deadload to the left applied at the top domain boundary. Since

the target was induced by a forcing with zero load throughout the bulk material, the optimal control

mainly takes the nonpreferred value of zero. However, a slight random perturbation of 𝑧 again leads to
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Figure 7: Control and state for the Bloch model problem:𝑀 = 6, 𝐽 = 4, M𝑑 = (0, 0, 1) for 𝑗 = 3 and M0

otherwise

a pure multibang control, as shown in Figure 8f.

We again show the convergence behavior for the example in Figure 8c in Table 3. Since this example

is linear, only a few Newton iterations (2 to 6) are required for all values of 𝛾 , and correspondingly

only a few line searches are carried out for 𝛾 < 10
−5
. As before, the multibang structure is already

strongly promoted for 𝛾 ≈ 10
−6
. (Let us point out that the elastic body is xed at the bottom boundary

so that the control has to be 0 there, which for this example does not lie inM.)

7.3 multimaterial branched transport

To illustrate the behavior of our approach for multimaterial branched transport, we x a random

network obtained by a random perturbation of vertices of a regular 10 × 10 square grid and then

performing a Delaunay triangulation (subsequently removing very long edges). In our experiments we

x the vertices that will act as material sources or sinks and assign them dierent materials, resulting

in dierent optimal transportation schemes; see Figure 9. The amount of each material in our example

calculations is simply taken as𝑚𝑖 = 1 for all 𝑖 . In contrast to the previous examples, we here pick

𝑐 (𝑣) = |𝑣 |2 rather than the squared norm, which leads to a preference for combined ows of multiple

materials. We x the control costs at 𝛼 = 10
−3
.

For the numerical solution, we start with a zero ux and a Moreau–Yosida parameter 𝛾0 = 20. The

semismooth Newton systems are again solved iteratively using GMRES without restarts at a tolerance

of 10
−11

; we include a backtracking line search with a minimal step size 𝜏min = 10
−5
. Starting with a

reduction factor 𝑞 = 0.5, we adapt 𝛾 and 𝑞 as follows: If the Newton method for 𝛾𝑛 did not converge

Table 3: Convergence behavior for the example in Figure 8c: number of semi-smooth Newton steps,

number of times a line search was required, and number of nodes with 𝑢𝛾 (𝑥) ∉M
𝛾 2 · 10−1 1 · 10−2 2 · 10−3 2 · 10−4 1 · 10−5 1 · 10−6 2 · 10−7 1 · 10−8 1 · 10−9 2 · 10−10

# SSN 2 4 5 5 4 6 4 4 5 6

# line search 0 0 0 0 0 2 1 2 3 4

# not MB 4225 4210 3747 1245 179 84 71 68 68 68

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .

https://arxiv.org/abs/2108.10077


arxiv: 2108.10077, 2021-08-23 page 30 of 37

𝜋
3

𝜋

−𝜋
3

0

√
8

(a) radial, 𝑑 = 3,

𝛼 = 10
−3

𝜋
5

2𝜋
5

𝜋

− 2𝜋
5

−𝜋
5

0

√
8

(b) radial, 𝑑 = 5,

𝛼 = 10
−3

𝜋
4

3𝜋
4

−3𝜋
4

−𝜋
4

√
2

√
8

(c) concentric,
𝛼 = 10

−3

𝜋
4

3𝜋
4

−3𝜋
4

−𝜋
4

√
2

√
8

(d) concentric,
𝛼 = 10

−5

𝜋
4

3𝜋
4

−3𝜋
4

−𝜋
4

√
2

√
8

(e) concentric,
𝛼 = 10

−5

𝜋
4

3𝜋
4

−3𝜋
4

−𝜋
4

√
2

√
8

(f) concentric,
𝛼 = 10

−5

Figure 8: Control (top rows: phase and magnitude color coded as shown in color wheel with values in

M indicated, additionally indicated by arrows) and state (bottom row: target deformation in

gray, achieved deformation in red) for the elasticity model problem

within 20 iterations or the minimal step size did not lead to a reduction of the residual norm, we discard

the iterate, set 𝑞 = 𝑞0.25, and restart with 𝑢𝑛−1 and 𝛾𝑛−1𝑞. If the Newton iteration converged (with a

residual norm smaller than min{𝛾𝑛, 10−6} or a relative residual norm smaller than 10
−9
, whichever

occurs rst) within 15 steps, we accept the iterate, set 𝑞 = min{𝑞0.75, 1 − 10
−4}, and compute 𝑢𝑛+1

with 𝑢𝑛 as starting value and 𝛾𝑛+1 = 𝛾𝑛𝑞. If the Newton iteration even converged within 5 steps, we

continue similarly but with reduced 𝑞 = min{1 − 10−3,max{𝑞1.25, 0.5}}. Otherwise we continue with
𝑞 = min{1 − 10−3, 𝑞}. We terminate the path-following at 𝛾 < 10

−7
. Again, this is a heuristic procedure

that worked well for this example; in all reported cases, the deviations from the desired discrete control

values are less than 0.006 on each edge.

The results are shown in Figure 9 for dierent congurations of sources and sinks. For three sources

at the bottom and three sinks in reversed order at the top, all mass ows converge along the optimal

transportation path (Figure 9a). If the ow of𝑚3 is reversed by swapping its source and sink, there is

no longer a payo by joint transport so that𝑚3 is transported independently of the other materials

(Figure 9b). If instead the order of the sinks is reversed it becomes more economic for𝑚3 to take the

direct route than to create a ow with all materials (Figure 9c). Finally, the network with an additional

fourth material becomes more complicated (Figure 9d).

Clason, Tameling, Wirth Convex relaxation of discrete vector-valued optimization . . .

https://arxiv.org/abs/2108.10077


arxiv: 2108.10077, 2021-08-23 page 31 of 37

+𝑚1

+𝑚2

+𝑚3

−𝑚1

−𝑚2

−𝑚3

(a)

+𝑚1

+𝑚2

−𝑚3

−𝑚1

−𝑚2

+𝑚3

(b)

+𝑚1

+𝑚2

+𝑚3

−𝑚3

−𝑚2

−𝑚1

(c)

+𝑚1

+𝑚2

+𝑚3

+𝑚4

−𝑚4

−𝑚1

−𝑚2

−𝑚3

(d)

Figure 9: Optimal material ows on a xed random network with xed locations but dierent per-

mutations of sources (+𝑚𝑖 ) and sinks (−𝑚𝑖 ); ows corresponding to dierent materials are

indicated by lines of dierent widths and gray values.

8 conclusion

A preference for a small number of predened discrete control values can be achieved by a piecewise

ane pointwise regularization term whose corners lie at the preferred values. In contrast to the case

of scalar controls treated in [17, 18, 16, 19], the case of vector-valued controls allows giving multiple

control values equal preference, and numerical experiments for optimal control of the Bloch equation,

optimal control of elastic deformation, and multimaterial branched transport show that this feature is

indeed exhibited by the optimal control in a broad range of practically relevant scenarios. Furthermore,

the optimal control problems leading to admissible controls turn out to be dense among a family of

control problems. A more precise characterization of control problems with admissible solutions would

be desirable and should be further investigated. For instance, for certain control problems such as

the elasticity-based example, one might conjecture that targets leading to nonmultibang controls are

nowhere dense. In the context of nonsmooth optimization, investigating rigorous globalization of the

semismooth Newton method by the path-following approach followed for the branched transport

example would be worthwhile. Finally, an interesting topic for follow-up work would be combining the

vector-valued results presented in this work with the techniques from [16] for topology optimization

of elastic composite materials.

appendix a properties of the bloch equation

Here we verify that the state operator (5.1) satises the required assumptions (a1)–(a4). In the following,

a subscript to M(𝜔) and B(𝜔) always refers to the chosen control 𝑢.

Proposition a.1. The operator 𝑆 as dened in (5.1) is well-dened and satises (a1)–(a3).

Proof. Introducing the skew-symmetric matrix

𝐵𝜔𝑢 (𝑡) =
©«

0 𝜔 −(𝑢 (𝑡))2
−𝜔 0 (𝑢 (𝑡))1
(𝑢 (𝑡))2 −(𝑢 (𝑡))1 0

ª®¬ ,
the homogeneous linear Bloch equation

d

d𝑡
M(𝜔)𝑢 (𝑡) = 𝐵𝜔𝑢 (𝑡)M

(𝜔)
𝑢 (𝑡) for a control 𝑢 (𝑡) ∈ ℝ2

has a

solution M(𝜔)𝑢 (𝑡) by Carathéodory’s existence theorem. Furthermore,

d

d𝑡
|M(𝜔)𝑢 (𝑡) |22 = 2M(𝜔)𝑢 (𝑡) ·

d

d𝑡
M(𝜔)𝑢 (𝑡) = 0,
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and thus |M(𝜔)𝑢 (𝑡) |2 = 1 for all 𝑡 . Now let 𝑢𝑖 ⇀ 𝑢 weakly in 𝐿2(Ω;ℝ2). Then
d

d𝑡
M(𝜔)𝑢𝑖 (𝑡) −

d

d𝑡
M(𝜔)𝑢 (𝑡) = 𝐵𝜔𝑢𝑖 (𝑡)

(
M(𝜔)𝑢𝑖 (𝑡) −M

(𝜔)
𝑢 (𝑡)

)
+ (𝐵𝜔𝑢𝑖 (𝑡) − 𝐵

𝜔
𝑢 (𝑡))M

(𝜔)
𝑢 (𝑡), 𝑡 ∈ [0,𝑇 ],

M(𝜔)𝑢𝑖 (0) = M(𝜔)𝑢 (0) .

Upon abbreviating Δ𝑀𝑖 = M(𝜔)𝑢𝑖 −M(𝜔)𝑢 and Δ𝐵𝑖 = (𝐵𝜔𝑢𝑖 − 𝐵
𝜔
𝑢 )M

(𝜔)
𝑢 and integrating from 0 to 𝑡 , we

arrive at

|Δ𝑀𝑖 (𝑡) |2 =
����∫ 𝑡

0

𝐵𝜔𝑢𝑖 (𝑠)Δ𝑀𝑖 (𝑠) d𝑠 +
∫ 𝑡

0

Δ𝐵𝑖 (𝑠) d𝑠
����
2

≤
∫ 𝑡

0

|𝐵𝜔𝑢𝑖 (𝑠) |2 |Δ𝑀𝑖 (𝑠) |2 d𝑠 +
����∫ 𝑡

0

Δ𝐵𝑖 (𝑠) d𝑠
����
2

.

Gronwall’s inequality now implies that

(a.1) |Δ𝑀𝑖 (𝑡) |2 ≤
����∫ 𝑡

0

Δ𝐵𝑖 (𝑠) d𝑠
����
2

+
∫ 𝑡

0

����∫ 𝑟

0

Δ𝐵𝑖 (𝑠) d𝑠
����
2

|𝐵𝜔𝑢𝑖 (𝑟 ) |2 exp
(∫ 𝑡

𝑟

|𝐵𝜔𝑢𝑖 (𝑠) |2 d𝑠
)
d𝑟 .

The rst term converges to zero due to Δ𝐵𝑖 ⇀ 0 in 𝐿2(Ω;ℝ3) (since M(𝜔)𝑢 ∈ 𝐿∞(Ω;ℝ3)). Additionally,
the exponential is bounded by exp(

√
𝑇 ‖𝐵𝜔𝑢𝑖 ‖𝐿2 (Ω;ℝ3×3) ) ≤ 𝐶 ∈ ℝ independent of 𝑖 . Thus, the right-hand

side converges to zero if

𝑓𝑖 → 0 in 𝐿2(Ω;ℝ) for 𝑓𝑖 : Ω → ℝ, 𝑟 ↦→
∫ 𝑟

0

Δ𝐵𝑖 (𝑠) d𝑠 .

This is indeed the case since

‖ 𝑓𝑖 ‖2𝐿2 (Ω) =
∫
{𝑠∈(0,𝑇 )3:𝑠1,𝑠2≤𝑠3 }

Δ𝐵𝑖 (𝑠1) · Δ𝐵𝑖 (𝑠2) d𝑠

and 𝑠 ↦→ Δ𝐵𝑖 (𝑠1) · Δ𝐵𝑖 (𝑠2) converges weakly to zero in 𝐿2((0,𝑇 )3;ℝ). Thus M(𝜔 𝑗 )
𝑢𝑖 (𝑇 ) converges for

all 𝑗 , and therefore 𝑆 (𝑢𝑖) → 𝑆 (𝑢). This argument also implies uniqueness of the solution.

Moreover, 𝑆 is Fréchet dierentiable, and its derivative at 𝑢 ∈ 𝐿2(Ω;ℝ2) is given by

𝑆 ′(𝑢) : 𝑈 → 𝑌, 𝜑 ↦→ 𝛿M𝜑 (𝑇 ) = (𝛿M(𝜔1)
𝜑 (𝑇 ), . . . , 𝛿M(𝜔 𝐽 )

𝜑 (𝑇 ))

with 𝛿M(𝜔)𝜑 solving the linearized state equation (note 𝜕𝑢 (𝐵𝜔𝑢 ) (𝜑) = 𝐵0𝜑 )

(a.2)

{
d

d𝑡
𝛿M(𝜔)𝜑 (𝑡) = 𝐵𝜔𝑢 (𝑡)𝛿M

(𝜔)
𝜑 (𝑡) + 𝐵0𝜑 (𝑡)M

(𝜔)
𝑢 (𝑡) , 𝑡 ∈ [0,𝑇 ],

𝛿M(𝜔)𝜑 (0) = (0, 0, 0)𝑇 .

Indeed, 𝛿M𝜑 (𝑇 ) is obviously linear in 𝜑 , and the unique solvability follows just like for M(𝜔)𝑢 . Further-

more, for any �̃� ∈ 𝑈 with ‖�̃� − 𝑢‖𝑈 ≤ 1 and 𝜑 = �̃� − 𝑢 we have

d

d𝑡
(M(𝜔)

�̃�
−M(𝜔)𝑢 − 𝛿M(𝜔)𝜑 ) = 𝐵𝜔�̃� (M

(𝜔)
�̃�
−M(𝜔)𝑢 − 𝛿M(𝜔)𝜑 ) + (𝐵𝜔�̃� − 𝐵

𝜔
𝑢 )𝛿M

(𝜔)
𝜑

with zero initial condition. Gronwall estimates analogous to (a.1) (now for 𝛿M(𝜔)𝜑 and M(𝜔)
�̃�
−M(𝜔)𝑢 −

𝛿M(𝜔)𝜑 , exploiting that |𝐵𝜔
�̃�
(𝑟 ) |2 exp(

∫ 𝑡

𝑟
|𝐵𝜔

�̃�
(𝑠) |2 d𝑠) is bounded by a constant only depending on ‖𝑢‖𝑈 )

imply that

|𝛿M(𝜔)𝜑 (𝑡) |2 ≤ ˜𝐶 ‖𝐵𝜔
�̃�
− 𝐵𝜔𝑢 ‖𝐿2 (Ω;ℝ3×3) ≤ 2

˜𝐶 ‖�̃� − 𝑢‖𝑈
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for a constant 𝐶 > 0 and all 𝑡 ∈ Ω as well as

|M(𝜔)
�̃�
(𝑇 ) −M(𝜔)𝑢 (𝑇 ) − 𝛿M(𝜔)𝜑 (𝑇 ) |2 ≤ 𝐶 sup

𝑡 ∈Ω

����∫ 𝑡

0

(𝐵𝜔
�̃�
(𝑠) − 𝐵𝜔𝑢 (𝑠))𝛿M

(𝜔)
𝜑 (𝑠) d𝑠

����
2

≤ 𝐶 ‖𝐵𝜔
�̃�
− 𝐵𝜔𝑢 ‖𝐿1 (Ω;ℝ3×3) ‖𝛿M(𝜔)𝜑 ‖𝐿∞ (Ω;ℝ3)

≤ 𝐶 ‖�̃� − 𝑢‖2𝑈 ,

where 𝐶 denotes a positive constant (not necessarily the same in all inequalities). We thus have

|𝑆 (�̃�) − 𝑆 (𝑢) − 𝑆 ′(𝑢) (�̃� − 𝑢) |2 ≤ 𝐶 ‖�̃� − 𝑢‖2𝑈

as required. The compactness follows from the nite dimensionality of ran 𝑆 . �

We will also require some regularity results for the adjoint operator 𝑆 ′(𝑢)∗.
Proposition a.2. For 𝑆 from (5.1) and 𝑢 ∈ 𝑈 we have

𝑆 ′(𝑢)∗ : 𝑌 → 𝑈 ,

(𝑆 ′(𝑢)∗𝑦) (𝑡) =
𝐽∑︁
𝑗=1

(
0

(
M
(𝜔𝑗 )
𝑢 (𝑡 )

)
3

−
(
M
(𝜔𝑗 )
𝑢 (𝑡 )

)
2

−
(
M
(𝜔𝑗 )
𝑢 (𝑡 )

)
3

0

(
M
(𝜔𝑗 )
𝑢 (𝑡 )

)
1

)
Ψ𝑢,𝑗 (𝑡),

where Ψ𝑢,𝑗 solves the adjoint equation

d

d𝑡
Ψ𝑢,𝑗 (𝑡) = Ψ𝑢,𝑗 (𝑡) × B

(𝜔 𝑗 )
𝑢 (𝑡), Ψ𝑢,𝑗 (𝑇 ) = 𝑦 𝑗 , 𝑗 = 1, . . . , 𝐽 .

Proof. From Proposition a.1 we have 𝑆 ′(𝑢)𝜑 = (𝛿M(𝜔1)
𝜑 (𝑇 ), . . . , 𝛿M(𝜔 𝐽 )

𝜑 (𝑇 )) for any 𝑢, 𝜑 ∈ 𝑈 with

𝛿M(𝜔)𝜑 solving (a.2). Thus we obtain for 𝑦 ∈ (ℝ3) 𝐽 that∫
Ω
𝜑 (𝑡) · (𝑆 ′(𝑢)∗𝑦) (𝑡) d𝑡 = 〈𝑦, 𝑆 ′(𝑢)𝜑〉 =

𝐽∑︁
𝑗=1

𝑦𝑇𝑗 𝛿M
(𝜔 𝑗 )
𝜑 (𝑇 )

=

𝐽∑︁
𝑗=1

Ψ𝑢,𝑗 (𝑇 )𝑇𝛿M
(𝜔 𝑗 )
𝜑 (𝑇 )

=

𝐽∑︁
𝑗=1

∫
Ω
Ψ𝑢,𝑗 (𝑡)𝑇

d

d𝑡
𝛿M(𝜔 𝑗 )

𝜑 (𝑡) + d

d𝑡
Ψ𝑢,𝑗 (𝑡)𝑇𝛿M

(𝜔 𝑗 )
𝜑 (𝑡) d𝑡

=

𝐽∑︁
𝑗=1

∫
Ω
Ψ𝑢,𝑗 (𝑡)𝑇

[
d

d𝑡
𝛿M(𝜔 𝑗 )

𝜑 (𝑡) − 𝛿M(𝜔 𝑗 )
𝜑 (𝑡) × B𝜔 𝑗

𝑢 (𝑡)
]
d𝑡

=

𝐽∑︁
𝑗=1

∫
Ω
Ψ𝑢,𝑗 (𝑡)𝑇

[
𝐵0𝜑 (𝑡)M

(𝜔 𝑗 )
𝑢 (𝑡)

]
d𝑡

from which the result follows. �

Proposition a.3. For any 𝑢 ∈ 𝑈 , we have ran 𝑆 ′(𝑢)∗ ↩→ 𝐿∞(Ω;ℝ2). Moreover, 𝑢 ↦→ 𝑆 ′(𝑢)∗ is continuous
in 𝐿∞(Ω;ℝ2) under weak convergence of 𝑢 in𝑈 and thus it satises (a4) with 𝑉 = 𝐿1(Ω;ℝ2).

Proof. By the formula for 𝑆 ′(𝑢)∗ from Proposition a.2, it is enough to show that M(𝜔 𝑗 )
𝑢𝑖 and Ψ𝑢𝑖 , 𝑗

converge in 𝐿∞(Ω;ℝ3) as 𝑢𝑖 ⇀ 𝑢 in 𝑈 . It suces to consider M(𝜔 𝑗 )
𝑢𝑖 , since the adjoint variable Ψ𝑢,𝑗

satises the same dierential equation. Thus, we only have to show that the right-hand side in (a.1)
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converges to zero uniformly in 𝑡 . Note that the second integral is bounded above by the one for

𝑡 = 𝑇 which has already been shown to converge to zero. Hence it suces to show

∫ 𝑡

0
Δ𝐵𝑖 (𝑠) d𝑠 → 0

uniformly in 𝑡 as 𝑖 → ∞. Since Δ𝐵𝑖 ⇀ 0 in 𝐿2(Ω;ℝ3), we also have weak convergence in 𝐿1(Ω;ℝ3)
so that by the Dunford–Pettis criterion the Δ𝐵𝑖 are equi-integrable. Now let 𝑡𝑖 ∈ [0,𝑇 ] be such

that |
∫ 𝑡𝑖

0
Δ𝐵𝑖 (𝑠) d𝑠 |2 ≥ sup𝑡 ∈[0,𝑇 ] |

∫ 𝑡

0
Δ𝐵𝑖 (𝑠) d𝑠 |2 − 1

𝑖
, and assume that for a subsequence (still in-

dexed by 𝑖) we have |
∫ 𝑡𝑖

0
Δ𝐵𝑖 (𝑠) d𝑠 |2 ≥ 𝐶 > 0 for all 𝑖 . Upon taking another subsequence, we can

further assume that 𝑡𝑖 → 𝑡 ∈ [0,𝑇 ]. Due to the equi-integrability, there is a Δ𝑡 > 0 such that∫ 𝑡+Δ𝑡
𝑡−Δ𝑡 |Δ𝐵𝑖 (𝑠) |2 d𝑠 < 𝐶/2; thus for 𝑖 large enough we have |

∫ 𝑡

0
Δ𝐵𝑖 (𝑠) d𝑠 |2 ≥ 𝐶/2. However, this

contradicts the weak convergence of Δ𝐵𝑖 to 0 so that indeed

∫ 𝑡

0
Δ𝐵𝑖 (𝑠) d𝑠 → 0 uniformly in 𝑡 as

𝑖 →∞. �
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