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LOCAL WELL-POSEDNESS FOR THE BOLTZMANN EQUATION WITH

VERY SOFT POTENTIAL AND POLYNOMIALLY DECAYING INITIAL

DATA

CHRISTOPHER HENDERSON AND WEINAN WANG

Abstract. In this paper, we address the local well-posedness of the spatially inhomogeneous
non-cutoff Boltzmann equation when the initial data decays polynomially in the velocity variable.
We consider the case of very soft potentials γ + 2s < 0. Our main result completes the picture
for local well-posedness in this decay class by removing the restriction γ+2s > −3/2 of previous
works. Our approach is entirely based on the Carleman decomposition of the collision operator
into a lower order term and an integro-differential operator similar to the fractional Laplacian.
Interestingly, this yields a very short proof of local well-posedness when γ ∈ (−3, 0] and s ∈
(0, 1/2) in a weighted C1 space that we include as well.

1. Introduction

The Boltzmann equation is a kinetic equation arising in statistical physics. Its solution f(t, x, v) ≥
0 models the density of particles of a diffuse gas at time t ∈ [0, T ], at location x ∈ T

3, and with
velocity v ∈ R

3. Roughly, each particle travels with a fixed velocity until a collision at which
time it takes on a new velocity chosen in a way compatible with physical laws. In this article, we
focus on the non-cutoff version of (1.1) that includes the physically realistic singularity at grazing
collisions. The equation reads

(1.1)

{

∂tf + v · ∇xf = Q(f, f) in [0, T ]× T
3 × R

3,

f(0, ·, ·) = fin ≥ 0 in T
3 × R

3.

The collision operator Q is defined by

Q(f, f) =

∫

R3

∫

S2

B(v − v∗, σ) (f(v
′
∗)f(v

′)− f(v∗)f(v)) dσ dv∗,

where v and v∗ are pre-collisional velocities and v′ and v′∗ are post-collisional velocities related by

v′ =
v + v∗

2
+ σ

|v − v∗|

2
and v′∗ =

v + v∗
2

− σ
|v − v∗|

2

and the collision kernel B is given by

B(v − v∗, σ) = |v − v∗|
γθ−2−2sb̃(cos θ), where cos θ = σ ·

v − v∗
|v − v∗|

, γ ∈ (−3, 1], s ∈ (0, 1),

and b̃ is a positive bounded function. In this work, we are mostly interested in the regime of very
soft potentials, that is, when γ + 2s < 0.

There are several active research directions regarding the well-posedness of the Boltzmann
equation: global well-posedness in the spatially homogeneous setting (that is, x-independent),
global well-posedness and regularity of weak solutions, global well-posedness and convergence
of close-to-equilibrium solutions, and local well-posedness with large initial data. Here, we are
interested in the local well-posedness of (1.1) with large initial data, and, as such, leave it to
other references to detail the extensive history of research into the first three categories (see,
e.g., [3, 6, 9–11,14–21,23, 27, 34, 37, 38]).
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Alexandre, Morimoto, Ukai, Xu, and Yang, often referred to by the acronym AMUXY, made the
first serious progress on the local well-posedness theory for the (non-cutoff) Boltzmann equation.
In particular, in a sequence of seminal works, by deriving new estimates on the collision operator

Q, they were able to establish local well-posedness under the condition that eα|v|
2

fin is bounded
in certain Sobolev-based spaces [2,4,5,7,8]. We note that the Gaussian decay plays a large role in
their analysis to compensate for moment loss.

The first results weakening the Gaussian-decay condition on the initial data are due to Morimoto
and Yang [35]. They established local well-posedness in an H6-based space under the assumptions
that γ ∈ (−3/2, 0] and s ∈ (0, 1/2). This was later extended by Henderson, Snelson, and Tar-
fulea [26], who showed local well-posedness in an H5-based space under the assumption s ∈ (0, 1)
and max {−3,− 3

2 − 2s} < γ < 0. Our goal, in the present work, is to remove the restriction
γ + 2s > −3/2. In general, the larger γ + 2s is, the more the decay of f at |v| = +∞ is the issue,
and the smaller (more negative) γ + 2s is, the more regularity is the issue.

Our interest in establishing local well-posedness with initial data that is merely polynomially
decaying is due to its relationship to the recent conditional regularity program initiated by Sil-
vestre [36] and continued in collaboration with Imbert and Mouhot [28–33]. The goal of the
program is to understand the regularity theory for the Boltzmann equation conditional to the
mass, energy, and entropy densities

M(t, x) =

∫

f(t, x, v)dv, E(t, x) =

∫

f(t, x, v)|v|2dv and H(t, x) =

∫

f(t, x, v) log f(t, x, v)dv,

satisfying, uniformly in (t, x),

(1.2) M,E,H ≤ C and
1

C
≤M for all (t, x),

where C is a positive constant. When f is x-independent, it is well-known that these conditions
are always satisfied. To date, Imbert, Mouhot, and Silvestre have developed a Harnack inequality
and Schauder estimates, obtained a sharp lower bound on the tail behavior of f , and proved a
propagation of polynomial upper bounds of f result, all of which depended only on the bounds
in (1.2).

An upshot of the program of Imbert, Mouhot, and Silvestre is that, roughly, when a suitable local
well-posedness result exists, solutions may be continued as long as (1.2) holds (see [30, Section 1.1.2]
and [26, Corollary 1.2]). In particular, the local well-posedness result must allow for polynomially
decaying initial data as that type of decay can be propagated forward in time depending only on
the constant C in (1.2). As no such propagation-of-decay result exists for Gaussian decay, the
classical results of AMUXY cannot be used. It is for this reason that it is important to develop
the local well-posedness theory when fin decays only polynomially.

Our main theorem removes the restriction of previous results [26, 35] that γ + 2s > −3/2,
thereby completing the picture for local well-posedness with polynomially decaying initial data
when γ ∈ (−3, 0) and s ∈ (0, 1). In order to state our result, we define the following two spaces:
given k, n,m ≥ 0 and T > 0, let

(1.3) Xk,n,m = Hk,n(T3 × R
3) ∩ L∞,m(T3 × R

3) and Y k,n,m
T = L∞([0, T ];Xk,n,m).

For any p ≥ 1, we use Lp,n to refer to the space of functions g such that 〈v〉ng ∈ Lp, where
〈v〉2 = 1 + |v|2. The weighted Sobolev space Hk,n is defined analogously.

Theorem 1.1. Assume that γ + 2s < 0, k ≥ 5, n > 3/2, and m > M = M(k, n, γ, s) sufficiently
large. Suppose 0 ≤ fin ∈ Xk,n,m. Then there exists a time T > 0, depending only on ‖fin‖Xk,n,m

as well as n, k, m, γ, s, and b̃, and a unique solution f ∈ Y k,n,m
T ∩ C([0, T ];Hk,n

x,v ) of (1.1) such
that f ≥ 0 and

‖f‖Y k,n,m
T

. ‖fin‖Xk,n,m .
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As discussed above, an important motivation of Theorem 1.1 is to extend the continuation
criterion for the Boltzmann equation to the very soft potentials range. While such a result does
not directly follow from Theorem 1.1 and the Imbert-Mouhot-Silvestre regularity program (as
these results only deal with the regime γ + 2s ∈ [0, 2]), it is likely a straightforward exercise after
adding an additional assumption on the L∞

t,xL
p
v norm of f to (1.2). Indeed, this has already been

accomplished for the closely-related Landau equation in [24] in the analogous parameter regime.
An upshot of such a continuation criterion, were it established, is the ability to construct classical
solutions from rough initial initial data as accomplished for the Landau equation [25]. These will
be the subject of a future work.

As is typical for nonlinear equations, the main step in the proof of local well-posedness of (1.1)
is to establish a priori estimates on solutions. In particular, this requires obtaining bounds on the
collision operator Q as a bilinear form from and to various Banach spaces.

In order to explain the strategy and difficulties in obtaining such estimates, we discuss the
restriction γ + 2s > −3/2 in [26]. This is inherited in the application of the estimates on the
collision operator developed in [4]. For certain key estimates, AMUXY use Fourier analysis, which
is most suited L2-based spaces. However, a major lesson from [36] is that one can, roughly, think
of Q as having a coefficient of the form

∫

f(t, x, w)|v − w|γ+2sdw,

and one sees, after applying the Cauchy-Schwarz inequality, that such coefficients are bounded
using the (weighted) L2-norm of f only when γ + 2s > −3/2.

In view of the above, it is required to develop new estimates on the collision operator in spaces
that are not L2-based. Our approach is to take advantage of the Carleman decomposition (see
equation (2.1)), which viewsQ as the sum of an integro-differential operator similar to the fractional
Laplacian and a lower order term. As this is a real space-based approach, it is possible, through
intricate analysis, to obtain estimates on Q(g, f) in various spaces depending on both L2- and
L∞-based norms. This allows us to circumvent the issues encountered in previous works.

Curiously, this approach makes an extremely simple proof of local well-posedness in a weighted
C1 space obvious when s ∈ (0, 1/2). The reason for this is as follows. First, as observed in [26,
Proposition 3.2], the Carleman decomposition makes it easy to obtain L∞,m bounds on f from
‖fin‖L∞,m via a simple comparison principle argument. The important observation is that, roughly,
at a maximum of 〈v〉mf , the only high order term has a good sign. A straightforward attempt
to repeat this for the L∞,m norm of ∂f is complicated by the fact that ∂f solves an equation
involving a term Q(∂f, f). From the Carleman decomposition of Q, we, roughly, see

Q(∂f, f) ∼

(∫

∂f(w)|v − w|γ+2sdw

)

∆sf . ‖∂f‖L∞,m‖〈v〉mf‖C2s+ǫ .

Fortunately, when s ∈ (0, 1/2), this is lower order and the previous argument can be repeated.
We now state the result. We first define the Ck analogue of the spaces X and YT (1.3):

X̃k,m0,m1 = {f : 〈v〉m0∇ℓf ∈ C(T3 × R
3)6

ℓ

for 0 ≤ ℓ ≤ k − 1, 〈v〉m1∇kf ∈ C(T3 × R
3)6

k

}

and Ỹ k,m0,m1

T = L∞([0, T ]; X̃k,m0,m1).
(1.4)

Theorem 1.2. Let k ≥ 1, γ ∈ (−3, 0], s ∈ (0, 1/2), m1 > 3 + γ + 2s, and m0 be sufficiently large

depending only on k, γ, s, and m1. Let the initial data 0 ≤ fin ∈ X̃k,m0,m1 .Then there exists a
time T > 0, depending only on ‖fin‖X̃k,m0,m1 , γ, s, m0, m1, and b̃, and a unique solution f ≥ 0
of (1.1) such that

f ∈ Ỹ k,m0,m1

T ∩ C([0, T ];Ck(T3 × R
3)) ∩C1([0, T ];Ck−1(T3 × R

3))

and ‖f‖
Ỹ

k,m0,m1
T

. ‖fin‖X̃k,m0,m1 .
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We note that simply by differentiating the equation, we can obtain further time regularity when
k > 1. In addition, a careful accounting based on the estimates of the collision operator and the

definition of Ỹ k,m0,m1

T yields the decay in velocity of the Cℓ
x,v norms. This is not the main interest

of the statement above so we omit it.
The significance of Theorem 1.2, besides having such a short proof, is that it improves on [26,35]

in two major ways. First, it increases the range of possible γ: [35] requires γ ∈ (−3/2, 0] and [26]
requires γ ∈ (−3/2− 2s, 0). Second, it weakens conditions on the initial regularity: [35] works in
an H6-based space and [26] works in an H5-based space, both of which embed in C1. Note that
it also reduces the regularity required of the initial data in comparison to Theorem 1.1. On the
other hand, like [35] but unlike [26] and Theorem 1.1, it only applies to s ∈ (0, 1/2).

1.1. Notation. We use the notation A . B if there is a constant C such that A ≤ CB. In general,

the constant C may depend on γ, s, n, m, k, m0, m1, and b̃. Additionally, if an assumption for
an estimate involves a requirement such as α > β, then the constant C may depend on α− β. We
use A ≈ B if A . B and B . A. Occasionally, it will be necessary to include a constant, in which
case we use C to represent such a constant and this constant C may change line-by-line.

Any integral whose domain of integration in v is not specified is understood to be an integral
over R

3 and any integral whose domain of integration in x is not specified is understood to be
an integral over T

3. For example, for any measurable ϕ and any measurable sets Ωx ⊂ T
3 and

Ωv ⊂ R
3, we have

∫ ∫

Ωv

ϕ(x, v)dvdx =

∫

T3

∫

Ωv

ϕ(x, v)dvdx and

∫

Ωx

∫

ϕ(x, v)dvdx =

∫

Ωx

∫

R3

ϕ(x, v)dvdx.

Similarly, we often suppress the domain in Lebesgue, Sobolev, and Hölder spaces when it is clear,
writing, e.g., f ∈ L∞,m instead of f ∈ L∞,m(R3) if has already been established that f : R3 → R.

We use BR to mean a ball of radius R around the origin. Whenever the ball is not centered at
the origin, we denote the center v0 as BR(v0).

Finally, when stating estimates on the collision operator Q(g, f), we often omit the assumptions
on the involved functions g and f . In these cases, the estimate holds whenever the right hand side
is finite.

1.2. Outline. The rest of the paper is organized as follows. In Section 2, we consider bounds on
the collision operator. In particular, we recall useful known results, prove some easy extensions of
them, and state our main new estimates. Then, in Section 3, we prove the existence and uniqueness
of solutions using the bounds from Section 2. Afterwards, in Section 4, we prove the estimates on
the collision operator Q. Finally, in Section 5, we give a simple proof of local well-posedness for
the case of s ∈ (0, 1/2) and γ ∈ (−3, 0].

2. Estimates on the collision operator

In this section, we state the key estimates on the collision operator Q that we use in our proof of
well-posedness. We begin with a brief overview of the Carleman decomposition allowing us to use
ideas from the study of integro-differential operators. Then we state known estimates and their
easy extensions. Finally, we state new estimates whose proof, contained in Section 4, makes up
the bulk of this manuscript.

2.1. Carleman decomposition. A key tool in our analysis is the Carleman decomposition [12,13]
that views the Boltzmann collision operator Q as the sum of a non-local diffusion operator locally
similar to −(−∆)s and a lower order reaction term. This decomposition is well-known, see [1] for
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an early discussion of it and [36, Sections 4 and 5] for the presentation used here. Indeed,

Q(g, f) = Qs(g, f) +Qns(g, f)

Qs(g, f) =

∫

(f(v′)− f(v))Kg(v, v
′)dv′

Qns(g, f) = cb(Sγ ∗ g)f,

(2.1)

where Sγ(v) = |v|γ , cb > 0 is a fixed constant, and Kg satisfies, for any g ≥ 0 and any v, v′ ∈ R
3,

Kg(v, v
′) ≈

1

|v − v′|3+2s

∫

w∈v+(v′−v)⊥
g(w)|v − w|γ+2s+1dw

and Kg(v, v + v′) = Kg(v, v − v′).

(2.2)

We refer to Qs as the “singular” part and Qns as the “non-singular” part.
Actually, to be fully rigorous, Qs should be defined using a principal value. We abuse notation

and suppress this as all our estimates occur over symmetric domains near the base point v and
are, thus, compatible with the limit involved in the principal value.

2.2. Previously established estimates and easy extensions. In this section, we state various
estimates on the collision operator that are well-known or are simple extensions of previous results.

Lemma 2.1 (Estimates of the kernel Kg). For all r > 0 and v ∈ R
3,

(i)

∫

B2r(v)\Br(v)

Kg(v
′, v) dv′,

∫

B2r(v)\Br(v)

Kg(v, v
′) dv′ . r−2s

∫

|g(z)||z − v|γ+2s dz.

(ii)

∣

∣

∣

∣

∫

[Kg(v, v
′)−Kg(v

′, v)] dv′
∣

∣

∣

∣

.

∫

|g(z)||z − v|γ dz.

(iii)

∫

Br(v)

(v′ − v)Kg(v, v
′) dv′ = 0.

(iv)
∣

∣

∣

∫

Br(v)

(v′ − v)Kg(v, v
′) dv

∣

∣

∣ .

∫

|g(z)||z − v′|1+γ dz.

Lemma 2.1 follows from [32, Lemmas 3.4, 3.5, 3.6, and 3.7]. The following lemma can be
regarded as a slight generalization of [29, Proposition 2.1].

Lemma 2.2. For 0 < s < 1, α > 2s, r > 0, and g : R3 → R+ there holds
∫

Br(v′)

Kg(v
′, v)|v − v′|αdv,

∫

Br(v′)

Kg(v, v
′)|v − v′|αdv . rα−2s

∫

|g(w)||v − w|γ+2sdw.

Proof. The proofs of both inequalities are similar, so we show only the latter. Assume without
loss of generality that g ≥ 0. We proceed with a simple annular decomposition paired with the
existing estimate Lemma 2.1.(i). Indeed, letting Ak = B2−kr(v

′) \B2−k−1r(v
′), we have

∫

Br(v′)

Kg(v, v
′)|v − v′|αdv =

∞
∑

k=0

∫

Ak

Kg(v, v
′)|v − v′|αdv ≤

∞
∑

k=0

2−αkrα
∫

Ak

Kg(v, v
′)dv

≤

∞
∑

k=0

2−αkrα
∫

Bc

2−k−1r
(v′)

Kg(v, v
′)dv .

∞
∑

k=0

2−k(α−2s)rα−2s

∫

g(w)|v′ − w|γ+2sdw.

The claim then follows due to the fact that the sum over k is finite. �

The next lemma concerns bounds on Kg via ‖g‖L∞,m.
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Lemma 2.3. Fix any m > 3 + γ + 2s, g ∈ L∞,m, and v, v′ ∈ R
3. Then

|Kg(v, v
′)| .

1

|v − v′|3+2s
‖g‖L∞,m〈v〉γ+2s+1.

We omit the proof as this is obvious from (2.2) and a straightforward parametrization of the
2-dimensional hyperplane that is the domain of integration.

On the other hand, under a smallness condition on v′, we can establish a refined estimate
involving the decay of g. To our knowledge this was first observed in [26, equation (4.39)] but not
stated as a stand-alone lemma or given a proof in complete generality. As such, we include it here.

Lemma 2.4. Fix any m > 3 + γ + 2s, θ ∈ (0, 1), g ∈ L∞,m, and v, v′ ∈ R
3 with (1− θ)|v| ≥ |v′|.

Then

|Kg(v, v
′)| .

1

|v − v′|3+2s
‖g‖L∞,m〈v〉γ+2s+3−m.

As the proof of Lemma 2.4 is longer than the others of this subsection, we include it in Section 4;
however, it is simply a more careful writing of the ideas in the proof of [26, equation (4.39)].

The next lemma provides estimates for the non-singular part Qns. Recall (2.2). Then, we have
the following estimates.

Lemma 2.5. Suppose that f, g : T3 × R
3 → R. Then, for any ǫ > 0 and n ≥ 0,

‖Qns(g, f)‖L2,n .

{

‖g‖L∞,3+γ+ǫ‖f‖L2,n

‖g‖L2,n‖f‖L∞,n+ǫ+3/2+γ+(3/2−n)+ .

Remark. The first inequality in Lemma 2.5 is obvious by writing Qns(g, f) = (S∗g)f and bounding
S ∗ g in L∞ using the weighted L∞ norm of g. The second inequality can be easily proved by using
our weighted Young’s inequality Lemma 4.2. As this proof is straightforward from the statement
of Lemma 4.2, we omit the details.

We also require the following from [26, Lemma 2.6]:

Lemma 2.6 (Interpolation lemma). If n,m ≥ 0, k′ ∈ (0, k), and l < (m− 3
2 )(1−

k′

k ) + nk′

k , then

‖f‖Hk′,l . ‖f‖
1−k′

k

L∞,m‖f‖
k′

k

Hk,n .

2.3. New estimates. We now state new estimates on the collision operator that are crucial
to allowing us to extend well-posedness to the full range of soft potentials. The prior similar
work [26] relied heavily on [26, Theorem 2.4, Proposition 2.5, and Proposition 3.1]. The first two
come directly from [4, Proposition 2.9 and 2.8], respectively. Each result, unfortunately, requires
γ+2s > − 3

2 . Thus, these are not applicable in our setting, and the main issue of the present work
is to obtain suitable replacements, which we state here.

The first is a commutator estimate (cf. [4, Proposition 2.8], [26, Proposition 2.5]).

Proposition 2.7 (Commutator estimate). For any ǫ > 0, γ ∈ (−3, 0], µ ∈ ((1 − 2s)+, 2 − 2s),
m > max{3 + γ + 2s, ℓ+ γ + 3

2}, ℓ >
3
2 , and f, g : R

3 → R, we have

‖〈v〉ℓQs(g, f)−Qs(g, 〈v〉
ℓf)‖L2 . (‖f‖L2,ℓ+3/2+ǫ + ‖f‖H2s−1+µ,µ+ℓ+γ+2s)‖g‖L∞,m.

The next estimates concern Qs(g, f) and involve only the v-variable.

Proposition 2.8. For any f, g : R3 → R, γ ∈ (−3, 0], γ + 2s ≤ 0, and ǫ > 0:

(i) If θ ∈ (0, 2s), then
∫

Qs(g, f)hdv . ‖g‖L∞,3+γ+2s+ǫ‖f‖H2s−θ‖h‖Hθ .

(ii) If θ > 0, then
‖Qs(g, f)‖L2 . ‖g‖L∞,3+γ+2s+ǫ‖f‖H2s+θ .
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(iii) If n > 3/2 + γ + 2s, m > 3/2 + γ + (3/2− n)+, and α > 2s, then

‖Qs(g, f)‖L2,n . ‖g‖L2,n

(

‖f‖L∞,m + ‖〈v〉n+5/2+(3/2−n)++α+γ+ǫf‖Cα
v

)

.

(iv) If n ≥ 0 and m > n+ 6 + γ + 2s, we have
∫

〈v〉2nfQs(g, f) dv . ‖g‖L∞,m‖f‖2L2,n.

The first two parts above, (i) and (ii), rely heavily on the work in [32]; however, that reference
is focused on local estimates and, as such, is not concerned with understanding the dependence on
weights. Combined they are a replacement for [26, Theorem 2.4] (see also [4, Proposition 2.9]). The
second two parts above, (iii) and (iv), are new. They are replacements for [26, Proposition 3.1.(i)
and (iii)], respectively.

We make two brief remarks. First, the result (i) is a slight generalization of the results in [32] as
it allows to choose θ in (i). Second, the result (ii) almost certainly holds without θ = 0; however,
as this is not needed for our purposes and the current statement is easy to derive from [32], we are
content to use (ii) as is.

The final estimate makes use of symmetry properties of Qs in order to avoid having more than
one full derivative “land” on f . This is crucial in case two of the proof of the main a priori estimate
Proposition 3.1. It is a replacement for [26, Proposition 3.1.(iv)].

Proposition 2.9. Suppose that f, g : T3 ×R
3 → R. If γ ∈ (−3, 0], ǫ > 0, µ ∈ ((1− 2s)+, 2− 2s),

κ ∈ (s,min{2s, 1}), n > 3
2 , and m > max{3 + γ + 2s, n+ γ + 3

2}. Then
∣

∣

∣

∫

〈v〉2nQs(g, f)∂fdvdx
∣

∣

∣ . ‖g‖L∞,m (‖f‖L2,n+3/2+ǫ + ‖f‖H2s−1+µ,µ+n+γ+2s) ‖f‖H1,n

+ ‖∂g‖H3/2+(2s−1/2)++ǫ,3+γ+2s+ǫ‖f‖2H1,n + ‖g‖Cκ,3+ǫ‖f‖Hs,n+3/2+ǫ+(γ+2s+1)+‖f‖H1,n ,

where ∂ = ∂xi or ∂vi for some i ∈ {1, 2, 3}.

Recall that we prove the above estimates in Section 4.

3. Existence and uniqueness of solutions: Theorem 1.1

In this section, we prove Theorem 1.1. The majority of the work is in the proof of existence and
our approach for this follows [26] closely. Indeed, the construction procedure is similar, relying on
exhibiting a solution to a suitably regularized and linearized problem. We then use compactness
to deregularize and a fixed point argument to pass from the linearized problem to the nonlinear
one. The main novelty to the current work as compared to [26] is in the establishment of a priori

estimates in Y k,n,m
T of the regularized and linearized problem. When possible, we omit details that

are unchanged from [26].

3.1. Proof of existence in Theorem 1.1. First, we define a smooth cut-off function ψ : R3 → R

with 0 ≤ ψ ≤ 1,
∫

ψ(v) dv = 1,

ψ = 1, on B1/2 and ψ = 0 on Bc
1.

Next, for any φ : T3 × R
3 → R and ǫ > 0, we define

φǫ(x, v) =
1

ǫ6

∫

ψ
(x− y

ǫ

)

ψ
(v − w

ǫ

)

φ(y, w) dydw.

Then we define the regularized collision operator, for any δ > 0 and (x, v) ∈ T
3 × R

3,

Qǫ,δ(g(x, ·), f(x, ·))(v) = ψ(δv)Q(gǫ(x, ·), ψ(δ·)f(x, ·)).

Finally, for any σ ∈ [0, 1], we define the differential operator

Lσ,ǫ,δ(f) = ∂tf + σψ(δv)v · ∇xf − (ǫ + (1− σ))∆x,vf − σQǫ,δ(g, f).(3.1)
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The intuition for the above regularizations and cut-offs is given in [26, Section 3].
We now establish a priori estimates that hold for both the full equation and the regularized one

above. This is done in the following proposition.

Proposition 3.1. Suppose that T > 0, k ≥ 5, n > 3/2 + (γ + 2s)+, σ ∈ [0, 1], ǫ, δ ≥ 0, and m ≥ 0.

Suppose that R, f ∈ Y k,n,m
T

(3.2)

{

Lσ,ǫ,δf = R, in (0, T )× T
3 × R

3

f(0, ·, ·) = fin, in T
3 × R

3.

For any µ > 0, if δ = 0 and m ≥ 3/2 + µ or if δ > 0, then

‖f‖L∞,m ≤ exp
{

C

∫ T

0

‖g(t)‖L∞,max{m,3/2+µ}dt
}(

‖fin‖L∞,m +

∫ T

0

‖R(t)‖L∞,mdt
)

.(3.3)

If δ = 0 and m is sufficiently large depending on k, n, γ, and s, then

‖f‖L∞,m([0,T ];Hk,n
x,v ) ≤ exp

{

C

∫ T

0

‖g(t)‖Xk,n,m
x,v

dt
}(

(1 + T )‖fin‖Xk,n,m
x,v

+

∫ T

0

‖R(t)‖Xk,n,m
x,v

dt
)

.

(3.4)

Now, we prove Proposition 3.1. The proof follows that of [26, Proposition 3.1] with small changes
due to the new estimates on the collision operator necessary in our setting.

Proof. The argument of (3.3) goes exactly as that in [26, Proposition 3.1] and hence we omit the
proof here. Now we focus on proving (3.4). First, we let α, β ∈ N

3
0 be any multi-indices such that

|α| + |β| = k. Then, differentiating eq. (3.1), multiplying the resulting equation by 〈v〉2n∂αx ∂
β
v f ,

integrating in x and v, we get

1

2

d

dt

∫

|〈v〉n∂αx ∂
β
v f |

2 dxdv = −σ

∫

(

3
∑

i=1

βi∂xi∂
α
x ∂

β−ei
v f

)

〈v〉2n∂αx ∂
β
v f dxdv

+ σ
∑

α′+α′′=α
β′+β′′=β

Cα′,β′,α′′,β′′

∫

Q(∂α
′

x ∂
β′

v g, ∂
α′

x ∂
β′

v f)〈v〉
2n∂αx ∂

β
v f dxdv

− (ǫ+ 1− σ)

∫

|∇x,v∂
α
x ∂

β
v f |

2 +

∫

∂αx ∂
β
vR〈v〉

2n∂αx ∂
β
v f dxdv

= I1 + I2 + I3 + I4,

for some constants Cα′,β′,α′′,β′′ > 0 depending only on the subscripted quantities.
We see that I1 is bounded by ‖f‖2Hk,n , I4 is bounded by ‖R‖2Hk,n + ‖f‖2Hk,n , and I3 has a good

sign. Thus, our focus is primarily on I2, the term involving the collision operator Q. We argue
case by case depending on the size of |α′′|+ |β′′| in order to establish that

I2 . ‖g‖Xk,n,m‖f‖2Xk,n,m .(3.5)

The proof of (3.5) is postponed momentarily while we show how to conclude. Indeed, assuming
(3.5) is proved, we arrive at

1

2

d

dt

∫

|〈v〉n∂αx ∂
β
v f |

2 dxdv . (‖g‖Xk,n,m + 1)‖f‖2Xk,n,m + ‖R‖2Hk,n .(3.6)

Recalling the definition of Xk,n,m in (1.3) and using (3.3), we find

1

2

d

dt
‖f‖2Hk,n . (‖g(t)‖Xk,n,m + 1)‖f‖2Hk,n

+ (‖g(t)‖Xk,n,m + 1) exp

{

C

∫ T

0

‖g(t)‖Xk,n,mdt

}

(

‖fin‖
2
L∞,m + ‖R‖2Xk,n,m

)

.
(3.7)
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Therefore, we conclude the proof of equation (3.4) by applying Grönwall inequality.
We now establish (3.5). For notational ease, we set

F = ∂α
′′

x ∂β
′′

v f, G = ∂α
′

x ∂
β′

v g.(3.8)

Thus, we are estimating terms of the form
∫

〈v〉2nQ(G,F )∂α
′

x ∂β
′

v Fdvdx

=

∫

〈v〉2nQs(G,F )∂
α′

x ∂β
′

v Fdvdx +

∫

〈v〉2nQns(G,F )∂
α′

x ∂β
′

v Fdvdx.

(3.9)

Case one: |α′′|+ |β′′| = k, i.e., α′′ = α, β′′ = β, and in the form of
∫

〈v〉2nQ(g, F )F .
We estimate the Qs term first. We proceed by using Proposition 2.8.(iv), up to increasing m if
necessary,

∫

〈v〉2nQs(g, F )F dvdx .

∫

‖F‖2
L2,n

v
‖g‖L∞,m

v
dx . ‖F‖2L2,n‖g‖L∞,m

. ‖f‖2Hk,n‖g‖L∞,m . ‖f‖2Xk,n,m‖g‖Xk,n,m ,

as desired.
Furthermore, for

∫

〈v〉2nQns(g, F )F dvdx, we recall (2.1) and apply Lemma 2.5 to find
∫

〈v〉2nQns(g, F )F dvdx ≈

∫

〈v〉2n(Sγ ∗ g)F 2dvdx .

∫

‖g‖L∞,n
v

‖F‖2
L2,n

v
dx

. ‖g‖L∞,m‖F‖L2,n . ‖g‖L∞,m‖f‖2Hk,n ≤ ‖g‖Xk,n,m‖f‖2Xk,n,m.

This concludes the proof of (3.5) in case one.

Case two: |α′′| + |β′′| = k − 1, and in the form,
∫

〈v〉2nQ(∂g, F )∂F . Here we denote

derivative operator ∂ = ∂α
′

x ∂
β′

v as |α′|+ |β′| = 1.
We first estimate the Qs portion. Fix ǫ ∈ (0,min{s, 1− s}). Let µ = (1 − 2s)+ + ǫ, κ = s+ ǫ,

and m̃ = ǫ+max{3 + γ + 2s, n+ γ + 3/2}. We then directly apply Proposition 2.9 to find
∣

∣

∣

∣

∫

〈v〉2nQs(∂g, F )∂Fdvdx

∣

∣

∣

∣

. ‖∂g‖L∞,m̃‖F‖H2s−1+µ,µ+n+3/2‖F‖H1,n

+ ‖∂2g‖H3−s,3+ǫ‖F‖2H1,n + ‖∂g‖Cκ,3+ǫ‖F‖Hs,n+5/2+ǫ‖F‖H1,n

. ‖∂g‖L∞,m̃‖f‖Hk−2(1−s)+µ,µ+n+3/2‖f‖Hk,n

+ ‖∂2g‖H3−s,3+ǫ‖f‖2Hk,n + ‖∂g‖Cκ,3+ǫ‖f‖Hk−(1−s),n+5/2+ǫ‖f‖Hk,n .

Applying the Sobolev embedding theorem on terms involving g and then Lemma 2.6 (up to in-
creasing m if necessary) yields
∣

∣

∣

∣

∫

〈v〉2nQs(∂g, F )∂Fdvdx

∣

∣

∣

∣

. ‖g‖H4+ǫ,m̃‖f‖Hk−(2−2s)+µ,µ+n+3/2‖f‖Hk,n + ‖g‖H5−s,3+ǫ‖f‖2Hk,n

+ ‖g‖H4+κ,3+ǫ‖f‖Hk−(1−s),n+5/2+ǫ‖f‖Hk,n . ‖g‖Xk,n,m‖f‖2Xk,n,m.

The estimate of the non-singular part Qns is the same as in the previous case and is thus omitted.

Case three: |α′′|+ |β′′| = k − 2 and |α′|+ |β′| = 2. First, we estimate the Qs term. We see
∫

〈v〉2nQs(G,F )∂
α
x ∂

β
v f dvdx ≤ ‖Qs(G,F )‖L2,n‖f‖Hk,n

≤ (‖Qs(G, 〈v〉
nF )− 〈v〉nQs(G,F )‖L2 + ‖Qs(G, 〈v〉

nF )‖L2) ‖f‖Hk,n

=: (B1 +B2)‖f‖Hk,n .

(3.10)
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We estimate B2 first. Fix any θ ∈ (0,min{ 2−2s
3 , 34}) and let p = 3/(4θ) and q = 3

3−4θ . Then we

apply Proposition 2.8.(ii), Hölder’s inequality, and the Sobolev embedding theorem to find

B2 .
(

∫

‖G‖2
L∞,3

v
‖F‖2

H2s+θ,n
v

dx
)1/2

. ‖G‖L2p
x L∞,3

v
‖F‖L2q

x H2s+θ,n
v

. ‖G‖
H

3/2−2θ
x H

3/2+θ,3
v

‖F‖H2θ
x H2s+θ,n

v
. ‖G‖H3−θ,3‖F‖H2s+3θ,n . ‖g‖Xk,n,m‖f‖Xk,n,m.

The last inequality follows by our choice of θ.
For B1, for any µ ∈ ((1 − 2s)+, 2 − 2s) and m̃ = 1 + max{3, n + γ + 3/2}, we appeal to our

commutator estimate Proposition 2.7, the Cauchy-Schwarz inequality, and the Sobolev embedding
theorem to obtain:

B1 .

(∫

(‖F‖L2,n+2
v

+ ‖F‖H2s−1+µ,µ+n
v

)2‖G‖2
L∞,m̃

v
dx

)1/2

. ‖G‖L4
xL

∞,m̃
v

(

‖F‖L4
xL

2,n+2
v

+ ‖F‖L4
xH

2s−1+µ,µ+n
v

)

. ‖G‖H5/2,m̃

(

‖F‖H3/4,n+2 + ‖F‖
H

2s−1/4+µ,µ+n
v

)

. ‖g‖H9/2,m̃(‖f‖Hk−5/4,n+2 + ‖f‖Hk+2s−9/4+µ,µ+n).

Notice that 2s− 9/4+ µ < 0 as µ < 2− 2s. With this, observe that all three norms above involve
regularity of order strictly less than k. Hence, assuming m is sufficiently large, the interpolation
lemma Lemma 2.6 yields

B1 . ‖g‖Xk,n,m‖f‖Xk,n,m .

This concludes the estimates for the singular part.
For the non-singular part, we apply Lemma 2.5 to find
∫

〈v〉2nQns(G,F )∂
α
x ∂

β
v f dvdx . ‖f‖Hk,n‖Qns(G,F )‖L2,n . ‖f‖Hk,n‖G‖L∞,3+γ+ǫ‖F‖L2,n .

Using the Sobolev embedding theorem and Lemma 2.6, we obtain the desired estimate
∫

〈v〉2nQns(G,F )∂
α
x ∂

β
v f dvdx . ‖g‖Xk,n,m‖f‖2Xk,n,m .

This concludes the proof of (3.5) in this case.

Case four: |α′′|+ |β′′| = k − 3 and |α′| + |β′| = 3. The proof of (3.5) in this case is exactly
as in case three, except with the choices

θ ∈

(

0,min

{

1

2
,
5− 4s

6

})

, p =
3

1 + 4θ
, and q =

3

2− 4θ

in the estimate of Qs. As such, we omit the proof.

Case five: |α′′|+ |β′′| = k − 4 and |α′|+ |β′| = 4. We begin with the singular term:
∫

〈v〉2nQs(G,F )∂
α
x ∂

β
v f dvdx . ‖∂αx ∂

β
v f‖L2,n‖Qs(G,F )‖L2,n ≤ ‖f‖Hk,n‖Qs(G,F )‖L2,n .

It is clear that we need only bound the last term above. Recalling Proposition 2.8.(iii), we have,
for any µ ∈ ((2s− 1)+, 1),

‖Qs(G,F )‖L2,n
v

.
(

‖F‖L∞,3
v

+ ‖〈v〉n+5/2+µF‖C1+µ
v

)

‖G‖L2,n
v
.

Applying the Sobolev embedding theorem with m̃ sufficiently large (depending only on n), we
obtain, for ǫ = (1− µ)/4,

‖Qs(G,F )‖L2,n
v

. ‖F‖
H

5/2+µ+ǫ,m̃
v

‖G‖L2,n
v
.
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Using Hölder’s inequality and the Sobolev embedding theorem yields

‖Qs(G,F )‖
2
L2,n .

∫

‖F‖2
H

5/2+µ+ǫ,m̃
v

‖G‖2
L2,n

v
dx ≤ ‖F‖2

L3
xH

5/2+µ+ǫ,m̃
v

‖G‖2
L6

xL
2,n
v

. ‖F‖2
H

1/2
x H

5/2+µ+ǫ,m̃
v

‖G‖2H1,n ≤ ‖g‖2Hk,n‖f‖
2
Hk−1+µ+ǫ,m̃ .

To control the last term, we use the interpolation lemma, Lemma 2.6 and that, by construction,
µ+ ǫ < 1, to find

‖f‖Hk−1+µ,m̃ . ‖f‖Xk,n,m

as long as m is sufficiently large depending only on n and s. This concludes the proof of the bound
of the singular term.

We now consider the non-singular part. As above, it is enough to bound ‖Qns(G,F )‖L2,n . To
this end, applying Lemma 2.5 yields

‖Qns(G,F )‖
2
L2,n .

(∫

‖F‖2
L∞,n+3

v
‖G‖2

L2,n
v
dx

)1/2

. ‖F‖2L∞,n+3‖G‖2L2,n ≤ ‖F‖2L∞,n+3‖g‖2Xk,n,m .

Thus, we need only bound the norm of F on the right hand side. By the Sobolev embedding
theorem and the interpolation lemma Lemma 2.6, we find

‖F‖L∞,n+3 . ‖F‖H7/2+1/4,n+3 . ‖f‖Hk−1/4,n+3 . ‖f‖Xk,n,m ,

as long as m is sufficiently large. This concludes the proof of (3.5) in case five.

Case six: |α′′|+ |β′′| ≤ k− 5 and |α′|+ |β′| ≥ 5. We begin by bounding the term with Qs. As
above, it is enough to bound Qs(G,F ) in L

2,n. First, by Proposition 2.8.(iii) with µ ∈ ((2s−1)+, 1),
we find

‖Qs(G,F )‖
2
L2,n .

∫

‖G‖2
L2,n

v

(

‖F‖2L∞,m
v

+ ‖〈v〉n+5/2+µF‖2C1+µ

)

dx.

Applying the Sobolev embedding theorem and letting ǫ = (1 − µ)/2, we obtain

‖Qs(G,F )‖
2
L2,n .

∫

‖G‖2
L2,n

v
‖F‖2

H
5/2+µ,m̃
v

dx ≤ ‖G‖2L2,n‖F‖2
L∞

x H
5/2+µ,m̃
v

. ‖G‖2L2,n‖F‖2H4+µ+ǫ,m̃ . ‖g‖2Hk,n‖f‖
2
Hk−1+µ+ǫ,m̃ ,

where m̃ is a constant depending only on n. The proof concludes as in the previous case by using
the fact that k − 1 + µ+ ǫ < k and Lemma 2.6.

The estimate of the non-singular part Qns is the same as in the previous case and is thus omitted.
This concludes the proof of (3.5) in case six and, thus, all cases. �

Having established the bounds above, we now construct a solution.

Proposition 3.2 (Construction of solution in the linear equation). Fix T > 0, a function g ∈

Y k,n,m
T , and the initial data 0 ≤ fin ∈ Xk,n,m. Then there exists f ∈ Y k,n,m

T such that

ft + v · ∇xf = Q(g, f)(3.11)

and f(0, ·, ·) = fin. Moreover, f ≥ 0.

Proof. The proof of [26, Proposition 3.3] can be adapted verbatim as it requires only the established
bounds in [26, Proposition 3.2] (the analogue of our Proposition 3.1). The proof is composed
of three steps: (1) due to the Laplacian in Lσ,ǫ,δ, apply the Schauder estimates to establish
boundedness of a linear operator involving of Lσ,ǫ,δ; (2) apply the method of continuity to construct
the solution of Lσ,ǫ,δf = 0 using the bounds from the previous step, and (3) use the a priori
estimates from Proposition 3.1 to deregularize. Due to its similarity to [26, Proposition 3.3], we
omit the details. �
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Proof of existence in Theorem 1.1. The idea used to prove [26, Theorem 2.1] is to construct a
sequence fi solving

(∂t + v · ∇x)fi = Q(fi−1, fi),

establishing the boundedness of this sequence inductively, and taking the limit i → ∞. Notice
that we have the same bounds in Proposition 3.1 as in [26, Proposition 3.2], which is the crux of
argument. Thus, the proof in our setting will be unchanged and we omit the details. �

3.2. Proof of uniqueness in Theorem 1.1. We now finish the proof of Theorem 1.1 by estab-
lishing uniqueness.

Proof of uniqueness in Theorem 1.1. Consider any two solutions f and g of (1.1) with f(0, ·, ·) =
g(0, ·, ·) = fin and set h = f − g. We have

ht + v · ∇xh = Q(f, h) +Q(h, g).(3.12)

Then, we multiply (3.12) by 〈v〉2nh and integrate with respect to v and x, yielding

1

2

d

dt
‖h‖2L2,n =

∫

〈v〉2nQ(f, h)h dvdx+

∫

〈v〉2nQ(h, g)h dvdx = I1 + I2,(3.13)

where

I1 =

∫

〈v〉2nQs(f, h)h dvdx +

∫

〈v〉2nQns(f, h)h dvdx = I11 + I12(3.14)

and

I2 =

∫

〈v〉2nQs(h, g)h dvdx+

∫

〈v〉2nQns(h, g)h dvdx = I21 + I22.(3.15)

For I11, Proposition 2.8.(iv) yields, for m̃ sufficiently large,

(3.16) I11 .

∫

‖h‖2
L2,n

v
‖f‖L∞,m̃

v
dx . ‖h‖2

L2
xL

2,n
v

‖f‖L∞
x L∞,m̃

v
. ‖h‖2L2,n‖f‖Xk,n,m .

For I12, we apply Lemma 2.5 to obtain

(3.17) I12 . ‖h‖2L2,n‖f‖L∞,3+γ+ǫ . ‖h‖2L2,n‖f‖Xk,n,m.

For I21, fix α ∈ (2s, 2), ǫ = (2 − α)/2, and m̃ be sufficiently large and apply Proposition 2.8.(iii)
to find

I21 .

∫

‖h‖2
L2,n

v

(

‖g‖L∞,m
v

+ ‖〈v〉m̃g‖Cα
v

)

dx . ‖h‖2L2,n‖g‖L∞
x H

3/2+α,m̃
v

. ‖h‖2L2,n‖g‖H3+α+ǫ,m̃ . ‖h‖2L2,n‖g‖Xk,n,m.

(3.18)

For I22, apply Lemma 2.5 to find

I22 . ‖h‖2L2,n‖g‖L∞,n+3 . ‖h‖2L2,n‖g‖Xk,n,m .(3.19)

Combining the estimates of I11, I12, I21, and I22, that is, (3.16)-(3.19), and recalling that
‖f‖Xk,n,m , ‖g‖Xk,n,m . 1, we find

d

dt
‖h(t)‖2L2,n . ‖h(t)‖2L2,n .

The Grönwall inequality and the fact that h(0, ·, ·) = 0 implies that h = 0. We deduce that f = g,
concluding the proof. �
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4. Proof of the estimates on the collision operator Q

4.1. Proof of the refined estimate on Kg Lemma 2.4.

Proof. We first show that |v + w| ≈ |v| + |w| for any w ∈ (v − v′)⊥. The “.” inequality is clear,
so we show the other inequality:

|v + w|2 = |v|2 + 2v · w + |w|2 = |v|2 + 2v′ · w + |w|2 ≥ |v|2 −
1

1− θ
|v′|2 − (1− θ)|w|2 + |w|2

≥ |v|2 − (1− θ)|v|2 − (1− θ)|w|2 + |w|2 = θ|v|2 + θ|w|2.

In the second equality, we used that (v − v′) · w = 0, in the first inequality, we used Young’s
inequality, and in the second inequality, we used the hypothesis that (1− θ)|v| ≥ |v′|.

Recalling (2.2) and changing variables, we have

|v − v′|3+2sKg(v, v
′) ≈

∫

v+(v′−v)⊥
g(w)|v − w|γ+2s+1 dw =

∫

(v′−v)⊥
g(v + w)|w|γ+2s+1 dw.

Clearly, it is enough to simply bound the integral on the right hand side. Using that |v + w| ≈
|v|+ |w|, as established above, we see that

∣

∣

∣

∫

(v′−v)⊥
g(v + w)|w|γ+2s+1 dw

∣

∣

∣ . ‖g‖L∞,m

∫

(v′−v)⊥

|v|γ+2s+1

〈v + w〉m
dw

. ‖g‖L∞,m

∫

(v′−v)⊥

|w|γ+2s+1

〈v〉m + 〈w〉m
dw

= ‖g‖L∞,m

∫

(v′−v)⊥∩B〈v〉

|w|γ+2s+1

〈v〉m + 〈w〉m
dw + ‖g‖L∞,m

∫

(v′−v)⊥∩Bc
〈v〉

|w|γ+2s+1

〈v〉m + 〈w〉m
dw

= ‖g‖L∞,m (I1 + I2) .

(4.1)

For I1, that is, w ∈ B〈v〉, we use the fact that

(4.2)
|w|γ+2s+1

〈v〉m + 〈w〉m
. |w|γ+2s+1〈v〉−m.

Thus, we see (recall we are integrating over a subset of a two-dimensional hyperplane)

I1 . 〈v〉−m

∫

(v′−v)⊥∩B〈v〉

|w|γ+2s+1 dw . 〈v〉γ+2s+3−m.(4.3)

For I2, that is, w ∈ Bc
〈v〉, we have

|w|γ+2s+1

〈v〉m + 〈w〉m
.

|w|γ+2s+1

〈w〉m
. 〈w〉γ+2s+1−m.(4.4)

Therefore, we get (again, recall, we are integrating over a subset of a two-dimensional hyperplane)

I2 .

∫

(v′−v)⊥∩Bc
〈v〉

〈w〉γ+2s+1−m dw . 〈v〉γ+2s+3−m.(4.5)

Combining (4.1), (4.3), and (4.5), we obtain the desired inequality, concluding the proof. �

4.2. Commutator estimate: proof of Proposition 2.7. Before beginning, we require a helper
lemmas concerning the weighted Sobolev norms. While this result is somewhat elementary, we do
not know of a reference.

Lemma 4.1. For s̃ ∈ (0, 1), R > 0, ℓ ≥ 0, and D = {(v, v′) ∈ R
6 : |v− v′| ≤ 〈v〉/R}, we have, for

any f ∈ H s̃,ℓ(R3),

(4.6)

∫

D

〈v〉ℓ
|f(v)− f(v′)|2

|v − v′|3+2s̃
dv′dv . ‖f‖2Hs̃,ℓ .
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Before beginning we remark briefly about the content of Lemma 4.1. Recall that ‖f‖Ḣs̃ =
∫ |f(v)−f(v′)|2

|v−v′|3+2s̃ dv′dv and, hence,

‖f‖2Hs̃,ℓ = ‖〈v〉ℓf‖2Hs̃ = ‖〈v〉ℓf‖2L2 +

∫

|〈v〉ℓf(v)− 〈v′〉ℓf(v′)|2

|v − v′|3+2s̃
dvdv′.

The difference between the quantity above and the left hand side of (4.6) is now clear.

Proof. To begin, we use the triangle inequality and that (a+ b)2 ≤ 2a2 + 2b2 to find
∫

D

〈v〉ℓ
|f(v)− f(v′)|2

|v − v′|3+2s̃
dv′dv .

∫

D

|〈v〉ℓf(v)− 〈v′〉ℓf(v′)|2 + |〈v〉ℓ − 〈v′〉ℓ|2|f(v′)|2

|v − v′|3+2s̃
dv′dv

=

∫

D

|〈v〉ℓf(v)− 〈v′〉ℓf(v′)|2

|v − v′|3+2s̃
dv′dv +

∫

D

|〈v〉ℓ − 〈v′〉ℓ|2|f(v′)|2

|v − v′|3+2s̃
dv′dv.

The first term above is clearly bounded above by ‖f‖Ḣs̃,ℓ simply by enlarging the domain of
integration. Hence, we consider only the second term.

For (v, v′) ∈ D, we find, via Taylor’s theorem, that |〈v〉ℓ − 〈v′〉ℓ|2 . 〈v〉2ℓ−2|v − v′|2. Thus,
∫

D

|〈v〉ℓ − 〈v′〉ℓ|2|f(v′)|2

|v − v′|3+2s
dv′dv .

∫

D

〈v〉2(ℓ−1)|f(v′)|2

|v − v′|1+2s
dv′dv.

Next, clearly there exists R̃ > 0 depending only on R such that D ⊂ {(v, v′) ∈ R
6 : |v − v′| ≤

〈v′〉/R̃}. Additionally, (v, v′) ∈ D implies that 〈v〉 ≈ 〈v′〉. These two facts yield
∫

D

|〈v〉ℓ − 〈v′〉ℓ|2|f(v′)|2

|v − v′|3+2s
dv′dv .

∫

〈v′〉2(ℓ−1)|f(v′)|2
∫

B〈v′〉/R̃(v′)

1

|v − v′|1+2s
dvdv′

.

∫

〈v′〉2(ℓ−1)|f(v′)|2〈v′〉2−2sdv′ .

∫

〈v′〉2ℓ|f(v′)|2dv′ = ‖f‖L2,ℓ ,

which concludes the proof. �

Proof of Proposition 2.7. We prove this using the characterization of the L2-norm via duality; that
is, fix any h ∈ L2(R3) and we estimate

∫

h
(

〈v〉ℓQs(g, f)−Qs(g, 〈v〉
ℓf)
)

dv.

For any v, let Rv = 〈v〉/10 and denote the diagonal strip

(4.7) D = {(v, v′) : |v − v′| < Rv}.

Recalling (2.1), we rewrite the quantity of interest as
∫

h
(

〈v〉ℓQs(g, f)−Qs(g, 〈v〉
ℓf)
)

dv =

∫

Kg(v, v
′)h(v)

(

〈v〉lf(v′)− 〈v′〉lf(v′)
)

dv′dv

=

∫

D

Kg(v, v
′)h(v)

(

〈v〉ℓf(v′)− 〈v′〉ℓf(v′)
)

dv′dv

+

∫

Dc

Kg(v, v
′)h(v)

(

〈v〉ℓf(v′)− 〈v′〉ℓf(v′)
)

dv′dv = I1 + I2.

(4.8)

We estimate each of I1 and I2 in turn.
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Step one: bounding I2. We further decompose I2 as

(4.9) I2 =

∫

Dc

Kg(v, v
′)h(v)〈v〉ℓf(v′) dv′dv −

∫

Dc

Kg(v, v
′)h(v)〈v′〉ℓf(v′) dv′dv = I21 − I22.

We first consider I22. Applying Lemma 2.3, we find

|I22| . ‖g‖L∞,m

∫

Dc

|h(v)|

|v − v′|3+2s
〈v〉γ+2s+1〈v′〉ℓ|f(v′)| dv′dv.(4.10)

Rewriting the limits of integration, using that |v − v′| & 〈v〉, and applying Cauchy-Schwarz in v′

yields

∫

Dc

|h(v)|

|v − v′|3+2s
〈v〉γ+2s+1〈v′〉ℓ|f(v′)| dv′dv =

∫

〈v〉γ+2s+1|h(v)|

(

∫

Bc
Rv

(v)

〈v′〉ℓ|f(v′)|

|v − v′|3+2s
dv′

)

dv

.

∫

〈v〉γ−2h(v)

(∫

〈v′〉−3−2ǫdv′
)1/2(∫

〈v′〉ℓ+3+2ǫf2(v′)dv′
)1/2

dv.

Noticing that the integral involving f is a weighted L2 norm of f , the middle integral is finite, and
combining this with (4.10), we obtain

|I22| . ‖g‖L∞,m‖f‖L2,ℓ+1

∫

〈v〉γ−
3
2 h(v)dv = ‖g‖L∞,m‖f‖L2,ℓ+3/2+ǫ‖h‖L2.(4.11)

We now consider I21. Here, we split the integral as follows:

I21 =

∫

Dc∩{|v′|≥|v|/10}

Kg(v, v
′)h(v)〈v〉ℓf(v′) dv′dv +

∫

Dc∩{|v′|≤|v|/10}

Kg(v, v
′)h(v)〈v〉ℓf(v′) dv′dv

= I211 + I212.

The estimate of I211 reduces to the estimate I22:

|I211| ≤

∫

Dc∩{|v′|≥|v|/10}

|Kg(v, v
′)h(v)〈v〉ℓf(v′)| dv′dv

.

∫

Dc∩{|v′|≥|v|/10}

|Kg(v, v
′)h(v)〈v′〉ℓf(v′)| dv′dv ≤

∫

Dc

|Kg(v, v
′)h(v)〈v′〉ℓf(v′)| dv′dv.

The last term above is exactly the term we estimate in (4.10); hence,

(4.12) |I211| . ‖g‖L∞,m‖f‖L2,ℓ+3/2+ǫ‖h‖L2.

Turning to I212, we get

|I212| . ‖g‖L∞,m

∫

Dc∩{|v′|≤|v|/10}

h(v)〈v〉ℓ+γ+2s+3−mf(v′)

|v − v′|3+2s
dv′dv.(4.13)
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After applying Cauchy-Schwarz to the integral in v′, a direct computation using that ℓ > 3/2
yields

∫

Dc∩{|v′|≤|v|/10}

h(v)〈v〉ℓ+γ+2s+3−mf(v′)

|v − v′|3+2s
dv′dv

≤

∫

〈v〉ℓ+γ+2s+3−mh(v)

(

∫

BRv (v)
c∩B|v|/10

〈v′〉−2ℓdv′

|v − v′|6+4s

)1/2
(∫

〈v′〉2ℓf2(v′) dv′
)1/2

dv

. ‖f‖L2,ℓ

∫

〈v〉ℓ+γ−mh(v)dv.

(4.14)

Using that m > ℓ+ γ + 3
2 , we conclude from (4.13) and (4.14) that

(4.15) |I212| . ‖g‖L∞,m‖f‖L2,ℓ‖h‖L1,ℓ+γ−m . ‖g‖L∞,m‖f‖L2,ℓ‖h‖L2.

Combining (4.11), (4.12), and (4.15) we deduce that

(4.16) |I2| . ‖f‖L2,ℓ+1‖g‖L∞,m‖h‖L2.

This concludes step one.

Step two: bounding I1. For notational convenience, let Wℓ(v) = 〈v〉ℓ. For any function ψ
and any velocities v and v′, let δψ = ψ(v)− ψ(v′) (we suppress the dependence on v and v′ as no
confusion will arise). Then, we rewrite I1 as

I1 =

∫

D

Kg(v, v
′)h(v)δf δWℓ dv

′dv +

∫

D

Kg(v, v
′)h(v)f(v)δWℓ dv

′dv = I11 + I12.

For I11, we see, by the definition of the kernel Kg and get that

(4.17) I211 . ‖g‖2L∞,m





∫

D

〈v〉γ+2s+1

|v − v′|3+2s
|h(v)||δf ||δWℓ| dv

′dv





2

.

Next, applying the Cauchy-Schwarz inequality yields




∫

D

〈v〉γ+2s+1

|v − v′|3+2s
|h(v)||δf ||δWℓ| dv

′dv





2

≤





∫

D

h(v)2

〈v〉2µ
|v − v′|−3+2µ dv′dv









∫

D

〈v〉2(µ+γ+2s+1) (δf)2(δWℓ)
2

|v − v′|3+4s+2µ
dv′dv



 .

(4.18)

We first consider the integral involving h. Recalling the definition of D (4.7), we find
∫

D

h(v)2|v − v′|−3+2µ〈v〉−2µ dv′dv ≤

∫

h(v)2〈v〉−2µ

∫

BRv (v)

|v − v′|−3+2µdv′dv

.

∫

h(v)2dv = ‖h‖2L2.

(4.19)

Next, we consider the second integral in (4.18). Recall that |v − v′| < Rv by the definition of
D, (4.7). Hence, by Taylor’s theorem, we have

|δWℓ|
2 . |v′ − v|2〈v〉2ℓ−2.
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Using this and Lemma 4.1, we find
∫

D

〈v〉2(µ+γ+2s+1)(δf)2(δWℓ)
2

|v − v′|3+4s+2µ
dv′dv .

∫

D

〈v〉2(µ+γ+2s+ℓ)(δf)2

|v − v′|3+2(2s−1+µ)
dv′dv . ‖f‖2H2s−1+µ,µ+ℓ .(4.20)

We conclude by combining (4.17)-(4.20) to obtain

(4.21) |I11| . ‖g‖L∞,m‖h‖L2‖f‖H2s−1+µ,µ+ℓ+γ+2s

We consider now I12. Using a second order Taylor expansion of Wℓ(v) = 〈v〉ℓ, we see that

I12 =

∫

D

Kg(v, v
′)h(v)f(v)δWℓ dv

′dv

=

∫

h(v)f(v)

∫

BRv (v)

Kg(v, v
′)

(

(DvWℓ)|v(v − v′) +
1

2
(v − v′) · (D2

vWℓ)|ξv,v′ (v − v′)

)

dv′dv

= I121 + I122,

where ξv,v′ = tv′ + (1− t)v for some t ∈ [0, 1]. For I121, we use Lemma 2.1.(iii) to obtain

(4.22) I121 = 0.

For I122, we use that |(D2
vWℓ)|ξv,v′ | . 〈v〉ℓ−2, due to the fact that v′ ∈ BRv(v), in order to find

|I122| .

∫

R3

|h(v)f(v)|

∫

BRv(v)

|Kg(v, v
′)|〈v〉ℓ−2|v − v′|2 dv′dv.

Thus, we have by appealing to Lemma 2.2

|I122| . ‖g‖L∞,m

∫

R3

|h(v)f(v)|〈v〉ℓ−2+γ+2s dv . ‖g‖L∞,m‖f‖L2,ℓ−2+γ+2s‖h‖L2.(4.23)

Combining (4.22) and (4.23) and the fact that ℓ+ 3/2 + ǫ > ℓ− 2 + γ + 2s, we find

(4.24) |I12| . ‖g‖L∞,m‖f‖L2,ℓ+1‖h‖L2.

Thus, by (4.21) and (4.24),

|I1| . (‖f‖L2,ℓ+3/2+ǫ + ‖f‖H2s−1+µ,µ+ℓ+γ+2s) ‖g‖L∞,m‖h‖L2.

This concludes step two, and, thus, the proof. �

4.3. Collection of Qs estimates: proof of Proposition 2.8.(i)-(iv).

4.3.1. Proof of Proposition 2.8.(i).

Proof. Let

(4.25) K̂g(v, v
′) =

1

‖g‖L∞,3+γ+2s+ǫ

Kg(v, v
′),

and we have that K̂g satisfies the conditions (4.2), (4.3), and (4.4) in [32, Section 4] uniformly in
v. This allows us to apply their general estimates, which we do now. For clarity, we adopt their
notation as closely as possible.

Let L̂g be the operator defined by replacing the kernel Kg with K̂g in Qs, and let L̂t
g be its

transpose. Letting ∆i be the Littlewood-Paley projectors as in [32, Proof of Theorem 4.1] and
using [32, Theorems 4.3 and 4.6], yields, for any θ,

‖L̂g∆if‖L2 . 2iθ‖∆if‖H2s−θ and ‖L̂t
g∆ih‖L2 . 2i(2s−θ)‖∆ih‖Hθ .

Also, recall that ‖∆iφ‖Hθ ≈ 2iθ‖∆iφ‖L2 for any θ, i and φ.
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Using all estimates above for any fixed θ ∈ (0, 2s) yields

1

‖g‖L∞,3+γ+2s+ǫ

∫

Qs(g, f)hdv =
1

‖g‖L∞,3+γ+2s+ǫ

∑

i,j

∫

Qs(g,∆if)∆jhdv

=
∑

i≤j

∫

(L̂g∆if)∆jhdv +
∑

θi>(2s−θ)j

∫

∆if(L̂
t
g∆jh)dv

.
∑

θi≤(2s−θ)j

2θi−(2s−θ)j‖∆if‖H2s−θ‖∆jg‖Hθ +
∑

θi>(2s−θ)j

2−θi+(2s−θ)j‖∆if‖H2s−θ‖∆jg‖Hθ

=
∑

i,j

2−|θi−(2s−θ)j|‖∆if‖H2s−θ‖∆jg‖Hθ

≤
(

∑

i,j

2−|θi−(2s−θ)j|‖∆if‖
2
H2s−θ

)1/2(∑

i,j

2−|θi−(2s−θ)j|‖∆jg‖
2
Hθ

)1/2

. ‖f‖H2s−θ‖g‖Hθ .

In the last inequality, we sum first over j, using that θ, 2s−θ > 0 by assumption, and then recalling
that

∑

i ‖∆if‖
2
H2s−θ ≈ ‖f‖2H2s−θ (and similarly for g). �

4.3.2. Proof of Proposition 2.8.(ii).

Proof. We adopt the notation and setting of the proof of Proposition 2.8.(i). Then

1

‖g‖
1/2
L∞,3+γ+2s+ǫ

‖Qs(g, f)‖L2 = ‖L̂gf‖L2 ≤

∞
∑

i=0

‖L̂g∆if‖L2 .

∞
∑

i=0

2−iθ‖∆if‖H2s+θ

.
(

∞
∑

i=0

‖∆if‖
2
H2s+θ

)1/2

≈ ‖f‖H2s+θ .

�

4.3.3. Proof of Proposition 2.8.(iii). In order to establish part (iii) of Proposition 2.8, we require an
analogue of Young’s convolution inequality in the setting of the weighted Lebesgue spaces in order
to handle terms of the form

∫

g(w)|v−w|γ+2sdw. These have been well-studied and are understood
in some generality (see, e.g., [22]). However, for the convenience of the reader and because we can
get a slightly sharper estimate (due to the specific form considered here), we include the proof.

Lemma 4.2 (Weighted Young’s inequality). Suppose that n > 3/2 + η, −3 < η < 0, and ℓ >
3/2 + η + (3/2− n)+. If g ∈ L2,n, then

(4.26)

∫

〈v〉−2ℓ

(∫

g(ṽ)|v − ṽ|η dṽ

)2

dv . ‖g‖2L2,n.

Proof. For succinctness, we let A(v) = |v|η and, without loss of generality we assume that g ≥ 0.
First, we decompose the integral on the left hand side yielding

∫

〈v〉−2ℓ(g ∗A)2 dv ≤

∫

〈v〉−2ℓ
(

∫

BRv (v)

g(v′)A(v − v′) dv′
)2

dv

+

∫

〈v〉−2ℓ
(

∫

Bc
Rv

(v)

g(v′)A(v − v′) dv′
)2

dv = I1 + I2.

For I1, we use Cauchy-Schwarz inequality to obtain

I1 ≤

∫

〈v〉−2ℓ
(

∫

B|v|/10(v)

g(v′)2A(v − v′) dv′
)(

∫

B|v|/10(v)

A(v − v′) dv′
)

dv

.

∫

〈v〉−2ℓ+3+η
(

∫

B|v|/10(v)

g(v′)2A(v − v′) dv′
)

dv.



LOCAL WELL-POSEDNESS FOR THE BOLTZMANN EQUATION 19

For v′ ∈ B|v|/10(v), we have 〈v′〉 ≈ 〈v〉 and v ∈ B|v′|/2(v
′). Therefore,

I1 .

∫

|g(v′)|2
∫

B|v′|/2(v
′)

〈v〉−2ℓ+3+ηA(v − v′) dv dv′

.

∫

|g(v′)|2〈v′〉−2ℓ+3+η

∫

B|v′|/2(v
′)

A(v − v′) dv dv′ .

∫

g(v′)2〈v′〉−2ℓ+2(3+η) dv′ . ‖g‖2L2,n,

where we used that −ℓ+ (3 + η) ≤ n. For I2, we apply the Cauchy-Schwarz inequality to find

I2 ≤

∫

〈v〉−2ℓ
(

∫

Bc
|v|/10

(v)

〈v′〉2n|g(v′)|2 dv′
)(

∫

Bc
|v|/10

(v)

〈v′〉−2n|v − v′|2η dv′
)

dv

. ‖g‖2L2,n

∫

〈v〉−2ℓ
(

∫

Bc
|v|/10

(v)

〈v′〉−2n|v − v′|2η dv′
)

dv . ‖g‖2L2,n

∫

〈v〉−2ℓ+(3−2n)++2η dv.

We conclude by using the conditions on n and ℓ. These were also used in the last inequality.
Combining the estimates of I1 and I2 finishes the proof. �

We are now able to prove Proposition 2.8.(iii).

Proof of Proposition 2.8.(iii). The proof is somewhat close to that of [26, Proposition 3.1.(i)],
so we omit details where steps are similar. We may, without loss of generality, assume that
α ∈ (0, 1) ∪ (1, 2). If not, we may simply take α′ < α such that α′ ∈ (0, 1) ∪ (1, 2) and use that

Cα −֒→ Cα′

. Finally, the proof is simpler when α < 1; hence, we consider only the case α ∈ (1, 2).
We begin with an annular decomposition: let Ak(v) = B2k|v|(v)\B2k−1|v|(v) and write:

(4.27) Qs(g, f) =
∑

k∈Z

∫

Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′.

Let µ̄ = n+ 5/2 + (3/2− n)+ + α+ γ + ǫ.

Step One: estimating the sum for any k ≤ 1. By using a Taylor expansion, we see

f(v′)− f(v) = ((Df)(ξv′,v)− (Df)(v)) · (v′ − v) + (Df)(v) · (v′ − v),

where ξv,v′ = tv′ + (1− t)v for some t ∈ [0, 1]. Thus, by Lemma 2.1.(i) and (iii),
∣

∣

∣

∫

Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′

∣

∣

∣ . 〈v〉−µ̄(2k|v|)α−2s‖〈·〉µ̄Df‖Cα

∫

|g(v′)||v − v′|γ+2s dv′.

Recalling that α− 2s > 0, by assumption, we have that |v|α−2s ≤ 〈v〉α−2s. Hence,
∫

(

∫

Ak(v)

〈v〉nKg(v, v
′)(f(v′)− f(v)) dv′

)2

dv

. 22k(1+α−2s)‖〈·〉µ̄Df‖2Cα

∫

〈v〉−2(µ̄−n−1−α+2s)

(∫

|g(v′)||v − v′|γ+2s dv′
)2

dv.

We are now in a position to apply the weighted Young’s convolution inequality Lemma 4.2. Indeed,
by construction, ℓ := µ̄− n− 1− α+ 2s and n satisfy the conditions of Lemma 4.2 so that

∫

(

∫

Ak(v)

〈v〉nKg(v, v
′)(f(v′)− f(v)) dv′

)2

dv . 22k(1+α−2s)‖〈·〉µ̄Df‖2Cα‖g‖2L2,n .

Step Two: estimating the sum for k ≥ 0 when |v′| ≥ 〈v〉/2. By Lemma 2.1.(i),
∣

∣

∣

∫

Ak\B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣

∣

∣ . 〈v〉−m‖f‖L∞,m

∫

Ak\B〈v〉/2

|Kg(v, v
′)| dv′

. 〈v〉m‖f‖L∞,m(2k〈v〉)−2s

(∫

|g(v′)||v − v′|γ+2s dv′
)

.
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Then, similar to Step One, we apply Lemma 4.2 to obtain

∫

〈v〉2n

∣

∣

∣

∣

∣

∣

∑

k≥0

∫

Ak\B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣

∣

∣

∣

∣

∣

2

dv

. ‖f‖2L∞,m

(

∑

k≥0

2−2ks
)2
∫

〈v〉2(n−m−2s)

(∫

|g(v′)||v − v′|γ+2s dv′
)2

dv . ‖f‖2L∞,m‖g‖2L2,n,

where we used n > 3/2 + γ + 2s and m > 3/2 + γ + (3/2− n)+.

Step Three: estimating the sum for k ≥ 0 when |v| ≤ 10 and |v′| ≤ 〈v〉/2. This is similar
to Step One. The benefit is we are integrating over a compact set in v. As such, we omit the proof
and simply state that

∫

B10

(

∑

k≥0

∫

Ak∩B〈v〉/2

〈v〉nKg(v, v
′)(f(v′)− f(v)) dv′

)2

dv

=

∫

B10

(

∫

B〈v〉/2\B|v|/2

〈v〉nKg(v, v
′)(f(v′)− f(v)) dv′

)2

dv . ‖Df‖2Cα‖g‖2L2,n.

Hence, we proved Step Three.

Step Four: estimating the sum for k ≥ 0 when |v| ≥ 10 and |v′| ≤ 〈v〉/2. For any |v| ≥ 10,
∣

∣

∣

∑

k≥0

∫

Ak∩B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣

∣

∣

.

∫

B〈v〉/2

K|g|(v, v
′)|f(v′)| dv′ +

∫

B〈v〉/2

K|g|(v, v
′)|f(v)| dv′ = I1 + I2.

For I2, we notice that B〈v〉/2 ⊆ (B2〈v〉(v)\B〈v〉/4(v)) due to the fact that |v| ≥ 10. Then by
Lemma 2.1.(i), we have

∫

B〈v〉/2

K|g|(v, v
′) dv′ .

∫

B2〈v〉(v)\B〈v〉/4(v)

K|g|(v, v
′) dv′ . 〈v〉−2s

∫

|g(v′)||v − v′|γ+2s dv′.

Applying the weighted Young’s inequality Lemma 4.2 yields
∫

〈v〉2nI22 dv .

∫

〈v〉2(n−2s)|f(v)|2
(∫

|g(v′)||v − v′|γ+2s dv′
)2

dv

. ‖f‖2L∞,m

∫

〈v〉−2m+2n−4s

(∫

|g(v′)||v − v′|γ+2s dv′
)2

dv . ‖f‖2L∞,m‖g‖2L2,n,

as desired. For I1, the proof is omitted as it is exactly as in [26, Proposition 3.1.(i)]. This finishes
the proof. �

4.3.4. Proof of Proposition 2.8.(iv).

Proof. Without loss of generality, we assume that f, g ≥ 0. Let F = 〈v〉nf(v). We see
∫

〈v〉2nQs(g, f)f dv =

∫

FQs(g, F ) dv +

∫

F [〈v〉nQs(g, f)−Qs(g, F )] dv = I1 + I2.

We further decompose I1 into three parts:

I1 = −

∫

[F (v)− F (v′)]2Kg(v, v
′) dv′dv +

∫ ∫

[Kg(v, v
′)−Kg(v

′, v)]F (v)F (v′) dv′ dv

−

∫

[Kg(v, v
′)−Kg(v

′, v)]F (v′)2 dv′ dv = I11 + I12 + I13.
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The first term, I11, has a good sign (and is used for cancellation below). The integrand in I12 is
antisymmetric with respect to the “pre-post change of variables” (v, v′) 7→ (v′, v), so I12 = 0. To
estimate I13, we use Lemma 2.1.(ii). Hence, we find

|I12| .

∫

F (v′)

∫

g(z)|z − v′|γ+2sdzdv′ . ‖g‖L∞,m‖F‖L2 = ‖g‖L∞,m‖f‖L2,n.

Here we used that m > 3 + γ + 2s and γ + 2s ≤ 0. This concludes the bound on I1.
For I2, we apply Young’s inequality to find

I2 =

∫

F (v)f(v′)Kg(v, v
′)(〈v〉n − 〈v′〉n) dv′dv

=

∫

(F (v)− F (v′))f(v′)Kg(v, v
′)(〈v〉n − 〈v′〉n) dv′dv +

∫

F (v′)f(v′)Kg(v, v
′)(〈v〉n − 〈v′〉n) dv′dv

≤ −
1

2
I11 +

1

2

∫

f2(v′)Kg(v, v
′)(〈v〉n − 〈v′〉n)2 dv′dv +

∫

F (v′)f(v′)Kg(v, v
′)(〈v〉n − 〈v′〉n) dv′dv.

Define the last two integrals to be I21 and I22. The argument for I21 is similar to and easier than
I22; hence, we omit it.

We now bound I22. To do so, we split the integral into domains of integration D, Dc ∩ {|v| ≤
10|v′|}, and Dc ∩ {|v| ≥ 10|v′|}, where D = {(v, v′) : 10|v − v′| ≤ min{〈v〉, 〈v′〉}}. We denote the
resulting integrals I221, I222, and I223, respectively.

Considering I221 first, we use a Taylor expansion, Lemma 2.1.(iv), Lemma 2.2, and the fact that
〈v〉 ≈ 〈v′〉 to find, for ξ between v and v′

|I221| ≤

∫

F (v′)2

〈v′〉

∫

B〈v′〉/2(v
′)

Kg(v, v
′)

[

(v − v′) · v′n〈v′〉n−2 +
n〈ξ〉n−2

2
(v − v′) ·

(

Id+
ξ ⊗ ξ

|ξ|2

)

(v − v′)

]

dvdv′

.

∫

F (v′)2

〈v′〉

∣

∣

∣

∫

B〈v′〉/2(v
′)

Kg(v, v
′)(v − v′)dv

∣

∣

∣
dv′ +

∫

F (v′)2

〈v′〉2

∫

B〈v′〉/2(v
′)

Kg(v, v
′)|v − v′|2dvdv′

.

∫

F (v′)2

〈v′〉

∫

g(w)|v′ − w|1+γdwdv′ +

∫

F (v′)2

〈v′〉2s

∫

g(w)|v′ − w|γ+2sdwdv′ . ‖g‖L∞,m‖f‖2L2,n .

Above, we used that m > 3 + γ + 2s.
Next we consider I222. In this case 〈v〉 . 〈v′〉; hence, using that Lemma 2.1.(i) and that

m > 3 + γ + 2s yields

|I222| .

∫

F (v′)2
∫

Bc
〈v′〉/2

(v′)

Kg(v, v
′)dvdv′ .

∫

F (v′)2

〈v′〉2s

∫

g(w)|v′−w|γ+2sdwdv′ . ‖g‖L∞,m‖f‖2L2,n.

Finally, we handle I223. Indeed, we use that 〈v′〉 . 〈v〉, the definition of D, and Lemma 2.4 to get
∣

∣

∣

∫

Dc∩{|v|≥10|v′|}

F (v′)f(v′)Kg(v, v
′)(〈v〉n − 〈v′〉n) dv′dv

∣

∣

∣

.

∫

Dc∩{|v|≥10|v′|}

F (v′)f(v′)Kg(v, v
′)〈v〉n dv′dv

.

∫

Dc∩{|v|≥10|v′|}

F (v′)f(v′)
|v − v′|3+2s

〈v′〉3+2s
Kg(v, v

′)〈v〉n dv′dv

. ‖g‖L∞,m

∫

F (v′)f(v′)

∫

{10|v′|≤|v|}

〈v〉−m+3+γ+2s+ndvdv′ . ‖g‖L∞,m‖f‖2L2,n.
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In the last inequality, we used that m > n+ 6 + γ + 2s. This concludes the proof. �

4.4. Proof of Proposition 2.9. In order to prove Proposition 2.9, we first state a useful estimate
that follows from work in [32].

Lemma 4.3. For any measurable g, if γ + 2s ≤ 0 and ǫ > 0, then
∣

∣

∣

∫

Kg(f
′ − f)2 dv′dv

∣

∣

∣ . ‖g‖L∞,3+γ+2s+ǫ‖f‖2Hs .(4.28)

Proof. Recall that K̂g, defined in (4.25), satisfies the conditions (4.2), (4.3), and (4.4) in [32, Section
4] uniformly in v. Thus, applying [32, Lemma 4.2], we find
∣

∣

∣

∫

Kg(f
′ − f)2 dv′dv

∣

∣

∣ = ‖g‖L∞,3+γ+2s+ǫ

∣

∣

∣

∫

K̂g(v, v
′)(f ′ − f)2 dv′dv

∣

∣

∣ . ‖g‖L∞,3+γ+2s+ǫ‖f‖2Hs ,

which concludes the proof. �

Now we prove Proposition 2.9.

Proof of Proposition 2.9. We consider only the case ∂ = ∂vi for i ∈ {1, 2, 3}. The case when
∂ = ∂xi is similar and simpler as it commutes with 〈v〉2n. First, let F = 〈v〉nf . Then
∫

〈v〉2nQs(g, f)∂f dvdx =

∫

[〈v〉nQs(g, f)−Qs(g, 〈v〉
nf)]〈v〉n∂f dvdx−

∫

Qs(g, F )fnvi〈v〉
n−2 dvdx

+

∫

Qs(g, F )∂F dvdx = I1 + I2 + I3.

For I1, we apply the commutator estimate Proposition 2.7 to get

|I1| .

∫

(‖f‖
L

2,n+3/2+ǫ
v

+ ‖f‖H2s−1+µ,µ+n+γ+2s
v

)‖g‖L∞,m
v

‖∂f‖L2,n
v
dx

.

∫

(‖f‖
L

2,n+3/2+ǫ
v

+ ‖f‖H2s−1+µ,µ+n+γ+2s
v

)‖g‖L∞,m
v

‖f‖H1,n
v

dx

. ‖g‖L∞,m (‖f‖L2,n+3/2+ǫ + ‖f‖H2s−1+µ,µ+n+γ+2s) ‖f‖H1,n .

(4.29)

To estimate I2, we apply Proposition 2.8.(i) with θ = 1 if s > 1/2 or θ = 2s− 1 + µ if s ≤ 1/2
to find

|I2| .

∫

‖g‖L∞,m
v

‖F‖Hθ
v
‖fnvi〈v〉

n−2‖H2s−θ
v

dx

.

∫

‖g‖L∞,m
v

‖f‖Hθ,n
v

‖f‖H2s−θ,n−1
v

dx . ‖g‖L∞,m‖f‖Hθ,n‖f‖H2s−θ,n−1 .

(4.30)

Using the choice of θ, the right hand side above is less than or equal to (up to a constant) the right
hand side of (4.29).

We decompose I3 into two parts:

I3 =

∫

Qs(g, F )∂F dvdx

=

∫

Kg(F
′ − F )(∂F − (∂F )′) dv′dvdx +

∫

(Kg −K ′
g)(F

′ − F )∂F dv′dvdx = I31 + I32.

For I31, we manipulate by integration-by-parts and apply Lemma 4.3 to find

|I31| =
∣

∣

∣

∫

Kg(∂ + ∂′)(F ′ − F )2 dv′dvdx
∣

∣

∣ =
∣

∣

∣

∫

(∂ + ∂′)Kg(F
′ − F )2 dv′dvdx

∣

∣

∣

=
∣

∣

∣

∫

K∂g(F
′ − F )2 dv′dvdx

∣

∣

∣ .

∫

‖∂g‖L∞,3+γ+2s+ǫ
v

‖F‖2Hs
v
dx =

∫

‖∂g‖L∞,3+γ+2s+ǫ
v

‖f‖2Hs,n
v
dx.
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Fix the conjugate exponents p = 3/2(1− s) and q = 3/(2s+ 1). Applying Hölder’s inequality and
the Sobolev embedding theorem yields

|I31| . ‖∂g‖Lp
xL

∞,3+γ+2s+ǫ
v

‖f‖2
L2q

x Hs,n
v

. ‖∂g‖
H

(2s−1/2)+
x H

3/2+ǫ,3+γ+2s+ǫ
v

‖f‖2
H1−s

x Hs,n
v

. ‖∂g‖
H3/2+ǫ+(2s−1/2)+,3+γ+2s+ǫ‖f‖2H1,n .

The term I32 is considered in [26, Proposition 3.1.(iv), estimate of I2]. A close inspection of
the proof shows that it applies in our setting. Hence, for simplicity, we cite directly that, for any
µ ∈ (s,min{2s, 1}),

|I32| . ‖g‖Cµ,3+ǫ‖f‖Hs,n+3/2+ǫ+(γ+2s+1)+‖f‖H1,n .

Combining the above estimates of I31 and I32 together yields

|I3| . ‖∂g‖H3−s,3‖f‖2H1,n + ‖g‖Cµ,3+ǫ‖f‖Hs,n+3/2+ǫ+(γ+2s+1)+‖f‖H1,n .(4.31)

The proof is finished after combining (4.29), (4.30), and (4.31). �

5. A simple proof of local well-posedness when 0 < s < 1/2: Theorem 1.2

Here we provide a short proof of local well-posedness when s ∈ (0, 1/2), taken as a standing
assumption throughout the section even when not explicitly stated. As many of the technical
details are exactly the same as in the proof of Theorem 1.1, we only outline the main points. As
the proof is the same for k > 1, we show only the k = 1 case. Thus, we simplify the notation using
X̃m0,m1 in place of X̃1,m0,m0 (the definition of X̃k,m0,m1 is given in (1.4)).

The first step is to obtain a weighted C1 estimate of Qs.

Lemma 5.1. Let m1 > 3+ γ +2s and m0 sufficiently large depending only on m1, s, and γ. The
following inequality holds

‖Qs(g, f)‖L∞,m1 . ‖g‖L∞,m1 (‖f‖L∞,m0 + ‖∇vf‖L∞,m1 ) .

Proof. Let µ = 1 if γ ≤ −1 and µ = −γ−2s
1−2s otherwise. Fix r = 〈v〉µ/2. We first decompose the

integral into two parts:

|Qs(g, f)〈v〉
m1 | =

∫

|〈v〉m1 (f(v′)− f(v))Kg(v, v
′)| dv′ ≤ I1 + I2,

where I1 and I2 are the integrals over Br(v) and Br(v)
c, respectively. Applying Lemma 2.2 and

using that if ξ ∈ Br(v) then 〈ξ〉 ≈ 〈v〉, we bound I1 as

I1 . ‖∇vf‖L∞,m1

∫

Br(v)

|v − v′|K|g|(v, v
′)dv′ . ‖∇vf‖L∞,m1r1−2s

∫

|g(w)||v − w|γ+2sdw.(5.1)

We are finished after bounding the integral by 〈v〉γ+2s‖g‖L∞,m0 and using the definition of r.
The first step to handle I2 is to split it into the parts containing f(v) and f(v′) via the triangle

inequality. Call these integrals I21 and I22, respectively. Using Item i again, we see that

I21 =

∫

Br(v)c
〈v〉m1 |f(v)|K|g|(v, v

′)dv′ . ‖f‖L∞,m0 〈v〉−m0r−2s

∫

g(z)|v − z|γ+2sdv′.

Bounding the last integral using ‖g‖L∞,m1 and using the definition of r finishes the estimate of I21.
The last integral, that of I22 requires further decomposition into I221 and I222 over the domains

Br(v)
c ∩Bc

〈v〉/2 and Br(v)
c ∩B〈v〉/2. The former is easy to handle using

|f(v′)| ≤ ‖f‖L∞,m0 〈v′〉−m0 . ‖f‖L∞,m0 〈v〉−m0

where we used that 〈v′〉 & 〈v〉. The rest of the bound follows exactly as for I21.
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As for I222, notice that for such v′, |v − v′| ≈ 〈v〉. We use this, along with Lemma 2.4, to find

I222 . ‖g‖L∞,m1

∫

Br(v)c∩B〈v〉/2

〈v〉m1f(v′)

〈v〉3+2s
〈v〉3+γ+2s−m1dv′

. ‖g‖L∞,m1

∫

Br(v)c∩B〈v〉/2

〈v〉γf(v′)dv′ . ‖g‖L∞,m1‖f‖L∞,m0 .

(5.2)

Combining this with the above estimates finishes the proof. �

Next we give the key estimate for constructing a solution. To that end, we present a proposition
that plays the role of Proposition 3.1 above. Recall the space Ỹ m0,m1 from (1.4).

Proposition 5.2 (Propagation of the weighted C1 bounds). Fix any m1 > 3 + γ + 2s and m0

sufficiently large depending only on m1, γ and s. Suppose that fin ∈ X̃m0,m1 , and g,R ∈ Ỹ m0,m1

T .
If f solves (3.2) then, there is a constant C > 0 depending only on m, s, and γ such that

‖f‖Ỹ m0,m1 . exp
{

C

∫ T

0

‖g(t)‖X̃m0,m1dt
}(

‖fin‖X̃m0,m1 + T ‖R‖Ỹm0,m1
T

)

.

Proof. First notice that the proof of the bound

(5.3) ‖f‖L∞([0,T ];L∞,m0) . eC
∫ T
0

‖g(t)‖L∞,m0 dt
(

‖fin‖X̃m0,m1 +

∫ T

0

‖R(t)‖X̃m0,m1dt
)

.

is exactly the same as the (brief) proof in [26, Proposition 3.1] and, hence, is omitted here. We
note that it is a simpler version of the proof of the bounds on the derivatives that follows.

We now focus instead on bounding∇x,vf . Fix φ(t) to be an increasing function to be determined
such that φ(0) = ‖∇x,vfin‖L∞,m1 , and let F (t, x, v) = φ(t)〈v〉−m1 . Clearly we have that

(5.4) F (0, x, v) > max {|∂xifin(x, v)|, |∂vif(x, v)| : i ∈ {1, 2, 3}} for all (x, v).

Let t0 be the first time that the above inequality is violated. If t0 does not exist, we are finished.
Hence, we argue by contradiction assuming that there exists t0 ∈ [0, T ]. Without loss of generality1,
we may assume that there exists (x0, v0) ∈ T

3 × R
3 such that equality above holds in (5.4) at the

point (t0, x0, v0). Assume momentarily that

(5.5) F (t0, x0, v0) = ∂x1f(t0, x0, v0).

The cases where i = 2, 3 are clearly analogous, as are the case when a negative sign appears in
the equality (i.e., F = −∂x1f). The case when the derivative is in the v variable is slightly more
complicated as new terms arise, but these new terms can be handled in a straightforward way.

Since F − ∂x1f ≥ 0 on [0, t0]× T
3 × R

3, we find

(5.6) 0 ≥ ∂t(F − ∂x1f) + v · ∇x(F − ∂x1f)− (ǫ+ (1 − σ))∆x,v(F − ∂x1f)− σQǫ,δ(g, F − ∂x1f).

We use this to derive a contradiction.
On the one hand, an explicit computation for F , along with [26, Proposition 3.1.(v)] yields

(5.7) ∂tF + v ·∇xF − (ǫ+(1−σ))∆x,vF −σQǫ,δ(g, F ) ≥ φ′〈v0〉
−m1 −Cφ(1+ ‖g‖L∞,m1 )〈v0〉

−m1 ,

where we used that m1 > 3 + γ + 2s, a condition of the quoted result.
On the other hand, using Lemma 5.1, we find

∂t∂x1f + v · ∇x∂x1f − (ǫ+ (1 − σ))∆x,v∂x1f − σQǫ,δ(g, ∂x1f) = σQǫ,δ(∂x1g, f) + ∂x1R

. (‖g(t0)‖X̃m0,m1 (‖f‖L∞,m0 + ‖∇f‖L∞,m1 ) + ‖R(t0)‖X̃m0,m1 ) 〈v0〉
−m1

≤ (‖g(t0)‖X̃m0,m1 (‖f‖L∞,m0 + φ) + ‖R(t0)‖X̃m0,m1 ) 〈v0〉
−m1 .

(5.8)

1Indeed, the only technical issue here is if the inequality is violated at |v| = ∞. One may sidestep this by simply
including a cutoff as a multiplicative factor of the initial data and of R. It then follows from standard facts about
the heat equation that f and its derivatives decay as a Gaussian at high velocities. The cutoff can be removed by
a limiting procedure.



LOCAL WELL-POSEDNESS FOR THE BOLTZMANN EQUATION 25

Using (5.3), it is clear from (5.7) and (5.8) that we can choose φ to obtain a contradiction in (5.6).
This yields a contradiction. Hence (5.4) always holds, finishing the proof. �

As usual, once a priori estimates are established, the construction of a solution follows easily. In
fact, in this case, the solution can be constructed exactly as in [26]. Indeed, one can use the method
of continuity as well as a smoothing argument in order to establish the existence of solutions to
the linear problem. After this, an iteration yields a solution to the nonlinear problem. As it is
exactly the same as in [26], we omit the details.

One subtle issue that may cause worry is whether the process above provides a W 1,∞ solution
instead of C1. However, at the level of the method of continuity, the solutions constructed is
smooth. Hence all quantities ∂tf , ∇xf , and ∇vf are continuous and such continuity is passed
through all (locally uniform) limits.

For uniqueness, one can actually simply use an L2-based argument. Indeed, a quick check of
the arguments in Section 3.2 reveals that they can be adapted in a straightforward way to use only
the Y m0,m1 norms of two potential solutions f and g. Actually, the proof is easier in this case as
there is no need to use the Sobolev embedding theorem.

The above concludes the proof of Theorem 1.2.
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