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The 9-connected Excluded Minors for the Class of
Quasi-graphic Matroids

Rong Chen *

Abstract

The class of quasi-graphic matroids, recently introduced by Geelen, Gerards, and Whit-
tle, is minor closed and contains both the class of lifted-graphic matroids and the class of
frame matroids, each of which generalises the class of graphic matroids. In this paper, we
prove that the matroids Uz 7 and Us; are the only 9-connected excluded minors for the
class of quasi-graphic matroids.
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1 Introduction

Let H be a graph and let N be a matroid. For a vertex v of H we let loops(v) denote the set of
loops of H whose ends are v. We say that H is a framework for N if

(QGI) E(H) = E(N),

(QG2) ry(E(H")) < |V(H")| for each component H' of H, and

(QG3) for each vertex v of H we have cly(E(H —v)) € E(H —v) Uloopsy(v), and
(QG4) for each circuit C of N, the graph H[C] has at most two components.

A matroid is quasi-graphic if it has a framework. The class of quasi-graphic matroids, recently
introduced by Geelen, Gerards, and Whittle [8], is minor closed and contains both lifted-
graphic matroids and frame matroids. Recently, the author and Geleen [4] proved that there are
infinitely many quasi-graphic excluded minors for the class of frame matroids and the class of
lifted-graphic matroids, but we are confident that the class of quasi-graphic matroids admits a
finite excluded-minor characterisation.

Conjecture 1.1. ([4], Conjecture 1.5.) There are, up to isomorphism, only finitely many excluded-
minors for the class of quasi-graphic matroids.
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One of the difficulties to prove Conjecture [LL.1]is that some graphic matroids have exponen-
tially many different frameworks; for example, the rank-r wheel has at least 2" “inequivalent”
frameworks, see [3]. The same difficulty appears when considering problems on excluded mi-
nors for the class of frame matroids and for the class of lifted-graphic matroids. In fact, in the
proof of Rota’s Conjecture, Geleen, Gerards, and Whittle encountered a similar difficulty. The
interesting thing is: we have some kind of opposite versions in the proof of the two conjectures.
For Rota’s Conjecture, the proof for the low branch-width case is not complicated, see [1, [9];
while the proof for the high branch-width case is very difficult. While, for Conjecture [T} the
proof for low connectivity is thought to be difficult, while the proof for high connectivity is not
complicated. In this paper, we prove

Theorem 1.2. Other than U;; and U, 7, no excluded minor for the class of quasi-graphic ma-
troids is 9-connected.

Funk and Mayhew [7] recently proved that, for each positive integer r, the class of quasi-
graphic matroids has only a finite number of excluded minors of rank r.

This paper is organized as follows. In Section 3, we prove that Us; and U,; are the only
9-connected excluded minors of rank less than nine for the class of quasi-graphic matroids. 9-
connected excluded minors of rank at least nine are considered in Section 5. Some definitions
and basic properties of quasi-graphic matroids are given in Section 2. Properties of frameworks
for graphic matroids are presented in Section 4.

2 Preliminaries

We assume that the reader is familiar with matroid theory and we follow the terminology of
Oxley [10].

For a graph G, let loops(G) be the set of loops in G. An edge of G is a link if it is not a
loop. For any v € V(G), let stg(v) denote the set of edges incident with v. For any U C V(G)
and F C E(G), set stg(U) = U,y ste(u), and let G[U] be the induced subgraph of G defined on
U, and let G[F] be the subgraph of G with F' as its edge set and without isolated vertices. Let
cc(F) be the number of components of G[F], and let V5 (F) denote V(G[F]). When F = {e}, we
will let Vi (e) denote Vi ({e}). When there is no confusion, all subscripts will be omitted. For a
number k, we say that G is k-connected if G — § has exactly one component for any S C V(G)
with |S] < k.

A theta graph is a graph that consists of a pair of distinct vertices joined by three internally
disjoint paths. A cycle is a connected 2-regular graph. A collection 8 of some cycles of G
satisfies the theta property if no theta subgraph of G contains exactly two members of 8. A
biased graph consists of a pair (G, B), where G is a graph and 8 is a collection of some cycles
of G that satisfies the theta property. A cycle C of G is balanced if C € B, otherwise, it is
unbalanced.

Let H be a framework for a matroid N. For any cycle C of H, either C € C(N) or C € I(N)
by ([8], Lemma 2.5.). Let 8By be the set of cycles of H that are circuits of N. Since By satisfies
the theta property by ([8], Lemma 3.2.), (H, By) is a biased graph. For convenience, we will
also view H as the biased graph (H, By). A subgraph H' of H is balanced if each cycle in
H’ is balanced; otherwise, H’' is unbalanced. If all cycles in H" are unbalanced, then H’ is
contra-balanced.

By ([8], Lemma 3.3) and (QG4), we have



Lemma 2.1. Let H be a framework for a matroid N. When C € C(N), either

1. H[C] is a balanced cycle,

2. H[C] is a connected contra-balanced graph with minimum degree at least two with |C| =
[V(O)| + 1, or

3. H[C] is a union of two unbalanced cycles that meet in at most one single vertex.

Lemma 2.2. (/§], Lemma 2.6.) Let H be a framework for a matroid N. If H' is a subgraph of
H with |E(H)| > |V(H")|, then E(H") is a dependent set of N.

By Lemmas[2.Tland 2.2] we have

Lemma 2.3. Let H be a framework for a matroid N. Let Cy, C, be unbalanced cycles of H with
[V(Cy) N V(Cy)| < 1. Then the following hold.

e E(Cy U (Cy)isacircuit of N when |V(C) N V(Cy)| = 1.

e When |V(Cy) N V(Cy)| = 0, for each minimal path P in H linking C| and C,, we have
E(CiUC;y) e C(N)or E(C; UC, U P) € C(N).

We say that H is a frame representation of a matroid N if a subset I of E(H) is independent
in N if and only if H[/] has no balanced cycles and |E(H")| < |V(H)| for each component H’ of
H[I]. We say that H is a lifted-graphic representation of N if a subset I of E(H) is independent
in N if and only if H[I] has at most one cycle and when the cycle exists, it is unbalanced. Note
that, when H is a lifted-graphic representation for a 3-connected matroid, H has at most one
loop, and the loop is unbalanced.

Theorem 2.4. (/\S], Theorems 7.1 and 7.2.) Let H be a framework for a 3-connected matroid N.
If H has an unbalanced loop, then H is a frame representation or a lifted-graphic representation
for N.

When H is a lifted-graphic representation for N with an unbalanced loop e, by the definition
of lifted-graphic representation, all graphs obtained from H\e by attaching the loop e to any
vertex of H\e or a new vertex not in H\e are also lifted-graphic representations of N. Under this
condition, we view all graphs obtained in this way as equivalent. That is, when all frameworks
for N can be obtained from H by this way, we view H as the unique framework for N.

Lemma 2.5. Let H be a framework for a matroid N. If H is not connected but N is connected,
then H is a lifted-graphic representation of N.

Proof. Let Hy, H», ..., H, be the components of H. Since every pair of elements of E(N) must
be contained in a circuit of N, by Lemmal[2.1]each edge of H is in an unbalanced cycle.

2.5.1. Let Cy and C, be unbalanced cycles of H, and H,, respectively. If H, has an unbalanced
cycle C, with E(Cy) N E(C)) # 0 and E(C, U C)) € C(N), then E(C; U C;) € C(N).



Subproof. Assume not. Without loss of generality we may assume that C, is chosen with E(C,U
C’) as small as possible. When C, U C7 is a theta subgraph of H,, since E(C, U C) or the third
cycle in C, U (7 that is neither C; nor C) is a circuit of N by Lemmas 2.1l and 2.2] we have
E(C, U (,) € C(N) by the circuit elimination axiom and Lemma[2.]l So we may assume that
C, U CJ is not a theta subgraph of H,. Since E(C>) N E(C)) # 0, there is a path P ¢ C, such
that C, U P is a theta-graph. In a similar way we can show that E(C; U C;) is a circuit of N for
an unbalanced cycle C; of H, with P C C; C C} U P, a contradiction to the choice of C) as
|E(C, U C)| < |E(Cy U C})l. o

2.5.2. A union of each pair of unbalanced cycles coming from different components of H is a
circuit of N.

Subproof. Let C; and C, be unbalanced cycles of H; and H,, respectively. By symmetry, it
suffices to show that E(C;UC,) € C(N). Lete; € C; foreach 1 <i < 2. Since N is connected, N
has a circuit C containing {ey, e;}. Since e, and e, are in different components of H, by Lemma
[2.1] there is an unbalanced cycle C’ of H; containing e; for each integer 1 < i < 2 such that
C = E(C} U (). Since e, € E(Cy) N E(CY), we have E(C| U C,) € C(N) by 2511 Moreover,
since e; € E(Cy) N E(CY), using 2.5.1lagain, E(C, U C;) € C(N). m|

2.5.3. Forevery 1 <i < n, a union of every pair of vertex-disjoint unbalanced cycles of H; is a
circuit of N.

Subproof. Assume that the claim does not hold for H;. Then there are vertex-disjoint unbal-
anced cycles Cy, C’ of H; and a path P minimal linking the two cycles such that E(C, U C| U P)
is a circuit of N by Lemma[2.3] Let C be a union of C; and an unbalanced cycle of H,. By
C is acircuit of N. Let f € E(Cy) and g € E(P). By circuit elimination axiom, there is a
circuit C’ of N with g € C" C E(C, U C; U PUC) —{f}, a contradiction to Lemma[2.1]as H[C’]
has degree-1 vertices. O

By and a union of every pair of vertex-disjoint unbalanced cycles of H is a
circuit of N, so the lemma holds. O

After this paper was submitted to a journal in September 2017, one of the referees told
the author in his/her referee report that Lemma 2.5 was also proved in ([2], Corollary 4.7) by
Bowler, Funk, and Slilaty. The two proofs are totally different.

By ([8], Lemmas 3.6 and 4.2) or Lemma[2.3]and ([8], Lemmas 4.2) we have

Lemma 2.6. Assume that H is a framework for a 3-connected matroid N with |[E(N)| > 4 and
H has no isolated vertices. Then

1. H is connected, or

2. H is a lifted-graphic representation of N with exactly two components, one of which is a
loop-component.

Moreover, N has a connected framework.

Lemma 2.7. For any integer k > 2, if H is a connected framework for a k-connected matroid
N, then H is k — 1 connected.



Proof. Assume not. Let (X, Y) be a partition of E(N) with m = |[Vg(X) N Vyx(Y)| < k-2 and
such that H[X] and H[Y] are connected graphs with at least m + 1 vertices. When H[X] and
H[Y] are unbalanced, implying that |X|,|Y| > m + 1, we have that (X, Y) is an m + 1-separation,
a contradiction. When X is balanced, (X, Y) is an m-separation, a contradiction. O

Theorem 2.8. (/§], Theorem 1.6.) A 3-connected matroid N is quasi-graphic if and only if there
exists a graph H such that

1. E(H) = E(N),

2. H is connected,

3. r(N) < |V(H)|, and

4. for each vertex v of H we have cly(E(H —v)) € E(H — v) U loops(v).

Lemma 2.9. Let H be a framework for a matroid N. For an edge e of H, if H\e is connected
and unbalanced, then e is in a circuit of N.

Proof. By considering a maximal independent set of H e, it follows from (QG2) that r(N\e) =
|V(H)|. Moreover, since r(N) < |V(H)| by (QG2), we have r(N) = r(N\e). So the lemma
holds. o

Let H be a framework for a matroid N. Let H" = H — loops(H) when H is a lifted-graphic
representation of N, otherwise let H* = H. A vertex v € V(H) is a blocking vertex if H' is
unbalanced and all unbalanced cycles of H’ contain v. Set st},(v) = sty(v). Note that sty,(v) is
the same as sty(v) unless H is lifted-graphic of N and v is incident with a loop.

Lemma 2.10. Let H be a connected framework for a 3-connected matroid N, and v € V(H).
1. sty (v) is a union of cocircuits of N.
2. vis a blocking vertex of H if and only if st;,(v) ¢ C*(N).

Proof. (1) follows from Lemma 2.1l and Theorem 2.4l Next, we prove that (2) is true.

Note that H and H’ are 2-connected by Lemma 2.7 Assume that v is a blocking vertex
of H. Since H' — v is connected and balanced, r(E(H' — v)) = |V(H")| -2 = r(N) — 2. So
st;,(v) € C*(N).

Assume that st;,(v) ¢ C*(N). Then st},(v) contains at least two cocircuits of N by (1),
implying r(E(H' —v)) < r(N) — 2 = |V(H’)| — 2. Moreover, since H' — v is connected, H — v is
balanced. So v is a blocking vertex of H. O

Let H be a connected framework for a 3-connected matroid N. We say that a vertex v of H
18 fixed in H if N\st},(v) is a 3-connected non-graphic matroid.

Lemma 2.11. Let H be a connected framework for a 3-connected matroid N. For an edge f of
H, if v is fixed in H\ f, then v is fixed in H.

Proof. Evidently, it suffices to show that N\st},(v) is 3-connected. Assume not. Then f ¢ st},(v).
Since N\(st;,(v) U {f}) and N are 3-connected and non-graphic, f is a coloop of N\st},(v) and
H' — {v, f} is connected and unbalanced by Lemma 2.7 and Theorem 2.4. Then f € sty(v)
by Lemma Since f ¢ st},(v), we have that {f} = loops,(v) and H is a lifted-graphic
representation for N. Hence, f € cl(E(H —v)) as H — v is unbalanced, a contradiction to the fact
that f is a coloop of N\st,(v) . O



Lemma 2.12. Let H and H' be 2-connected frameworks for a 3-connected matroid N. If v is a
fixed vertex of H, then st;,(v) € C*(N) and there is a fixed vertex v’ of H' satisfying st;, (V') =
st (v).

Proof. Since H' — v is unbalanced, st},(v) € C*(N) by Lemma2.I0 So r(N\st;,(v)) = r(N) — 1.
Since N\stj,(v) is a 3-connected non-graphic matroid, |V(H’)| = r(N) > 3 and by Lemma 2.6
the graph H’\st},(v) has exactly two components, one of which is an isolated vertex or a loop-
component. Let {v'} be the vertex set of the 1-vertex component of H’\sty,(v), and H| be the
other component. Since no circuit of N can intersect sty,(v) with exactly one element and H is
connected and unbalanced, by Lemma each edge in stj,(v) has at most one end in H]. So
st (V') = stj,(v) by Theorem[2.4] implying that v/ is fixed in H'. O

For convenience, we will say that the vertex v in Lemma [2.12]is the corresponding vertex
of vin H' and denote it by v too.

Lemma 2.13. Let H be a 2-connected framework for a 3-connected matroid N. If at most one
vertex is not fixed in H, then one of the following holds.

1. H is the unique framework for N.
2. H —loops(H) has a blocking vertex.
In particular, when all vertices are fixed in H, (1) holds.

Proof. First, we prove

2.13.1. When all vertices in H are fixed, (1) holds.

Subproof. When loops(H) = 0 or H has a loop but it is not a lifted-graphic representation for N,
Lemma[2.12]implies that (1) holds. So we may assume that H is a lifted-graphic representation
for N with a loop f by Theorem 2.4l Let H’ be another connected framework for N. By
Lemma 2.12] loops(H) = loops(H’) = {f} and H\f = H’\f. When H has no blocking vertex,
since a union of f and each unbalanced cycle of H is a circuit of N by the structure of H, the
graph H’ must be a lifted-graphic representation for N, so H and H’ are equivalent. When
H has a blocking vertex, either f is incident with a blocking vertex of H'\ f or H" must be
a lifted-graphic representation for N. No matter which case happens, H’ is a lifted-graphic
representation for N, so H and H’ are equivalent. That is, (1) holds. O

By 2.13.1l we may therefore assume that H has a unique unfixed vertex v. Assume that (1)
is not true. Let H’ be a connected framework for N that is not equivalent to H. By Lemma[2.12]
we may assume that V(H) = V(H’) and st},(«) = st},, () for any v # u € V(H). Therefore,

2.13.2. For any vertices x,y € V(H — v), we have that xy € E(H) if and only if xy € E(H").

By symmetry, 2.13.1l and Lemma 2.12] we may assume that v is the unique unfixed vertex
of H'.

2.13.3. When H is a lifted-graphic representation of N with a loop f, both H and H' —1oops(H")
have v as their blocking vertex.



Subproof. Since N is 3-connected, loops(H) = {f}. Since sty(u) — {f} = sty (u) = st;, (u) for
any v # u € V(H), we have f € loops(H’). When H’ is a lifted-graphic representation for
N, since {f} = loops(H’), we have H\f = H'\f, so H and H' are equivalent, a contradiction.
Hence, H’ is a frame representation for N by Theorem 2.4l Then sty(u) — {f} = sty (u) for any
v # u € V(H), implying that f € loops,,(v) and H — {v, f} = H' — {v,loops(H’)}.

Assume that H — {v, f} has an unbalanced cycle C. Then E(C) U{f} € C(N) as H is a lifted-
graphic representation for N. On the other hand, since C is a cycle of H — {f, v} of length at
least 2, C is also an unbalanced cycle of H' —{f, v} by[2.13.2] Since H’ is a frame representation
for N and f € loopsy (v), we have E(C) U {f} € I(N), a contradiction. Hence, H — {f, v} is
balanced. That is, the claim holds. O

By[2.13.3land symmetry, we may therefore assume that neither H nor H’ is a lifted-graphic
representation of N with a loop. Then sty(u) = sty (u) for any v # u € V(H). Since H # H’,
there is a link e = vu of H (or H"), which is a loop of H" (or H) incident with u. Assume that
H — {v,loops(H)} has an unbalanced cycle C. Since |[E(C)| > 2, it follows from 2.13.2]that C is
also an unbalanced cycle of H" —v. Let P be a minimal path in H — v joining # and C. Note that
P = {u} when u € Vy(C). Comparing H[E(C U P) U {e}] and H'[E(C U P) U {e}], we will get a
contradiction. Hence, H — {v, loops(H)} is balanced. That is, (2) holds. O

In Section 5 we will need a number of simple conditions which prevent a matroid from being
an excluded minor for the class of quasi-graphic matroids. In the following Lemmas we gather
a few such conditions. Lemmas 2. 13H2.15 will be only used in the proof of Theorem [3.16l

Lemma 2.14. Let e, f be elements of a 3-connected matroid N such that N\e, N\ f, and N\e, f
are 3-connected. Let H be a 2-connected unbalanced framework for N\e, f that has no blocking
vertices. If H can be extended to frameworks for N\e and N\ f, then N is quasi-graphic.

Proof. Let G be a graph with H = G\e, f such that G\e and G\ f are frameworks for N\e and
N\f, respectively. Since H is connected, by Lemmas and 2.7l we may assume that G is 2-
connected. We claim that G is a framework for N. Evidently, (QG1) and (QG2) hold. Since N is
3-connected, by Theorem[2.8] it suffices to show that (QG3) holds. Let v be a vertex of G. When
e, f € stg(v), (QG3) obviously holds for v. So by symmetry we may assume that e ¢ stg(v).
Since H is 2-connected and has no blocking vertices, H — v is connected and unbalanced. Then
it follows from Lemma that e € cly(E(H — v)) as G\f is a framework for N\f. When
f € stg(v), since cly(E(G —v)) = cly(E(H — v)) and G\e is a framework for N\e, (QG3) holds
for v. When f ¢ sts(v), by the symmetry between e and f, we have f € cly(E(H —v)). So
cly(E(G —v)) = cly(E(H — v)), implying that (QG3) holds for v as stg(v) = sty(v). O

Lemma 2.15. Let e, f be elements of a 3-connected matroid N such that N\e, N\ f, and N\e, f
are 3-connected. Let H be a 2-connected framework for N\e. Assume that there is a balanced
cycle C of H with f € E(C) such that all vertices in Vy(C) are fixed in H\f. If N\f is quasi-
graphic, so is N.

Proof. Let G” be a framework for N\e, f that can be extended to a framework G’ for N\ f. By
Lemmas[2.6and 2.7 we may further assume that G” and G’ are 2-connected. Since G* and H\ f
are frameworks for N\e, f and all vertices in V5 (C) are fixed in H\ f, by Lemma [2.12] we may
assume that corresponding vertices in G [E(C) — {f}] and H[E(C) — {f}] are labelled by same
symbols and

Stgn (V) = sty ,(v) = sty (V) — {f} € C'(N\e, [),
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for any v € V(C). Hence, G [E(C) — {f}] and H[E(C) — {f}] are isomorphic paths. Let G be
the graph obtained from G’ by adding f to G’ such that G[E(C)] is a cycle. That is, G[E(C)]
and H[E(C)] are isomorphic.

We claim that G is a framework for N. (QG1) obviously holds. Since G is 2-connected
and r(N) = r(N\f) = |V(G")|, (QG2) holds for G. Since N is 3-connected, by Theorem [2.§] it
suffices to show that (QG3) holds. Since E(C) is a circuit of N and G’ is a framework for N\ f,
(QG3) holds for each vertex in V(G) — VG(E(C)) + Vg (f). For any v € VG(E(C)) — Vs (f), since
v is fixed in both H and H\ f by Lemma [2.11] we have

sti, (v) — {e} = stg.(v) = sty (v) € C*(N\e, f) N C*(N\e) 2.1

by Lemma[2.12] Since N\(st,,(v)U{e, f}) is 3-connected and non-graphic, G’ v is unbalanced,
so st;, (v) € C*(N\f). Combined with (2.1), st (v) € C*(N) or {e, f} € C*(N). Since N is 3-
connected, st (v) € C*(N). Hence, (QG3) holds for v. O

3 9-connected excluded minors with rank less than nine.

In this section, we prove that, if M is a 9-connected excluded minor for the class of quasi-
graphic matroids with r(M) < 8, then M is isomorphic to U;; or U, 7. To prove this, we need
one more definition.

Let G be a simple graph. For a positive integer k, let kG denote the graph obtained from G
by replacing each edge of G by a parallel class with exactly k edges.

Theorem 3.1. U, is an excluded minor for the class of quasi-graphic matroids.

Proof. First we show that 2Kj3 is the unique framework for Us¢. Let G be a framework for
Us¢. By Lemma 2.6l we may assume that G is connected. Then |V(G)| = 3. Since |E(G)| = 6,
either each vertex in G is incident with exactly four edges or some vertex v is incident with at
most three edges. When the former case happens, G is isomorphic to 2K3. When the latter case
happens, since G — v has no balanced cycles with at most two edges, Lemma 2.1l implies that
Us¢ has a triangle, a contradiction.

Since 2Kj is the unique framework for Usg, it is easy to verify that U3 ; is not quasi-graphic.
Moreover, since 6K is a framework for U, g, the theorem holds. m|

Theorem 3.2. U, is an excluded minor for the class of quasi-graphic matroids.

Proof. Let C, be a 4-edge cycle, let K be the graph obtained from 2C, by deleting a pair of
non-adjacent edges. Evidently, K4 and K are frame representations for U, 6. Note that, neither
K, nor K can be extended to a framework for U, 7. Since 2Kj; is a framework for Us; g, to prove
the theorem, it suffices to show that, besides K4 and K, Uy ¢ has no other frameworks.

Let G be a framework for U, ¢. By Lemma 2.6 we may assume that G is connected. Then
|[V(G)| = 4, G is 2-connected and each vertex of G is incident with at least three edges. Assume
that G has a blocking vertex u. Since each circuit in Uy ¢ has five elements and G —u is balanced,
G — u is a forest, so |stg(u)] > 4. Since G is 2-connected, G — u is a 2-edge path; that is,
Istc(u)| = 4. Let vy, v, be the degree-1 vertices of G — u. Since E(G) — {f} is a circuit of Uy ¢ for
each edge f € stg(u), there are exactly two edges joining u and v; for each 1 < i < 2. So stg(u«)
is dependent in Uyg, a contradiction. So G has no blocking vertices. For each vertex v of G,
since G — v is connected and unbalanced, |E(G — v)| = 3 as |stg(v)| = 3. So [stz(v)| = 3. Since
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|E(G)| = 6, by the arbitrary choice of v, the graph G has no loops and G is isomorphic to K, or
K. O

Theorem 3.3. Let M be an excluded minor for the class of quasi-graphic matroids. If M is
9-connected with rank at most eight, then M is isomorphic to Us7 or Uy .

Proof. We claim that M is isomorphic to U, -1, U, 2, U241, Or Ug, for a number r, where
n > 15. Assume that M has a circuit C with |C| < r(M). Without loss of generality we may
further assume that C is chosen as small as possible. When |E(M) — C| > |C|, the partition
(C,E(M) — C) is a |C|-separation, a contradiction to the fact that M is 9-connected. When
|[E(M) — C| < |C|, since |C| < r(M) and E(M) — C is independent by the choice of C, the
partition (C, E(M) — C) is an |[E(M) — C|-separation, a contradiction. So M is uniform. Then it
follows from ([10], Corollary 8.6.3) that the claim holds.

Since kK, is a framework for U,;, we have r(M) > 3. Since U, 7 is a minor of U, 5,1, U,2,,
U, 241, and Ug,, when r > 4 and n > 15, by Theorem [3.2] either (M) = 3 or M is isomorphic to
U, 7. Moreover, since Us ¢ is quasi-graphic, the theorem holds from Theorem 3.11. O

4 Frameworks for graphic matroids

Let G be a graph, and M(G) its cycle matroid. A signed graph is a pair (G, X) with £ C E(G),
each edge in X is labelled by —1 and other edges are labelled by 1. A cycle C of G is X-even if
|E(C) N Z] is even, otherwise it is X-odd. A set ¥’ C E(G) is a signature of (G, Y) if (G, X) and
(G, Y’) have the same X-even cycles and the same X-odd cycles. Evidently, for any cut C* of G,
the set XAE(C™) is a signature of (G, X). For a framework H for a matroid N, we say that H is a
signed graph if there is a set ¥ C E(H) such that a cycle C of H is balanced if and only if C is a
Y-even cycle. We also say that X is a signature of H.

All definitions in the following five paragraphs were first given by Chen, DeVos, Funk and
Pivotto [3].

Fat thetas. Let G, G,,G3 be non-empty graphs with distinct vertices x;,y; € V(G;). Let
G be obtained from Gy, G,, G3 by identifying y; and x;,; to a vertex w; for every 1 < i < 3
(where the indices are modulo 3). Let H be obtained from G4, G, G3 by identifying x;, x,, x3 to
a vertex x and identifying y;, y», y3 to a vertex y. A cycle of H is balanced if and only if E(C)
is completely contained in one of G, G, or G3. Then we say that H is a fat theta obtained from
G.

Simple curlings. Let G be a graph and v € V(G). Let H be the signed graph obtained from
G by first labelling all edges incident with v by —1, and then changing any such edge e = vu to
a loop incident with u while keeping all other edges not incident with v unchanged and labelled
by 1. Then we say that H is a simple curling of G.

Pinches. If H is obtained from a graph G by identifying two vertices v; and v, to a new
vertex v and labeling all edges originally incident with v; by —1 and all other edges by 1, then
we say H is a pinch. An edge with ends vy, v, becomes an unbalanced loop incident to v

4-twistings. Let Gy, G,, G3, G4 be graphs (not necessarily all non-empty) with distinct ver-
tices x;, v,z € V(G;). Let G be obtained from Gy, G,, G3, G4 by identifying x;, y3_;, Zi+2 to a
vertex w; for every 1 < i < 4 (where the indices are modulo 4). Let H be a signed graph ob-
tained from Gy, G, G3, G4 by identifying x, x;, x3, x4 to a vertex x, identifying yy, y,, y3, y4 to
a vertex y and identifying z;, 2, 23, 24 to a vertex z, and with all edges originally incident with
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X1, Y2 or z3 labelled by —1 and all other edges labelled by 1. Then we say that H is a 4-twisting
of G.

Consecutive twistings. Let Gy, ..., Gy (for k > 3), be graphs with distinct vertices x;, y;, z; €
V(G;) for 1 <i < k. Let G be a graph obtained from Gy, ..., G, by identifying z;,25,...,2 to
a vertex z and for each 1 < i < k identifying y;_; and x; to a vertex w; (where the indices are
modulo k). Let H be the signed graph obtained from Gy, ..., G, by identifying y;_1, z;, X+ to
a vertex u; for every 1 < i < k (where the indices are modulo k), and with all edges originally
incident with y; or x, labelled by —1 and all other edges labelled by 1. Then we say that H
is a consecutive twisting or a consecutive k-twisting of G. If k is odd then H is a consecutive
odd-twisting of G.

Theorem 4.1. (/3], Corollary 1.3.) Let G be a 3-connected graph with |V(G)| > 5. Let H be a
frame representation of M(G). Then either H is balanced, or H is obtained from G as a simple
curling, a pinch, a 4-twisting, or a consecutive odd-twisting.

Recall that ¢(H) is the number of components of H.

Theorem 4.2. ([§], Theorem 2.7.) Let H be a framework for a matroid N. If r(N) < |V(H)| —
c(H), then N = M(H).

Theorem 4.3. ([15], Theorem 2.) Let H be a lifted-graphic representation of a matroid N. Then
N is binary if and only if H is a signed graph or H has a unique unbalanced component which
is a fat theta.

Let G be a graph, and let (X;, X;) be a partition of E(G) such that V(X;) N V(X3) = {uy, us}.
We say that G’ is obtained by a Whitney flip of G on {u;,u,} if G’ is a graph obtained by
identifying vertices u;, u, of G[X;] with vertices u,, u; of G[X,], respectively. A graph G’ is
2-isomorphic to G if G’ is obtained from G by a sequence of the operations: Whitney flips,
identifying two vertices from distinct components of a graph, or partitioning a graph into com-
ponents each of which is a block of the original graph.

In his Ph.D. thesis, Shih [[12] proved the following characterization of graphic lifted-graphic
matroids (see also [11/], Theorem 4.1.).

Theorem 4.4 (Theorem 1, Chapter 2 in [12]). Let G be a graph and let H be a lifted-graphic
representation of M(G). Assume that H is an unbalanced signed graph. Then there exists a
graph G’ 2-isomorphic to G such that one of the following holds.

(1) H is obtained from G’ by a pinch.
(2) H is obtained from G’ by a 4-twisting.
(3) H is obtained from G’ by a consecutive twisting.
Following a similar way as the proof of ([8], Theorem 1.4.), we prove

Theorem 4.5. Let H be a 2-connected framework for a 3-connected matroid N. If N is repre-
sentable, then H is a frame representation or a lifted-graphic representation of N.
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Proof. Without loss of generality we may assume that H is unbalanced. Then |V(H)| = r(N).
By Theorem [2.4] we may assume that H has no loops. Assume that there is a vertex v of H such
that ry(E(H —v)) < r(N)—2. Since H —v is connected, it follows from Theorem 4.2 that H —v is
balanced. Then v is a blocking vertex of H, so H is a frame representation and a lifted-graphic
representation of N. So we may assume that ry(E(H — v)) = r(N) — 1 for each vertex v of H.
Moreover, since H has no loops, sty(v) is a cocircuit of N by (QG3).

Let A be a matrix over a field F with linearly independent rows satisfying N = M(A), where
M(A) is the matroid represented by A. Since sty(v) is a cocircuit of N for each vertex v of H,
there is a matrix B € FV*EWH) gych that

1. the row-space of B is contained in the row-space of A, and

2. foreachv € V(H) and e € E(H), the element of B in the row labelled by v and the column
labelled by e is non-zero if and only if v is incident with e in H.

Note that M(B) is a frame matroid and H is a framework for M(B). Since H is connected, we
have that
\V(H)| = r(M(A)) = r(M(B)) = |[V(H)| - 1, 4.1)

and if r(M(A)) = r(M(B)) then M(A) = M(B) by (1) and (2). So we may assume that r(M(A)) >
r(M(B)). Then M(B) = M(H) by Theorem [4.2] up to row-operations we may assume that A is
obtained from B by appending a single row by (4.1). Hence, H is a lifted-graphic representation
of N. O

By Lemma 2.6l (or Lemmal[2.5)) and Theorem 4.3] we have

Corollary 4.6. Let H be a framework for a 3-connected representable matroid N. Then H is a
frame representation or a lifted-graphic representation of N.

The following result is an immediate consequence of Theorems 4.1l [4.3] 4.4] and Corollary
4.6}

Theorem 4.7. Let G be a 3-connected graph with |V(G)| > 5, and H a connected framework
for M(G). Then H is isomorphic to G, or H is obtained from G by a simple curling, a pinch, a
4-twisting, or a consecutive twisting.

By Theorem 4.7 we have

Corollary 4.8. Let G be a 4-connected graph with |V(G)| = 5, and H a connected framework
for M(G). Then H is isomorphic to G or H is obtained from G by a simple curling or a pinch.

Lemma 4.9. Let G be a 3-connected simple graph, and H a 4-connected unbalanced framework
for M(G) with |V(H)| > 4. Then

1. H is obtained from G by a simple curling or a pinch, or
2. H is a signed graph with a signature X such that H[X] is a triangle.

Proof. Assume that (1) is not true. Since H is a 4-connected unbalanced graph with |V(H)| > 4,
by Theorem [4.7] the graph H is obtained from G by a 4-twisting or a consecutive 3-twisting.
Without loss of generality that it is a 4-twisting, since the consecutive 3-twisting is (up to rela-
belling of vertices) the special case of this in which one of the G; has no edges. By symmetry we
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may assume without loss of generality that none of G, G,, G; has more than 3 vertices, where
G; and symbols that will be used but not defined in the proof, say w;, x;, y;, x,y, z, are defined
as in the definition of 4-twistings. By 3-connectivity and simplicity of G, there is precisely one
edge e; from wy to each w; with i € {2, 3,4}, and there are no other edges incident with wy. By
the definition of 4-twistings, the signature of H is {e,, e3, e4}. The edge e, can only arise from
an edge x;y; in G| or an edge x,y; in G,: in either case it joins x to y in H. Similarly e; joins x
to zin H and e, joins y to z in H. Thus the signature of H is the set of edges of a triangle. O

5 Proof of Theorem 1.2,

Recall that ¢(H) is the number of components of a graph H. Lemmas [5.1H5.5| will be frequently
used in this section.

Lemma 5.1. Let H be a framework for a matroid. For an edge f € E(H), if H\f is balanced
and H has a balanced cycle containing f, then H is balanced.

Proof. Since r(E(H)) = r(E(H\f)) = |V(H)| — c¢(H), the graph H is balanced. O

Note that Lemma 5.1l also follows immediately from the theta property.

For any subset X of E(H)U V(H), if H\X is balanced, we say that X is a balancing set of H.
Note that, when H is balanced, each subset of E(H) U V(H) is balancing. We say a balancing
set X is minimal if no proper subset of X is a balancing set of H. Note that, when H has a non-
empty minimal balancing set V U E with V C V(H) and E C E(H), the graph H is unbalanced
and E N st(V) = 0 by the definition of minimal balancing sets.

Lemma 5.2. Let H be a connected unbalanced framework for a matroid N. If X is a minimal
balancing edge set of H with X C E(H), then X € C*(N).

Proof. Since H\X is connected and balanced, r(E(H\X)) = |V(H)|—-1 = r(N) — 1. On the other
hand, since each cycle in H\(X\{f}) containing f is unbalanced for each f € X by Lemma[5.1]
r(E(H\X) U{f}) = r(N). Hence, X is a cocircuit of N. O

Lemma 5.3. Let H be a connected framework for an n-connected matroid N with |V(H)| > n.
When H is unbalanced, each balancing set of H that contains only edges has rank at least n.

Proof. Assume not. Let X be a minimal balancing set of H with X C E(H) and r(X) < n — 1.
Then r(E(N) — X) = r(N) — 1 by Lemma Since H\X contains a spanning tree of H,
|E(N) — X| > n—1,s0 (X, E(N) — X) is an r(X)-separation of N, a contradiction. O

For any subset X of E(H) U V(H), if c(H\X) > c(H), then we say that X is a cut of H.

Lemma 5.4. Let H be a framework for a matroid. Let X; = V; U E; be a balancing set of H with
V:CV(H)and E; C E(H) foreach 1 <i < 2.

1. If X, is minimal and contains a link f satisfying f ¢ E, U st(V,), then X; U X, contains a
cut of H.

2. If H-(X,UX,) is connected and VNV, = 0, then E; UE,UE(H[V,UV,)) is a balancing
set of H.
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Proof. First we prove that (1) is true. Since X; is minimal, each cycle in H\(X;\{f}) containing
f is unbalanced by Lemma [5.1l Moreover, since H — X, is balanced and f € E(H — X>), the
graph H\(X;\{f}) has a cut contained in X, U {f}, so (1) holds.

Assume that (2) is not true. Let C be an unbalanced cycle of H\(E, U E, U E(H[V; U V;]))
with [V(C) N (V; U V,)| as small as possible. Since H — X; is balanced for each 1 < i < 2,
we have V(C)N'V; # 0. Then |[V(C) N (VU V)| = 2as VNV, = 0. Since C does not
contain edges in H[V; U V,], the subgraph C — (V| U V;) is disconnected. Moreover, since
H — (X, U X,) is connected, there is a path P of H — (X; U X;) connecting two components of
C — (V1 U V,) such that C U P is a theta subgraph. For any cycle C’ of H withP C C' C C U P,
since [V(C") N (V; U V)| < |[V(C) N (VU V,)| — 1, the cycle C’ is balanced by the choice of C.
Therefore C is balanced by the theta property, a contradiction. So (2) holds. O

Note that, the set E; in Lemma[5.4] may be empty.
Let X and Y be subsets of the ground set of a matroid N. Set

|_|N(X, Y) = I"N(X) + VN(Y) - }"N(X U Y)

When (X, Y) is a partition of E(N), we often denote My(X, Y) by Ay(X). When there is no
confusion, subscripts will be omitted.

Lemma 5.5. Let H be a 4-connected framework for a simple and non-3-connected matroid N
with |V(H)| > 4. Then H is unbalanced and has a balancing set X with r(X) < 2. In particular,
when N has no triangles, |X| < 2.

Proof. Since N is not 3-connected and H is 4-connected, H is unbalanced. Let(X,Y) be an
exact k-separation of N for an integer 1 < k < 2. We may assume that (X, Y) is chosen with
AX) + c(H[X]) + c(H[Y]) as small as possible.

Case 1. H[X] and H[Y] are connected.

Setm = |Vg(X)NVy(Y)|. Thenm € {k—1,k, k+ 1} as A(X) = k— 1. Since H is 4-connected,
by symmetry we may assume that Vy(Y) = V(H) and m = |Vg(X)|. When m = k — 1, we have
that k = 2 and H[X] consists of loops, so N has a circuit contained in X of size at most 2, which
is not possible as N is simple. When m = k+1 < 3, both H[X] and H[Y] are balanced, that is, X
is a balancing set of H with r(X) = k. When m = k < 2, one of H[X] and H[Y] is balanced and
the other is unbalanced. If H[X] is balanced, since |X| > k and k = |Vy(X)|, the set X contains
a circuit of N whose size is at most 2, a contradiction. So H[Y] is balanced. That is, X is a
balancing set of H with r(X) = k — 1.

Case 2. H[X] is disconnected, implying |X| > 2.
Let X; be the edge set of a component of H[X].
5.5.1. Either | X — Xi| <korn(X;,X —-X;)=1and N(X;,Y) =0.

Subproof. Assume that |X — X;| > k. Since c(H[X]) + c(H[Y]) > c(H[X — Xi]) + c(H[Y U X;]),
we have A(X — X;) > A(X) by the choice of (X,Y), so N(X;,X — X;) > N(X;,Y) > 0. Since
M(X;, X — X;) < 1, the claim holds. O
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Assume that (X, X — X;) = 0. By[B.5.1l we have 1 < |[X — X{| < k. So k = 2 = c¢(H[X]).
Using again, we have |X;| = 1, so |X| = 2, implying that H[Y] is a connected spanning
subgraph of H. Since N is simple, r(X) = 2. Then H[Y] is balanced as A(X) = 1, so the lemma
holds. Hence, we may assume that M(X’, X — X”) = 1 for the edge set X’ of each component of
H[X], implying that H[X’] is unbalanced by Lemma[2.1l By symmetry we may further assume
that (a) either H[Y] is connected or each component of H[Y] is unbalanced.

When |X| = 2, since M(X;, X — X;) = 1, we have X € C(N), which is not possible as N is
simple. So |[X| > 3. By symmetry assume that |[X — X;| > 2 . By[5.3.1] we have n(X;,Y) = 0.
Since X, is unbalanced, each component of H[Y] that shares vertices with H[X| ] is balanced by
Lemma[2.1l Then H[Y] is connected and balanced by (a), implying that r(Y) = |[Vy(Y)| — 1 and
X is a balancing set of H.

Let X, ..., Xqux) be the components of H[X]. Since an unbalanced spanning unicyclic
subgraph of H[X] is an independent set in N, we have r(X) > Zi(H[XD|VH(Xi)| — c(H[X])) + 1.
Then

1>2k—1=A2X) > |Vyg(X) N Vy(Y)| — c(H[X])

as r(Y) = |Vy(Y)| = 1. Hence, |Vy(X;) N Vy(Y)| < 2 for each 1 < i < ¢(H[X]) and at most
one |Vy(X;) N Vyx(Y)| is not equal to 1. Since H is 4-connected and H[X] is disconnected,
Vu(Y) = V(H). Since r(Y) = r(N)—1 and A(X) < 1, we have r(X) < 2. Hence, the lemma holds
as X is a balancing set of H. O

Recall that we define H* = H — loops(H) when H is a lifted-graphic representation of N,
otherwise let H' = H. For vy, v, € V(H), we say {vi, v»} is a blocking pair of H if v; is a blocking
vertex of H" — v5_; for each 1 < i < 2. Note that, by our definition, balanced frameworks have
no blocking vertices, and no vertex in a blocking pair is a blocking vertex.

Lemma 5.6. Let H be a 7-connected unbalanced framework for a matroid with \V(H)| > 8.
Assume that H has no blocking pairs and H — loops(H) has no blocking vertices. Then there is
an edge f of H such that H\ f has no blocking pairs and H — (loops(H) U {f}) has no blocking
vertices.

Proof. Let e be an edge of H and S, be a minimal subset of V(H) such that H — (loops(H) U
{e} U S,) is balanced. We can further assume that |S .| < 2 otherwise the lemma holds. Let f be
alink of H — (S, U {e}). Assume that H\ f has a blocking pair § ;. Since S U {f} is a minimal
balancing set of H, it follows from Lemma [5.4] (1) that S, U S ; U {e, f} contains a cut of H,
a contradiction to the fact that H is 7-connected, a contradiction. Following a similar way, we
show that H\(loops(H) U {f}) has no blocking vertices. Hence, the lemma holds for f. O

Lemma 5.7. Let H be a 6-connected framework for a 7-connected matroid N with |V(H)| > 7.
Assume that H has no blocking pairs and H — loops(H) has no blocking vertices. Then at most
one vertex of H is not fixed.

Proof. Assume not. Let v;, v, be unfixed vertices of H. Then N\sty(v;) is graphic or non-3-
connected for each 1 <i < 2. Since H has no blocking pairs and H — loops(H) has no blocking
vertices, by Lemma 4.9 or Lemma[3.3] for each 1 < i < 2, there is a minimal balancing set X;
of H\st},(v;) such that the following (a) or (b) happens. (a) |X;| = 2, the two edges in X; have
no common vertex and if X; contains a loop then H is not a lifted-graphic representation of N,
for otherwise H has a blocking pair by the definition of blocking pairs. (b) H[X;] is a triangle.
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Hence, v; ¢ V(X;) for each 1 < i < 2 no matter which case happens. Since N is 7-connected,
X; U {v;} is a minimal balancing set of H for each 1 <i < 2.

We claim that X; = X, when v, ¢ V(X;). When X; C X,, it follows from (a) and (b) that
X, = X5. Hence, it suffices to show that X; C X,. Assume to the contrary that there is an edge
x € X; — X;3. Then x is not a loop of H, otherwise x € X; as v, ¢ V(X;). Since X; U {v;}isa
minimal balancing set of H, by Lemma[5.4](1), X; UX, U{v;, v,} contains a cut of H. Since H is
6-connected, X; UX, is a matching in H of size 4 and X; UX, U{vy, v} is cut of H by (a) and (b).
Let H, be acomponent of H—{vy,v,, X1, X,}. Set H{ = H[V(H)U{v, v2}]\E(H[{v1, v>}]). Since
each balancing set of edges in H has size at least 7 by Lemma[5.3] H\(X; U X,) is unbalanced
with vy, v, as its blocking vertices. Then H{ is balanced, otherwise H| has an unbalanced cycle
containing exactly one vertex of {v|,,} by the theta property. So A(E(H{)) < 5, a contradiction
to the fact that NV is 7-connected.

When X; = X,, since H — {v;, v, X1} is connected, by Lemma5.4] (2), X; U E(H[{v{, v»}]) is
a balancing set of rank at most 5, a contradiction to Lemmal[5.3] So X; # X,. By symmetry and
the claim proved in the last paragraph, v; € V(X;3_;) for each 1 < i < 2. Let x be the edge in X,
that is not incident with v,. Since each cycle in the 4-connected graph H — {v;, v,} containing
x is unbalanced by Lemma[3.1l x € X; N X,. Combined with (a) and (b), we have r(X; U X, U
E(H[{vi,v2}])) < 6. On the other hand, since v; € V(X3_;), the graph H — {v{,v,, X;, X5} is 2-
connected. By Lemmal[5.4](2) again, X; U X, U E(H[{v;, v»}]) is a balancing set, a contradiction
to Lemma[3.3 O

To prevent a matroid from being an excluded minor for the class of quasi-graphic matroids,
we can use Lemmas and [5.7]to show that H and H\ f have enough fixed vertices for some
edge f, as long as H — loops(H) has no blocking vertex and H has no blocking pair. In the rest
of this section, we will show that when H has a blocking vertex or a blocking pair, there is a
balanced cycle C of H and f € E(C) such that all vertices in V(C) are fixed in both H\ f and
H (namely in Lemmas [5.11] and [5.14). The case that H has a blocking vertex will be dealt with
first.

A biased graph H is contra-balanced if each cycle of H is unbalanced.

Lemma 5.8. ([14], Theorem 6.) A biased graph is a signed graph if and only if it has no
contra-balanced theta-subgraphs.

Lemma 5.9. Let v be a blocking vertex of a biased graph H. Let x € V(H —v) U E(H — v) that
is not adjacent with v when x € V(H —v). If H — {x, v} is connected, then H is a signed graph if
and only if H — x is a signed graph.

Proof. Evidently, it suffices to show that “if” part. Assume that H — x is a signed graph but
H is not. Then H has a contra-balanced theta subgraph T containing x by Lemma 5.8 Since
v is a blocking vertex of H, v is a degree-3 vertex of 7. Since v and x are not adjacent when
x € V(H —v), the graph T — {x, v} has exactly two or three components. Since H — {x, v} is
connected, H — {x, v} has a minimal forest P that joins different components of 7" — {x, v} such
that (T U P) — {x, v} is connected. Then (7" U P) — x consists of a theta subgraph 7’ and some
vertex-disjoint paths that are not in any cycle. Since T is contra-balanced and H — v is balanced,
T’ is also a contra-balanced theta-subgraph by theta property. Hence, H — x is not a signed
graph by Lemma(3.8] a contradiction. O

Suppose that v is a blocking vertex of H and H — v is connected. In this case we define
a relation ~, on the edges in sty(v) — loops,(v) by declaring e ~, f if either e = f or all
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cycles containing e and f are balanced. This is an equivalence relation, as we show next. Let
e, e, e3 be distinct edges in sty(v) with e; ~, e, and e, ~, e3. Let T be a theta subgraph of
H containing all of ey, e; and e3; such a theta subgraph exists because H — v is connected. The
cycle in T containing both e; and e, is balanced, and so is the cycle containing both e, and e;.
Therefore the cycle C in T containing e; and e; is balanced. Any other cycle containing e; and
e3 may be obtained from C by rerouting along balanced cycles (contained in H — v), hence all
the cycles containing e; and e; are balanced and e; ~, e3, showing that ~, is an equivalence
relation. The same argument shows that a cycle of H (that is not a loop) is unbalanced if and
only if it contains two edges in sty (v) which are not equivalent. We call the partition given by
the equivalence classes of ~, the standard partition of sty(v) — loops,(v). For more details, the
reader can refer to ([5], Section 2) or ([6], Section 1). Definitions and results introduced in this
paragraph will only be used in the proof of Lemma[5.10l

When H is a signed graph with a blocking vertex v, since H has no contra-balanced theta
subgraph by Lemmal[5.8] it is easy to show that there is a partition (X;, X;) of sty (v) —loops(v)
such that H — (loops(H) U X;) is balanced for each 1 < i < 2. Split v into vy, v, such that X;, X,
are incident with v, and v,, respectively, and such that each unbalanced loop in H joins v, and
v, and each balanced loop in loops,(v) is a loop incident with any v;. Let G denote the new
graph. Then H is a lifted-graphic representation of M(G). Hence, if a framework for a matroid
N is a signed graph with a blocking vertex, then N is graphic. This fact will be frequently used
in the rest of this section without reference.

Let X,Y € E(H) and # = (Py,..., P,) be a partition of X. We will let  — Y denote the
partition (P, - Y,...,P,—Y)of X - Y.

Lemma 5.10. Let H be a 5-connected framework for a 5-connected matroid N with |V(H)| > 5.
Assume that N is non-graphic and H has a blocking vertex v. Then the following hold.

1. Foreachvertexv # u € V(H), the graph H—u is unbalanced and N\sty(u) is 3-connected.

2. A vertex u with u # v is not fixed in H if and only if H\E(H[{v, u}]) is an unbalanced
signed graph.

3. At most one vertex in V(H) — {v} is not fixed in H.

Proof. First we prove that (1) is true. If H — u is balanced, then it follows from Lemma[5.4] (2)
that E(H[{u, v}]) is a balancing set of H with rank at most 2, which is not possible by Lemmas
and[3.3]l Hence, H — u is unbalanced.

Assume that N\stgy(u) is not 3-connected for some vertex v # u € V(H). Since N has no
triangles, by Lemmal3.5] H — u has a minimal balancing set X with |X| < 2. Since each cycle of
H — u containing exactly one edge of X is unbalanced by Lemma[5.1l X C sty(v) U loops(H).
Moreover, since H — {u, v} is connected, it follows from Lemma[5.4] (2) that X U E(H[{u, v}]) is
a balancing set of H with rank at most 4, which is not possible by Lemmas and 5.3

Secondly, we prove that (2) is true. When H\E(H[{v, u}]) is an unbalanced signed graph
with v as its blocking vertex, N\E(H[{v, u}]) is graphic, and thus so is N\sty(u). Hence, u is
not fixed in H. Next, we prove the “only if” part of (2) is true. Since u is not fixed, N\sty(u) is
graphic by (1). Then H — u is an unbalanced signed graph with v as its blocking vertex by (1),
hence so is H\E(H[{v, u}]) by repeatedly using Lemma (5.9

Thirdly, we prove that (3) is true. Assume not. There are vertices u, u’ in V(H)—{v} such that
H\E(H[{v,u}]) and H\E(H[{v, u'}]) are signed graphs with v as their blocking vertex by (2). Let
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P be the standard partition of sty (v)—loops(v) in H. Then P—sty(u) and P—sty(u’) have exactly
two non-empty members. When P — (sty(u) U sty (u’)) has exactly two non-empty members, P
has exactly two non-empty members, implying that H is a signed-graph, a contradiction to the
fact that N is non-graphic. When P —(sty(u)Usty (1)) has exactly one non-empty member, since
N is simple, H has a minimal balancing set {e, ¢’} with e € E(H[{v,u}]) and ¢’ € E(H[{v, u'}]).
Then {e, ¢’} € C*(N) by Lemma[5.2] a contradiction. O

Lemma 5.11. Let H be a 6-connected framework for a 6-connected matroid N with |V(H)| > 6.

Assume that N is non-graphic and H has a blocking vertex v. Then H — v has a balanced cycle
C such that all vertices in V(C) are fixed in both H\ f and H for each edge f of C.

Proof. We claim that a vertex u € V(H — v) is not fixed in H if and only if it is not fixed in
H\f for an arbitrary f € E(H — v). Evidently, it suffices to show that the “if” part is true. Let
u be a vertex in V(H — v) that is not fixed in H\ f. By Lemma[5.10 (2), H\(E(H[{v, u}]) U {f})
is an unbalanced signed graph with v as its blocking vertex. Since H\(E(H[{v,u}]) U {f,v}) is
connected, H\E(H[{v,u}]) is a signed graph by Lemma[5.9] So u is not fixed in H by Lemma
(2) again.

By Lemma[5.10/ (3), H — v has a balanced cycle C such that all vertices in V(C) are fixed in
H. By the claim proved in the last paragraph, for each f € E(C), all vertices in V(C) are also
fixed in H\f. O

Next, the case that H has a blocking pair S but H — loops(H) has no blocking vertices will
be dealt with. To deal with this case, we need to introduce a characterization of the structure
of biased graphs that have at least two blocking vertices. Lemma [5.12] will be only used in the
proof of Lemma[5.13

Lemma 5.12. (/16], Corollary 2.) Let V* = {vy,...,v,} be the set of blocking vertices of a
biased graph H. Assume that n > 2. Then one of the following holds.

1. H is obtained from mK, by replacing each edge e; with a balanced graph H; such that all
cycles of H not contained in some H; are unbalanced, where m > 2.

2. H is obtained from a cycle viv, . ..v,v| by replacing each edge v;v;;; with a graph H; and
a cycle in H is unbalanced if and only if it contains {vi,...,v,}, where no vertex in H;
separates v; and v;,, and all subscripts are modulo n.

Lemma 5.13. Let H be a 5-connected unbalanced framework for a 6-connected matroid N with
|V(H)| > 6. Assume that H has a blocking pair S and H — loops(H) has no blocking vertices.
Then we have

1. If some v € V(H) — S is not fixed in H, then there is a vertex u € S such that {u,v} is a
blocking pair of H.

2. H has at most two blocking pairs, and they have a common vertex.

Note that at most one vertex in V(H) — S can be contained in a blocking pair of H and at
most one vertex in V(H) — S is not fixed in H by Lemma[5.131

Proof of Lemmal5. 131 When H is a lifted-graphic representation for N with a loop, we may
assume that the loop is in st(S).
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5.13.1. If S, S, are blocking pairs of H, then S1 NS, # 0.

Subproof. Assume otherwise. By Lemmal[5.41(2), E(H[S { US]) is a balancing set of H of rank
at most 4, a contradiction to Lemma[3.3] O

First, we prove that (1) is true. Since N\sty(v) is graphic or non-3-connected, by Lemmal4.9]
or Lemmal[3.3] either (a) H — v has a blocking vertex u or (b) H\sty(v) has a minimal balancing
set X such that |X| < 2 or H[X] is a triangle. When (a) happens, u € S by 3.13.1] so (1) holds.
Assume that (b) happens. Since each cycle C in H—v with |CN X]| = 1 is unbalanced by Lemma
5.1l we have X C st(S), so H — (S U X U {v}) is 2-connected. Then X U E(H[S U {v}]) is a
balancing set of H with rank at most 5 by Lemma (2), a contradiction to Lemmas and
5.3

Now, we prove that (2) holds. Assume that, besides S, the graph H has two other blocking
pairs S, S,. By[5.13.1l we may assume that S| = {u,v} and S, = {u’,V'}, where u,u’ € S and
v,v' € V(H)—S. When u =, let w be the unique vertex in S — {u}. Since v,V’, w are distinct
blocking vertices of H — u, at least one pair of vertices in {v,V’, w} is a cut of H — u by Lemma
(2), so H is not 4-connected, a contradiction. Hence, u # u’, implying v = v’ using [5.13.1]
again. Let E; be the set of edges from u to u’. Since u,u’ are blocking vertices of G — v, by
Lemmal[5.121 (1) or Lemma[5.12](2), either {u, u’} is a cut of G — v or {v} U E| is a balancing set.
Since H is 5-connected, {v} U E; is a balancing set. Since u, v are blocking vertices of G — v/,
by symmetry we have that {x'} U E, is a balancing set, where E, is the set of edges between u
and v. Hence, by Lemma (2), the set of all edges between u, #’ and v is a balancing set, a
contradiction to Lemmas[5.2] and 5.3l O

Lemma 5.14. Let H be a 6-connected unbalanced framework for a 7-connected matroid N with
|V(H)| > 7. Assume that H has a blocking pair S and H — loops(H) has no blocking vertices.
Then H — S has a balanced cycle C such that all vertices in V(C) are fixed in H\f and H for
every edge f of C.

Proof. By Lemmal3.13](2), H — S has a balanced cycle C such that each vertex in V(C) is not
contained in a blocking pair of H. Lemmal[5.13/(1) implies that all vertices in V(C) are fixed in
H. Let f be an arbitrary edge in C. Assume that the lemma does not hold for f. Then there is
some vertex v € V(C) that is not fixed in H\ f. By Lemma[3.13] (1), {u, v} is a blocking pair of
H\ f for some u € §. Since {u, v} is not a blocking pair of H, there is a minimal balancing set X
of H with f € X C {u,v, f}. By Lemma[5.4] (1), X U S contains a cut of H, a contradiction to
the fact that H is 6-connected. O

To prove Theorem [I.2] we need one more result. Tutte [13] proved

Theorem 5.15. ([10], Theorem 10.3.1.) A matroid is graphic if and only if it has no minor
isomorphic to U4, F7, F5, M*(Ks) and M*(K33).

Now, we prove Theorem [L.2] which is restated here in a slightly different way.

Theorem 5.16. Let M be an excluded minor for the class of quasi-graphic matroids. Then M
is isomorphic to Us; or Uy7, or M is not 9-connected.

Proof. Assume that M is 9-connected. When r(M) < 8, it follows from Theorem [3.3] that M
is isomorphic to Us; or Us7. So we may assume that r(M) > 9. Since M is non-graphic and
the matroids in Theorem [5.13] each have a cocircuit of size less than 9, there is an element e of
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M such that M\e is non-graphic by Theorem Let G be a 7-connected framework for M\e
with |V(G)| > 9.

First, consider the case that G — loops(G) has no blocking vertices and G has no blocking
pairs. By Lemma [5.6] there is an edge f of G such that G\ f has no blocking pairs and G —
(loops(G) U {f}) has no blocking vertices. It follows from Lemmas [5.7] and 2.13| that G\ f is a
unique framework for M\e, f. Then G\ f can be extended to a framework for M\ f. Moreover,
since G has no blocking pairs, G\ f has no blocking vertices, so M is quasi-graphic by Lemma
2.14] a contradiction.

Secondly, consider the case that G has a blocking pair or G —loops(G) has a blocking vertex.
When G — loops(G) has a blocking vertex v and G is not a lifted-graphic representation for N,
let G’ be obtained from G by changing each loop in loops(G) — loops;(v) to a link joining its
original end and v; otherwise, set G’ = G. By Theorem[2.4] G’ is also a 7-connected framework
for M\e that has a blocking pair or a blocking vertex. By Lemmal[3.11] or Lemma there is
a balanced cycle C of G’ such that all vertices in V(C) are fixed in G’\ f for each edge f in C.
Since M\ f is quasi-graphic, so is M by Lemmal[2.13] a contradiction. m|
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