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ASYMPTOTIC ANALYSIS ON THE SHARP INTERFACE LIMIT OF THE
TIME-FRACTIONAL CAHN–HILLIARD EQUATION

TAO TANG∗, BOYI WANG† , AND JIANG YANG‡

Abstract. In this paper, we aim to study the motions of interfaces and coarsening rates governed by the time-
fractional Cahn–Hilliard equation (TFCHE). It is observed by many numerical experiments that the microstructure
evolution described by the TFCHE displays quite different dynamical processes comparing with the classical Cahn–
Hilliard equation, in particular, regarding motions of interfaces and coarsening rates. By using the method of matched
asymptotic expansions, we first derive the sharp interface limit models. Then we can theoretically analyze the motions
of interfaces with respect to different timescales. For instance, for the TFCHE with the constant diffusion mobility,
the sharp interface limit model is a fractional Stefan problem at the time scale t = O(1). However, on the time scale

t = O(ε
1

α ) the sharp interface limit model is a fractional Mullins–Sekerka model. Similar asymptotic regime results
are also obtained for the case with one-sided degenerated mobility. Moreover, scaling invariant property of the sharp
interface models suggests that the TFCHE with constant mobility preserves an α/3 coarsening rate and a crossover
of the coarsening rates from α

3
to α

4
is obtained for the case with one-sided degenerated mobility, which are in good

agreement with the numerical experiments.

Key words. Method of matched asymptotic expansions, time-fractional Cahn–Hilliard equation, phase-field
modeling, coarsening rates, motion of interfaces
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1. Introduction. The coarsening progress (see Fig.1.1(a)-1.1(c)) is an ubiquitous phenomena
and is observed in many fields such as the study of solid or fluid in material science, opinon dynamic
in social science, and pattern formation in biological science [9]. It is marked by an increase of
the typical length scale in the spatial structures, which is due to the decrease of the interfacial
energy [7, 10, 11, 12, 13, 20]. During the coarsening process, a power law, i.e., the increasing of a
characteristic length scale with respect to the power of time, is often observed [10, 11, 32], as well
as Fig.1.1(d). To measure the coarsening process, a coarsening rate is introduced. It is clear that
the Cahn–Hilliard equation (CHE) can be used for simulating the coarsening progress with an 1/3
power law. This power law coincides with the coarsening rate indicated by the classical LSW theory
for bulk diffusion. However, different coarsening rates have also been discovered, which suggests
that the CHE is insufficient. For example, significantly small coarsening rates, i.e. 0.13, 0.07 and
0.09, are observed in the coarsening of γ′ precipitates [17, 30]. The authors explain that as a result
of the existence of the elastic strain field. Besides, a coarsening rate of 1/2 is observed in the study
of precipitate in rapidly solidified Al-Si alloy and it is due to a change of the anealling temperature
according to the author [7]. More examples of different coarsening process are introduced in [9].
These results suggest that the CHE may not be a suitable coarsening model of every cases and
other models should be considered.

Recently, time-fractional models have drawn people’s attention [2, 8, 15, 16, 18, 23, 24, 21, 34,
22]. Numerical results have shown that the coarsening rate of a time-fractional Cahn–Hilliard equa-
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tion (TFCHE) depends not only on the mobility, but also on the order of the fractional derivative
[22, 25, 28, 32, 35, 16]. Especially, an intriguing coarsening rate of α/3 is observed in [32]. Fig.
1.1(a)-1.1(d) show the case for α = 0.9.

This paper is concerned with the motion of interfaces and coarsening dynamics of the time-
fractional Cahn–Hilliard equation (TFCHE)

{

∂α
t u = ∇(M(u)∇µ),

µ = −ε2∆u + F ′(u), x ∈ Ω, 0 < t < T,
(1.1)

where, for some given 0 < α < 1, ∂α
t is the Caputo fractional derivative [2, 19, 29] defined by

∂α
t u =

1

Γ(1− α)

∫ t

0

u′(τ)

(t− τ)α
dτ, t > 0.

As an nonlocal-in-time extension of classical phase-field models, u is the order parameter, ε repre-
sents the width of interfaces, and µ is the chemical potential. Without loss of generality, we restrict
our attention on the commonly used double well potential

F (u) =
1

4
(u2 − 1)2. (1.2)

In (1.1), the diffusion mobility function M(u) is taken as the constant 1 or the one-sided degenerate
function 1 + u. For simplicity, (1.1) is subject to the Nuemann boundary conditions

∂u

∂n
=

∂µ

∂n
= 0, x ∈ ∂Ω, 0 < t < T, (1.3)

and the initial data

u(x, 0) = u0(x), x ∈ Ω. (1.4)

Extensive investigations have been made to study the coarsening process and the coarsening
rates of the Cahn–Hilliard equations. Pego [26] studied the asymptotic regimes on CHE with the
constant mobility by the method of matched asymptotic expansions. Alikakos, Bates and Chen [1]
proved the convergence of CHE to the Mullins–Sekerka equations. Cahn, Elliott and Novick-Cohen
[6] studied the degenerate CHE and obtained the surface diffusion model. In addition, it has been
shown that coarsening rate of the Cahn–Hilliard equation is related to the diffusion mobility. Dai
and Du [10, 11] studied the motion of interfaces for CHE with single-sided degenerate mobility, and
they obtained its sharp interface limits as well as the coarsening rates. More results related to the
CHE can be found in, i.e., [1, 3, 4, 12, 14, 31, 33, 13] etc.

Motivated by the above asymptotic analysis theory and numerical results on the coarsening
rates for time fractional CHE, we will establish asymptotic regime theory on the TFCHE by the
method of matched asymptotic expansion as used in [26] and to derive the surface diffusion models
of interface motion for the TFCHE. As far as we know, this is the first work to study the coarsening
process and coarsening rate of TFCHEs using formal asymptotic matching.

Our main results are twofold. Firstly, a formal asymptotic description of the TFCHE in the later
regime of phase seperation is given, where different types of mobilities are discussed. Secondly, using
the resulted sharp interface models and the scaling invariant property, we explain the corresponding
coarsening rates for the TFCHEs, which agrees well with numerical observations in [32, 35]. A more
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(a) u at t = 4 (b) u at t = 25

(c) u at t = 100
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Fig. 1.1. M(u) = 1, α = 0.9, ε = 0.05. Morphological patterns at t = 4 (top left), t = 25 (top right), t = 100
(bottom left), ln(E(t)/|Ω|) vs. ln(t) (bottom right).

precise outline of the first result is given below. In a slow time scale O(1), the solution at leading
order satisfies a nonlocal “Stefan problem” with equilibrium condition at the interface, and the
leading order inner solution is the solution to the following problem

F ′(U)− ∂zzU = 0, (1.5a)

U(−∞) = −1, U(+∞) = 1, U(0) = 0, (1.5b)

which is the re-scaled tanh function U(z) = tanh(z/
√
2). Then, on a much more slower timescale

t1 = O(ε
1

α t), phase equilibrium holds everywhere and interface motion is governed by µ1, which is

3



the second term in the asymptotic expansion of the chemical potential µ, obeying to the following
nonlocal “Mullins–Sekerka” model

∂α
t1u0 = ∆µ1, in Ω\Γ, (1.6a)

µ1 = κ
S

[U ]
, on Γ, (1.6b)

I1−αV = [∂mµ]+−/[U ], on Γ. (1.6c)

In (1.6a)-(1.6c), S and [U ] are some constants, u0 is the sign function of the distance function φ,
Γ is the interface, κ = ∆φ is the mean curvature, V = ∂tφ is the normal velocity of Γ on x with
the signed distance φ from the point x ∈ Ω to interface, m is the unit normal vector on Γ, I1−α

denotes the fractional integral operator, u0 is determined by the interface Γ and equals to ±1 in
Ω±, correspondingly. The present results reduce to the classical one of Pego [26] for local CHE

V = [∂mµ1]
+
−/[U ], on Γ

by letting α → 1.
As for the case with one-sided degenerate mobility, i.e., M(u) = 1 + u, the corresponding

sharp interface models in time scales t1 = O(ε
1

α t) and t2 = O(ε
2

α t) are derived respectively as the
following nonlocal Mullins–Sekerka models :

∂α
t1u0 = ∆µ1, in Ω+, (1.7a)

µ1 = −κ
S

[U ]
, on Γ, (1.7b)

I1−αV = ∂mµ+
1 , on Γ (1.7c)

and

∂α
t2u0 = ∇(µ1∇µ1), in Ω−, (1.8a)

µ1 = −κ
S

[U ]
, on Γ, (1.8b)

2∆µ2 = ∂α
t u0, in Ω+, (1.8c)

µ2 = −κ2 S1

[U ]
, on Γ, (1.8d)

I1−αV = ∂mµ+
2 +

1

4
µ−

1 ∂mµ−

1 , on Γ. (1.8e)

A more precise outline of the second model is given below. For the case with the constant
mobility M(u) = 1, the scaling invariant of nonlocal Mullins-Sekerka model implies an coarsening
rate of α/3, which coincides well with that observed in numerical experiments. For the case with
one-sided degenerate mobility M(u) = 1 + u, the models (1.7a)-(1.7c) and (1.8a)-(1.8e) exhibit
two different coarsening rates of α

3 and α
4 respectively, which are in good agreement with the

observations in [10, 11].
The rest of the paper is organized as follows. In Section 2 and Section 3, we establish sharp

interface limit models for the TFCH system (1.1)-(1.4) when M(u) = 1 and M(u) = 1 + u, respec-
tively. In Section 4, the scaling invariant properties of sharp interface models and the coarsening
rates will be discussed. Some concluding remarks are given in the finial section.
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2. Sharp interface models when M(u) = 1. The method of matched asymptotic expansions
expansion as in Pego [26] will be used in this section. For all γ ∈ R and t1 = εγt, simple calculation
yields

∂α
t v(t1) =

εαγ

Γ(1− α)

∫ εγ t

0

v′(τ)

(εγt− τ)α
dτ = εαγ∂α

t1v(t1). (2.1)

Below we will develop sharp interface models at different time scales. We assume that with domain
Ω ⊂ R

N , N = 2 or 3, there is a smooth N − 1 dimension interface Γ which divides Ω into Ω+ and
Ω−, and the interface Γ does not intersect with the boundary.

2.1. The time scale t = O(1): a time-fractional Stefan problem. We assume that the
phase structures are nearly equilibrated.

2.1.1. Outer expansion. We expand the solution in a series of powers of ε in the timescale
t:

u(x, t) = u0(x, t) + εu1(x, t) + · · · , (2.2a)

µ(x, t) = µ0(x, t) + εµ1(x, t) + · · · . (2.2b)

In this time scale,

∂α
t u = ∂α

t u0 + ε∂α
t u1 + · · · . (2.3)

By comparing Eq. (2.3) with (1.1) and matching the powers of ε, we get

∂α
t u0 = ∆µ0, µ0 = F ′(u0). (2.4)

This method will be used many times in this paper. The leading order equation implies that the
phase parameters evolve according to the chemical potential. The boundary condition on ∂Ω is
taken naturally as ∂u0

∂n = 0. To model this problem, it is necessary to derive the boundary conditions
on the interface, which can be done by matching outer solutions with the inner solutions.

2.1.2. Inner expansion. Now we consider the inner expansions near the front. Intuitively,
the inner solutions takes the value of the solutions restricted on the interface. The inner solutions
will be defined in this region by an inner variable z. Moreover, the inner solution matches with the
outer solution when z → ±∞ according to some specified matching conditions. We take the same
notations as Pego [26]. In order to define the inner variable z, define the stretched normal distance
to the front

z = φ(x, t)/ε,

where φ(x, t) is the signed distance of the point x in Ω to the interface Γ(t) such that φ > 0 in Ω+

and φ < 0 in Ω−. Note that φ is a smooth function near Γ if Γ is smooth.
Consider the functions ṽ = ṽ(z, x, t) defined near the interface. Following [26], we require that

v does not varies when x varies normally to Γ but z holds, that is, ṽ(z, x+α∇φ, t) = ṽ(z, x+∇φ, t)
for small α or ∇φ · ∇xṽ = 0. Moreover, define

m = ∇φ(x, t), κ = ∆φ(x, t), V (x, t) = ∂tφ(x, t), (2.5)
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where m is the unit normal vector on Γ pointing towards Ω+, κ is the mean curvature of Γ at point
x, ∂tφ = V (x, t) is the normal velocity of front motion in this time scale which is positive when
pointing towards Ω−. We also assume that ∂tφ = V (x, t) exists for all x ∈ Ω. Given ṽ(z, x, t) and
v = ṽ(φ(x, t)/ε, x, t), we have derivatives transform according to the relations [26]:

∇v = ∇xṽ + ε−1m∂z ṽ, (2.6a)

∆v = ∆xṽ + ε−1κ∂z ṽ + ε−2∂zz ṽ, (2.6b)

∂tv = ε−1∂tφ∂z ṽ + ∂tṽ. (2.6c)

For the inner expansion, we have

u(x, t) = ũ0(z, x, t) + εũ1(z, x, t) + · · · , (2.7a)

µ(x, t) = µ̃0(z, x, t) + εµ̃1(z, x, t) + · · · . (2.7b)

By Taylor expansion and (2.7a)-(2.7b), the expansions are related by

µ̃0 = F ′(ũ0)− ∂zzũ0, (2.8a)

µ̃1 = F ′′(ũ0)ũ1 − ∂zz ũ1 − κ∂zũ0, (2.8b)

µ̃2 = F ′′(ũ0)ũ2 − ∂zz ũ2 − κ∂zũ1 +
1

2
F ′′′(ũ0)ũ

2
1 −∆xũ0. (2.8c)

Substituting the expansion back to (1.1), using the derivative transform formulas (2.6a)-(2.6c) and
matching the lowest order term of ε shows:

∂zzµ̃0 = 0, (2.9)

Integrating (2.9) and combing (2.8a) derive

µ̃0 = a0(x, t)z + b0(x, t) = F ′(ũ0)− ∂zz ũ0. (2.10)

Since ũ0 must be bounded, a0(x, t) has to be zero. Then derive b0 by solving the following system:

F ′(ũ0)− ∂zzũ0 = b0, (2.11a)

ũ0(+∞, x, t) = u+(x, t), ũ0(−∞, x, t) = u−(x, t) . (2.11b)

Letting z → ±∞ in (2.11a) and integrating Eq.(2.11a) with respect to u yield

F ′(u+(x, t)) = F ′(u−(x, t)) = b0(x, t), (2.12a)

b0(x, t)(u
+(x, t)− u−(x, t)) = F (u+(x, t)) − F (u−(x, t)). (2.12b)

Assuming that the leading order inner solution u0 links the two pure phases ±1, which means

u+(x, t) = 1, u−(x, t) = −1. (2.13)

Therefore,

b0 = µ̃0(z) = 0. (2.14)

6



Recall (2.11a) with b0 = 0. As in [10], we choose the well-known solution profile

ũ0(z) = tanh

(

z√
2

)

=: U(z). (2.15)

Matching with the outer solution by (2.4) derives the boundary conditions for the equilibrium state

µ0 = 0 on Γ. (2.16)

For the matching between higher order terms, we follow the ideas provided by Caginalp and
Fife in [5]. Fixing x on Γ, we seek to match the expansions by requiring formally that

(µ0 + εµ1 + · · · )|(x+εzm ,t) ≈ (µ̃0 + εµ̃1 + · · · )|(z,x,t), (2.17)

when εz is between o(1) and O(ε). Expanding the left hand side in powers of ε as εz → 0+, gives

µ+
0 + ε(µ+

1 + zDmµ+
0 ) + ε2(µ+

2 + zDmµ+
1 +

1

2
z2D2

mµ+
0 ) + · · · , (2.18)

where Dm denotes the directional derivative along m and µ+
i is the limit when z → 0 along m :

µ±

i = lim
z→0±

µi(x+ zm, t1). (2.19)

Similar results hold for εz → 0−. To match these expansions in (2.18) with the inner expansion,
one requires

µ±

0 (x, t) = µ̃0(z, x, t), z → ±∞, (2.20a)

(µ±

1 + zDmµ±

0 )(x, t) = µ̃1(z, x, t), z → ±∞, (2.20b)

(µ+
2 + zDmµ+

1 +
1

2
z2D2

mµ+
0 )(x, t) = µ̃2(z, x, t), z → ±∞. (2.20c)

The time derivative in the local frame equals

∂α
t u(x, t) = ∂α

t

(

(ũ0 + εũ1 + · · · )|(φ(x,t)/ε,x,t)
)

=
1

Γ(1− α)

∫ t

0

ε−1∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)

(t− τ)α
dτ

+
1

Γ(1− α)

∫ t

0

∂τφ(x, τ)∂z ũ1(φ(x, τ)/ε, x, τ) + ε(∂τ ũ1(z, x, τ)|z=φ(x,τ)/ε)

(t− τ)α
dτ + · · ·

=
1

Γ(1− α)

∫ t

0

ε−1∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε, x, τ)

(t− τ)α
dτ + h.o.t. (2.21)

Then matching the O(1ε ) term gives

1

Γ(1− α)

∫ t

0

∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)

(t− τ)α
dτ = µ̃1zz(z, x, t). (2.22)

Integrating Eq. (2.22) with respect to z over (−∞,+∞), we get

1

Γ(1− α)

∫ t

0

φτ (x, τ)

(t− τ)α
dτU

∣

∣

+∞

−∞
= µ̃1z

∣

∣

+∞

−∞
. (2.23)
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By using the matching condition (2.20b), we derive

1

Γ(1− α)

∫ t

0

φτ (x, τ)

(t− τ)α
dτ = [m · ∇µ0]

+
−[U ]−1, (2.24)

where [U ] = U
∣

∣

+∞

−∞
= 2 and [m · ∇µ0]

+
− denotes the jump of the direction derivative of µ over the

interface along the normal vector. We rewrite Eq. (2.24) in the following form using the notation
of fractional integral:

I1−αV =
1

2
[∂mµ0]

+
−. (2.25)

Sharp interface model in t = O(1). Ignoring the subscripts, the sharp interface model is a
time-fractional Stefan model.

∂α
t u0 = ∆µ0, µ0 = F ′(u0), in Ω/Γ, (2.26a)

u0 = 1, on Γ+, u0 = −1, on Γ−, (2.26b)

µ0 = 0, on Γ, (2.26c)

I1−αV =
1

2
[∂mµ0]

+
−, (2.26d)

2.2. The time scale t1 = ε
1

α t: a time-fractional Mullins–Sekerka model. In this part
we derive the time-fractional sharp interface model in the time scale t1 = ε

1

α t.

2.2.1. Outer expansion. In this time scale,

∂α
t u = ε∂α

t1u0 + ε2∂α
t1u1 + · · · . (2.27)

Similar to (2.4), we have

0 = ∆µ0, µ0 = F ′(u0), ∂α
t1u0 = ∆µ1, ∂α

t1u1 = ∆µ2. (2.28)

In this time scale, at leading order, we have a steady state equation for µ0. Nevertheless, Eq.(2.28)
the conditions on the interface and the boundary are also required. The boundary condition on ∂Ω
is naturally inherited from the boundary condition ∂u

∂n = 0, but for the boundary conditions on the
interface, we need to solve for them by asymptotically matching the outer solutions and the inner
solutions.

2.2.2. Inner expansion. Similar to (2.9), matching 1/ε2 and 1/ε terms in the second equation
in Eq. (1.1) yields

∂zzµ̃0 = 0, (2.29a)

κ∂zµ̃0 + ∂zzµ̃1 = 0. (2.29b)

Analogous analysis to section 2.1 leads to a tanh profile again, i.e.,

ũ0 = U(z), µ̃0 = 0,

8



where U(z) is defined in (2.15). We also assume that u+
0 (x, t1) = 1, u−

0 (x, t1) = −1. Matching
the inner solution with the outer solution according to (2.20a), one derives the boundary conditions
for the outer solution

µ0 = 0, on Γ. (2.30)

Notice that now ∆µ0 = 0 and µ0 = F ′(u0) in (2.28), therefore,

µ0 = 0 in Ω, u0 ≡ −1 in Ω−; and u0 ≡ 1 in Ω+.

As for µ̃1, we have

µ̃1 = F ′′(ũ0)ũ1 − ∂zz ũ1 − κ∂zũ0 = b2(x, t1). (2.31)

Since F ′′(ũ0)ũ
′
0(z)− ∂zzũ

′
0 = 0, multiplying (2.31) by U ′ and integrating by z on (−∞,+∞) yield

[U ]µ̃1 + κS = 0,

where

S =

∫ +∞

−∞

U ′(z)2dz, [U ] = u+ − u− = 2.

Using the matching conditions (2.20b),

µ1 = µ̃1 = −κ
S

[U ]
, on Γ.

Letting ε → 0, we have the boundary conditions of µ at the interface Γ. Therefore, we have a closed
system for µ1

∂α
t1u0 = ∆µ1, in Ω\Γ, (2.32a)

µ1 = −κ
S

[U ]
, on Γ, (2.32b)

∂mµ1 = 0, on ∂Ω. (2.32c)

Provided that Γ is known and smooth, which is well-defined and can be solved independently in
each Ω±.

Similar to (2.24), in this new time scale we have

1

Γ(1 − α)

∫ t1

0

φτ (x, τ)

(t1 − τ)α
dτ = [m · ∇µ1]

+
−[U ]−1, (2.33)

which is

I1−αV =
1

2
[∂mµ1]

+
−. (2.34)

9



Sharp interface model in t1 = ε
1

α t. Collecting the above equations (2.32a)-(2.32c), we get the
sharp interface model as follows

∂α
t1u0 = ∆µ1, in Ω\Γ, (2.35a)

µ1 = −κ
S

[U ]
, on Γ, (2.35b)

∂µ1

∂n
= 0, on ∂Ω, (2.35c)

I1−αV =
1

2
[∂mµ1]

+
−, on Γ. (2.35d)

u0 ≡ 1 or u0 ≡ 1 when φ > 0 or φ < 0, respectively. The system (2.35a)-(2.35d) is well-posed,
which determines the motion of the front for given smooth initial data. It is a time-fractional
Mullins–Sekerka model.

Remark 1 Since u0 is the sign function of φ, ∂tu0 ≡ 0. Hence, in the local CH model, (2.35a)
becomes

∆µ1 = 0 in Ω\Γ.

But for the TFCHE, it is necessary to keep ∂α
t0u0 due to the nonlocal effect.

3. Sharp interface models when M(u) = 1 + u. In this section, we intend to derive the
sharp interface models of the TFCHE with one-sided mobilityM(u) = 1+u under the same problem
setting as in Section 2. To begin with, special treatments are required for the degenerate mobility
since in this case the leading order term 1+ u0 in the asymptotic expansion of M(u) might not be
valid when z → −∞. Assuming that 1+ ũ0 decreases exponentially, that is 1+ ũ0 ∼ ez/σ, z → −∞.
Taking η = σ ln 1

ε , we have the following estimates of 1 + ũ0:

1 + ũ0 =















O(ε), if z ≤ −η,
O(ε2), if z ≤ −2η,
O(ε3), if z ≤ −3η,
O(ε4), if z ≤ −4η.

(3.1)

To simplify the notations, we denote χ4 = 1(−∞,−4η], χ3 = 1(−4η,−3η], χ2 = 1(−3η,2η], χ1 = 1(−2η,η]

and χ0 = 1(−η,+∞), which are the corresponding characteristic functions on each interval. Then we
have the following expansion of 1 + ũ0:

1 + ũ0

=(1 + ũ0)χ0 + ε(1 + ũ0)ε
−1χ1 + ε2(1 + ũ0)ε

−2χ2 + ε3(1 + ũ0)ε
−3χ3 + ε4(1 + ũ0)ε

−4χ4. (3.2)

Replacing 1 + ũ0 by the above expansion gives a valid series of M(u). Moreover, similar idea is
applied for ũ0z. When z → −∞, ũ0z decays at the same rate as 1 + ũ0. As for when z → +∞, we
assume that ũ0z ∼ e−z/σ̂ and η̂ = σ̂ ln 1

ε so ũ0z ≤ O(ε) when z ≥ η̂. Let the partitions be [−η, η̂),
[−2η,−η) ∪ [η̂, 2η̂), [−3η,−2η) ∪ [2η̂, 3η̂),[−4η,−3η) ∪ [3η̂, 4η̂) and (−∞,−4η) ∪ [4η̂,+∞) and the
corresponding characteristic functions be χ̂0, χ̂1, χ̂2, χ̂3, χ̂4. Then the following expansion holds:

ũ0z = ũ0zχ̂0 + εũ0zε
−1χ̂1 + ε2ũ0zε

−2χ̂2 + ε3ũ0zε
−3χ̂3 + ε4ũ0zε

−4χ̂4. (3.3)
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With above expansions, we can now compute ∇ · (M(u)∇µ) as follows

∇ · (M(u)∇µ) = M ′(u)∇xu · ∇xµ+ ε−2∂zu∂zµ+M(u)(∆xµ+ ε−1κ∂zµ+ ε−2∂zzµ). (3.4)

By simple calculations, we find the terms of powers of ε in (3.4) correspondingly. The first four
leading order terms are required in our later analysis, which are the O( 1

ε2 ) term

χ̂0ũ0zµ̃0z + χ0(1 + ũ0)∂zzµ̃0, (3.5)

the O(1ε ) term

(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ̃1z + χ0κ(1 + ũ0)µ̃0z + χ0(1 + ũ0)µ̃1zz (3.6)

+(ũ1 + χ1(1 + ũ0)ε
−1)µ̃0zz ,

the O(1) term

∇xũ0∇xµ̃0 + (χ̂0ũ0zµ̃2z + (χ̂1ũ0zε
−1 + ũ1z)µ̃1z + (χ̂2ũ0zε

−2 + ũ2z)µ̃0z) (3.7)

+χ0(1 + ũ0)(∆xµ̃0 + κµ̃1z + µ̃2zz) + (ε−1(1 + ũ0)χ1 + ũ1)(κµ̃0z + µ̃1zz)

+(ε−2(1 + ũ0)χ2 + ũ2)µ̃0zz ,

and the O(ε) term

∇xũ0∇xµ̃1 +∇xũ1∇xµ̃0 + (χ̂0ũ0zµ̃3z + (χ̂1ũ0zε
−1 + ũ1z)µ̃2z (3.8)

+(χ̂2ũ0zε
−2 + ũ2z)µ̃1z + (χ̂3ũ0zε

−3 + ũ3z)µ̃0z)+

+χ0(1 + ũ0)(∆xµ̃1 + κµ̃2z + µ̃3zz)

+((1 + ũ0)χ1ε
−1 + ũ1)(∆xµ̃0 + κµ̃0z + µ̃2zz)

+((1 + ũ0)χ2ε
−2 + ũ2)(κµ̃0z + µ̃1zz) + ((1 + ũ0)χ3ε

−3 + ũ3)µ̃0zz .

We start with a non-trivial time scale in this section.

3.1. The time scale t = O(1): a one-sided time-fractional Stefan problem.

3.1.1. Outer expansion. Similar to (2.28), it yields

∂α
t u0 = ∇((1 + u0)∇µ0), ∂α

t u1 = ∇((1 + u0)∇µ1 + u1∇µ0). (3.9)

3.1.2. Inner expansion. In the same way as (2.29a)- (2.29b), the O(ε−2) equation is

0 = χ̂0ũ0zµ̃0z + χ0(1 + ũ0)µ̃0zz . (3.10)

We rewrite Eq.(3.10) in the following form

χ0∂z((1 + ũ0)µ̃0z) + χ̂0(1 + ũ0)µ̃0zz = 0. (3.11)

That is, for z ∈ (−η, η̂),

µ̃0zz(1 + ũ0) + µ̃0z ũ0z = ∂z(µ̃0z(1 + ũ0)) = 0, (3.12)
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which implies µ̃0z(1 + ũ0) = c1 in (−η, η̂) and c1 is a constant independent of z. For z in [η̂,+∞),
we have

µ̃0zz(1 + ũ0) = 0. (3.13)

In this case, µ̃0 = a1z+ b1. Here a1 and b1 are some functions independent of z. However, we claim
a1 = 0 since µ̃0 must be bounded. This leads to µ̃0 = b1. Moreover, recall that

µ̃0 = F ′(ũ0)− ∂zzũ0, ũ0|x=±∞ = ±1, (3.14)

we take the profile

ũ0 = tanh(z/
√
2), µ̃0 = 0, ∀z ∈ [η̂,+∞). (3.15)

By the smooth continuity of µ̃0 at η̂, we have c1 = 0 and µ̃0 = 0 in (−η,+∞).
Now we consider the governing function of the front. The time-fractional derivative in this

scaling is

∂α
t u(x, t) =∂α

t

(

(ũ0 + εũ1 + · · · )(φ(x, t)/ε, x, t)
)

(3.16)

=
1

Γ(1 − α)

∫ t

0

ε−1∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε, x, τ) + (∂τ ũ0(z, x, τ)|z=φ(x,τ)/ε)

(t− τ)α
dτ

+
1

Γ(1− α)

∫ t

0

∂τφ(x, τ)∂z ũ1(φ(x, τ)/ε, x, τ) + ε∂τ ũ1(z, x, τ)|z=φ(x,τ)/ε

(t− τ)α
dτ + · · · .

By matching the O(1/ε) terms in equation (3.16) together with (3.4), we yields the following
equation

1

Γ(1− α)

∫ t

0

∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)χ0

(t− τ)α
dτ (3.17)

=(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ̃1z + χ0κ(1 + ũ0)µ̃0z

+ χ0(1 + ũ0)µ̃1zz + (ũ1 + χ1ũ0ε
−1)µ̃0zz

=χ0(1 + ũ0)µ̃1zz + χ̂0ũ0zµ̃1z

=χ0∂z((1 + ũ0)µ̃1z) + (χ̂0 − χ0)ũ0zµ̃1z ,

which is simplified by using the former results (3.15). Integrating the equation (3.17) over (−∞,∞),
we have

∂α
t1φũ0|η̂−η =(1 + ũ0)µ̃1z |+∞

−η − ũ0zµ̃1z |+∞

η̂ . (3.18)

Here −1 ≤ ũ0(−η) ≤ −1 + O(ε) and 1 − O(ε) ≤ ũ0(η̂) ≤ 1. In addition, since µ̃+∞

1z = 0, we could
derive

∂α
t φ(2 +O(ε)) = 2 lim

z→+∞
µ̃1z − (1 + ũ0)µ̃1z|−η + ũ0zµ̃1z |η̂ = 2 lim

z→+∞
µ̃1z +O(ε). (3.19)

Therefore, using the matching conditions,

∂α
t φ(2 + O(ε)) = 2 lim

z→+∞
µ̃1z +O(ε) = 2∂mµ̃+

0 +O(ε). (3.20)
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By leting ε → 0, we derive the sharp interface condition:

∂α
t φ = ∂mµ̃+

0 . (3.21)

Sharp interface model in t = O(1). Combining (3.9), (3.14) and (3.21), we derive the following
sharp interface model

∂α
t u0 = ∇((1 + u0)∇µ0), µ0 = F ′(u0), in Ω/Γ , (3.22a)

u0 = ±1 on Γ±, µ0 = 0on Γ, (3.22b)

I1−αV = ∂mµ+
0 , on Γ. (3.22c)

3.2. The time scale t1 = ε
1

α t: a one sided time-fractional Mullins–Sekerka(MS)
model.

3.2.1. Outer expansion. The same as (3.9), by asymptotic matching it yields

0 = ∇((1 + u0)∇µ0), (3.23a)

∂α
t1u0 = ∇((1 + u0)∇µ1 + u1∇µ0), (3.23b)

∂α
t1u1 = ∇((1 + u0)∇µ2 + u1∇µ1 + u2∇µ0). (3.23c)

Here µ0, µ1, µ2 are the same as shown before. The first equation implies a equilibrium state, so we
take the following solution in the outer region

u0 =

{

+1, in Ω+

−1, in Ω−.
(3.24)

3.2.2. Inner expansion. The same as (3.10), asymptotic matching leads to

0 =ũ0zµ̃0z + χ0(1 + ũ0)µ̃0zz , (3.25)

0 =(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ̃1z + χ0κ(1 + ũ0)µ̃0z + χ0(1 + ũ0)µ̃1zz+

(ũ1 + χ1ũ0ε
−1)µ̃0zz . (3.26)

Now we solve the equations (3.25)-(3.26) as follows. The equation (3.25) is

χ0∂z((1 + ũ0)µ̃0z) + χ̂0(1 + ũ0)µ̃0zz = 0. (3.27)

For z ∈ (−η, η̂), the equation (3.27) is

µ̃0zz(1 + ũ0) + µ̃0z ũ0z = ∂z(µ̃0z(1 + ũ0)) = 0, (3.28)

and, for z ∈ [η̂,+∞), it is

µ̃0zz(1 + ũ0) = 0. (3.29)

As in section 3.1, the equations (3.28)-(3.29) can be solved by the exact function

ũ0 = tanh(z/
√
2), µ̃0 = 0. (3.30)
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Next, we intend to determine ũ1 and µ̃1. Using (3.30), the equation (3.26) is simplified into

χ0(1 + ũ0)µ̃1zz + χ̂0ũ0zµ̃1z = 0, (3.31)

which implies that µ̃1 = c2 for z ∈ (η̂,+∞). We assume that µ̃1 = c2 for all z. Here c2 is some
constant independent of z. Recall that

µ̃1 = −ũ1zz − κũ0z + F ′′(ũ0)ũ1. (3.32)

Noticing that F ′′(u0)u
′
0 − ∂zzu

′
0 = 0, multiplying the equation (3.32) by u′

0 and integrating the
resulting one over (−∞,+∞), we have

µ̃1 = c2 = −κ
S

[U ]
, (3.33)

where S =
∫ +∞

−∞
ũ′
0(z)

2dz and [U ] = ũ0|+∞

−∞.
As for ũ1, we use the idea which was presented in [10]. We find that ũ1 = κΦ0 + αũ′

0, where
Φ0 satisfies

−Φ0zz + F ′′(ũ0)Φ0 = ũ0z −
S

[U ]
. (3.34)

We impose ũ1(0) = 0 to center the function. Thus it is determined that

ũ1 = κΦ = κ(Φ0 −
Φ0(0)

ũ′
0(0)

ũ′

0), (3.35)

where Φ(±∞) = − S
[U ]F ′′(±1) .

Now we derive the equation of the front line. Matching with respect to series of ε, we get

1

Γ(1− α)

∫ t1

0

∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)χ0

(t1 − τ)α
dτ (3.36)

=∇xũ0∇xµ̃0 + ((χ̂0ũ0zε
−1 + ũ1z)µ̃1z + χ̂0ũ0zµ̃2z + (χ̂2ũ0ε

−2 + ũ2z)µ̃0z)

+ χ0(1 + ũ0)(∆xµ̃0 + κµ̃1z + µ̃2zz)(ε
−1(1 + ũ0)χ1 + ũ1)(κµ̃0z + µ̃1zz)+

+ (ε−2(1 + ũ0)χ2 + ũ2)µ̃0zz ,

which yields, by using the known functions ũ0, µ̃0, ũ1, µ̃1, that

1

Γ(1− α)

∫ t1

0

ε−1∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)χ0

(t1 − τ)α
dτ = χ̂0ũ0zµ̃2z + χ0(1 + ũ0)µ̃2zz , (3.37)

which gives, by integrating in(−∞,∞) and using the matching condition, that

∂α
t1φ = lim

z→+∞
µ̃2z = ∂mµ+

1 . (3.38)

Sharp interface model in t1 = ε
1

α t. It follows from (3.23b),(3.33) and (3.38) that the sharp
interface model in this timescale is

∂α
t1u0 = ∆µ1, in Ω+, (3.39a)

µ1 = −κ
S

2
, on Γ, (3.39b)

I1−αV = ∂mµ+
1 , on Γ . (3.39c)
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u0 is the sign function of φ and u0 = ±1 in Ω±. We call (3.39a)-(3.39c) the time-fractional MS
model. The front motion is governed only by the phase parameter restricted in Ω+.

3.3. The time scale t2 = ε
2

α t.

3.3.1. Outer expansion. In this case, by asymptotic matching, it yields

0 = ∇((1 + u0)∇µ0), (3.40a)

0 = ∇((1 + u0)∇µ1 + u1∇µ0), (3.40b)

∂α
t2u0 = ∇((1 + u0)∇µ2 + u1∇µ1 + u2∇µ0). (3.40c)

Let us solve the equations (3.40a)-(3.40c). The equation (3.40a) implies a equilibrium state, so it
is reasonable to take static solutions in Ω+ and Ω−

u0 =

{

+1, in Ω+,
−1, in Ω−,

(3.41)

which yields, together with (3.40b)-(3.40c), that the governing equations of µ1 in Ω−and µ2 in Ω+

are

∇(µ1∇µ1) = ∂α
t2u0, in Ω−, (3.42a)

∆µ1 = 0, in Ω+, (3.42b)

2∆µ2 +
1

2
∇(µ1∇µ1) = ∂α

t2u0, in Ω+. (3.42c)

Therefore, we take the solution that µ1 is a constant in Ω+.

3.3.2. Inner expansion. Similarly, assymptotic matching ε yields

0 =ũ0zµ̃0z + χ0(1 + ũ0)µ̃0zz, (3.43)

0 =(ũ0zχ̂1ε
−1 + ũ1z)µ̃0z + ũ0zχ̂0µ1z + χ0κ(1 + ũ0)̃̃µ0z + χ0(1 + ũ0)µ̃1zz (3.44)

+ (ũ1 + χ1ũ0ε
−1)µ̃0zz ,

0 =∇xũ0∇xµ̃0 + ((χ̂0ũ0zε
−1 + ũ1z)µ̃1z + χ̂0ũ0zµ̃2z + (χ̂2ũ0ε

−2 + ũ2z)µ̃0z) (3.45)

+ χ0(1 + ũ0)(∆xµ̃0 + κµ̃1z + µ̃2zz) + (ε−1(1 + ũ0)χ1 + ũ1)(κµ̃0z + µ̃1zz)

+ (ε−2(1 + ũ0)χ2 + ũ2)µ̃0zz ,

and

1

Γ(1− α)

∫ t2

0

∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)χ0

(t2 − τ)α
dτ (3.46)

=∇xũ0∇xµ̃1 +∇xũ1∇xµ̃0 + (χ̂0ũ0zµ̃3z + (χ̂1ũ0zε
−1 + ũ1z)µ̃2z

+ (χ̂2ũ0zε
−2 + ũ2z)µ̃1z + (χ̂3ũ0zε

−3 + ũ3z)µ̃0z)

+ χ0(1 + ũ0)(∆xµ̃1 + κµ̃2z + µ̃3zz)

+ ((1 + ũ0)χ1ε
−1 + ũ1)(∆xµ̃0 + κµ̃0z + µ̃2zz)

+ ((1 + ũ0)χ2ε
−2 + ũ2)(κµ̃0z + µ̃1zz) + ((1 + ũ0)χ3ε

−3 + ũ3)µ̃0zz ,

15



where the solutions of the first and the second equations, following the same treatment as in former
sections, derive

ũ0 = tanh(z/
√
2), µ̃0 = 0, µ̃1 = κS/2, ũ1 = κΦ. (3.47)

As for µ̃2, we simplify the equation (3.45) by (3.47) to derive

0 = χ̂0ũ0zµ2z + χ0(1 + ũ0)µ̃2zz , (3.48)

which leads to µ̃2 = b2 in (−η,+∞), where b2 is a constant independent of z. Recall that by
asymptotic matching,

µ2 = F ′′(ũ0)ũ2 − ũ2zz − κũ1z + F ′′′(ũ0)ũ
2
1/2. (3.49)

Multiplying the equation (3.49) by ũ′
0 and integrating the resulting one over (−∞,+∞), we get

µ̃2ũ0|+∞

−∞ = −κ2

∫ +∞

−∞

(Φ′ − 1

2
F ′′′(ũ0)Φ

2)u0zdz (3.50)

in (η̂,+∞), which is

µ̃2 = −κ2S1/2 (3.51)

if we let S1 = κ2
∫ +∞

−∞
(Φ′ − 1

2F
′′′(ũ0)Φ

2)u0zdz. Then, as in [10], we extrapolate a little bit and one

may assume that µ̃2 = −κ2S1/2 in (−η, η̂).

Now we solve for ∂α
t φ. Using (3.47), we have

1

Γ(1 − α)

∫ t2

0

∂τφ(x, τ)∂z ũ0(φ(x, τ)/ε)χ0

(t2 − τ)α
dτ (3.52)

=ũ1zµ̃2z + ũ1µ̃2zzχ0(1 + ũ0)µ̃3zz + χ̂0ũ0zµ̃3z

=χ0∂z((1 + ũ0)µ̃3z)− (χ0 − χ̂0)ũ0zµ̃3z + ∂z(ũ1µ̃2z),

which yields, by integrating over (−∞,+∞), that

∂α
t2φ(2 +O(ε)) = lim

−η→−∞
((1 + ũ0)µ̃3z) + 2∂mµ+

2 + lim
−η→−∞

(ũ1µ̃2z)− lim
η̂→+∞

u0zµ̃3z +O(ε). (3.53)

Using the matching conditions and letting ε → 0, we get

2∂α
t2φ = 2∂mµ+

2 + u−

1 ∂mµ−

1 , (3.54)

which gives, by using µ1 = F ′′(u0)u1 = 2u1, that

∂α
t2φ = ∂mµ+

2 +
1

4
µ−

1 ∂mµ−

1 . (3.55)

Sharp interface model at t2 = ε
2

α t. Combining (3.42a) and (3.42c) with (3.47),(3.51) and (3.55),
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we finally derive the sharp interface model in this timescale

∇(µ1∇µ1) = ∂α
t2u0, in Ω−, (3.56a)

µ1 = −κ
S

[U ]
, on Γ, (3.56b)

2∆µ2 = ∂α
t2u0, in Ω+, (3.56c)

µ2 = −κ2 S1

[U ]
, on Γ, (3.56d)

I1−αV = ∂mµ+
2 +

1

4
µ−

1 ∂mµ−

1 , on Γ. (3.56e)

u0 is the sign function of φ, i.e., u0 = ±1 in Ω±.

4. Scaling invariant property and coarsening rate heuristic. In physics, coarsening
is a progress when the pattern formed by the material “coarsens” and during which the “typical
length scale” of the system is increasing. For phase field models, since the energy of the system
is proportional to the area of the interfacial layer, energy decay would result in the reduction of
the interface layer and the pattern coarsens. Coarsening phenomena are also observed in numerical
simulations of the pattern formation governed by TFCHE. As many people believe, coarsening is
due to some “scaling invariant” property of the system, so the scaling-invariant power law of sharp
interface model coincides in the coarsening rate in the simulation of [10, 20, 27].

Considering the nonlocal MS model with constant mobility in t1 = ε
1

α t time scale. It is scaling
invariant in the following sense. Rescaling µ, x, t and φ by

x = Xx̂, t = T t̂, µ = Mµ̂1, φ(x, t) = Xφ̂(x̂, t̂).

Direct calculation leads to

κ = X−1κ̂, ∂α
t φ = X/Tα∂α

t̂
φ̂, ∂mµ = X−2∂m̂µ̂,

and

M

X2
∆̂µ̂ =

1

Tα
∂α
t̂
u0, in Ω\Γ, (4.1a)

Mµ̂ =
1

X
κ̂

S

[U ]
, on Γ, (4.1b)

X

Tα
∂α
t̂
φ̂ =

M

X
[∂m̂µ̂]+−[U ]−1, on Γ . (4.1c)

If taking M = X−1 and Tα = X3, the system has exactly the same form as (2.35a)-(2.35d). This
is the scaling invariance property and it shows that the typical length scale l of this model satisfies
a l ∼ ct

α

3 power law, which implies that the TFCHE admits a coarsening rate of α
3 . This result fits

the numerical experiments in [32, 35] well.

In the second part of this section, we aim to use this idea to determine the coarsening rate
of the sharp interface models of the degenerate TFCHE. Firstly, for the sharp interface models in
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t1 = ε
1

α t time scale

∂α
t1u0 = ∆µ1, in Ω+, (4.2a)

µ1 = −κ
S

[U ]
, on Γ, (4.2b)

I1−αV = ∂mµ+
1 , on Γ, (4.2c)

by using the same rescaling as in (4.1c) - (4.1a)

x = λ
α

3 x̂, t1 = λt̂1, µ1 = λ−
α

3 µ̂1, φ(x, t1) = λ
α

3 φ̂(x̂, t̂1),

we find that (4.2a)-(4.2c) preserves a α
3 coarsening rate, too.

On the other hand, for the sharp interface model (1.8a)-(1.8e) in t2 = ε
2

α t time scale

∂α
t2u0 = ∇(µ1∇µ1), in Ω−, (4.3a)

µ1 = −κ
S

[U ]
, on Γ, (4.3b)

∂α
t2u0 = 2∆µ2, in Ω+, (4.3c)

µ2 = −κ2 S1

[U ]
, on Γ, (4.3d)

I1−αV = ∂mµ+
2 +

1

4
µ−

1 ∂mµ−

1 , on Γ. (4.3e)

TakingM1,M2, T,X to be the length scales of the chemical potentials, time, and space, respectively,
we rescale the above system (4.3a)-(4.3e) so that

1

Tα
∂α
t̂
u0 =

M2
1

X2
∇(µ̂1∇µ̂1), in Ω−, (4.4a)

M1µ̂1 = − 1

X
κ̂

S

[U ]
, on Γ, (4.4b)

1

Tα
∂α
t̂
u0 = 2

M2

X2
∆̂µ̂2, in Ω+, (4.4c)

M2µ̂2 = − 1

X2
κ̂2 S1

[U ]
, on Γ, (4.4d)

X

Tα
∂α
t̂
I1−αV̂ =

M2

X
∂mµ̂+

2 +
M2

1

X

1

4
µ̂−

1 ∂mµ̂−

1 , on Γ. (4.4e)

The system is the same form as (1.8a)-(1.8e) if we take

Tα = X4, M1 =
1

X
, and M2 =

1

X2
.

It exhibits a power law relation l ∼ ct
α

4 . Moreover, this power law indicate a coarsening rate of α
4 .

5. Conclusions. We study the front motion and obtain the corresponding sharp interface
models of the TFCHE with two different kinds of diffusion mobilities. We find that in both cases
the sharp interface limits are sensitive to the timescale. For example, in a slow time scale ε

1

α t,
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the asymptotic limits are fractional Mullins–Sekerka(MS) models, which are formally similar to
classical MS models excepted for the non-local term.

Moreover, power-law arguments show that the nonlocal fractional MS model of TFCHE with
constant mobility fits the α

3 coarsening rate obtained in existing numerical experiments [35, 32].
Moreover, TFCHE with the one-sided degenerate mobility contains two stages of different coarsening
rates α

3 and α
4 . The results show that the TFCHE might could be use to model the coarsening

process with a general coarsening rate. We expect to extend similar arguments to the nonlocal-in-
time phase-field equations, in which the time fractional operator is replaced by a nonlocal-in-time
operator [15].
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