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STABILITY FOR FINITE ELEMENT DISCRETIZATION OF SOME
INVERSE PARAMETER PROBLEMS FROM INTERNAL DATA -
APPLICATION TO ELASTOGRAPHY

ELIE BRETIN*, PIERRE MILLIENT, AND LAURENT SEPPECHER}

Abstract. In this article, we provide stability estimates for the finite element discretization of
a class of inverse parameter problems of the form —V - (uS) = f in a domain Q of R?. Here u is the
unknown parameter to recover, the matrix valued function S and the vector valued distribution f
are known. As uniqueness is not guaranteed in general for this problem, we prove a Lipschitz-type
stability estimate in an hyperplane of L?(2). This stability is obtained through an adaptation of
the so-called discrete inf-sup constant or LBB constant to a large class of first-order differential
operators. We then provide a simple and original discretization based on hexagonal finite element
that satisfies the discrete stability condition and shows corresponding numerical reconstructions.
The obtained algebraic inversion method is efficient as it does not require any iterative solving of the
forward problem and is very general as it only requires S and p to be bounded and no additional
information at the boundary is needed.

Key words. Inverse problems, Reverse Weak Formulation, Inf-Sup constant, Linear Elastogra-
phy, Finite Element Method

AMS subject classifications. 65J22, 65N21, 35R30, 65M60

1. Introduction. This work deals with inverse problems of the form
(1.1) -V-uS)=f inQ,

where  is a smooth bounded domain of R%, d > 2 and where u € L>®(Q) is the
unknown parameter map. In this problem, S € L>®(Q,R%*?) and f € H~'(Q,R?)
are given from some measurements and may contain noise. If one defines the first
order differential operator

T:L>®(Q) C L*(Q) — H Y(Q,RY)

(12 = =V - (uS),

the inverse parameter problem that we aim to solve can be expressed as
(1.3) Find p € L*°(Q) st. Tpu=f.

If S, f and p are assumed smooth enough, this problem reads as a first order
transport equation in p that can be solved with the characteristics method knowing
u in a part of the boundary (the incoming flow boundary). Here, as no additional
regularity is assumed and as the right-hand side f belongs to H (2, R9) this problem
shall be considered under its weak formulation :

(14) Find p€ L2(Q) st (T, v) gy = (F,0) o1y . Y0 € H(Q,RY).

This weak form of the inverse problem (1.3) (introduced in [1]) will be called the
Reverse Weak Formulation (RWF). In this inverse problem, we do not assume the
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knowledge of any information on p at the boundary. Note that the case f = 0 can be
considered and corresponds to the determination of the null space of the operator T'.

In [1] the well-posedness of this problem has been established in an hyperplane of
L?(Q2) in a general setting and under light hypothesis of regularity and invertibility
of the matrix S. See subsection 1.1 and [1]. Note that the hypotheses used in this
reference will not be used to established the error estimates given in the present paper.

The goal of the present paper is to investigate the stability properties of the
discretized version of the problem (1.4) and to provide error estimates based on the
properties of the discretization spaces and on the discretized approximation of the
operator T. More precisely, given a finite dimensional operator T}, : M), — V; and
f1 € V/ where My, and V}, are finite dimensional subspaces that approach M := L?()
and V := H}(,RY) respectively, we seek conditions on My, Vj, and T}, for the L2-
stability of the following discretized problem:

(15) Find pp € My, st. Thpn = fp-

We also give conditions that guarantee the convergence of j, to u for the L?-norm.
In most cases, the stability only occurs in an hyperplane of L?(§2) which is the orthog-
onal of the singular direction of the operator T} with respect to its smallest singular
value. This leads to a remaining scalar uncertainty that can be resolved using a single
additional scalar information on u.

The originality of this work lies here on the Reverse Weak Formulation (1.4)
that exhibits the unknown parameter p as the solution of a weak linear differential
problem in the domain 2 without boundary condition. Hence the uniqueness is not
guaranteed at first look and the stability has to be considered with respect to some
possible errors on both f and T'. As we will see, the error term 75, —T is not controlled
in £ (L*(Q), H1(Q,R%)) (definition in Section 2) in general but only for a weaker
norm (see Subsection 2.3). This creates difficulties that are not covered by the classical
literature on the theory of perturbations of linear operators.

1.1. Scientific context and motivations. Elastography is an imaging modal-
ity that aims at reconstructing the mechanical properties of biological tissues. The
local values of the elastic parameters can be used as a discriminatory criterion for
differentiating healthy tissues from diseased tissues [20]. While numerous modalities
of elastography exist (see for example [13, 18, 10, 7]), the most common procedure is
to use an auxiliary imaging method (such as ultrasound imaging, magnetic resonance
imaging, optical coherence tomography ...) to measure the displacement field u in a
medium when a mechanical perturbation is applied. See [21] and inside references for
recent advances on this point. The inverse problem can be formulated as recovering
the shear modulus g in the linear elastic equation

(1.6) —V-2ué(u)) = VAV -u)=f inQ,

where u and f are given in ©Q and A can be assumed known in Q. The term £(u)
denotes the strain matrix which is the symmetric part of the gradient of w. The
stability of this inverse problem has been extensively studied under various regularity
assumptions for the coefficients to be reconstructed [2, 3, 23, 16]. Recently, in [1] the
authors introduced a new inversion method based on a finite element discretization
of equation (1.1) where S := 2&(u). A study of the linear operator T' defined by (1.2)
or by the equivalent weak formulation

(L.7) (Tu,v>H,17H3 = /QpS Vv, Yo e Hj(Q,R™>?)
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showed that, under a piecewise smoothness hypothesis on S and under an assumption
of the form |det(S)| > ¢ > 0 a.e. in ©, the operator T has a null space of dimension
one at most and is a closed range operator. This ensures the theoretical stability of the
reconstruction in the orthogonal complement of the null space. However, depending
on the choice of discretization spaces, the discretized version of T' may not satisfy the
same properties and numerical instability may be observed. For instance, in [1] the
authors approach (1.7) using the classical pair (P°,P!) of finite element spaces. As
it could have been expected, they faced a numerical instability that was successfully
overcome by using a T'V-penalization technique.

Remark 1.1. The classical elliptic theory says that the strain matrix belongs to
L*(Q,R¥*4). Here, we add the hypothesis S € L>(Q2, R??) in order to control the
error on g in the Hilbert space L?(2). This boundedness hypothesis is not restrictive
as it is known that the strain is bounded as soon as the elastic parameters are piecewise
smooth with smooth surfaces of discontinuity (see [17]).

Let us point out here that inverse problems of the form (1.1) may arise from
various other physical situations. Note first that the reconstruction of the Young’s
modulus E when the Poisson’s ratio v is known is very similar to the problem defined
in (1.6). In this case the governing linear elastic equation reads —V - (E X) = f where
Y =a,E(u)+b,(V-u)l and a, :=1/(14+v) and b, := v/((1+v)(1—2v) in dimension
3. A second example is the electrical impedance imaging with internal data, where the
goal is to recover the conductivity o in the scalar elliptic equation =V - (cVu) = 0. If
one can measure two potential fields u; and us solutions of the previous equation and
defines S := [Vuy Vug], then the problem reads —V - (¢.S) = 0. A third example is a
classical problem corresponding to the particular case where S is the identity matrix
everywhere. In this case, the problem reads —Vu = f which is the inverse gradient
problem.

The properties of the gradient operator V : L2(Q) — H~1(,R%) and its dis-
cretization have been extensively studied in particular in the context of fluid dynam-
ics and some tools developed in this framework are useful to treat our more general
problem. For the reader convenience, let us recall the most important property which
ensures the existence of a bounded left-inverse.

Hence, in the case where S is the identity matrix everywhere, i.e. T := —V, the
operator T is known to be a closed range operator from L2(Q) to H~1(,R9) if Q is
a Lipschitz domain (see [22, p.99] and references within). One can write

||q||L2(Q) <C ||VqHH*1(Q) Vg € L§(9),

where C > 0 and L3(Q) is the space of zero-mean, square-integrable functions. The
norm of the pseudo-inverse of the gradient in H~1(2, R?) is closely related with the
inf-sup condition of the divergence:

(1.8) B := inf sup Jo(V - v)q >0

9€LF(Q) ve HE (Q,R) ||U||H01(Q) lall 2 (e

Indeed, we have C' = 1/8. Since the closed-range property of the gradient is equiv-
alent to the surjectivity of the divergence in L3(£2), the study of behavior of 3 is an
important step in establishing the well-posedness and stability of the Stokes problem
[14, Chap. I, Theorem 4.1]. The constant 8 is also known as the LBB constant (for
Ladyzhenskaya-Babuska-Brezzi). It is well known that in general, the constant § may
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not behave well in finite element spaces, and may vanish when the mesh size goes to
zero. More precisely, if one considers discrete spaces M, C L?(Q2) and V,, C H}(Q, R?)
with discretization parameter h > 0, the associated discrete inf-sup constant given by

V.o
(1.9) Br = inf sup Jo Ja
qﬁ‘/{h vEV), ||UHH5(Q) HqHL2(Q)

may not satisfy the discrete inf-sup condition Vh > 0,8, > g* > 0. Pairs of finite
element spaces that satisfy the discrete inf-sup condition are known as inf-sup stable
elements and play an important role in the stability of the Galerkin approximation
for the Stokes problem. We refer to [5] for more details on the inf-sup constant of the
gradient and its convergence.

1.2. Main results. Inspired by this approach, we introduce a generalization of
the inf-sup constant and a corresponding definition of the discrete inf-sup constant
that are suitable for operators of type (1.2) in particular. A major difference with the
classical definition of the inf-sup constant of the gradient is that, here, the operator
T may contain measurement noise and may have a trivial null space.

In a general framework, consider T' € £ (M, V') where M and V are two Hilbert
spaces. The problem T'u = f is approached by a finite dimensional problem T u, =
f, where T € Z(My,,V})) and My, Vj, approach M and V respectively.

The first main goal of this work is to provide a stability condition with respect to
the M-norm for the discrete problem based on the associated discrete inf-sup constant.
We consider the stability with respect to both the noise and the interpolation error
on the right-hand side f and on the operator T itself. The case f = 0 corresponds
to a null space identification problem and the condition ||u||,, =1 is added.

In Theorem 4.1 we provide an error estimate between the normalized solution of
argmin,_c s, ||Thzth}{ and the normalized solution of Tz = 0 of the form

lon — P () oy < B(CTh)(nTTh 2= mnzly)

where 7,z is the orthogonal projection of z on My, pp(z) = mpz/ ||7hz|l,,. The
constant 3(T},) is an adaptation of the inf-sup constant from (1.9) to general operators.
(See Section 3). For the hypotheses and other details about the norms used, see
directly Theorem 4.1.

In the case f # 0, we consider two distinct situations. The first case is when T
is invertible and a(T) := inf.en ||T2]y, / [|2]/5, is not "too small”. In Theorem 4.4
we provide an error estimate between the solution of Ty up = f;, in the sense of least
squares and the unique solution of Tu = f of the form

lpen = mnptllae o C
Imnpllyy = a(Th)

(T = Tull + 11 = Full + llmnre — pillar )-

where a(T}) 1= min,, cas, ||Thzh||v/ / lIzn |- For the hypotheses and other details
about the norms used, see directly Theorem 4.4.

The second case is when 7" has a non trivial null space (of dimension one) or
remains invertible but with a constant a(T}) too small to make the previous result
applicable. In this case, the error estimate is only proved in an hyperplane of M (the
orthogonal complement of the approximated null space). The approximation of u is
then obtained up to an unknown scalar constant.

4
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In Theorem 4.7 we provide an error estimate between the solution of T u, = f;,
in {2z} in the sense of least squares and the solution of Ty = f up to an unknown
translation in the direction zj. This estimate is of the form: 3¢ € R such that

i +t 2n — Trpll (
17 gl 5s = B(Tn)

For the hypotheses and other details about the norms used, see directly Theorem 4.7.

These error estimates are quantitative. They depend on the discrete inf-sup con-
stant and can be explicitly computed in all practical situations dealing with experi-
mental data. These estimates allow for a control of the quality of the reconstruction
in the pair of approximation spaces (Mp,Vs) directly from the noisy interpolated
data. The behavior of the discrete inf-sup constant with respect to the discretization
parameter h gives a practical criterion for the convergence of u; towards pu.

The present paper is closely linked to the sensitivity analysis and discretization
analysis for the Moore-Penrose generalized inverse of T' when T is a closed range op-
erator. There exist a vast literature on this subject (see [4, 9, 24, 15] and references
herein) as well as on the finite dimensional interpolation of the generalized inverse
[11]. However, there are fundamental differences between the present work and the
existing literature. First, we do not know here whether the operator T" has closed
range. Second, we perform a sensitivity analysis of the left inverse of T € £ (M, V")
under perturbations that are controlled in a weaker norm. More precisely, pertur-
bations are controlled here in Z(F,V’) where E C M is a Banach space dense in
M. This might seem a technical issue but it is mandatory if one wants to work with
discontinuous parameters g and S. This choice is motivated by the applications in
bio-medical imaging where, in most cases, the biological tissues exhibit discontinuities
in their physical properties. For instance, in the linear elasticity inverse problem (see
equation (1.6)) the matrix S = 2€(u) has the same surfaces of discontinuities than the
shear modulus of the medium and cannot be approached in L>(Q, R¥*?) by smooth
functions. This leads to perturbations of T in . (L*°(2), H*(Q,R?)) instead of
£ (L*(Q), H (2, R?)). More details and examples are given in Subsection 2.3.

T =TI + 15— £l + lmnp = gl + o (Th) ).

1.3. Outline of the paper. The article is organized as follows: In Section 2, we
describe the Galerkin approximation of the problem (1.3) and define all the approxi-
mation errors involved. In Section 3, we generalize the notion of inf-sup constant to
any operator T € Z(M, V') and we prove in Theorem 3.10 the upper semi-continuity
of the discrete inf-sup constant. This is an asymptotic comparison between the dis-
crete and the continuous inf-sup constants. In Section 4 we give and prove the main
stability estimates (Theorems 4.1, 4.4 and 4.7) based on the discrete version of the
inf-sup constant just defined. In Section 5 we present various numerical inversions,
including stability tests and numerical computations of the inf-sup constant for var-
ious pairs of finite element spaces. We also introduce in this section a pair of finite
element spaces based on a hexagonal tilling of the domain 2. It shows excellent numer-
ical stability properties when compared to some more classical pair of discretization
spaces.

2. Discretization using the Galerkin approach. We describe the Galerkin
approximation of problem (1.3) and give the definitions of the various errors of ap-
proximation.

2.1. General notations. In all this work, M and V are two Hilbert spaces with
respective inner products denoted (.,.),, and (.,.);,. We denote £ C M a Banach

5
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space dense in M. The space V' := £ (V,R) is the space of the bounded linear forms
on V endowed with the operator norm

<<Pa'U>V/ Vv
(2.1) @y o= sup LV
veV ”U”V

9

where (., .}y y is the duality pairing between V' and V. The space £ (M, V") is the
space of the bounded linear operator from M to V’ endowed with the operator norm
written ||.||,, . For any T' € Z(M, V"), we denote its null space by N(T').

Ezxample 2.1. In the case of the inverse elastography problem using the operator
T defined in (1.2), we take M := L?(Q), V := H}(Q,RY), E := L>*(Q) and so
V' = H71(Q,RY). Here H}(Q,R?) is the space of all squared integrable vector-valued
functions v on 2 such that Vv is also square integrable and such that its trace on 052
vanishes. The space H~!(Q,R?) is the topological dual of H} (2, R9).

2.2. Spaces discretization and projection. In order to approach the problem
(1.3) by a finite dimensional problem, we first approach spaces M and V by finite
dimensional spaces.

DEFINITION 2.2. For any Banach space X, we say that a sequence subspaces
(Xn)n>o approaches X if this sequence is asymptotically dense in X. That means
that for any x € X, there exists a sequence (xp)p>o such that xp € Xy, for all h > 0
and ||xn — x|y converges to zero when h goes to zero. We naturally endow X, with
the restriction of the X -norm to make it a normed vector space.

Consider now two sequences of subspaces (Mp)pso and (Vj,)p>o that approach
respectively the Hilbert spaces M and V. Naturally, M} is endowed with the M-
norm and Vj, is endowed with the V-norm. In some cases we need to use the F-norm
over Mj,. To highlight the difference, we will denote Ej, := (My, ||.|| ;) the space Mj
endowed with the E-norm.

Ezample 2.3. In the case of Example 2.1, M = L?() and one can choose M, as
the classical finite element space P°(€),), i.e. the class of piecewise constant functions
over a subdivision of Q by elements of maximum diameter h > 0 [14].

DEFINITION 2.4. We denote m, : M — My, the orthogonal projection form M
onto My,. It naturally satisfies limp,_yq ||[mnm — m||,, = 0 and ||mpm||,, < ||ml,,, for
all m € M. We also denote py, : M\N(mw,) — My, the normalized projection form
M onto My, defined by pp(m) := mpm/ ||maml,,, VYm € M, mpym # 0. Note that if
lmlly = 1, pr(m) satisfies ||pn(m) — mlly, < V2 |mem —ml|y,.

In the following, we will assume that 7, is also a contraction for the E-norm.
That means,

(2.2) Vme B C M, |mml < ml.

This hypothesis is true in the case E := L>(Q), M := L*(Q) and M;, := P°(Qy,) as
in Example 2.3.

DEFINITION 2.5. For any non zero u € M, we define its relative error of inter-
polation onto My, by

n ||7Th/.t—,uH
(2.3) ini(pe) s= AT Mo,
[l ar
6
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As the sequence of subspaces V;, C V approaches V', we define V}/ the space of all
linear forms over Vj, endowed with the norm

” ” <‘P7'U>V,;,vh
= sup ————
v = 280 Tl

Note that f + f|y, defines a natural map from V' onto V| and then any f € V
naturally defines a unique element fly, of V; (and we continue to call it f). Then
any non zero right-hand side linear form f € V' is approached by a finite dimensional
linear form f;, € V;/ and we define its relative error of interpolation as follows.

DEFINITION 2.6. The relative error of interpolation 52}” between f # 0 and f,,
is defined by
1Fn = Fllv,

£l

2.3. Interpolation of the operator. We approach the operator T' € £ (M, V")
by a finite dimensional operator T}, € Z(Mjy, V). The error of approximation is
defined as T' — T}, for the Z(Ep, V) norm which is weaker than assuming that the
distance between T and T}, is small in £ (M, V}{) We remind the reader that Ej, :=
E N M;, endowed with the E-norm.

DEFINITION 2.7. The interpolation error €,* between T and T}, is defined by

1(Th = T)pully,
(2.5) el =Ty — T ,i=sup ——————
h En Vi neEER ”,L"HE

(2.4) erhe =

This error contains both the interpolation error over the approximation spaces and
the possible noise in measurements used to build 7.

Remark 2.8. The reason of the choice of norms comes from the main application
where M := L3(Q), E = L>(Q), V := H}Q,R?) and Tpu = —V - (uS) with
S € L>(Q,R¥*9). This operator is approached by Tyu := —V - (uSy,) where S}, is a
discrete and possibly noisy version of S. In this case, the interpolation error Sy — .S is
expected to be small in L2(£2, R?*4) but not in L> (2, R4*4). This conduces to small
interpolation error €,* thanks to the control

(2.6) 1(Th = Tpell =10y < 1Sh = Sz I8l @y s Vi € M.

but Tj, — T has no reason to be small in .Z(M;,V}) (See example 2.9). This defini-
tion of ;¥ matches well practical situations like medical imaging for instance where S
might be a discontinuous map with a priori unknown surfaces of discontinuity. There-
fore it makes sense to consider Sj, — S small in L?(£2, R¥?) but not in L> (2, R4*4).
The next example 2.9 below explains this situation in dimension one.

Ezample 2.9. In dimension one, take Q := (—=1,1), M = L?(Q), E = L*(Q) and
V = H}(Q). Take S € L>®(Q) and define Ty := —(uS)’. Fix h > 0 and consider
any uniform subdivision Q5 C € of size h containing the segment I}, := (—h/2,h/2)
(hence 0 is not a node). Define the interpolation spaces My, := P(Qy,), Vi, := P§(Q4).
Chose S = 1+ x(0,1) and S, = 1+ Xty € My, and Thp := —(uSp)’. An explicit
computation gives

h .
1Sn = SlEay =5 e 11Sh =Sl = O (VA).
7
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Thanks to (2.6), we also get that ||T), — THE}HV/ =0 (\/E)

Consider now the sequence py = h~/2x;, which satisfies [enllpz) =1 and a

basis test function v, € Vj, supported in [—h/2,3h/2] and such that v,(h/2) = 1. Tt
satisfies ||vh||H5(_171) = +/2/h. We can write

(~n(Sh = )Y vn) o gy = [ wn(S1 = Sy =17,
I

hence

oy (= SN sy (el = S on) o1y V2
vEV HUHH(%(—I,l) B th”Hé(fl,l) 2’

and then ||T}, — THMh,,V,i > g As a consequence T}, — T' is not getting small for the
Z(Mp, V})-norm.
3. The generalized inf-sup constant. In this section we generalize the notion

of inf-sup constant to any operators T in .Z(M,V’). Let us first define three useful
constants for such operators.

DEFINITION 3.1. For any T € £ (M, V'), we call

T 12 T ’
a(T) := inf [Ty and p(T) := sup [Ty

ned |l nent el
we also call 6(T) :=+/p(T)? — a(T)?.

We now extend the notion of inf-sup constant of the gradient operator to any
operators of Z(M,V’). As the existence of a null space of dimension one is not
guaranteed', we first propose this very general definition of the generalized inf-sup
constant called (7).

3.1. Definition and properties.

DEFINITION 3.2. The inf-sup constant of direction e € M, e # 0 of the operator
T € £(M,V') is the non-negative number

T ’
Be(T) := inf M
peM || plly,
pnle

The generalized inf-sup constant of T' is now defined by

B(T) = sup B(T).
eeM
lellar=1
It is mandatory here to show that this definition indeed extends the classical

definition of the inf-sup constant known for V-type operators (with a null space of
dimension one).

IDepending on S(z), the operator T : pu + —V - (uS) may have various type of null spaces. In
one hand, in [1] it has been shown that if S is smooth and everywhere invertible, then N(T') = {0}
if and only if S~1V - S is not a gradient. In the other hand, if S vanishes in a subset w C €, then
any function p supported inside w belongs to N(T).

8
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PROPOSITION 3.3. Let T € L (M,V') and z € M such that |z||,, = 1 and
T 2|3, < a(T)? + &2 for some e > 0. We have

B.(T)? < B(T)? < B.(T)? 4 £(8(T) +¢).

In case where e = 0, it implies that 5(T) = B8,(T).

The proof of this result uses the self-adjoint operator S; € (M) canonically
associated with T'.

LEMMA 3.4. For any T € L (M,V"), there exists Sy € L (M) self-adjoint posi-
tive semi-definite such that for any u € M, ||Tu||%,, = (St 1) ;-

Proof. Call ® : V' — V the Riesz isometric identification defined by (®f,v),, =
(f,v)y,y forany f € V', v € V. Call also T* : V. — H the adjoint operator of 7.
We have for any p € M,

T ully, = 1T plly, = (Tp, @T )y, v = (u, T*OT )y = (Srt, 1)y -

where Sp :=T*®T : M — M is a self-adjoint positive semi-definite operator. ]

Proof. (of Proposition 3.3) The first inequality comes from the definition of 5(7T).
For the second, take e € M of norm one and consider m € E N {z}+ of norm
one. If e L z then z € {e}* and immediately 3.(T)? < ||Tz||‘2// < aT)?+e2 <
BAT)? +e(8(T) +¢).

Suppose now that (e, z),, # 0. Consider a = — (m, e),, / (z,€),, and p := az+m.
It is clear that p € {e}* and Hﬂ||?v[ =a? + 1. Using Lemma 3.4, we write

ITully = (Sti, 1)y = a® (S12,2) 5 + 2a (Srz,m) y, + (Spm,m)
=a?||T 2|}, + 2a(Srz,m), + | Tml[3,
< (14 a®) |Tm|}, + a%e? + 2|al [(Srz,m) ] -

Using Proposition A.1 we bound |(S7z,m),,| by €§(T) and then

T ull3 2 | o
5— < |[|[Tmly, +&° +6(T)
[ellar
T ul3 2
f 5— < |[|[Tm|ly, +e(6(T) +¢)
REE | ulyy

pnle
Be(T)? < |Tmlfy, +£(8(T) +e).

This last statement is true for any m € M N {z}+ of norm one so we can take the
infimum over m to get B.(T)% < B.(T)? + &(5(T) + ). We conclude now by taking
the supremum over e. O

As a consequence of Proposition 3.3, the generalized inf-sup constant has a simpler
formula in the case of an operator with trivial null space.

COROLLARY 3.5. If N(T) # {0}, consider any z € N(T) such that ||z||,, = 1.
Then we have B(T) = B.(T).

If T = V, the classical definition of 5(V) given in (1.8) matches the definition
3.2.
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Remark 3.6. This corollary leads to an alternative definition of 8(T") which does
not depend on the choice of z in N(T') (even for a dimension greater than one).
Moreover, we see that S(T") > 0 implies dim N(T") = 1. Indeed, if N(T') > 1, then
there exist 21,22 € N(T) and B(T) = B,,(T) > 0 with z; L 29 such that T'(z) =
T(z2) = 0 and 21, 29 # 0. Moreover, as ||Tz2|| > 8., (T)||22]|, we have zo = 0 which is
a contradiction.

It is possible to extend a little this corollary to a class of operators with trivial
null space if the infimum value of the operator on the unit sphere is reached.

Remark 3.7. The case € = 0 in Proposition 3.3 leads to an alternative definition
of B(T) if the infimum «(T) is reached. Note that this definition does not depend on
the choice of z. Moreover the condition € = 0 is fulfilled in particular if T is a finite
rank or finite dimensional operator.

If the infimum value «(T) is not reached on the unit sphere, we keep the general
definition 3.2.

3.2. Discrete inf-sup constant. The different constants related to the ap-
proximated operator T, € Z(Mjy,V)) come from the same definition than for the
operator T € Z(M,V'). Simply remark that as T}, is a finite dimensional operator,
the infimum in

[ Thplly
(3.1) a(Ty) == inf —— 0
wehn, Tl

is reached by a direction z;, € M, such that ||z, = 1. This means that ||Thzh||v/ =

a(Ty). As a consequence, following Corollary ?7?, the inf-sup constant of T}, is given
by

1Theelly,
(3.2) B(T}) == inf —— 2t
neMy |l pull
pulzp

This discrete inf-sup constant is the key element to establish the stability of the
discrete inverse problem and as we will see, its behaviors when A — 0 will determine
the convergence of the solution of the discrete problem to the exact solution. In
a similar way than for the classical inf-sup constant, the behavior of the discrete
inf — sup constant 3(7},) can be catastrophic in the sense that it can vanish to zero if
h — 0. This strongly depends on the choice of interpolation pair of spaces (Mp, V4,).
For instance, if the discrete operator T}, : M), — V} is under-determinated, one may
have §(T3) = 0. In a same manner than in [8], we give a definition of the discrete
inf-sup condition.

DEFINITION 3.8. We say that the sequence of operators (Ty)n>o satisfies the dis-
crete inf-sup condition if there exists f* > 0 such that

(3.3) B* < B(Th), Yh>0.

Remark 3.9. In this work, we do not prove that the discrete inf-sup condition is
satisfied by some specific choices of discretized operators Tj, : M;, — V,/. We mention
it here as a condition for uniform stability with respect to h, (see Theorems 4.1 4.7).
We only aim at giving discrete stability estimates that involves 5(T},) for a fixed h > 0.

10
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3.3. Upper semi-continuity of the inf-sup constant. A legitimate question
about the discrete inf-sup constant is to know if it can be greater that the continuous
inf-sup constant if the discretization spaces are well chosen. Inspired by a classical
result on the discrete inf-sup of the divergence that can be found in [8] for instance,
we state and prove in this subsection that the discrete inf-sup constant is upper semi-
continuous when A — 0. This concludes that the discrete inf-sup constant 5(7T}) is
always asymptotically worse than the continuous inf-sup constant (7).

THEOREM 3.10 (Upper semi-continuity). If the operator error e°P defined in
(2.5) converges to 0 when h — 0, then

limsup a(T},) < (7).
h—0

Moreover, if the problem T z = 0 admits a solution z € E with ||z||,, = 1 and if the
sequence (Ty)n>o satisfies the discrete inf-sup condition (see Definition 3.8), then

limsup B(T3) < B(T).
h—0

Remark 3.11. This result is useful to understand that no discretization can get
a better stability constant than 8(T). The question of the convergence of a(T},) and
B(T},) toward respectively a(T') and S(T) is not treated here; it is clearly not a simple
question. It is already known as a difficult issue concerning inf-sup constant of the
gradient operator. See [5] for more details about this question.

Remark 3.12. An interesting consequence of this result is that, in case of an
operator T with non-trivial null space, the fact that (T})n~o satisfies the discrete
inf-sup condition implies that S(7T") > 0 which means that 7" has closed range (see [6,
p. 47]). Tt could be used to prove the closed range property for some operators. For
instance, to our knowledge, the minimal conditions on S € L (Q,RdXd) that make
T:pu+— —V - (uS) a closed range operator are not known.

Proof. (of Theorem 3.10) First define the sequence of set

Cni= {1 e My | ()2 il < il } -
For any h > 0 and p € C}, we get

1 Thplly, < ITplly, + 1(Th = Thully, < Tuly + e el g

(3.4) opy1/2
< N Tully: + (") aallar -
Hence
Tpally
o) < e 4 ooy vy e
Irziy;
[ Tpell
a(Ty) < inf — Y (e9P)1/2.
n€Ch Il ps
- e . e 1Ty
This is true for any h > 0 so limsup «(7}) < limsup inf ————.
h—0 h—0 HECH HMHM

As proposition B.4 shows that limy,_,q C}, = M in the sense of Definition B.1, using
that T is continuous over the sphere { € M | ||u|l,, = 1} we can use Proposition

11
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B.3 that says

T ! T !
limsup inf [Tl < inf Tl =a(T)
hoo 1nE€CH |lpullyy T e lully

which gives the first result.

For the second result, consider the sequence (zp)n>0 that satisfies ||z ]|,, = 1 and
||Thzh||V,; = OL(Th). Then ﬂ(Th) = ﬂzh (Th) For any h > 0 and u e Cp N {Zh}J‘,
similarly to (3.4), we get

1Tl < I Tullys + (3212 ellys

and then by definition of 5(T}),

Tplly o
B(Th) < |||M|||V +(EP)V2 Yue Cpn{z}t
M

D Y
pecnniznt ullpy

This is true for any h > 0 so we deduce

T /
limsup 8(T3) < limsup 12l :
h—0 h—0 HECKN{zp}+ ||:u‘||M

Now as Theorem 4.1 says that the sequence z;, converges to z in M and Proposition
B.5 gives that limy_.0 Cp, N {z,}+ = M N {z}*, we can use Proposition B.3 that says

T ! T ’
lim sup inf ITklly < inf [Tl = B3.(T) = p(T)
h—0 pECKN{zp}+ H/’L”M peEMN{z}+ HMHM

which gives the second result. ]

4. Error estimates. In this section, we state and prove the error estimates that
are stability estimates for the approximated problem Ty, up, = f,-

4.1. Error estimate in the case f = 0.

THEOREM 4.1 (Error estimate in the case f = 0). Consider T € £ (M,V') and
let z € E be a solution of T z = 0 with ||z||,, =1 and assume that h is small enough
to have " (z) < 1/2. Consider z, € My, a solution of

(4.1) HThZh”V}; =a(Ty) with |zu]l,, =1 and (zp,2),, > 0.

If B(Th) > 0 we have

4 .
zn — pu(z < ——— (V2 ||zl €27 + 2p(T)ei™(2)).
| ()l ﬂ(Th)( Il ex (T)ey"(2))
Where €,F and " are defined in (2.5) and (2.3). Moreover, if ;7 — 0 and (T},)
satisfies the discrete inf-sup condition (3.3), then ||zn — z||p — 0.
Remark 4.2.
1. Note that if &}° — 0, since a(T) = 0, we have, from Theorem 3.10, that
a(Ty) — 0. Moreover, if the discrete inf sup condition (equation (3.3)) is
satisfied, then z; is defined uniquely.

12
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2. It is necessary to assume z € E to overcome the fact that T3, — T is controlled
in Z(Ey, V) but not in £ (M, V). See section 2.3 for more details. In
the framework of the inverse elastography problem, the hypothesis z € F :=
L>(Q) is not restrictive as physical parameters of biological tissues have
bounded values with some known a priori bounds.

3. The normalized projection p,(z) of z is the best possible approximation of z
in M;, with the constraint of norm one.

4. Problem (4.1) admits a solution zj, as T} is a finite dimensional operator.
The condition (zj, z),, > 0 is only here to choose between the two solutions
zp and —zj, and is not of crucial importance.

5. This result provides a quantitative error estimate as 8(7},) can be computed
from T}, as the second smallest singular value (see Subsection5.1) and all the
error terms on the right-hand side can be estimated (at least an upper bound
can be given).

Before giving the proof of Theorem 4.1, we first establish and prove a more general
result.

PROPOSITION 4.3. Consider Ty € L (M, V") let z1 € E be a solution of

171 21lly < a(Ty) +e1 with  |lz1], =1

where 1 > 0. Fizr > ||z1||g. For any Ty, € L (M,V'), consider a solution z, € E of
|15 22|l < a(T2) +e2 with ||z, =1 and (21, 22),, > 0.

1f Bo,(T2) > 0 we have |22 = 21lly; < 5=y (20 1Tz = Till gy + 20(T1) + 21 + &3
and if eo = 0 this reads ||zo — 21|, < T\g) (27" T2 — T1l gy + 20(Th) + 251) :

Proof. Write z; = tzo +m where t € [0,1] and m L z3. We have that 1 = 2 +
||m\|?w Then z1—z9 = (t—1)2z2+m and so ||z2 — le?w =2(1-t) <2(1-t?) <2 Hm||?\4
Then ||22 — 21|, < V2|m||,;- Now use the definition of 3,,(T3) to write

Bay (T2) Imllyy < 1 Tomllyr < (| T221llys + 1 T222lly0 < (| T221llys + a(T2) + &2
< 2(|Toz |y +e2

and remark that || Toz21 ||y, < [[(T2 — Th)z1ly +[Thzly < vl T2 = Thllg v+ Ta 2y
which implies that

[T221lly < 7| T2 = Thl gy + (Th) + 1.

We deduce that f3.,(12) |m|,, < 2r||T> —Ti|| g + 20(T1) + 261 + €2 and then
22 = 210l < 5% (2r 1T = Til gy + 20(T) + 2¢; + 52) . O
We now give the proof of Theorem 4.1:

Proof. First remark that the infimum in (4.1) is reached here because T} is a
finite dimensional operator. Consider T'|ys, : M), — V; and call gj, := Tpp(z). This
quantity is small in V) as

lgnlly, = ITpr(2)lly, = IT@n(2) = 2)llv; < Tl IPa(2) = 2l

< V(e ().
13
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From this, we deduce that o(T|ar,) < v2p(T)ei™(2) and that py(z) is solution of

IT[as, 20 ()l < a(T|ar,) +& with [lpr(2)[ly =1,

with & = v/2p(T)ei™(2). Due to Hypothesis (2.2) and £i"*(z) < 1/2 we have

ThZ z

Imnzllae = M1zl

Applying now Proposition (4.3) on operators T3 = Ty, and T = T, both in
L (M, V) with 21 = pp(2), 22 = 21, €1 = € and €2 = 0. We get

llzn — pr(2)[l5 < B(\;?h) (4r ey’ + 2a(T |1y, ) + 2¢)
V2

B(Th)
4 op int
< 3T (ﬁrah +2p(T)ey, (z)) .

< (4r e + 4\/§p(T)5§{1t(z))

For the convergence, the additional hypothesis give the convergence of the right-hand
side. We use that py(z) — z to conclude. |

4.2. Error estimates in the case f # 0. We give and prove a first stability
result based on the constant «(7T}).

THEOREM 4.4 (Error estimate using «(T})). Consider p € E a solution of
Tp = f with f # 0 and assume that h is small enough to have ™ (n) < 1/2. Fiz
=g/ el Consider now up, € My, a solution of py, = argmin || Tm — fh”v,;'

meMp
If a(Ty,) > 0, we have

|12, _7Th,U'HM [
Imnpllyy = a(Th)

re? + plT) (i + =)

Where &, , et and €™ are defined in (2.5), (2.4) and (2.3). Moreover, if there exists
o > 0 such that a(Ty) > o* for all h > 0 and if ;¥ — 0 and £ — 0 when h — 0,
then ||pn — pl|p; — 0 when h — 0.

Remark 4.5. Note that if a(T}) > 0 for all > 0, then py, is uniquely defined and
moreover £;° — 0 and if «(T},) > a, > 0, Theorem 3.10 assures that «(T) > a* > 0
which guarantee the uniqueness of pu.

Remark 4.6. This result makes sense in practice even if «(T},) goes to zero. In-
deed, at a fixed h > 0, «(T},) can be computed from T}, as the first singular value and
all the error terms on the right-hand side can be estimated (at least an upper bound
can be given). It then gives a quantitative error bound on the reconstruction that can
be useful no matter with the asymptotic behavior of «(T},).

Proof. First note that from the hypothesis ei"* () < 1/2 we have that [|ul|,, <
2 lmnpillyy and mnplly < il < rllilly < 20 Imaslyand [y, < p(T) lillyy-
14
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From the definition of «(T},) we write

a(Tn) lwn = mnpllng < NTwpn = Thmnplly, < 1 Thpn = Frlly, + 1 Thmnp = Fally,
< 2| Thmnp = Fullyy
<2|Tu— Fully, + 21T wnp = Tplly, +2[(Tn = T) waplyy
<2f = Fally, +20(T) llmnp = pllyy + 27 Imnpll g
<265 | fllys + 20(T)ep™ (1) Npallag + 47 €3 [ mnpnll o
< 2p(T) (ei™ + ey (1) lliall oy + 47 €3 lmpll g
<4 [p(T) (k™ + & (W) + 7y’ mnillag -
|

We now state and prove the main stability estimate concerning the general prob-
lem T = f with a non zero right-hand side. This result uses 3(7},) which is always
better than a(T}). The price of this change is that the stability estimates only holds
in the hyperplane {2}, where 2, is the vector that minimizes ||ThzhHV}Z on the unit

sphere.

THEOREM 4.7 (Error estimate using B(T})). Consider p € E a solution of
Tu = f with f # 0 and assume that h is small enough to have £i™(u) < 1/2. Fix
ri=|lpllg /el Consider z, € My, a solution of

1Tzl = a(@) with [zl = 1
Consider now pup € My, a solution of

(4.2) pp = argmin | Tp,m — thVh’ ,  with pp L zp.
i

If B(T1,) > 0, there exists t € R such that up ¢ =tz + up satisfies

a(Th)
2

n,e — mnpll 5
Imnpllyy = B(Th)

Where €, , el and £i™ are defined in (2.5), (2.4) and (2.3).

Remark 4.8. This result has to be used as soon as Theorem 4.4 is irrelevant
because «(T}) is too small. It somehow kills the degenerated direction z, and gives a
possibly better estimate for the computed solution up to an unknown component in
the direction zj.

re? + p(T) (5 + €i™(n)) +

Remark 4.9. This result gives also the algorithmic procedure to approach the
exact solution pu:
1. Identify z;, with stability thanks to Theorem 4.1.
2. Solve the problem (4.2) to identify up,.
3. Find the best approximation ¢z, + up by choosing a correct coefficient t € R
using any additional scalar information on the exact solution such as its mean,
its background value, a punctual value, etc. ..

Remark 4.10. This result provides a quantitative error estimate as a(T}) and
B(T},) can be computed from T}, as the two first singular values and all the error terms
on the right-hand side can be estimated (at least an upper bound can be given).

15
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Before giving the proof of this Theorem, let us state and prove an intermediate
result.

PROPOSITION 4.11. Consider Ty € L(M, V') f1 € V', f1 20 and let uy € E
be a solution of Ty pn = fi. Fizr = |wllg/ plly and for any To € L (M, V'),
consider a solution zo € E of

1T 22|l < a(T2) +e2 and |z, =1

and consider a solution us € E of

Tops =fy and  pg L 2.
If B, (Ta) > 0, there exists t € R such that gy := tzo + po satisfies

||M2,t_ﬂl||M < 1 <||f2f1||v/
luallay 7 Ba(T2) 211l ag
Moreover, if eo = 0 it reads

lpze = pallyy o 1 (||f2—f1||vf
lally,  — B(Tw) (I y;

Proof. Denote o, = tzo + pio with t := (u1, 22),,. With this choice, we have
that (g2 — p1) L z2. From the definition of f,,(T%), we write

+r HTQ — Tl”E‘,V’ + OZ(TQ) + 52) .

Y T a(Tz)> .

By (T2) lp2,e — il < T2 pi2ye — T pnlly)
< | Tap2 — Tapally: + [t |72 22y + [[(T2 = T1)pally
<|fo = Fillyr +llally (@(T2) +e2) + (|12 = Tall g v Il i -

< Ufa= Frllys + il (a(T2) + 2+ 71T = Til )

We can now give the proof of Theorem 4.7.

Proof. (of Theorem 4.7) Consider T'|s, : Ep, — V) and call g;, := T'mpp. Remark
that ||moullp < lellp < rlielly < 2r||mhpll,,- Applying Proposition 4.11 to the
operators Ty := T|p,, To := T}, both in Z(My, V), with f, := gy,, fo := Thusn both
in V; and with pq = mpu, po := pp. We get the existence of ¢ € R such that

l1n,e — Thpell o1 I Thpn = gnlly,
lmnellay = B(Th) 7l or

Now we bound || Thun — thV}: as follows:

+2rep? + a(Th)> .

T per, — gh”Vh{ < | Thpn — thVh{ +llgn — thV,; :

To deal with the first term, we define p := mpu — (mhp, zh>M zp, orthogonal to z,. We
have

| Thpn — fh”v,; < |Thp — fh”v,{ < |[Thmnp — fh”v,; + ||Thzh||v,; Imnpell
< Tt = Filly, + 1T — Thmuplly, + a(Tn) lmnnllyy
< llgn = Fullv, + 3" lmnpll g + a(Th) mn el o

< llgn = Fally; + @re? + a(Th) llmnplly -
16
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Now the second term is bounded as follows:

9 — Fally, < lgn = Flly, + 17 = Fallyy < [T — Tl + 252 £l
< p(D)er (1) |l ar + 2D Nellar < p(T) 1l ar (€0 (1) + 1)
< 2p(T) [|mnpell py (€1 (1) + €5™) -

This last line is true because the hypothesis ei’(u) < 1/2 implies that ||ull,, <
2 ||mhpll,,- Putting things together, it come that

| T pon, _gh”V’ )
PRIV < (T () + <) + 20 5P + a(Th)
7 pell pr
and then
||Nht—7ThN||M 2 int hs o
: < 2p(T) (ep(p) +€3,") +2ret? + a(Th)] .
Tl = Ay 2P @)+ )+ 2re ]

|

5. Numerical results. In this section we provide numerical applications of The-
orems 4.1 and 4.7 and we present the general methodology to numerically approach
the solution of the equation (1.1) in various contexts. In the whole section, we stay
in the framework where M := L%(Q), E := L>(Q) and V := H}(Q,R9).

In subsection 5.2, we exhibit a simple and efficient pair of approximation spaces
(M}, V3) called the honeycomb discretization pair, that numerically satisfies the dis-
crete inf-sup condition.

For all the numerical experiments, we use the Matlab environment with some
elements of the PDE toolbox. We first determine the matrix M and then, the de-
termination of the constants o and § and the determination of the solution of the
homogeneous problem is done using the singular values decomposition method (svds
in Matlab). The determination of the solution for the heterogeneous problem is sim-
ply done using the classical linear system solver (mldivide in Matlab). For the high
degree finite element spaces (P?,P3,P4), we use the getfem (see [19]) environnement
on Matlab to generate the matrix M.

5.1. Matrix formulation of the discretized problem. In this section, we
describe the matrix formulation of the discrete problem (1.5) which gives a way to
use the stability theorems in practice. Let us fix a discretization size h > 0 and pick
a pair of finite dimensional subspaces M, C M and V}, C V. Let (e1,...,&,) be a
basis of M}, and let (eq,...,e,) be a basis of V},. We define 7 € RP*" and b € R” the
matrix versions of the discrete operator 73 and the right-hand side f;,as the matrices

(5.1) Tij = <Th5jaei>v}£’vh , and b; = <fh;6i>vh{,vh :

As no ambiguity can occur, we adopt the notation for p := Zj i, € My
and p = (p1,...1,)T and the same notation for v := Yo, vie; € Vi and v =
(v1,...,vp)T € RP. We have the correspondence

(Thp, U>v,:,vh =o' Tp.

We now call (Sar)ij = (€i,€5),, and (Sy)ij = (es, e;),,. They enable to compute
the norm in M and V through the formulas H/L||?M =D i Hikg (Eir i)y = uTSarp,
17
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and |jv||} = >, vivj (ei,ej)y, = vT Syw. If we denote By and By the square root
matrices of Sy and Sy (i.e. such that B3, = Sar), we have that ||u|l,, = |Bampll,
and [|v||\, = ||Bvv||,. Hence the constant a(7},) is given by

v T
a(Ty) = inf sup
00 = 8 S50, TBuval, TBvoTl
: oTB By 1B TBy ey
= inf sup ———F— = —_
peR yere  |[plly V], peR” [[all

(5.2)

which is the smallest singular value of the matrix
M = B ' TB;}

or also the square root of the smallest eigenvalue of M7 M = B3/ TTS, ' TB;,} .

Call now z € R™ the first singular vector of M (hence associated with «(7})) or
the first eigenvector of MT M. It is equal to the solution zj, := > 2j€j € My of (4.1)
up to a change of sign.

Remark 5.1. The basis matrices By; and By are mandatory to get the exact
solution «(T},) and zp, as defined in (4.1). As «(T},) is expected to be small, it is
possible to consider directly the first singular vector of the matrix 7T itself. The
numerical computation gets a bit simpler but creates an additional error which is not
controlled by the theory described herein.

We can now compute the discrete inf-sup constant of T}:

v T
B(Tn) = inf sup
neR™ yere [[Buplly [Bvoll,
uLSMz

(5.3) "
BYHYTTB;}
— inf sup v ( v) TBy 1 — inf [ Mupll,
nER" pere  [|plly [Vl ner™ ||pll,
plz plz

which is the second smallest singular value of the matrix M or also the square root
of the second smallest eigenvalue of M” M. Finally, in order to give the solution of
(4.2) in Theorem 4.7, we rewrite the problem under a matrix formulation:

. . (Thm — fp, U>V};,Vh . vT (T —b)
min ||T,m — f,|l,, = min sup = min sup —>——
me My, no mEM yev, vl HER" yere  [[Bro,
mlzp mlzp 1z

"
Tr-1
. viB, (Tpu—0>b .
= min sup v By (Th=b) = min ||BV1(Tu—b)||2.

BER™ yeRrp vl peR”
plz plz

Call now 7 := [Z;], b= [8] and gy = {

B;)V (1)] we aim at solving

BT — Bb
in the sense of least squares which is equivalent to define p := (/7—’1“‘57\71/7‘)71/7—’1“‘57;15

5.2. The honeycomb pair of finite element spaces. After numerous tests
with various finite element pair of spaces, it appears that a specific pair of spaces
gather a large amount of advantages for the specific use in our inverse parameter
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Fi1c. 1. Honeycomb space discretization. In plain black, the hexagonal subdivision and in dashed
blue, the triangular subdivision.

problem. This pair (My,V},) is the so called honeycomb discretization pair. Like in
Figure 1, define a regular hexagonal subdivision of Q2 denoted {Q};Lejx bict, nhex where

h > 0 is the edge length of the hexagons and N1°* is the number of hexagons used.
We then call ©;, C 2 the subdomain defined by this subdivision. That means

hex
Nh

0O, — hex
Q= | Qe
j=1

Now we consider the uniform triangular sub-mesh defined by subdividing each hexagon
in six equilateral triangles of size h. This subdivision is denoted {Q}ioy, N

where N ,gri =6N ,}L‘ex. It is represented in dashed blue in figure 1.
We now define the finite dimensional discretization space M}, of M as the collec-
tion of functions p € L?(£2;,) that are constant in each hexagon. In other terms,

My, :=P° (Q],“lex) = {,u e Lz(Qh) | Vg M|Q1ﬁc¥ is constant} .

Functions in M}, can be extended by 0 out of €2, to get M, C M. For the discretization
space of V, we chose the classical finite element class P} over the triangulation. It is
made of all the functions of H}(€j) that are linear over all the triangles. In other
terms,

Vi, =P} (i R?) = {'v € Hy (0, R?) | Yk vlgu s linear} .

Functions in V}, can be extended by 0 out of Qj to get V), C V.

Remark 5.2. This particular choice of finite element spaces gathers several ad-
vantages to compare to other more classical pairs:

1. The space PV (Q}ﬁex) is suitable for discontinuous functions interpolation. This
is important as we aim at recovering discontinuous mechanical parameters of
biological tissues for instance.

2. The hexagonal discretization of €2 is optimal among the other regular plane
tilings (triangle and square) in the sense that it minimizes the ratio of the
number of elements N, ,};e" over the size h. As we see in all the numerical tests,
it also provides the smallest error on the reconstruction among all the other
pairs of spaces that we have tried. As a conjecture, we believe that this pair
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F1G. 2. Behavior of the discrete inf-sup constant B(T},) for the inverse gradient problem in
the unit square Q := (0,1)2, for various choices of pair of discretization spaces. The dashed line

represents the conjectured value of the inf-sup constant B(V) = \/1/2 — 1/7 of the gradient operator
in Q.

of spaces should be optimal, in term of error estimate, for a large class of
operators T'.

3. From a given hexagonal mesh and triangular sub-mesh, spaces P° (Qlﬁex) and
P} (Qﬁfﬂ]l@) are easy to build from the most classical pair of finite element
spaces (PO (Qi) P ().

4. The system of equations Thpup = fj, is (most of the time) over-determinate
as it involves around 2N[2°* equations for N2°* unknown. Note that as we
solve the problem in the sense of least squares, over-determination is not a
problem while under-determination is.

5. This pair gives an excellent evaluation of the discrete inf-sup constant 3(7},)
in our numerical exemples that is a key element for discrete stability.

5.3. Inverse gradient problem. Let (2 be the unit square (0, 1)2. We approach
here the solution p € L%°(Q) of the problem —Vyu = f where f is given vectorial
function. This case correspond to (1.1) where S = I everywhere. In this case, many
simplification occur as T}, := —V|u, and then &;° = 0. Moreover p(T) < 1. In the

absence of noise, the result of Theorem 4.7 reads : e ‘T;ltjll: l{‘M < B(g“h) (32 + el (1))

where gy, is the solution of min,e s, || Thu — fHW under the condition yu;, € L3(,)

ie. th wp = 0.

Let first compute B(T}) using (5.3) at check its behavior when h go to 0. In
figure 2 we see that it seem to converge to some fy > 0 lower than the conjectured
inf-sup constant B(V) = 4/1/2 —1/7 in the unit square (see [8, Theorem 3.3] for
details about this conjectured value).

Consider now a smooth map pq(z) := cos(10x1) + cos(10x3) for x € Q, for such
a smooth function we expect an error of interpolation in M), of order el () = O(h)
and an error of interpolation of its gradient on V} of order i = O(h?). Hence the
relative error Ey(h) := ||u1,n — Tapall /| Tapa ||y, is expected to be at least of order
O(h). In figure 4 we observe a convergence of order 2 in absence of noise. We retry
the same test with piecewise constant ps. Its derivative is approached first in PO(Q5)
to deduce its vectorial form in V}/. We observe a convergence of order 1/2 in absence
of noise.
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Fi1G. 3. Numerical stability of the reconstruction of maps pu1 and pa using method given by
Theorem 4.7 with resolution h = 0.01. From left to right: column 1: exact map to recover, 2. recon-
struction with no noise, column 3: reconstruction with noise level o = 1, column 4: reconstruction
with noise level o = 2.
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FiG. 4. Left : relative L?-error on the reconstruction with respect to h in the absence of noise.
Right : relative L?-error on the reconstruction with respect to the noise level o with h = 0.01.

To illustrate the stability with respect to noise on the right-had side, we corrupt
the data —Vu with the multiplication term-by-term by 1 + oA where o > 0 is the
noise level and A is a Gaussian random variable of variance one.

5.4. Quasi-static elastography.

Forward problem. To illustrate the ability of solving a quasi-static elastography
problem in the case A = 0 from a single measurement, we compute a virtual data field
by solving the linear elastic forward problem

0 in (0,1)%
=g on (0,1) x {1},
(5.4) 0 on (0,1) x {0},
0, on{0,1} x (0,1).

where fiexact is described in Figure 5. We chose here a constant boundary force
g = (1,—1)T. This problem is solved using classical P! finite element method over
an unstructured triangular mesh. The computed data field w is then stored in a
cartesian grid to avoid any numerical inverse crime. It is represented in Figure 5.
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F1G. 5. First line, from left to right: The exact map fegact, the two components of the data
field w = (u1,u2) computed via (5.4), the only data used to inverse the problem.

Note that piexact is chosen bounded and piecewise constant, and thanks to the clas-
sical elliptic regularity theory the exact strain tensor S := £(u) is piecewise smooth
and bounded in € (see [17]). Hence, both piexact and S satisfy the hypotheses used in
the error estimates.

Inverse problem. We first choose a pair of approximation spaces (Mp,, V},) and we
interpolate the displacement field w on the corresponding mesh nodes as a continuous
and piecewise linear map. From this interpolated data, we compute its approached
derivative Vu by computing the exact piecewise constant derivative of the interpo-
lated displacement field. We deduce the approximation of the strain tensor S := 2&(u)
as a piecewise constant map. We then construct the matrix form of the approached
operator T}, by formula (5.1). Before applying Theorem 4.1 we compute the discrete
values of a(T}y,) and 3(T},) for few pairs of spaces (see Figure 6). We here control that
B(T}) does not vanish and that the ratio a(7},)/8(T}) is small enough. We recall that
this is needed for good error estimates using Theorem 4.1. Note that the honeycomb
pair shows a much better behavior than the other consider pairs of spaces. In the
results, we denote by “honeycomb pair” the pair of spaces defined in subsection 5.2
and we denote PF the classical space of Lagrangian finite element space over an un-
structured triangulation (see [12] for precise definitions).

We plot now solutions p of the numerical inversion with various choices of pair
of spaces in Figure 7. Then in Figure 8 we present tables of comparisons of different
pair of spaces in terms of relative error and complexity through the number of degrees
of freedom and number of equations. In particular,

e As expected and for all choice of pair of spaces satisfying inf-sup condition,
the numerical approximation u gives some nice reconstruction of the elastic
coefficient 2piezqc¢- Moreover, in each case, we also clearly observe a conver-
gence as h — 0.

e The numerical solutions obtained with the honeycomb approach give some
better reconstruction than using other pair of spaces. It can be explained by
a better ratio a(Ty)/6(Th).

e The use of high degree as with the pair of spaces (P*,P?) raises some numerical
memory issues in the computation the matrix B;j and S;l. In particular, we
don’t succeed to reach time steps h smaller than A = 0.025 with a standard
laptop.

e From a computation cost point of view, the honeycomb approach has also
many advantages. The matrix Sy; and Sy are respectively diagonal and tri-

diagonal which greatly facilitate the computation of B;/[l = \/S]\}l and S;l.
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F1G. 6. Behavior of the contants a(Ty), 8(Th) and the ratio a(T}y,)/B(Th) for the inverse static
elastography problem in the unit square Q := (0,1)2, for various choices of pair of discretization
spaces.

Finally, we can reach much finer resolutions than using other finite element
space proposed in this paper.

e For all the tested pairs, the matrix is over-determinated and the measured al-
gebraic rank is equal to n. However as the the first singular value is very small
to compare to the others, the matrix rank should be considered "numerically
speaking equal to n — 1”.

6. Concluding remarks. In this article we have proved the numerical stability
of the Galerkin approximation of the inverse parameter problem arising from the elas-
tography in medical imaging. It has been done through a direct discretization of the
Reverse Weak Formulation without boundary conditions. The obtained stability esti-
mates arise from a generalization of the inf-sup constant (continuous and discrete) to
a large class of first order differential operator. These results shed light on the impor-
tance of the choice of finite element spaces to assure uniqueness and stability. Various
numerical applications have been presented which illustrate the stability theorems. A
new pair of finite element spaces based on a hexagonal tilling has been introduced. It
showed excellent stability behavior for the specific purpose of this inverse problem.
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F1G. 7. Reconstruction of the shear modulus map p using various pairs of finite element spaces
in the subdomain of interest (0.1,0.9)2.

h =0.05 E n P h =0.025 E n p
honeycomb || 9.2% | 338 | 1888 honeycomb || 6.3% | 1510 | 8765
(P°,P?) 9.1% | 735 | 2788 (P°,P?) 6.7% | 2982 | 12k
(P! P?) 8.5% | 407 | 2800 (P, P?) 5.7% | 1570 | 12k
(IP3,P*) 5.4% | 3424 | 11k (P3,P*) 3.4% | 13654 | 47k

Fic. 8. Comparison of four pairs of finite element spaces in term of relative error E of the
reconstruction, degrees of freedom n, and number of equations p. The product np is an indication
of the algorithmic complexity.

Appendix A. A result on self-adjoint operators.

LEMMA A.1. Let H be an Hilbert space and S : H — H be a self-adjoint positive
semi-definite linear operator. Call o := inf{(Sz,z), | ||z||; = 1} and z € H such
that ||z||y = 1 and take (Sz,2); < o + &2 withe > 0. For any p L z with ||p||; =1
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we have

|<Szvp>H| S gV p2 _a2

x where p? := sup{(Sz, )y | [|z[z =1}

Proof. Consider t € (0,1), uy := —sign(Sz,p); V1 —1t% and 2 := tz + uyp of
norm one. By definition of o we have

o? < (Szi,z)y =12 (S2,2)  + 2tug (Sz,p)yy + u? (Sp, p)
H H H H
<t*(a® 4+ &) + 2t uy (Sz,p) yy + uip®

Then
—2tuy (Sz,p)y < (2 — 1)a? + %% + uf p?
2t |ug| |(Sz,p) | < t2e? +ui(p® — a?)

t U
2(S2,) ] < e+ el (g2 — a2)
| t

This statement is true for any ¢ € (0,1) so for any 7 € (0,1) we have
1
21(5% Byl < 77+ L( o).

The minimum of the right-hand side is reached for 7 = /(p? — a2)/e2 which implies
that 2 |(Sz,p) 4| < 2\/€2(p? — a?). a

Appendix B. Limit of subsets and infimum. Let M be a Hilbert space and
let E C M be Banach space dense in M. Let (My)n~0 be a sequence of subspace of E
endowed with the M-norm. We assume that the orthogonal projection 7, : M — M},
satisfies

Ve e B, |maelg < llg-

DEFINITION B.1. For any sequence (Ap)n>o of subsets of M, we define its limit
as

%LH%)A;L = {:C € M|3(l’h)h>0 Cc M, }llli%nxh 7$||M =0, Vh >0 xp € Ah} .

PROPOSITION B.2. limp, 0 Ay, is a closed subset of M and, if A, C X C M for
all h > 0, then limy,_,og A, C X.

Proof. Call A := limy_,0 Aj, and take 2 € A. There exists a sequence (y,)nen
of A such that ||z —z,[|,, < 1/(2n) for all n € N*. For all n € N*, there exists
a sequence (z1'),~¢ such that limj,_o ||93Z — anM =0 and z" € A, for all h > 0.
Hence there exists h,, > 0 such that for all h < h,, we have ||z — anM < 1/(2n).
We can decrease h, to satisfy h, < h,_1 for all n > 2. Now define the sequence
(yn)n>o as follows: If h > hy, yp is any element of Ap. If h € [hy11,hy), we take
yp = xz It is clear that y, € Aj for all h > 0. Moreover, for any h < h,,
lyn — 2nllpy < 1/(2n) and [|x — z,||,, < 1/(2n) which give ||y, — z||,, < 1/n. This
shows that limj_o |lyn — 2||,; = 0 and therefore + € A. The second part of the
statement is trivial.
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ProrosITION B.3. Assume that A := limy_,9 Ay is not empty and consider a
fonction f: M — R. If there exists a subset B C A such that f is continuous in B
and inf 5, f =infg f then we have

limsupinf f < inf f.
h—>0p An f A f

Proof. Take x € B. As x € A, there exists (zp,)n>0 such that x;, € A for all
h > 0 and limpoxp, = 2. For any h > 0, f(zp) < f(z) + |f(zn) — f(x)] and
infa, f < f(z)+|f(zn) — f(x)]. Taking the superior limit when h — 0 it comes from
the continuity of f at z, limsup,_,,inf4, f < f(z) which if true for any 2 € B so
limsupinf f <inf f = inf f. ]

m sup if f<inf f=inf f

We assume now that the sequence (M},) satisfies limy_,0 My, = M. We consider a
sequence of positive real number a4, that converges zero and a corresponding sequence
of subsets Cy, == {x € My, |y, ||z]| 5 < [|x]f )

ProprosITION B.4. The following limit holds: }llir% Cp =M.
—

Proof. We prove that E C C := limy,_,q C,. Take 2z € E\{0}, for h small enough
it satisfies 2ay, ||z||z < ||z||,,. Consider now its orthogonal projection 72 of = onto
M,,. It satisfies limy_,o 7z = x. For h small enough ||z||,, < 2||ms2[,, and then

1
an ||zl p < anllzllp < 5 lella < lmnzlly

which means that w2 € C},. As a consequence, x € limy,_,q C},. 0

PROPOSITION B.5. Let (21,)n>0 be sequence of M such that ||z4||,, = 1 and which
converges weakly to z # 0. Then

ilzli% (Ch n {Zh}l) =Mn {Z}l

Proof. Take z € limy,_,q (C’h n {zh}L). There exists (zp) such that z;, € Cj, and
xp L 2z, and x, — . We have (z,2),, = limy_0 (z, 21) 5, = imp—0 (€ — 2p, 2n) =
0. Then x € M N {z}+.

Reversely, take x € M N {z}*, and fix £ > 0. There exists z. € F\{0} such that
|z — x|, < € and z. L z and Consider now the orthogonal projection mpa. of x.
onto My,. It satisfies limj o mpz. = 2.. For h small enough ||z.||,, < 2|l7hz.|,,-
Consider now z € E such that (z,2),, > 1/2 and [|Z]|,, = 1. We define now

x?zﬂh$5+ﬁhﬂhz € My,

with 8, = — (mhae, 2n) 5, / (ThZ, 2n),, in order to have x? L z, for all h. Re-
mark that (5, is wel defined for h small enough as (7,2, z),, converges to (z,2),,
and converges to zero as (Tpe,2n) ) = (T, 2n)yy + (ThTe — Te, 21) ), converges to
(e, 2)y, = 0. Then 2 — z.. Now we write

o2l 5 < llmnzell g + Bn lmnZl g < llzellp + Bn Izl

and H:E’;HM — |lzelly, # 0. As a consequence, for h small enough, «y, ||x?||E <

||JL’?HM which means that 2" € C), N {z;,}* for h small enough. This shows that

T, € limy_yo (C’h N {zh}J-). This is true for any € > 0 and as the limit set is closed,
T € limy,_,q (Ch N {Zh}l). O
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