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STABILITY FOR FINITE ELEMENT DISCRETIZATION OF SOME1

INVERSE PARAMETER PROBLEMS FROM INTERNAL DATA -2

APPLICATION TO ELASTOGRAPHY3

ELIE BRETIN∗, PIERRE MILLIEN† , AND LAURENT SEPPECHER‡4

Abstract. In this article, we provide stability estimates for the finite element discretization of5
a class of inverse parameter problems of the form −∇ · (µS) = f in a domain Ω of Rd. Here µ is the6
unknown parameter to recover, the matrix valued function S and the vector valued distribution f7
are known. As uniqueness is not guaranteed in general for this problem, we prove a Lipschitz-type8
stability estimate in an hyperplane of L2(Ω). This stability is obtained through an adaptation of9
the so-called discrete inf-sup constant or LBB constant to a large class of first-order differential10
operators. We then provide a simple and original discretization based on hexagonal finite element11
that satisfies the discrete stability condition and shows corresponding numerical reconstructions.12
The obtained algebraic inversion method is efficient as it does not require any iterative solving of the13
forward problem and is very general as it only requires S and µ to be bounded and no additional14
information at the boundary is needed.15

Key words. Inverse problems, Reverse Weak Formulation, Inf-Sup constant, Linear Elastogra-16
phy, Finite Element Method17

AMS subject classifications. 65J22, 65N21, 35R30, 65M6018

1. Introduction. This work deals with inverse problems of the form19

(1.1) −∇ · (µS) = f in Ω,20

where Ω is a smooth bounded domain of Rd, d ≥ 2 and where µ ∈ L∞(Ω) is the21

unknown parameter map. In this problem, S ∈ L∞(Ω,Rd×d) and f ∈ H−1(Ω,Rd)22

are given from some measurements and may contain noise. If one defines the first23

order differential operator24

(1.2)
T : L∞(Ω) ⊂ L2(Ω)→ H−1(Ω,Rd)

µ 7→ −∇ · (µS),
25

the inverse parameter problem that we aim to solve can be expressed as26

(1.3) Find µ ∈ L∞(Ω) s.t. Tµ = f .27

If S, f and µ are assumed smooth enough, this problem reads as a first order28

transport equation in µ that can be solved with the characteristics method knowing29

µ in a part of the boundary (the incoming flow boundary). Here, as no additional30

regularity is assumed and as the right-hand side f belongs to H−1(Ω,Rd) this problem31

shall be considered under its weak formulation :32

(1.4) Find µ ∈ L∞(Ω) s.t. 〈Tµ,v〉H−1,H1
0

= 〈f ,v〉H−1,H1
0
, ∀v ∈ H1

0 (Ω,Rd).33

This weak form of the inverse problem (1.3) (introduced in [1]) will be called the34

Reverse Weak Formulation (RWF). In this inverse problem, we do not assume the35
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knowledge of any information on µ at the boundary. Note that the case f = 0 can be36

considered and corresponds to the determination of the null space of the operator T .37

In [1] the well-posedness of this problem has been established in an hyperplane of38

L2(Ω) in a general setting and under light hypothesis of regularity and invertibility39

of the matrix S. See subsection 1.1 and [1]. Note that the hypotheses used in this40

reference will not be used to established the error estimates given in the present paper.41

The goal of the present paper is to investigate the stability properties of the42

discretized version of the problem (1.4) and to provide error estimates based on the43

properties of the discretization spaces and on the discretized approximation of the44

operator T . More precisely, given a finite dimensional operator Th : Mh → V ′h and45

fh ∈ V ′h where Mh and Vh are finite dimensional subspaces that approach M := L2(Ω)46

and V := H1
0 (Ω,Rd) respectively, we seek conditions on Mh, Vh and Th for the L2-47

stability of the following discretized problem:48

(1.5) Find µh ∈Mh s.t. Thµh = fh.49

We also give conditions that guarantee the convergence of µh to µ for the L2-norm.50

In most cases, the stability only occurs in an hyperplane of L2(Ω) which is the orthog-51

onal of the singular direction of the operator Th with respect to its smallest singular52

value. This leads to a remaining scalar uncertainty that can be resolved using a single53

additional scalar information on µ.54

The originality of this work lies here on the Reverse Weak Formulation (1.4)55

that exhibits the unknown parameter µ as the solution of a weak linear differential56

problem in the domain Ω without boundary condition. Hence the uniqueness is not57

guaranteed at first look and the stability has to be considered with respect to some58

possible errors on both f and T . As we will see, the error term Th−T is not controlled59

in L
(
L2(Ω), H−1(Ω,Rd)

)
(definition in Section 2) in general but only for a weaker60

norm (see Subsection 2.3). This creates difficulties that are not covered by the classical61

literature on the theory of perturbations of linear operators.62

1.1. Scientific context and motivations. Elastography is an imaging modal-63

ity that aims at reconstructing the mechanical properties of biological tissues. The64

local values of the elastic parameters can be used as a discriminatory criterion for65

differentiating healthy tissues from diseased tissues [20]. While numerous modalities66

of elastography exist (see for example [13, 18, 10, 7]), the most common procedure is67

to use an auxiliary imaging method (such as ultrasound imaging, magnetic resonance68

imaging, optical coherence tomography . . . ) to measure the displacement field u in a69

medium when a mechanical perturbation is applied. See [21] and inside references for70

recent advances on this point. The inverse problem can be formulated as recovering71

the shear modulus µ in the linear elastic equation72

(1.6) −∇ · (2µE(u))−∇(λ∇ · u) = f in Ω,73

where u and f are given in Ω and λ can be assumed known in Ω. The term E(u)74

denotes the strain matrix which is the symmetric part of the gradient of u. The75

stability of this inverse problem has been extensively studied under various regularity76

assumptions for the coefficients to be reconstructed [2, 3, 23, 16]. Recently, in [1] the77

authors introduced a new inversion method based on a finite element discretization78

of equation (1.1) where S := 2E(u). A study of the linear operator T defined by (1.2)79

or by the equivalent weak formulation80

(1.7) 〈Tµ,v〉H−1,H1
0

:=

∫
Ω

µS : ∇v, ∀v ∈ H1
0 (Ω,Rd×d)81
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showed that, under a piecewise smoothness hypothesis on S and under an assumption82

of the form |det(S)| ≥ c > 0 a.e. in Ω, the operator T has a null space of dimension83

one at most and is a closed range operator. This ensures the theoretical stability of the84

reconstruction in the orthogonal complement of the null space. However, depending85

on the choice of discretization spaces, the discretized version of T may not satisfy the86

same properties and numerical instability may be observed. For instance, in [1] the87

authors approach (1.7) using the classical pair (P0,P1) of finite element spaces. As88

it could have been expected, they faced a numerical instability that was successfully89

overcome by using a TV -penalization technique.90

Remark 1.1. The classical elliptic theory says that the strain matrix belongs to91

L2(Ω,Rd×d). Here, we add the hypothesis S ∈ L∞(Ω,Rd×d) in order to control the92

error on µ in the Hilbert space L2(Ω). This boundedness hypothesis is not restrictive93

as it is known that the strain is bounded as soon as the elastic parameters are piecewise94

smooth with smooth surfaces of discontinuity (see [17]).95

Let us point out here that inverse problems of the form (1.1) may arise from96

various other physical situations. Note first that the reconstruction of the Young’s97

modulus E when the Poisson’s ratio ν is known is very similar to the problem defined98

in (1.6). In this case the governing linear elastic equation reads −∇· (E Σ) = f where99

Σ := aνE(u)+bν(∇·u)I and aν := 1/(1+ν) and bν := ν/((1+ν)(1−2ν) in dimension100

3. A second example is the electrical impedance imaging with internal data, where the101

goal is to recover the conductivity σ in the scalar elliptic equation −∇· (σ∇u) = 0. If102

one can measure two potential fields u1 and u2 solutions of the previous equation and103

defines S := [∇u1 ∇u2], then the problem reads −∇ · (σS) = 0. A third example is a104

classical problem corresponding to the particular case where S is the identity matrix105

everywhere. In this case, the problem reads −∇µ = f which is the inverse gradient106

problem.107

The properties of the gradient operator ∇ : L2(Ω) → H−1(Ω,Rd) and its dis-108

cretization have been extensively studied in particular in the context of fluid dynam-109

ics and some tools developed in this framework are useful to treat our more general110

problem. For the reader convenience, let us recall the most important property which111

ensures the existence of a bounded left-inverse.112

Hence, in the case where S is the identity matrix everywhere, i.e. T := −∇, the113

operator T is known to be a closed range operator from L2(Ω) to H−1(Ω,Rd) if Ω is114

a Lipschitz domain (see [22, p.99] and references within). One can write115

‖q‖L2(Ω) ≤ C ‖∇q‖H−1(Ω) ∀q ∈ L2
0(Ω),116

117

where C > 0 and L2
0(Ω) is the space of zero-mean, square-integrable functions. The118

norm of the pseudo-inverse of the gradient in H−1(Ω,Rd) is closely related with the119

inf-sup condition of the divergence:120

β := inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω,Rd)

∫
Ω

(∇ · v)q

‖v‖H1
0 (Ω) ‖q‖L2(Ω)

> 0(1.8)121

122

Indeed, we have C = 1/β. Since the closed-range property of the gradient is equiv-123

alent to the surjectivity of the divergence in L2
0(Ω), the study of behavior of β is an124

important step in establishing the well-posedness and stability of the Stokes problem125

[14, Chap. I, Theorem 4.1]. The constant β is also known as the LBB constant (for126

Ladyzhenskaya-Babuška-Brezzi). It is well known that in general, the constant β may127
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not behave well in finite element spaces, and may vanish when the mesh size goes to128

zero. More precisely, if one considers discrete spaces Mh ⊂ L2(Ω) and Vh ⊂ H1
0 (Ω,Rd)129

with discretization parameter h > 0, the associated discrete inf-sup constant given by130

βh := inf
q∈Mh
q⊥1

sup
v∈Vh

∫
Ω

(∇ · v)q

‖v‖H1
0 (Ω) ‖q‖L2(Ω)

(1.9)131

132

may not satisfy the discrete inf-sup condition ∀h > 0, βh ≥ β∗ > 0. Pairs of finite133

element spaces that satisfy the discrete inf-sup condition are known as inf-sup stable134

elements and play an important role in the stability of the Galerkin approximation135

for the Stokes problem. We refer to [5] for more details on the inf-sup constant of the136

gradient and its convergence.137

1.2. Main results. Inspired by this approach, we introduce a generalization of138

the inf-sup constant and a corresponding definition of the discrete inf-sup constant139

that are suitable for operators of type (1.2) in particular. A major difference with the140

classical definition of the inf-sup constant of the gradient is that, here, the operator141

T may contain measurement noise and may have a trivial null space.142

In a general framework, consider T ∈ L (M,V ′) where M and V are two Hilbert143

spaces. The problem Tµ = f is approached by a finite dimensional problem Thµh =144

fh where T ∈ L (Mh, V
′
h) and Mh, Vh approach M and V respectively.145

The first main goal of this work is to provide a stability condition with respect to146

theM -norm for the discrete problem based on the associated discrete inf-sup constant.147

We consider the stability with respect to both the noise and the interpolation error148

on the right-hand side f and on the operator T itself. The case f = 0 corresponds149

to a null space identification problem and the condition ‖µ‖M = 1 is added.150

In Theorem 4.1 we provide an error estimate between the normalized solution of151

arg minzz∈Mh
‖Thzh‖V ′h and the normalized solution of Tz = 0 of the form152

‖zh − ph(z)‖M ≤
C

β(Th)

(
‖T − Th‖ + ‖z − πhz‖M

)
153

where πhz is the orthogonal projection of z on Mh, ph(z) := πhz/ ‖πhz‖M . The154

constant β(Th) is an adaptation of the inf-sup constant from (1.9) to general operators.155

(See Section 3). For the hypotheses and other details about the norms used, see156

directly Theorem 4.1.157

In the case f 6= 0, we consider two distinct situations. The first case is when T158

is invertible and α(T ) := infz∈N ‖Tz‖V ′ / ‖z‖M is not ”too small”. In Theorem 4.4159

we provide an error estimate between the solution of Thµh = fh in the sense of least160

squares and the unique solution of Tµ = f of the form161

‖µh − πhµ‖M
‖πhµ‖M

≤ C

α (Th)

(
‖T − Th‖ + ‖f − fh‖ + ‖πhµ− µ‖M

)
.162

where α(Th) := minzh∈Mh
‖Thzh‖V ′h / ‖zh‖M . For the hypotheses and other details163

about the norms used, see directly Theorem 4.4.164

The second case is when T has a non trivial null space (of dimension one) or165

remains invertible but with a constant α(Th) too small to make the previous result166

applicable. In this case, the error estimate is only proved in an hyperplane of M (the167

orthogonal complement of the approximated null space). The approximation of µ is168

then obtained up to an unknown scalar constant.169
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In Theorem 4.7 we provide an error estimate between the solution of Thµh = fh170

in {zh}⊥ in the sense of least squares and the solution of Tµ = f up to an unknown171

translation in the direction zh. This estimate is of the form: ∃t ∈ R such that172

‖µh + t zh − πhµ‖M
‖πhµ‖M

≤ C

β (Th)

(
‖Th − T‖ + ‖fh − f‖ + ‖πhµ− µ‖M + α (Th)

)
.173

For the hypotheses and other details about the norms used, see directly Theorem 4.7.174

These error estimates are quantitative. They depend on the discrete inf-sup con-175

stant and can be explicitly computed in all practical situations dealing with experi-176

mental data. These estimates allow for a control of the quality of the reconstruction177

in the pair of approximation spaces (Mh, Vh) directly from the noisy interpolated178

data. The behavior of the discrete inf-sup constant with respect to the discretization179

parameter h gives a practical criterion for the convergence of µh towards µ.180

The present paper is closely linked to the sensitivity analysis and discretization181

analysis for the Moore-Penrose generalized inverse of T when T is a closed range op-182

erator. There exist a vast literature on this subject (see [4, 9, 24, 15] and references183

herein) as well as on the finite dimensional interpolation of the generalized inverse184

[11]. However, there are fundamental differences between the present work and the185

existing literature. First, we do not know here whether the operator T has closed186

range. Second, we perform a sensitivity analysis of the left inverse of T ∈ L (M,V ′)187

under perturbations that are controlled in a weaker norm. More precisely, pertur-188

bations are controlled here in L (E, V ′) where E ⊂ M is a Banach space dense in189

M . This might seem a technical issue but it is mandatory if one wants to work with190

discontinuous parameters µ and S. This choice is motivated by the applications in191

bio-medical imaging where, in most cases, the biological tissues exhibit discontinuities192

in their physical properties. For instance, in the linear elasticity inverse problem (see193

equation (1.6)) the matrix S = 2E(u) has the same surfaces of discontinuities than the194

shear modulus of the medium and cannot be approached in L∞(Ω,Rd×d) by smooth195

functions. This leads to perturbations of T in L
(
L∞(Ω), H−1(Ω,Rd)

)
instead of196

L
(
L2(Ω), H−1(Ω,Rd)

)
. More details and examples are given in Subsection 2.3.197

1.3. Outline of the paper. The article is organized as follows: In Section 2, we198

describe the Galerkin approximation of the problem (1.3) and define all the approxi-199

mation errors involved. In Section 3, we generalize the notion of inf-sup constant to200

any operator T ∈ L (M,V ′) and we prove in Theorem 3.10 the upper semi-continuity201

of the discrete inf-sup constant. This is an asymptotic comparison between the dis-202

crete and the continuous inf-sup constants. In Section 4 we give and prove the main203

stability estimates (Theorems 4.1, 4.4 and 4.7) based on the discrete version of the204

inf-sup constant just defined. In Section 5 we present various numerical inversions,205

including stability tests and numerical computations of the inf-sup constant for var-206

ious pairs of finite element spaces. We also introduce in this section a pair of finite207

element spaces based on a hexagonal tilling of the domain Ω. It shows excellent numer-208

ical stability properties when compared to some more classical pair of discretization209

spaces.210

2. Discretization using the Galerkin approach. We describe the Galerkin211

approximation of problem (1.3) and give the definitions of the various errors of ap-212

proximation.213

2.1. General notations. In all this work, M and V are two Hilbert spaces with214

respective inner products denoted 〈., .〉M and 〈., .〉V . We denote E ⊂ M a Banach215

5
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space dense in M . The space V ′ := L (V,R) is the space of the bounded linear forms216

on V endowed with the operator norm217

(2.1) ‖ϕ‖V ′ := sup
v∈V

〈ϕ,v〉V ′,V
‖v‖V

,218

where 〈., .〉V ′,V is the duality pairing between V ′ and V . The space L (M,V ′) is the219

space of the bounded linear operator from M to V ′ endowed with the operator norm220

written ‖.‖M,V ′ . For any T ∈ L (M,V ′), we denote its null space by N(T ).221

Example 2.1. In the case of the inverse elastography problem using the operator222

T defined in (1.2), we take M := L2(Ω), V := H1
0 (Ω,Rd), E := L∞(Ω) and so223

V ′ = H−1(Ω,Rd). Here H1
0 (Ω,Rd) is the space of all squared integrable vector-valued224

functions v on Ω such that ∇v is also square integrable and such that its trace on ∂Ω225

vanishes. The space H−1(Ω,Rd) is the topological dual of H1
0 (Ω,Rd).226

2.2. Spaces discretization and projection. In order to approach the problem227

(1.3) by a finite dimensional problem, we first approach spaces M and V by finite228

dimensional spaces.229

Definition 2.2. For any Banach space X, we say that a sequence subspaces230

(Xh)h>0 approaches X if this sequence is asymptotically dense in X. That means231

that for any x ∈ X, there exists a sequence (xh)h>0 such that xh ∈ Xh for all h > 0232

and ‖xh − x‖X converges to zero when h goes to zero. We naturally endow Xh with233

the restriction of the X-norm to make it a normed vector space.234

Consider now two sequences of subspaces (Mh)h>0 and (Vh)h>0 that approach235

respectively the Hilbert spaces M and V . Naturally, Mh is endowed with the M -236

norm and Vh is endowed with the V -norm. In some cases we need to use the E-norm237

over Mh. To highlight the difference, we will denote Eh := (Mh, ‖.‖E) the space Mh238

endowed with the E-norm.239

Example 2.3. In the case of Example 2.1, M = L2(Ω) and one can choose Mh as240

the classical finite element space P0(Ωh), i.e. the class of piecewise constant functions241

over a subdivision of Ω by elements of maximum diameter h > 0 [14].242

Definition 2.4. We denote πh : M → Mh the orthogonal projection form M243

onto Mh. It naturally satisfies limh→0 ‖πhm−m‖M = 0 and ‖πhm‖M ≤ ‖m‖M , for244

all m ∈ M . We also denote ph : M\N(πh) → Mh the normalized projection form245

M onto Mh defined by ph(m) := πhm/ ‖πhm‖M , ∀m ∈ M, πhm 6= 0. Note that if246

‖m‖M = 1, ph(m) satisfies ‖ph(m)−m‖M ≤
√

2 ‖πhm−m‖M .247

In the following, we will assume that πh is also a contraction for the E-norm.248

That means,249

(2.2) ∀m ∈ E ⊂M, ‖πhm‖E ≤ ‖m‖E .250

This hypothesis is true in the case E := L∞(Ω), M := L2(Ω) and Mh := P0(Ωh) as251

in Example 2.3.252

Definition 2.5. For any non zero µ ∈ M , we define its relative error of inter-253

polation onto Mh by254

(2.3) εinth (µ) :=
‖πhµ− µ‖M
‖µ‖M

.255

6
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As the sequence of subspaces Vh ⊂ V approaches V , we define V ′h the space of all256

linear forms over Vh endowed with the norm257

‖ϕ‖V ′h := sup
v∈Vh

〈ϕ,v〉V ′h,Vh

‖v‖V
.258

Note that f 7→ f |Vh
defines a natural map from V ′ onto V ′h and then any f ∈ V259

naturally defines a unique element f |Vh
of V ′h (and we continue to call it f). Then260

any non zero right-hand side linear form f ∈ V ′ is approached by a finite dimensional261

linear form fh ∈ V ′h and we define its relative error of interpolation as follows.262

Definition 2.6. The relative error of interpolation εrhsh between f 6= 0 and fh263

is defined by264

(2.4) εrhsh :=
‖fh − f‖V ′h
‖f‖V ′

.265

2.3. Interpolation of the operator. We approach the operator T ∈ L (M,V ′)266

by a finite dimensional operator Th ∈ L (Mh, V
′
h). The error of approximation is267

defined as T − Th for the L (Eh, V
′
h) norm which is weaker than assuming that the268

distance between T and Th is small in L (Mh, V
′
h). We remind the reader that Eh :=269

E ∩Mh endowed with the E-norm.270

Definition 2.7. The interpolation error εoph between T and Th is defined by271

(2.5) εoph := ‖Th − T‖Eh,V ′h
:= sup

µ∈Eh

‖(Th − T )µ‖V ′h
‖µ‖E

.272

This error contains both the interpolation error over the approximation spaces and273

the possible noise in measurements used to build Th.274

Remark 2.8. The reason of the choice of norms comes from the main application275

where M := L2(Ω), E := L∞(Ω), V := H1
0 (Ω,Rd) and Tµ := −∇ · (µS) with276

S ∈ L∞(Ω,Rd×d). This operator is approached by Thµ := −∇ · (µSh) where Sh is a277

discrete and possibly noisy version of S. In this case, the interpolation error Sh−S is278

expected to be small in L2(Ω,Rd×d) but not in L∞(Ω,Rd×d). This conduces to small279

interpolation error εop
h thanks to the control280

(2.6) ‖(Th − T )µ‖H−1(Ω) ≤ ‖Sh − S‖L2(Ω) ‖µ‖L∞(Ω) , ∀µ ∈Mh.281

but Th − T has no reason to be small in L (Mh, V
′
h) (See example 2.9). This defini-282

tion of εop
h matches well practical situations like medical imaging for instance where S283

might be a discontinuous map with a priori unknown surfaces of discontinuity. There-284

fore it makes sense to consider Sh − S small in L2(Ω,Rd×d) but not in L∞(Ω,Rd×d).285

The next example 2.9 below explains this situation in dimension one.286

Example 2.9. In dimension one, take Ω := (−1, 1), M = L2(Ω), E = L∞(Ω) and287

V = H1
0 (Ω). Take S ∈ L∞(Ω) and define Tµ := −(µS)′. Fix h > 0 and consider288

any uniform subdivision Ωh ⊂ Ω of size h containing the segment Ih := (−h/2, h/2)289

(hence 0 is not a node). Define the interpolation spaces Mh := P0(Ωh), Vh := P1
0(Ωh).290

Chose S = 1 + χ(0,1) and Sh = 1 + χ( h
2 ,1) ∈ Mh and Thµ := −(µSh)′. An explicit291

computation gives292

‖Sh − S‖2L2(Ω) =
h

2
i.e. ‖Sh − S‖L2(Ω) = O

(√
h
)
.293

7

This manuscript is for review purposes only.



Thanks to (2.6), we also get that ‖Th − T‖Eh,V ′h
= O

(√
h
)

.294

Consider now the sequence µh = h−1/2χIh which satisfies ‖µh‖L2(Ω) = 1 and a295

basis test function vh ∈ Vh supported in [−h/2, 3h/2] and such that vh(h/2) = 1. It296

satisfies ‖vh‖H1
0 (−1,1) =

√
2/h. We can write297

〈−(µh(Sh − S))′, vh〉H−1,H1
0

=

∫
Ih

µh(Sh − S)v′h = h−1/2,298

hence299

sup
v∈Vh

〈−(µh(Sh − S))′, v〉H−1,H1
0

‖v‖H1
0 (−1,1)

≥
〈−(µh(Sh − S))′, vh〉H−1,H1

0

‖vh‖H1
0 (−1,1)

=

√
2

2
,300

and then ‖Th − T‖Mh,V ′h
≥
√

2
2 . As a consequence Th − T is not getting small for the301

L (Mh, V
′
h)-norm.302

3. The generalized inf-sup constant. In this section we generalize the notion303

of inf-sup constant to any operators T in L (M,V ′). Let us first define three useful304

constants for such operators.305

Definition 3.1. For any T ∈ L (M,V ′), we call306

α(T ) := inf
µ∈M

‖Tµ‖V ′
‖µ‖M

and ρ(T ) := sup
µ∈M

‖Tµ‖V ′
‖µ‖M

.307

we also call δ(T ) :=
√
ρ(T )2 − α(T )2.308

We now extend the notion of inf-sup constant of the gradient operator to any309

operators of L (M,V ′). As the existence of a null space of dimension one is not310

guaranteed1, we first propose this very general definition of the generalized inf-sup311

constant called β(T ).312

3.1. Definition and properties.313

Definition 3.2. The inf-sup constant of direction e ∈ M , e 6= 0 of the operator314

T ∈ L (M,V ′) is the non-negative number315

βe(T ) := inf
µ∈M
µ⊥e

‖Tµ‖V ′
‖µ‖M

.316

The generalized inf-sup constant of T is now defined by317

β(T ) := sup
e∈M
‖e‖M=1

βe(T ).318

It is mandatory here to show that this definition indeed extends the classical319

definition of the inf-sup constant known for ∇-type operators (with a null space of320

dimension one).321

1Depending on S(x), the operator T : µ 7→ −∇ · (µS) may have various type of null spaces. In
one hand, in [1] it has been shown that if S is smooth and everywhere invertible, then N(T ) = {0}
if and only if S−1∇ · S is not a gradient. In the other hand, if S vanishes in a subset ω ⊂ Ω, then
any function µ supported inside ω belongs to N(T ).

8

This manuscript is for review purposes only.



Proposition 3.3. Let T ∈ L (M,V ′) and z ∈ M such that ‖z‖M = 1 and322

‖T z‖2V ′ ≤ α(T )2 + ε2 for some ε ≥ 0. We have323

βz(T )2 ≤ β(T )2 ≤ βz(T )2 + ε(δ(T ) + ε).324

In case where ε = 0, it implies that β(T ) = βz(T ).325

The proof of this result uses the self-adjoint operator ST ∈ L (M) canonically326

associated with T .327

Lemma 3.4. For any T ∈ L (M,V ′), there exists ST ∈ L (M) self-adjoint posi-328

tive semi-definite such that for any µ ∈M , ‖Tµ‖2V ′ = 〈STµ, µ〉M .329

Proof. Call Φ : V ′ → V the Riesz isometric identification defined by 〈Φf,v〉V =330

〈f,v〉V ′,V for any f ∈ V ′, v ∈ V . Call also T ∗ : V → H the adjoint operator of T .331

We have for any µ ∈M ,332

‖Tµ‖2V ′ = ‖ΦTµ‖2V = 〈Tµ,ΦTµ〉V ′,V = 〈µ, T ∗ΦTµ〉M = 〈STµ, µ〉M .333

where ST := T ∗ΦT : M →M is a self-adjoint positive semi-definite operator.334

Proof. (of Proposition 3.3) The first inequality comes from the definition of β(T ).335

For the second, take e ∈ M of norm one and consider m ∈ E ∩ {z}⊥ of norm336

one. If e ⊥ z then z ∈ {e}⊥ and immediately βe(T )2 ≤ ‖T z‖2V ′ ≤ α(T )2 + ε2 ≤337

βz(T )2 + ε(δ(T ) + ε).338

Suppose now that 〈e, z〉M 6= 0. Consider a = −〈m, e〉M / 〈z, e〉M and µ := az+m.339

It is clear that µ ∈ {e}⊥ and ‖µ‖2M = a2 + 1. Using Lemma 3.4, we write340

‖Tµ‖2V ′ = 〈STµ, µ〉M = a2 〈ST z, z〉M + 2a 〈ST z,m〉M + 〈STm,m〉M
= a2 ‖T z‖2V ′ + 2a 〈ST z,m〉M + ‖Tm‖2V ′
≤ (1 + a2) ‖Tm‖2V ′ + a2ε2 + 2|a| |〈ST z,m〉M | .

341

Using Proposition A.1 we bound |〈ST z,m〉M | by εδ(T ) and then342

‖Tµ‖2V ′
‖µ‖2M

≤ ‖Tm‖2V ′ + ε2 + εδ(T )

inf
µ∈E
µ⊥e

‖Tµ‖2V ′
‖µ‖2M

≤ ‖Tm‖2V ′ + ε(δ(T ) + ε)

βe(T )2 ≤ ‖Tm‖2V ′ + ε(δ(T ) + ε).

343

This last statement is true for any m ∈ M ∩ {z}⊥ of norm one so we can take the344

infimum over m to get βe(T )2 ≤ βz(T )2 + ε(δ(T ) + ε). We conclude now by taking345

the supremum over e.346

As a consequence of Proposition 3.3, the generalized inf-sup constant has a simpler347

formula in the case of an operator with trivial null space.348

Corollary 3.5. If N(T ) 6= {0}, consider any z ∈ N(T ) such that ‖z‖M = 1.349

Then we have β(T ) = βz(T ).350

If T = ∇, the classical definition of β(∇) given in (1.8) matches the definition351

3.2.352
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Remark 3.6. This corollary leads to an alternative definition of β(T ) which does353

not depend on the choice of z in N(T ) (even for a dimension greater than one).354

Moreover, we see that β(T ) > 0 implies dimN(T ) = 1. Indeed, if N(T ) > 1, then355

there exist z1, z2 ∈ N(T ) and β(T ) = βz1(T ) > 0 with z1 ⊥ z2 such that T (z1) =356

T (z2) = 0 and z1, z2 6= 0. Moreover, as ‖Tz2‖ ≥ βz1(T )‖z2‖, we have z2 = 0 which is357

a contradiction.358

It is possible to extend a little this corollary to a class of operators with trivial359

null space if the infimum value of the operator on the unit sphere is reached.360

Remark 3.7. The case ε = 0 in Proposition 3.3 leads to an alternative definition361

of β(T ) if the infimum α(T ) is reached. Note that this definition does not depend on362

the choice of z. Moreover the condition ε = 0 is fulfilled in particular if T is a finite363

rank or finite dimensional operator.364

If the infimum value α(T ) is not reached on the unit sphere, we keep the general365

definition 3.2.366

3.2. Discrete inf-sup constant. The different constants related to the ap-367

proximated operator Th ∈ L (Mh, V
′
h) come from the same definition than for the368

operator T ∈ L (M,V ′). Simply remark that as Th is a finite dimensional operator,369

the infimum in370

(3.1) α(Th) := inf
µ∈Mh

‖Thµ‖V ′h
‖µ‖M

371

is reached by a direction zh ∈Mh such that ‖zh‖M = 1. This means that ‖Thzh‖V ′h =372

α(Th). As a consequence, following Corollary ??, the inf-sup constant of Th is given373

by374

(3.2) β(Th) := inf
µ∈Mh
µ⊥zh

‖Thµ‖V ′h
‖µ‖M

.375

This discrete inf-sup constant is the key element to establish the stability of the376

discrete inverse problem and as we will see, its behaviors when h→ 0 will determine377

the convergence of the solution of the discrete problem to the exact solution. In378

a similar way than for the classical inf-sup constant, the behavior of the discrete379

inf − sup constant β(Th) can be catastrophic in the sense that it can vanish to zero if380

h→ 0. This strongly depends on the choice of interpolation pair of spaces (Mh, Vh).381

For instance, if the discrete operator Th : Mh → V ′h is under-determinated, one may382

have β(Th) = 0. In a same manner than in [8], we give a definition of the discrete383

inf-sup condition.384

Definition 3.8. We say that the sequence of operators (Th)h>0 satisfies the dis-385

crete inf-sup condition if there exists β∗ > 0 such that386

(3.3) β∗ ≤ β(Th), ∀h > 0.387

Remark 3.9. In this work, we do not prove that the discrete inf-sup condition is388

satisfied by some specific choices of discretized operators Th : Mh → V ′h. We mention389

it here as a condition for uniform stability with respect to h, (see Theorems 4.1 4.7).390

We only aim at giving discrete stability estimates that involves β(Th) for a fixed h > 0.391
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3.3. Upper semi-continuity of the inf-sup constant. A legitimate question392

about the discrete inf-sup constant is to know if it can be greater that the continuous393

inf-sup constant if the discretization spaces are well chosen. Inspired by a classical394

result on the discrete inf-sup of the divergence that can be found in [8] for instance,395

we state and prove in this subsection that the discrete inf-sup constant is upper semi-396

continuous when h → 0. This concludes that the discrete inf-sup constant β(Th) is397

always asymptotically worse than the continuous inf-sup constant β(T ).398

Theorem 3.10 (Upper semi-continuity). If the operator error εop defined in399

(2.5) converges to 0 when h→ 0, then400

lim sup
h→0

α(Th) ≤ α(T ).401

Moreover, if the problem T z = 0 admits a solution z ∈ E with ‖z‖M = 1 and if the402

sequence (Th)h>0 satisfies the discrete inf-sup condition (see Definition 3.8), then403

lim sup
h→0

β(Th) ≤ β(T ).404

Remark 3.11. This result is useful to understand that no discretization can get405

a better stability constant than β(T ). The question of the convergence of α(Th) and406

β(Th) toward respectively α(T ) and β(T ) is not treated here; it is clearly not a simple407

question. It is already known as a difficult issue concerning inf-sup constant of the408

gradient operator. See [5] for more details about this question.409

Remark 3.12. An interesting consequence of this result is that, in case of an410

operator T with non-trivial null space, the fact that (Th)h>0 satisfies the discrete411

inf-sup condition implies that β(T ) > 0 which means that T has closed range (see [6,412

p. 47]). It could be used to prove the closed range property for some operators. For413

instance, to our knowledge, the minimal conditions on S ∈ L∞(Ω,Rd×d) that make414

T : µ 7→ −∇ · (µS) a closed range operator are not known.415

Proof. (of Theorem 3.10) First define the sequence of set416

Ch :=
{
µ ∈Mh | (εop

h )1/2 ‖µ‖E ≤ ‖µ‖M
}
.417

For any h > 0 and µ ∈ Ch we get418

(3.4)
‖Thµ‖V ′h ≤ ‖Tµ‖V ′h + ‖(Th − T )µ‖V ′h ≤ ‖Tµ‖V ′ + εop

h ‖µ‖E
≤ ‖Tµ‖V ′ + (εop

h )1/2 ‖µ‖M .
419

Hence420

α(Th) ≤
‖Tµ‖V ′
‖µ‖M

+ (εop
h )1/2, ∀µ ∈ Ch

α(Th) ≤ inf
µ∈Ch

‖Thµ‖V ′h
‖µ‖M

+ (εop
h )1/2.

421

This is true for any h > 0 so lim sup
h→0

α(Th) ≤ lim sup
h→0

inf
µ∈Ch

‖Tµ‖V ′
‖µ‖M

.422

As proposition B.4 shows that limh→0 Ch = M in the sense of Definition B.1, using423

that T is continuous over the sphere {µ ∈ M | ‖µ‖M = 1} we can use Proposition424
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B.3 that says425

lim sup
h→0

inf
µ∈Ch

‖Tµ‖V ′
‖µ‖M

≤ inf
µ∈M

‖Tµ‖V ′
‖µ‖M

= α(T )426

which gives the first result.427

For the second result, consider the sequence (zh)h>0 that satisfies ‖zh‖M = 1 and428

‖Thzh‖V ′h = α(Th). Then β(Th) = βzh(Th). For any h > 0 and µ ∈ Ch ∩ {zh}⊥,429

similarly to (3.4), we get430

‖Thµ‖V ′h ≤ ‖Tµ‖V ′ + (εop
h )1/2 ‖µ‖M ,431

and then by definition of β(Th),432

β(Th) ≤
‖Tµ‖V ′
‖µ‖M

+ (εop
h )1/2, ∀µ ∈ Ch ∩ {zh}⊥

β(Th) ≤ inf
µ∈Ch∩{zh}⊥

‖Thµ‖V ′h
‖µ‖M

.

433

This is true for any h > 0 so we deduce434

lim sup
h→0

β(Th) ≤ lim sup
h→0

inf
µ∈Ch∩{zh}⊥

‖Tµ‖V ′
‖µ‖M

.435

Now as Theorem 4.1 says that the sequence zh converges to z in M and Proposition436

B.5 gives that limh→0 Ch ∩ {zh}⊥ = M ∩ {z}⊥, we can use Proposition B.3 that says437

lim sup
h→0

inf
µ∈Ch∩{zh}⊥

‖Tµ‖V ′
‖µ‖M

≤ inf
µ∈M∩{z}⊥

‖Tµ‖V ′
‖µ‖M

= βz(T ) = β(T )438

which gives the second result.439

4. Error estimates. In this section, we state and prove the error estimates that440

are stability estimates for the approximated problem Thµh = fh.441

4.1. Error estimate in the case f = 0.442

Theorem 4.1 (Error estimate in the case f = 0). Consider T ∈ L (M,V ′) and443

let z ∈ E be a solution of T z = 0 with ‖z‖M = 1 and assume that h is small enough444

to have εinth (z) ≤ 1/2. Consider zh ∈Mh a solution of445

(4.1) ‖Thzh‖V ′h = α(Th) with ‖zh‖M = 1 and 〈zh, z〉M ≥ 0.446

If β(Th) > 0 we have447

‖zh − ph(z)‖M ≤
4

β(Th)

(√
2 ‖z‖E εoph + 2ρ(T )εinth (z)

)
.448

Where εoph and εinth are defined in (2.5) and (2.3). Moreover, if εoph → 0 and (Th)449

satisfies the discrete inf-sup condition (3.3), then ‖zh − z‖M → 0.450

Remark 4.2.451

1. Note that if εop
h → 0, since α(T ) = 0, we have, from Theorem 3.10, that452

α(Th) → 0. Moreover, if the discrete inf sup condition (equation (3.3)) is453

satisfied, then zh is defined uniquely.454
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2. It is necessary to assume z ∈ E to overcome the fact that Th−T is controlled455

in L (Eh, V
′
h) but not in L (Mh, V

′
h). See section 2.3 for more details. In456

the framework of the inverse elastography problem, the hypothesis z ∈ E :=457

L∞(Ω) is not restrictive as physical parameters of biological tissues have458

bounded values with some known a priori bounds.459

3. The normalized projection ph(z) of z is the best possible approximation of z460

in Mh with the constraint of norm one.461

4. Problem (4.1) admits a solution zh as Th is a finite dimensional operator.462

The condition 〈zh, z〉M ≥ 0 is only here to choose between the two solutions463

zh and −zh and is not of crucial importance.464

5. This result provides a quantitative error estimate as β(Th) can be computed465

from Th as the second smallest singular value (see Subsection5.1) and all the466

error terms on the right-hand side can be estimated (at least an upper bound467

can be given).468

Before giving the proof of Theorem 4.1, we first establish and prove a more general469

result.470

Proposition 4.3. Consider T1 ∈ L (M,V ′) let z1 ∈ E be a solution of471

‖T1 z1‖V ′ ≤ α(T1) + ε1 with ‖z1‖M = 1472

where ε1 ≥ 0. Fix r ≥ ‖z1‖E. For any T2 ∈ L (M,V ′), consider a solution z2 ∈ E of473

‖T2 z2‖V ′ ≤ α(T2) + ε2 with ‖z2‖M = 1 and 〈z1, z2〉M ≥ 0.474

If βz2(T2) > 0 we have ‖z2 − z1‖M ≤
√

2
βz2

(T2)

(
2r ‖T2 − T1‖E,V ′ + 2α(T1) + 2ε1 + ε2

)
475

and if ε2 = 0 this reads ‖z2 − z1‖M ≤
√

2
β(T2)

(
2r ‖T2 − T1‖E,V ′ + 2α(T1) + 2ε1

)
.476

Proof. Write z1 = tz2 + m where t ∈ [0, 1] and m ⊥ z2. We have that 1 = t2 +477

‖m‖2M . Then z1−z2 = (t−1)z2+m and so ‖z2 − z1‖2M = 2(1−t) ≤ 2(1−t2) ≤ 2 ‖m‖2M .478

Then ‖z2 − z1‖M ≤
√

2 ‖m‖M . Now use the definition of βz2(T2) to write479

βz2(T2) ‖m‖M ≤ ‖T2m‖V ′ ≤ ‖T2z1‖V ′ + ‖T2z2‖V ′ ≤ ‖T2z1‖V ′ + α(T2) + ε2

≤ 2 ‖T2z1‖V ′ + ε2

480

and remark that ‖T2z1‖V ′ ≤ ‖(T2 − T1)z1‖V ′+‖T1z1‖V ′ ≤ r ‖T2 − T1‖E,V ′+‖T1z1‖V ′481

which implies that482

‖T2z1‖V ′ ≤ r ‖T2 − T1‖E,V ′ + α(T1) + ε1.483

We deduce that βz2(T2) ‖m‖M ≤ 2r ‖T2 − T1‖E,V ′ + 2α(T1) + 2ε1 + ε2 and then484

‖z2 − z1‖M ≤
√

2
βz2

(T2)

(
2r ‖T2 − T1‖E,V ′ + 2α(T ) + 2ε1 + ε2

)
.485

We now give the proof of Theorem 4.1:486

Proof. First remark that the infimum in (4.1) is reached here because Th is a487

finite dimensional operator. Consider T |Mh
: Mh → V ′h and call gh := Tph(z). This488

quantity is small in V ′h as489

‖gh‖V ′h = ‖Tph(z)‖V ′h = ‖T (ph(z)− z)‖V ′h ≤ ‖T‖M,V ′ ‖ph(z)− z‖M
≤
√

2ρ(T )εint
h (z).

490
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From this, we deduce that α(T |Mh
) ≤
√

2ρ(T )εint
h (z) and that ph(z) is solution of491

‖T |Mh
ph(z)‖V ′h ≤ α(T |Mh

) + ε with ‖ph(z)‖M = 1,492

with ε =
√

2ρ(T )εint
h (z). Due to Hypothesis (2.2) and εint

h (z) ≤ 1/2 we have493

‖ph(z)‖E =
‖πhz‖E
‖πhz‖M

≤ 2
‖z‖E
‖z‖M

≤ 2r.494

Applying now Proposition (4.3) on operators T1 = T |Mh
and T2 = Th both in495

L (Mh, V
′
h) with z1 = ph(z), z2 = zh, ε1 = ε and ε2 = 0. We get496

‖zh − ph(z)‖M ≤
√

2

β(Th)
(4r εop

h + 2α(T |Mh
) + 2ε)

≤
√

2

β(Th)

(
4r εop

h + 4
√

2ρ(T )εint
h (z)

)
≤ 4

β(Th)

(√
2 r εop

h + 2ρ(T )εint
h (z)

)
.

497

For the convergence, the additional hypothesis give the convergence of the right-hand498

side. We use that ph(z)→ z to conclude.499

4.2. Error estimates in the case f 6= 0. We give and prove a first stability500

result based on the constant α(Th).501

Theorem 4.4 (Error estimate using α(Th)). Consider µ ∈ E a solution of502

Tµ = f with f 6= 0 and assume that h is small enough to have εinth (µ) ≤ 1/2. Fix503

r := ‖µ‖E / ‖µ‖M . Consider now µh ∈Mh a solution of µh = arg min
m∈Mh

‖Thm− fh‖V ′h .504

If α(Th) > 0, we have505

‖µh − πhµ‖M
‖πhµ‖M

≤ 4

α (Th)

[
r εoph + ρ(T )

(
εrhsh + εinth (µ)

)]
.506

Where εoph , εrhsh and εinth are defined in (2.5), (2.4) and (2.3). Moreover, if there exists507

α∗ > 0 such that α(Th) ≥ α∗ for all h > 0 and if εoph → 0 and εrhsh → 0 when h→ 0,508

then ‖µh − µ‖M → 0 when h→ 0.509

Remark 4.5. Note that if α(Th) > 0 for all h > 0, then µh is uniquely defined and510

moreover εop
h → 0 and if α(Th) ≥ α∗ > 0, Theorem 3.10 assures that α(T ) ≥ α∗ > 0511

which guarantee the uniqueness of µ.512

Remark 4.6. This result makes sense in practice even if α(Th) goes to zero. In-513

deed, at a fixed h > 0, α(Th) can be computed from Th as the first singular value and514

all the error terms on the right-hand side can be estimated (at least an upper bound515

can be given). It then gives a quantitative error bound on the reconstruction that can516

be useful no matter with the asymptotic behavior of α(Th).517

Proof. First note that from the hypothesis εint
h (µ) ≤ 1/2 we have that ‖µ‖M ≤518

2 ‖πhµ‖M and ‖πhµ‖E ≤ ‖µ‖E ≤ r ‖µ‖M ≤ 2r ‖πhµ‖Mand ‖f‖V ′ ≤ ρ(T ) ‖µ‖M .519
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From the definition of α(Th) we write520

α(Th) ‖µh − πhµ‖M ≤ ‖Thµh − Thπhµ‖V ′h ≤ ‖Thµh − fh‖V ′h + ‖Thπhµ− fh‖V ′h
≤ 2 ‖Thπhµ− fh‖V ′h
≤ 2 ‖Tµ− fh‖V ′h + 2 ‖T πhµ− Tµ‖V ′h + 2 ‖(Th − T )πhµ‖V ′h
≤ 2 ‖f − fh‖V ′h + 2ρ(T ) ‖πhµ− µ‖M + 2 εop

h ‖πhµ‖E
≤ 2εrhs

h ‖f‖V ′ + 2ρ(T )εint
h (µ) ‖µ‖M + 4r εop

h ‖πhµ‖M
≤ 2ρ(T )

(
εrhs
h + εint

h (µ)
)
‖µ‖M + 4r εop

h ‖πhµ‖M
≤ 4

[
ρ(T )

(
εrhs
h + εint

h (µ)
)

+ rεop
h

]
‖πhµ‖M .

521

522

We now state and prove the main stability estimate concerning the general prob-523

lem Tµ = f with a non zero right-hand side. This result uses β(Th) which is always524

better than α(Th). The price of this change is that the stability estimates only holds525

in the hyperplane {zh}⊥, where zh is the vector that minimizes ‖Thzh‖V ′h on the unit526

sphere.527

Theorem 4.7 (Error estimate using β(Th)). Consider µ ∈ E a solution of528

Tµ = f with f 6= 0 and assume that h is small enough to have εinth (µ) ≤ 1/2. Fix529

r := ‖µ‖E / ‖µ‖M . Consider zh ∈Mh a solution of530

‖Thzh‖V ′h = α(Th) with ‖zh‖M = 1.531

Consider now µh ∈Mh a solution of532

(4.2) µh = arg min
m∈Mh
m⊥zh

‖Thm− fh‖V ′h , with µh ⊥ zh.533

If β(Th) > 0, there exists t ∈ R such that µh,t := tzh + µh satisfies534

‖µh,t − πhµ‖M
‖πhµ‖M

≤ 4

β (Th)

[
r εoph + ρ(T )

(
εrhsh + εinth (µ)

)
+
α (Th)

2

]
.535

Where εoph , εrhsh and εinth are defined in (2.5), (2.4) and (2.3).536

Remark 4.8. This result has to be used as soon as Theorem 4.4 is irrelevant537

because α(Th) is too small. It somehow kills the degenerated direction zh and gives a538

possibly better estimate for the computed solution up to an unknown component in539

the direction zh.540

Remark 4.9. This result gives also the algorithmic procedure to approach the541

exact solution µ:542

1. Identify zh with stability thanks to Theorem 4.1.543

2. Solve the problem (4.2) to identify µh.544

3. Find the best approximation tzh + µh by choosing a correct coefficient t ∈ R545

using any additional scalar information on the exact solution such as its mean,546

its background value, a punctual value, etc. . .547

Remark 4.10. This result provides a quantitative error estimate as α(Th) and548

β(Th) can be computed from Th as the two first singular values and all the error terms549

on the right-hand side can be estimated (at least an upper bound can be given).550
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Before giving the proof of this Theorem, let us state and prove an intermediate551

result.552

Proposition 4.11. Consider T1 ∈ L (M,V ′) f1 ∈ V ′, f1 6= 0 and let µ1 ∈ E553

be a solution of T1 µ1 = f1. Fix r := ‖µ1‖E / ‖µ1‖M and for any T2 ∈ L (M,V ′),554

consider a solution z2 ∈ E of555

‖T2 z2‖V ′ ≤ α(T2) + ε2 and ‖z2‖M = 1556

and consider a solution µ2 ∈ E of557

T2 µ2 = f2 and µ2 ⊥ z2.558

If βz2(T2) > 0, there exists t ∈ R such that µ2,t := tz2 + µ2 satisfies559

‖µ2,t − µ1‖M
‖µ1‖M

≤ 1

βz2(T2)

(
‖f2 − f1‖V ′
‖µ1‖M

+ r ‖T2 − T1‖E,V ′ + α(T2) + ε2

)
.560

Moreover, if ε2 = 0 it reads561

‖µ2,t − µ1‖M
‖µ1‖M

≤ 1

β(T2)

(
‖f2 − f1‖V ′
‖µ1‖M

+ r ‖T2 − T1‖E,V ′ + α(T2)

)
.562

Proof. Denote µ2,t := tz2 + µ2 with t := 〈µ1, z2〉M . With this choice, we have563

that (µ2,t − µ1) ⊥ z2. From the definition of βz2(T2), we write564

βz2(T2) ‖µ2,t − µ1‖M ≤ ‖T2 µ2,t − T2 µ1‖V ′
≤ ‖T2µ2 − T1µ1‖V ′ + |t| ‖T2 z2‖V ′ + ‖(T2 − T1)µ1‖V ′
≤ ‖f2 − f1‖V ′ + ‖µ1‖M (α(T2) + ε2) + ‖T2 − T1‖E,V ′ ‖µ1‖E .

≤ ‖f2 − f1‖V ′ + ‖µ1‖M
(
α(T2) + ε2 + r ‖T2 − T1‖E,V ′

)
.

565

566

We can now give the proof of Theorem 4.7.567

Proof. (of Theorem 4.7) Consider T |Mh
: Eh → V ′h and call gh := Tπhµ. Remark568

that ‖πhµ‖E ≤ ‖µ‖E ≤ r ‖µ‖M ≤ 2r ‖πhµ‖M . Applying Proposition 4.11 to the569

operators T1 := T |Mh
, T2 := Th both in L (Mh, V

′
h), with f1 := gh, f2 := Thµh both570

in V ′h and with µ1 := πhµ, µ2 := µh. We get the existence of t ∈ R such that571

‖µh,t − πhµ‖M
‖πhµ‖M

≤ 1

β(Th)

(
‖Thµh − gh‖V ′h
‖πhµ‖M

+ 2r εop
h + α(Th)

)
.572

Now we bound ‖Thµh − gh‖V ′h as follows:

‖Thµh − gh‖V ′h ≤ ‖Thµh − fh‖V ′h + ‖gh − fh‖V ′h .

To deal with the first term, we define p := πhµ− 〈πhµ, zh〉M zh orthogonal to zh. We573

have574

‖Thµh − fh‖V ′h ≤ ‖Thp− fh‖V ′h ≤ ‖Thπhµ− fh‖V ′h + ‖Thzh‖V ′h ‖πhµ‖M
≤ ‖Tπhµ− fh‖V ′h + ‖(Th − T )πhµ‖V ′h + α(Th) ‖πhµ‖M
≤ ‖gh − fh‖V ′h + εop

h ‖πhµ‖E + α(Th) ‖πhµ‖M
≤ ‖gh − fh‖V ′h + (2r εop

h + α(Th)) ‖πhµ‖M .

575

16

This manuscript is for review purposes only.



Now the second term is bounded as follows:576

‖gh − fh‖V ′h ≤ ‖gh − f‖V ′h + ‖f − fh‖V ′h ≤ ‖Tπhµ− Tµ‖V ′h + εrhs
h ‖f‖V ′

≤ ρ(T )εint
h (µ) ‖µ‖M + ρ(T )εrhs

h ‖µ‖M ≤ ρ(T ) ‖µ‖M
(
εint
h (µ) + εrhs

h

)
≤ 2ρ(T ) ‖πhµ‖M

(
εint
h (µ) + εrhs

h

)
.

577

This last line is true because the hypothesis εint
h (µ) ≤ 1/2 implies that ‖µ‖M ≤578

2 ‖πhµ‖M . Putting things together, it come that579

‖Thµh − gh‖V ′h
‖πhµ‖M

≤ 4ρ(T )
(
εint
h (µ) + εrhs

h

)
+ 2r εop

h + α(Th)580

and then581

‖µh,t − πhµ‖M
‖πhµ‖M

≤ 2

β(Th)

[
2ρ(T )

(
εint
h (µ) + εrhs

h

)
+ 2r εop

h + α(Th)
]
.582

583

5. Numerical results. In this section we provide numerical applications of The-584

orems 4.1 and 4.7 and we present the general methodology to numerically approach585

the solution of the equation (1.1) in various contexts. In the whole section, we stay586

in the framework where M := L2(Ω), E := L∞(Ω) and V := H1
0 (Ω,Rd).587

In subsection 5.2, we exhibit a simple and efficient pair of approximation spaces588

(Mh, Vh) called the honeycomb discretization pair, that numerically satisfies the dis-589

crete inf-sup condition.590

For all the numerical experiments, we use the Matlab environment with some591

elements of the PDE toolbox. We first determine the matrix M and then, the de-592

termination of the constants α and β and the determination of the solution of the593

homogeneous problem is done using the singular values decomposition method (svds594

in Matlab). The determination of the solution for the heterogeneous problem is sim-595

ply done using the classical linear system solver (mldivide in Matlab). For the high596

degree finite element spaces (P2,P3,P4), we use the getfem (see [19]) environnement597

on Matlab to generate the matrix M.598

5.1. Matrix formulation of the discretized problem. In this section, we599

describe the matrix formulation of the discrete problem (1.5) which gives a way to600

use the stability theorems in practice. Let us fix a discretization size h > 0 and pick601

a pair of finite dimensional subspaces Mh ⊂ M and Vh ⊂ V . Let (ε1, . . . , εn) be a602

basis of Mh and let (e1, . . . , ep) be a basis of Vh. We define T ∈ Rp×n and b ∈ Rp the603

matrix versions of the discrete operator Th and the right-hand side fhas the matrices604

(5.1) Tij := 〈Thεj , ei〉V ′h,Vh
, and bi := 〈fh, ei〉V ′h,Vh

.605

As no ambiguity can occur, we adopt the notation for µ :=
∑
j µjεj ∈ Mh606

and µ := (µ1, . . . µn)T and the same notation for v :=
∑
i viei ∈ Vh and v =607

(v1, . . . , vp)
T ∈ Rp. We have the correspondence608

〈Thµ, v〉V ′h,Vh
= vTT µ.609

We now call (SM )ij := 〈εi, εj〉M and (SV )ij := 〈ei, ej〉V . They enable to compute610

the norm in M and V through the formulas ‖µ‖2M =
∑
i,j µiµj 〈εi, εj〉M = µTSMµ,611
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and ‖v‖2V =
∑
i,j vivj 〈ei, ej〉V = vTSV v. If we denote BM and BV the square root612

matrices of SM and SV (i.e. such that B2
M = SM ), we have that ‖µ‖M = ‖BMµ‖2613

and ‖v‖V = ‖BV v‖2 . Hence the constant α(Th) is given by614

(5.2)

α(Th) = inf
µ∈Rn

sup
v∈Rp

vTT µ
‖BMµ‖2 ‖BV v‖2

= inf
µ∈Rn

sup
v∈Rp

vTB−1
V T B

−1
M µ

‖µ‖2 ‖v‖2
= inf
µ∈Rn

∥∥B−1
V T B

−1
M µ

∥∥
2

‖µ‖2
.

615

which is the smallest singular value of the matrix616

M := B−1
V T B

−1
M617

or also the square root of the smallest eigenvalue of MTM = B−1
M T TS

−1
V T B

−1
M .618

Call now z ∈ Rn the first singular vector of M (hence associated with α(Th)) or619

the first eigenvector ofMTM. It is equal to the solution zh :=
∑
j zjεj ∈Mh of (4.1)620

up to a change of sign.621

Remark 5.1. The basis matrices BM and BV are mandatory to get the exact622

solution α(Th) and zh as defined in (4.1). As α(Th) is expected to be small, it is623

possible to consider directly the first singular vector of the matrix T itself. The624

numerical computation gets a bit simpler but creates an additional error which is not625

controlled by the theory described herein.626

We can now compute the discrete inf-sup constant of Th:627

(5.3)

β(Th) = inf
µ∈Rn

µ⊥SMz

sup
v∈Rp

vTT µ
‖BMµ‖2 ‖BV v‖2

= inf
µ∈Rn

µ⊥z

sup
v∈Rp

vT (B−1
V )TT B−1

M µ

‖µ‖2 ‖v‖2
= inf
µ∈Rn

µ⊥z

‖Mµ‖2
‖µ‖2

628

which is the second smallest singular value of the matrix M or also the square root629

of the second smallest eigenvalue of MTM. Finally, in order to give the solution of630

(4.2) in Theorem 4.7, we rewrite the problem under a matrix formulation:631

min
m∈Mh
m⊥zh

‖Thm− fh‖V ′h = min
m∈Mh
m⊥zh

sup
v∈Vh

〈Thm− fh,v〉V ′h,Vh

‖v‖V
= min
µ∈Rn

µ⊥z

sup
v∈Rp

vT (T µ− b)
‖BV v‖2

= min
µ∈Rn

µ⊥z

sup
v∈Rp

vTB−1
V (T µ− b)
‖v‖2

= min
µ∈Rn

µ⊥z

∥∥B−1
V (T µ− b)

∥∥
2
.

632

Call now T̃ :=

[
T
zT

]
, b̃ :=

[
b
0

]
and B̃V :=

[
BV 0
0 1

]
we aim at solving633

B̃−1
V T̃ µ = B̃−1

V b̃634

in the sense of least squares which is equivalent to define µ := (T̃ T S̃−1
V T̃ )−1T̃ T S̃−1

V b̃.635

5.2. The honeycomb pair of finite element spaces. After numerous tests636

with various finite element pair of spaces, it appears that a specific pair of spaces637

gather a large amount of advantages for the specific use in our inverse parameter638
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Fig. 1. Honeycomb space discretization. In plain black, the hexagonal subdivision and in dashed
blue, the triangular subdivision.

problem. This pair (Mh, Vh) is the so called honeycomb discretization pair. Like in639

Figure 1, define a regular hexagonal subdivision of Ω denoted {Ωhex
h,j }j=1,...,Nhex

h
where640

h > 0 is the edge length of the hexagons and Nhex
h is the number of hexagons used.641

We then call Ωh ⊂ Ω the subdomain defined by this subdivision. That means642

Ωh =

Nhex
h⋃
j=1

Ωhex
h,j .643

Now we consider the uniform triangular sub-mesh defined by subdividing each hexagon644

in six equilateral triangles of size h. This subdivision is denoted {Ωtri
h,k}k=1,...,Ntri

h
645

where N tri
h := 6Nhex

h . It is represented in dashed blue in figure 1.646

We now define the finite dimensional discretization space Mh of M as the collec-647

tion of functions µ ∈ L2(Ωh) that are constant in each hexagon. In other terms,648

Mh := P0
(
Ωhex
h

)
=
{
µ ∈ L2(Ωh) | ∀j µ|Ωhex

h,j
is constant

}
.649

Functions inMh can be extended by 0 out of Ωh to getMh ⊂M . For the discretization650

space of V , we chose the classical finite element class P1
0 over the triangulation. It is651

made of all the functions of H1
0 (Ωh) that are linear over all the triangles. In other652

terms,653

Vh := P1
0

(
Ωtri
h ,R2

)
=
{
v ∈ H1

0 (Ωh,R2) | ∀k v|Ωtri
h,k

is linear
}
.654

Functions in Vh can be extended by 0 out of Ωh to get Vh ⊂ V .655

Remark 5.2. This particular choice of finite element spaces gathers several ad-656

vantages to compare to other more classical pairs:657

1. The space P0
(
Ωhex
h

)
is suitable for discontinuous functions interpolation. This658

is important as we aim at recovering discontinuous mechanical parameters of659

biological tissues for instance.660

2. The hexagonal discretization of Ω is optimal among the other regular plane661

tilings (triangle and square) in the sense that it minimizes the ratio of the662

number of elements Nhex
h over the size h. As we see in all the numerical tests,663

it also provides the smallest error on the reconstruction among all the other664

pairs of spaces that we have tried. As a conjecture, we believe that this pair665
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Fig. 2. Behavior of the discrete inf-sup constant β(Th) for the inverse gradient problem in
the unit square Ω := (0, 1)2, for various choices of pair of discretization spaces. The dashed line

represents the conjectured value of the inf-sup constant β(∇) =
√

1/2− 1/π of the gradient operator
in Ω.

of spaces should be optimal, in term of error estimate, for a large class of666

operators T .667

3. From a given hexagonal mesh and triangular sub-mesh, spaces P0
(
Ωhex
h

)
and668

P1
0

(
Ωtri
h ,R2

)
are easy to build from the most classical pair of finite element669

spaces
(
P0
(
Ωtri
h

)
,P1

(
Ωtri
h

))
.670

4. The system of equations Thµh = fh is (most of the time) over-determinate671

as it involves around 2Nhex
h equations for Nhex

h unknown. Note that as we672

solve the problem in the sense of least squares, over-determination is not a673

problem while under-determination is.674

5. This pair gives an excellent evaluation of the discrete inf-sup constant β(Th)675

in our numerical exemples that is a key element for discrete stability.676

5.3. Inverse gradient problem. Let Ω be the unit square (0, 1)2. We approach677

here the solution µ ∈ L∞(Ω) of the problem −∇µ = f where f is given vectorial678

function. This case correspond to (1.1) where S = I everywhere. In this case, many679

simplification occur as Th := −∇|Mh
and then εop

h = 0. Moreover ρ(T ) ≤ 1. In the680

absence of noise, the result of Theorem 4.7 reads :
‖µh−πhµ‖M
‖πhµ‖M

≤ 4
β(Th)

(
εrhs
h + εint

h (µ)
)

681

where µh is the solution of minµ∈Mh
‖Thµ− f‖V ′h under the condition µh ∈ L2

0(Ωh)682

i.e.
∫

Ωh
µh = 0.683

Let first compute β(Th) using (5.3) at check its behavior when h go to 0. In684

figure 2 we see that it seem to converge to some β0 > 0 lower than the conjectured685

inf-sup constant β(∇) =
√

1/2− 1/π in the unit square (see [8, Theorem 3.3] for686

details about this conjectured value).687

Consider now a smooth map µ1(x) := cos(10x1) + cos(10x2) for x ∈ Ω, for such688

a smooth function we expect an error of interpolation in Mh of order εint
h (µ1) = O(h)689

and an error of interpolation of its gradient on V ′h of order εrhs
h = O(h2). Hence the690

relative error E1(h) := ‖µ1,h − πhµ1‖M/‖πhµ1‖M is expected to be at least of order691

O(h). In figure 4 we observe a convergence of order 2 in absence of noise. We retry692

the same test with piecewise constant µ2. Its derivative is approached first in P0(Ωtri
h )693

to deduce its vectorial form in V ′h. We observe a convergence of order 1/2 in absence694

of noise.695
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Fig. 3. Numerical stability of the reconstruction of maps µ1 and µ2 using method given by
Theorem 4.7 with resolution h = 0.01. From left to right: column 1: exact map to recover, 2. recon-
struction with no noise, column 3: reconstruction with noise level σ = 1, column 4: reconstruction
with noise level σ = 2.
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Fig. 4. Left : relative L2-error on the reconstruction with respect to h in the absence of noise.
Right : relative L2-error on the reconstruction with respect to the noise level σ with h = 0.01.

To illustrate the stability with respect to noise on the right-had side, we corrupt696

the data −∇µ with the multiplication term-by-term by 1 + σN where σ > 0 is the697

noise level and N is a Gaussian random variable of variance one.698

5.4. Quasi-static elastography.699

Forward problem. To illustrate the ability of solving a quasi-static elastography700

problem in the case λ = 0 from a single measurement, we compute a virtual data field701

by solving the linear elastic forward problem702

(5.4)


−∇ · (2µexact E(u)) = 0 in (0, 1)2,

2µexact E(u) · ν = g on (0, 1)× {1},
E(u) · ν = 0 on (0, 1)× {0},

u = 0, on {0, 1} × (0, 1).

703

where µexact is described in Figure 5. We chose here a constant boundary force704

g := (1,−1)T . This problem is solved using classical P1 finite element method over705

an unstructured triangular mesh. The computed data field u is then stored in a706

cartesian grid to avoid any numerical inverse crime. It is represented in Figure 5.707
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Fig. 5. First line, from left to right: The exact map µexact, the two components of the data
field u = (u1, u2) computed via (5.4), the only data used to inverse the problem.

Note that µexact is chosen bounded and piecewise constant, and thanks to the clas-708

sical elliptic regularity theory the exact strain tensor S := E(u) is piecewise smooth709

and bounded in Ω (see [17]). Hence, both µexact and S satisfy the hypotheses used in710

the error estimates.711

Inverse problem. We first choose a pair of approximation spaces (Mh, Vh) and we712

interpolate the displacement field u on the corresponding mesh nodes as a continuous713

and piecewise linear map. From this interpolated data, we compute its approached714

derivative ∇u by computing the exact piecewise constant derivative of the interpo-715

lated displacement field. We deduce the approximation of the strain tensor S := 2E(u)716

as a piecewise constant map. We then construct the matrix form of the approached717

operator Th by formula (5.1). Before applying Theorem 4.1 we compute the discrete718

values of α(Th) and β(Th) for few pairs of spaces (see Figure 6). We here control that719

β(Th) does not vanish and that the ratio α(Th)/β(Th) is small enough. We recall that720

this is needed for good error estimates using Theorem 4.1. Note that the honeycomb721

pair shows a much better behavior than the other consider pairs of spaces. In the722

results, we denote by “honeycomb pair” the pair of spaces defined in subsection 5.2723

and we denote Pk the classical space of Lagrangian finite element space over an un-724

structured triangulation (see [12] for precise definitions).725

726

We plot now solutions µh of the numerical inversion with various choices of pair727

of spaces in Figure 7. Then in Figure 8 we present tables of comparisons of different728

pair of spaces in terms of relative error and complexity through the number of degrees729

of freedom and number of equations. In particular,730

• As expected and for all choice of pair of spaces satisfying inf-sup condition,731

the numerical approximation u gives some nice reconstruction of the elastic732

coefficient 2µexact. Moreover, in each case, we also clearly observe a conver-733

gence as h→ 0.734

• The numerical solutions obtained with the honeycomb approach give some735

better reconstruction than using other pair of spaces. It can be explained by736

a better ratio α(Th)/β(Th).737

• The use of high degree as with the pair of spaces (P4,P2) raises some numerical738

memory issues in the computation the matrix B−1
M and S−1

V . In particular, we739

don’t succeed to reach time steps h smaller than h = 0.025 with a standard740

laptop.741

• From a computation cost point of view, the honeycomb approach has also742

many advantages. The matrix SM and SV are respectively diagonal and tri-743

diagonal which greatly facilitate the computation of B−1
M =

√
S−1
M and S−1

V .744
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Fig. 6. Behavior of the contants α(Th), β(Th) and the ratio α(Th)/β(Th) for the inverse static
elastography problem in the unit square Ω := (0, 1)2, for various choices of pair of discretization
spaces.

Finally, we can reach much finer resolutions than using other finite element745

space proposed in this paper.746

• For all the tested pairs, the matrix is over-determinated and the measured al-747

gebraic rank is equal to n. However as the the first singular value is very small748

to compare to the others, the matrix rank should be considered ”numerically749

speaking equal to n− 1”.750

6. Concluding remarks. In this article we have proved the numerical stability751

of the Galerkin approximation of the inverse parameter problem arising from the elas-752

tography in medical imaging. It has been done through a direct discretization of the753

Reverse Weak Formulation without boundary conditions. The obtained stability esti-754

mates arise from a generalization of the inf-sup constant (continuous and discrete) to755

a large class of first order differential operator. These results shed light on the impor-756

tance of the choice of finite element spaces to assure uniqueness and stability. Various757

numerical applications have been presented which illustrate the stability theorems. A758

new pair of finite element spaces based on a hexagonal tilling has been introduced. It759

showed excellent stability behavior for the specific purpose of this inverse problem.760

23

This manuscript is for review purposes only.



0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

h
on

ey
co

m
b

h = 0.05

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

h = 0.025

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

h = 0.01

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

(P0,P2)

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

(P1,P2)

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

(P3,P4)

h = 0.1

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

h = 0.05

1

2

3

4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

h = 0.025

1

2

3

4

Fig. 7. Reconstruction of the shear modulus map µ using various pairs of finite element spaces
in the subdomain of interest (0.1, 0.9)2.

h = 0.05 E n p

honeycomb 9.2% 338 1888
(P0,P2) 9.1% 735 2788
(P1,P2) 8.5% 407 2800
(P3,P4) 5.4% 3424 11k

h = 0.025 E n p

honeycomb 6.3% 1510 8765
(P0,P2) 6.7% 2982 12k
(P1,P2) 5.7% 1570 12k
(P3,P4) 3.4% 13654 47k

Fig. 8. Comparison of four pairs of finite element spaces in term of relative error E of the
reconstruction, degrees of freedom n, and number of equations p. The product n p is an indication
of the algorithmic complexity.

Appendix A. A result on self-adjoint operators.761

Lemma A.1. Let H be an Hilbert space and S : H → H be a self-adjoint positive762

semi-definite linear operator. Call α2 := inf{〈Sx, x〉H | ‖x‖H = 1} and z ∈ H such763

that ‖z‖H = 1 and take 〈Sz, z〉H ≤ α2 + ε2 with ε > 0. For any p ⊥ z with ‖p‖H = 1764
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we have765

|〈Sz, p〉H | ≤ ε
√
ρ2 − α2766

x where ρ2 := sup{〈Sx, x〉H | ‖x‖H = 1}.767

Proof. Consider t ∈ (0, 1), ut := −sign 〈Sz, p〉H
√

1− t2 and zt := t z + ut p of768

norm one. By definition of α we have769

α2 ≤ 〈Szt, zt〉H = t2 〈Sz, z〉H + 2t ut 〈Sz, p〉H + u2
t 〈Sp, p〉H

≤ t2(α2 + ε2) + 2t ut 〈Sz, p〉H + u2
tρ

2.
770

Then771

−2t ut 〈Sz, p〉H ≤ (t2 − 1)α2 + t2ε2 + u2
tρ

2

2t |ut| |〈Sz, p〉H | ≤ t
2ε2 + u2

t (ρ
2 − α2)

2 |〈Sz, p〉H | ≤
t

|ut|
ε2 +

|ut|
t

(ρ2 − α2).

772

This statement is true for any t ∈ (0, 1) so for any τ ∈ (0, 1) we have773

2 |〈Sz, p〉H | ≤ τε
2 +

1

τ
(ρ2 − α2).774

The minimum of the right-hand side is reached for τ =
√

(ρ2 − α2)/ε2 which implies775

that 2 |〈Sz, p〉H | ≤ 2
√
ε2(ρ2 − α2).776

Appendix B. Limit of subsets and infimum. Let M be a Hilbert space and777

let E ⊂M be Banach space dense in M . Let (Mh)h>0 be a sequence of subspace of E778

endowed with the M -norm. We assume that the orthogonal projection πh : M →Mh779

satisfies780

∀x ∈ E, ‖πhx‖E ≤ ‖x‖E .781

Definition B.1. For any sequence (Ah)h>0 of subsets of M , we define its limit782

as783

lim
h→0

Ah :=

{
x ∈M | ∃(xh)h>0 ⊂M, lim

h→0
‖xh − x‖M = 0, ∀h > 0 xh ∈ Ah

}
.784

Proposition B.2. limh→0Ah is a closed subset of M and, if Ah ⊂ X ⊂ M for785

all h > 0, then limh→0Ah ⊂ X.786

Proof. Call A := limh→0Ah and take x ∈ A. There exists a sequence (xn)n∈N787

of A such that ‖x− xn‖M ≤ 1/(2n) for all n ∈ N∗. For all n ∈ N∗, there exists788

a sequence (xhn)h>0 such that limh→0

∥∥xhn − xn∥∥M = 0 and xhn ∈ Ah for all h > 0.789

Hence there exists hn > 0 such that for all h ≤ hn we have
∥∥xhn − xn∥∥M ≤ 1/(2n).790

We can decrease hn to satisfy hn < hn−1 for all n ≥ 2. Now define the sequence791

(yh)h>0 as follows: If h > h1, yh is any element of Ah. If h ∈ [hn+1, hn), we take792

yh = xhn. It is clear that yh ∈ Ah for all h > 0. Moreover, for any h ≤ hn,793

‖yh − xn‖M ≤ 1/(2n) and ‖x− xn‖M ≤ 1/(2n) which give ‖yh − x‖M ≤ 1/n. This794

shows that limh→0 ‖yh − x‖M = 0 and therefore x ∈ A. The second part of the795

statement is trivial.796
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Proposition B.3. Assume that A := limh→0Ah is not empty and consider a797

fonction f : M → R. If there exists a subset B ⊂ A such that f is continuous in B798

and infA f = infB f then we have799

lim sup
h→0

inf
Ah

f ≤ inf
A
f.800

Proof. Take x ∈ B. As x ∈ A, there exists (xh)h>0 such that xh ∈ Ah for all801

h > 0 and limh→0 xh = x. For any h > 0, f(xh) ≤ f(x) + |f(xh) − f(x)| and802

infAh
f ≤ f(x) + |f(xh)− f(x)|. Taking the superior limit when h→ 0 it comes from803

the continuity of f at x, lim suph→0 infAh
f ≤ f(x) which if true for any x ∈ B so804

lim sup
h→0

inf
Ah

f ≤ inf
B
f = inf

A
f .805

We assume now that the sequence (Mh) satisfies limh→0Mh = M . We consider a806

sequence of positive real number αh that converges zero and a corresponding sequence807

of subsets Ch := {x ∈Mh |αh ‖x‖E ≤ ‖x‖M}.808

Proposition B.4. The following limit holds: lim
h→0

Ch = M.809

Proof. We prove that E ⊂ C := limh→0 Ch. Take x ∈ E\{0}, for h small enough810

it satisfies 2αh ‖x‖E ≤ ‖x‖M . Consider now its orthogonal projection πhx of x onto811

Mh. It satisfies limh→0 πhx = x. For h small enough ‖x‖M ≤ 2 ‖πhx‖M and then812

αh ‖πhx‖E ≤ αh ‖x‖E ≤
1

2
‖x‖M ≤ ‖πhx‖M813

which means that πhx ∈ Ch. As a consequence, x ∈ limh→0 Ch.814

Proposition B.5. Let (zh)h>0 be sequence of M such that ‖zh‖M = 1 and which815

converges weakly to z 6= 0. Then816

lim
h→0

(
Ch ∩ {zh}⊥

)
= M ∩ {z}⊥.817

Proof. Take x ∈ limh→0

(
Ch ∩ {zh}⊥

)
. There exists (xh) such that xh ∈ Ch and818

xh ⊥ zh and xh → x. We have 〈x, z〉M = limh→0 〈x, zh〉M = limh→0 〈x− xh, zh〉M =819

0. Then x ∈M ∩ {z}⊥.820

Reversely, take x ∈M ∩ {z}⊥, and fix ε > 0. There exists xε ∈ E\{0} such that821

‖xε − x‖M ≤ ε and xε ⊥ z and Consider now the orthogonal projection πhxε of xε822

onto Mh. It satisfies limh→0 πhxε = xε. For h small enough ‖xε‖M ≤ 2 ‖πhxε‖M .823

Consider now z̃ ∈ E such that 〈z, z̃〉M ≥ 1/2 and ‖z̃‖M = 1. We define now824

xhε = πhxε + βhπhz̃ ∈Mh,825

with βh = −〈πhxε, zh〉M / 〈πhz̃, zh〉M in order to have xhε ⊥ zh for all h. Re-826

mark that βh is wel defined for h small enough as 〈πhz̃, zh〉M converges to 〈z, z̃〉M827

and converges to zero as 〈πhxε, zh〉M = 〈xε, zh〉M + 〈πhxε − xε, zh〉M converges to828

〈xε, z〉M = 0. Then xhε → xε. Now we write829 ∥∥xhε∥∥E ≤ ‖πhxε‖E + βh ‖πhz̃‖E ≤ ‖xε‖E + βh ‖z̃‖E ,830

and
∥∥xhε∥∥M → ‖xε‖M 6= 0. As a consequence, for h small enough, αh

∥∥xhε∥∥E ≤831 ∥∥xhε∥∥M which means that xhε ∈ Ch ∩ {zh}⊥ for h small enough. This shows that832

xε ∈ limh→0

(
Ch ∩ {zh}⊥

)
. This is true for any ε > 0 and as the limit set is closed,833

x ∈ limh→0

(
Ch ∩ {zh}⊥

)
.834
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