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Abstract. We consider general systems of ordinary differential equations with monotonic Gibbs
entropy, and introduce an entropic scheme that simply imposes an entropy fix after every time step
of any existing time integrator. It is proved that in the general case, our entropy fix has only
infinitesimal influence on the numerical order of the original scheme, and in many circumstances,
it can be shown that the scheme does not affect the numerical order. Numerical experiments on
the linear Fokker-Planck equation and nonlinear Boltzmann equation are carried out to support our
numerical analysis.
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1. Introduction. The second law of thermodynamics, discovered more than
170 years ago, states that the direction of the thermodynamic processes is driven by a
physical quantity called entropy. The importance of this law cannot be overstated, and
nearly every thermodynamic model has to respect such a property. Mathematically,
there are a number of formulas to represent the entropy, among which the Gibbs
entropy, formulated as the integral of f log f with f being the distribution function
of the states, is widely used in a variety of models such as the heat equation, the
Boltzmann equation, and the Fokker-Planck equation. In our discussion, we assume
a finite number of states, so that the Gibbs entropy is defined by

η(f) =

N∑
i=1

fi log fi∆vi,

where f = (f1, . . . , fN )T ∈ RN+ describes the distribution of the N states and ∆vi
represents the weight of the ith state. The vector f is a vector function of time t, and
we assume that it satisfies the initial value problem

(1.1)

dfi(t)

dt
= Qi(f(t)), i = 1, . . . , N,

fi(0) = f0
i ,

with the following properties:
(P1) conservation of mass: d

dt

∑N
i=1 fi(t)∆vi = 0;

(P2) nonnegativity: fi(t) ≥ 0, ∀1 ≤ i ≤ N, t ≥ 0;
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(P3) monotonicity of entropy: d
dt

∑N
i=1 fi(t) log fi(t)∆vi ≤ 0.

The ODE system of the form (1.1) appears frequently after discretizing the ther-
modynamic equations in space. For example, it may arise from the finite difference
discretization of the heat equation and the Fokker-Planck type equation [6, 2, 10, 4].
It may also result from the discrete velocity method and the entropic Fourier method
for the Boltzmann equation [7, 3].

Although the semi-discrete scheme (1.1) decays entropy, there is no guarantee
that this property will carry over when time is discretized. In some special cases, the
entropy decay can be proved for the fully discrete scheme, see for instance [1], yet it
often comes at a price of using implicit schemes and is highly problem and scheme
dependent. Given the importance of entropy in thermodynamic processes, it would
be desirable to have a fully discrete entropic scheme that is generic (e.g., does not
require a specific type of time discretization) as well as easily implementable (e.g.,
does not require expensive nonlinear iterations).

To bridge the above gap, we introduce an entropic scheme in this paper to achieve
the following: one can apply any time discretization to the system (1.1) as long as it
maintains the mass conservation and nonnegativity of the solution. After each time
step, if the entropy goes in the wrong direction, we provide a simple fix to make it
decay monotonically. Such a fix is done by a weighted average of the current solution
and the solution with maximum entropy. Via numerical analysis, we show that such
a fix has only a tiny effect on the order of accuracy, and in various cases, it can be
proven that the order of accuracy is not affected at all. Numerical experiments on the
linear Fokker-Planck equation and nonlinear Boltzmann equation will also be carried
out to support our findings.

The paper is organized as follows. In section 2, we first outline the procedure of
our entropic method and summarize the main theorems of the method. The detailed
proof of the theorems with some deeper understandings is illustrated in section 3.
section 4 provides the numerical experiments, and the conclusion follows in section 5.

2. Main results. This section outlines the overall procedure of our entropic
method and lists the main results of our numerical analysis. Before stating our the-
orems, we introduce the notations and review some basic properties of the Gibbs
entropy.

2.1. Brief review of Gibbs entropy. Due to the conservation hypothesis (P1),
below we focus on the entropy functional defined by

H(f) =

N∑
i=1

(fi log fi − fi)∆vi :=

N∑
i=1

h(fi)∆vi,

with h(x) = x log x− x. Note that H(f) differs from η(f) only by a constant.
Let C = (C, . . . , C)T ∈ RN+ with

(2.1) C =

∑N
i=1 fi∆vi∑N
i=1 ∆vi

.

We denote by f̃ = f/C = (f̃1, . . . , f̃N )T the normalized f , then it can be checked
that

(2.2) Cη(f̃) = H(f)−H(C).
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Furthermore, we define the Lp (p = 1, 2) norm and L∞ norm of any f as

‖f‖p =

(
N∑
i=1

fpi ∆vi

)1/p

, ‖f‖∞ = max
i
|fi|.

Lemma 2.1. C is the unique global minimum point of H(f) for all f ∈ RN+
satisfying (2.1) with fixed C.

The proof of Lemma 2.1 can be done by the concavity of log(x) and Jensen’s
inequality. Furthermore, a straightforward corollary of Lemma 2.1 is that, 1 =
(1, . . . , 1)T ∈ RN+ is the unique global minimum point of η(f̃) for all f̃ ∈ RN+ sat-

isfying ‖f̃‖1 = ‖1‖1. To ease the notation, we use ‖1‖1 =
∑N
i=1 ∆vi = V to denote

the volume.
The notations hereafter will be focused on the relative entropy η(f̃) and the

normalized f̃ for fixed C. One could find its relationship to entropy function H(·)
from (2.2). For simplicity, we would like to omit the tilde symbol in f̃ , and thus the
average of the components of f will be 1 hereafter.

2.2. Main results. We assume after temporal discretization of (1.1), the prop-
erties (P1) and (P2) can be preserved. Specifically, if we let fn ≥ 0 be the numerical
solution at the nth time step, then we have

(H1) conservation:
∑N
i=1 f

n+1
i ∆vi =

∑N
i=1 f

n
i ∆vi,

(H2) nonnegativity: fn+1
i ≥ 0, ∀1 ≤ i ≤ N .

We would like to design an entropic method such that it can fulfill a discrete version
of (P3) while keeping (H1) and (H2).

Our numerical scheme is based on imposing a simple entropy fix after computing
the numerical solution at every time step. Suppose that fn+1 is computed through
evolving fn by one time step. If η(fn+1) ≤ η(fn), nothing needs to be done. Other-
wise, we revise the solution at the (n+ 1)th time step as

(2.3) f̂
n+1

= fn+1 + βp(1− fn+1),

where βp ∈ (0, 1] is chosen to satisfy

(2.4) η(fn+1 + βp(1− fn+1)) = η(fn).

This guarantees that the entropy is always non-increasing.
In most cases, such a method stabilizes the solution since it reduces both the

Gibbs entropy and the 2-norm of vectors. Therefore we are mainly concerned about
the magnitude of the fixing term βp(1− fn+1), and we hope that this term does not
affect the numerical convergence order of the original scheme. Generally, the error
estimation of this scheme can be analyzed in the following manner
(2.5)

‖f̂
n+1
− f(tn+1)‖ ≤ ‖f̂

n+1
− fn+1‖+ ‖fn+1 − f(tn+1)‖

≤ ‖f̂
n+1
− fn+1‖+ ‖fn+1 − f̃(tn+1)‖+ ‖f̃(tn+1)− f(tn+1)‖,

where f̃(t) is the solution of the problem

(2.6)

df̃i(t)

dt
= Qi(f̃(t)), i = 1, . . . , N,

f̃i(tn) = fni , i = 1, . . . , N,
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and hence ‖fn+1 − f̃(tn+1)‖ is the “one-step error” of the scheme. The last term
in (2.5) is usually controlled by the stability of the ODE problem with respect to
the initial condition. If we assume that the scheme satisfies the following consistency
condition:

‖f(tn+1)− fn+1‖ ≤ O(∆ts+1),

then the original scheme (before our entropy fix) is a scheme of order s. Here our
purpose is to demonstrate that the first term in the second line of (2.5), i.e., ‖βp(1−
fn+1)‖, can be controlled by the second term ‖f̃(tn+1) − fn+1‖. In the ideal case,
we may find a constant C such that

‖βp(1− fn+1)]‖ ≤ C‖f̃(tn+1)− fn+1‖,

then the numerical convergence order is not affected. Hereafter, for simplicity, we
would like to omit the tilde and use f(tn+1) to denote the solution of (2.6) at time
tn+1. In other words, we assume that the solution at the nth time step fn is exact
(f(tn) = fn), so that f(tn+1) becomes identical to f̃(tn+1).

In the following theorems, we will study a stronger result

(2.7) η(fn+1 + β(1− fn+1)) = η(f(tn+1)),

where βp in (2.4) is replaced by β and the solution at (n + 1)th time step is revised
to possess the same entropy as f(tn+1). Due to η(f(tn+1)) ≤ η(fn) and the mono-
tonicity of η(fn+1 + ω(1− fn+1)) with respect to ω, we see that βp ≤ β. Therefore,
it suffices to show that ‖β(1 − fn+1)‖ can be controlled by the difference between
f(tn+1) and fn+1. Based on the commonly-used 2-norm of vectors, we are going to
prove this type of results in four different scenarios, which will be stated in the four
theorems listed below.

In the first case, we have no assumptions on the structure of the solution, which
may lead to a slight reduction of the numerical convergence order:

Theorem 2.2. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN+ and ‖fn+1‖1 = ‖f(tn+1)‖1. When η(fn+1) > η(fn) and (2.7) are satisfied, if

‖f(tn+1)− fn+1‖2 ≤ 1, then

‖β(1− fn+1)‖2 ≤M‖f(tn+1)− fn+1‖2
(
1 +

∣∣log
(
‖f(tn+1)− fn+1‖2

)∣∣) ,
where M > 0 is a constant which depends on V , ‖fn+1‖∞ and ‖f(tn+1)‖∞.

In this case, the right-hand side of the inequality contains a logarithmic term,
which tends to infinity when ‖f(tn+1) − fn+1‖2 approaches zero. However, for any
ε > 0, we have

1 +
∣∣log

(
‖f(tn+1)− fn+1‖2

)∣∣ < ‖f(tn+1)− fn+1‖−ε2

when ‖f(tn+1)−fn+1‖2 is sufficiently small, meaning that the numerical convergence
order is reduced only by an arbitrary small positive number. Nevertheless, we would
still like to explore the conditions under which such a logarithmic term does not exist.
The remaining three cases are related to this type of results.

Intuitively, the reason of the logarithmic term in Theorem 2.2 is the unbounded-
ness of the function h′(x) when x is close to zero. In the following result, we assume
that the components of the numerical solution fn+1 have a lower bound C0, such that
h′(x) becomes bounded:
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Theorem 2.3. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN+ and ‖fn+1‖1 = ‖f(tn+1)‖1. When η(fn+1) > η(fn) and (2.7) are satisfied, if

fn+1
i ≥ C0 > 0 holds for all 1 ≤ i ≤ N , then

‖β(1− fn+1)‖2 ≤M‖f(tn+1)− fn+1‖2,

where M > 0 is a constant which depends on C0, ‖fn+1‖∞ and ‖f(tn+1)‖∞.

The condition in this theorem disallows the numerical solution to be zero any-
where in the domain. In such a situation, if the scheme can guarantee the numerical
convergence order for the L∞-error, we can still show that the L2-norm of the entropy
fix is small. This corresponds to our third case:

Theorem 2.4. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN+ and ‖fn+1‖1 = ‖f(tn+1)‖1. When η(fn+1) > η(fn) and (2.7) are satisfied, if

‖f(tn+1)− fn+1‖∞ ≤ 1/3, it holds that

‖β(1− fn+1)‖2 ≤M‖f(tn+1)− fn+1‖∞,

where M > 0 is a constant which depends on V , ‖fn+1‖∞ and ‖f(tn+1)‖∞.

The last case we consider can be regarded as a generalization of Theorem 2.3.
We allow the numerical solution to be small on some part of the domain, but require
that the solution increases slowly. This will lead to a result similar to the conclusion
of Theorem 2.3, where the L2-magnitude of the entropy fix can be directly bounded
by the L2-error:

Theorem 2.5. Given a positive and conservative numerical scheme, i.e., fn+1 ∈
RN+ and ‖fn+1‖1 = ‖f(tn+1)‖1, we denote the components of fn+1 as fn+1

1 ≤ fn+1
2 ≤

· · · ≤ fn+1
N . For any C1, Cf ∈ (0, 1], there exists two positive constants δ and M , such

that
‖β(1− fn+1)‖2 ≤M‖fn+1 − f(tn+1)‖2

if all the following conditions hold:
• η(fn+1) > η(fn) and η(fn+1 + β(1− fn+1)) = η(f(tn+1));
• ‖fn+1 − f(tn+1)‖2 < δ;

• The index I1 = min{I |
∑I
i=1 ∆vi ≥ C1V } satisfies

(2.8)
1

| log
(
fn+1

1

)
|
≥ Cf

| log
(
fn+1
I1

)
|
.

Here δ depends on C1, Cf and V , and M depends on C1, Cf , V , ‖fn+1‖∞ and
‖f(tn+1)‖∞.

In (2.8), the function 1/| log x| is regarded as zero when x takes the value zero.
The condition (2.8) allows the existence of small components in the solution. To
better demonstrate the nature of this condition, two examples are presented below.

Example 1. This example assumes that fn+1 is the uniform discretization of a
one-dimensional Gaussian, i.e.,

∆vi = ∆v, fn+1
i =

1

C
√
π

exp(−v2
i ), i = 1, . . . , N + 1,

where vi are uniformly distributed in [−L,L], ∆v = 2L/(N + 1) and L > 0 is set
to be sufficiently large such that exp(−L2) is sufficiently small. The constant C is
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chosen such that ‖fn+1‖1 = ‖1‖1. Furthermore, fox fixed L, we assume that N is an
even number and large enough such that C ≥ 1/(4L). According to the assumption of
Theorem 2.5, we set vi to be

vi = (−1)id(N + 1− i)/2e2L
N
, i = 1, · · · , N + 1

such that fn+1
i increases with respect to i. For illustration, we plot the normalized

Gaussian and its sorted version in Figure 1, where parameters are set as L = 6 and
N = 20. In this example, we take I1 = d(N + 1)/2e = N/2 + 1, then

log(fn+1
I1

)

log(fn+1
1 )

=
log 1

C
√
π
− v2

I1

log 1
C
√
π
− L2

≥
v2
I1
− log( 4L√

π
)

L2
≥

v2
I1

2L2
≥ 1

8
,

which satisfies (2.8) with C1 = 1/2 and Cf = 1/8. This example shows a case where
the values of fn+1

i are nonzero but can be arbitrarily small.
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Fig. 1. Discretized Gaussian, its normalization and sorted notation in Example 1.

Example 2. The second example is for the case where some components of fn+1

are zero. We assume a uniform discretization on [0, 1] with ∆vi = 1/N for i =
1, . . . , N and choose fn+1 to be

fn+1
i =

 0, i = 1, . . . , I1,
1, i = I1 + 1, . . . , N − I1,
2, i = N − I1 + 1, . . . , N.

If I1/N is a constant, the vector fn+1 approximates a piecewise constant function. In
this case, Theorem 2.5 holds by choosing C1 = I1/N and Cf to be any positive number
in (0, 1]. The blue lines in Figure 2 show the situation where C1 = 1/3. However,
if I1/N decreases to zero as N increases, e.g. I1 ≡ 1 for all N , such a constant
C1 cannot be found. This situation violates the condition of Theorem 2.5, which is
illustrated as the red lines in Figure 2.

In general, the above theorems suggest that such entropy fix can be safely used
without sacrificing the numerical accuracy. Moreover, for a numerical scheme with
sufficient accuracy, the violation of the entropy inequality will not always happen,
meaning that the entropy fix may be needed only at a few time steps, resulting in
even less significant impact on the numerical accuracy.
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Fig. 2. Illustration of Example 2 where fn+1
i can only be chosen as 0, 1 or 2.

Remark 2.6. The above results can be easily generalized to the cases where the
equilibrium is not a constant. Assume that M = (M1, · · · ,MN )T ∈ R+

N is the
equilibrium state of (1.1), and the entropy functional (in this case, it is the relative
entropy) is defined by

η[f ] =

N∑
i=1

fi log
fi
Mi

∆vi.

We can let gi = fi/Mi and ∆wi =Mi∆vi, so that η[f ] can be rewritten as

η[f ] =

N∑
i=1

gi log gi∆wi,

which fits the entropy formulas in the theorems again. In this case, the entropy fix
(2.3) applied to gn+1 is equivalent to the following fix applied to fn+1:

(2.9) f̂
n+1

= fn+1 + βp(M− fn+1).

By this transformation, our approach can also be applied to the linear Fokker-Planck
equation. Please see the numerical section for more details.

3. Theoretical proofs of the error estimates. This section provides all the
details of the proofs of the four theorems. Instead of proving these theorems in the
order they are presented, below we will first provide the proof of Theorem 2.3, which
can provide necessary tools needed in the proof of Theorem 2.2.

3.1. Proof of Theorem 2.3. Before proving the theorem, the relationship be-
tween entropy function and L2 norm will be demonstrated by several lemmas. Among
them, we will first estimate the entropy function η(f) and its L2 norm ‖f‖2 in the
following lemma.

Lemma 3.1. For f ∈ RN+ and ‖f‖1 = V ,

1

2‖f‖∞
‖f − 1‖22 ≤ η(f) ≤ ‖f − 1‖22.

Proof. On one hand, for x ≥ 0,

x log x− (x− 1) ≤ x(x− 1)− (x− 1) = (x− 1)2,
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where the inequality above uses log x ≤ x−1. On the other hand, by Taylor’s theorem,

x log x = (x− 1) +

∫ x

1

1

t
(x− t)dt.

For 0 ≤ x ≤ ‖f‖∞, the integral satisfies∫ x

1

1

t
(x− t)dt ≥

∫ x

1

1

max(x, 1)
(x− t)dt ≥

∫ x

1

1

‖f‖∞
(x− t)dt =

(x− 1)2

2‖f‖∞
.

Therefore,

(x− 1) +
(x− 1)2

2‖f‖∞
≤ x log x ≤ (x− 1) + (x− 1)2.

The lemma can be proved by taking x = fi in the above inequality and summing up
all 1 ≤ i ≤ N .

A straightforward corollary of the above lemma is given as follows.

Lemma 3.2. For f (1) ∈ RN+ and f (2) ∈ RN+ with ‖f (1)‖1 = ‖f (2)‖1 = V , if

η(f (1)) ≤ η(f (2)), then it holds that

‖f (1) − 1‖22 ≤ 2‖f (1)‖∞‖f (2) − 1‖22.

After showing the equivalence between entropy function and 2-norm, we will
proceed to discuss the relationship between η(f (1)) − η(f (2)) and ‖f (1) − f (2)‖2 for

any two vectors f (1) and f (2). By the definition of η(·), we are inspired to study the
estimation of h(x)− h(y). The result is presented in the following lemma.

Lemma 3.3. Given 0 < C0 ≤ 1, y ≥ 0 and x ≥ C0, if y ≥ C0 or h(x) > h(y),
then

(3.1) |h(x)− h(y)| ≤ max (2, 2| log(C0)|) |x− y| (|x− 1|+ |y − 1|) .

Proof. If x = y, it is obvious that the lemma is correct. It remains to prove the
lemma when x 6= y.

By the mean value theorem,

(3.2) h(x)− h(y) = log(ξ)(x− y),

where ξ is between x and y. If log(ξ) ≥ 0, it holds that ξ ≥ 1 and

| log(ξ)| = log(ξ) ≤ ξ − 1 ≤ max(x− 1, y − 1) ≤ |x− 1|+ |y − 1|.

Therefore, if log(ξ) ≥ 0, (3.2) becomes

(3.3) |h(x)− h(y)| ≤ |x− y| (|x− 1|+ |y − 1|) .

Next we assume h(x) > h(y). If h(x) > h(y) and x > y, (3.2) implies log(ξ) > 0,
which gives (3.3). If h(x) > h(y) and x < y, (3.2) implies log(ξ) < 0 and ξ ≤ 1. In
this case, y > x ≥ C0, which implies ξ ≥ C0 and log(ξ) ≥ log(C0). Therefore, (3.2)
becomes

(3.4) |h(x)− h(y)| = − log(ξ)|x− y| ≤ − log(C0)|x− y| = | log(C0)||x− y|.
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On the other hand, by the mean value theorem,

− log(ξ) = log(1)− log(ξ) =
1

ξ2
(1− ξ) ≤ 1

C0
(|x− 1|+ |y − 1|) ,

where ξ2 ∈ [ξ, 1] ⊂ [C0, 1]. The above results can be summarized into the following
estimation:

(3.5) |h(x)− h(y)| ≤ |x− y|min

(
| log(C0)|, 1

C0
(|x− 1|+ |y − 1|)

)
.

If we further assume x ≥ 1/2 and y ≥ 1/2, then (3.5) is satisfied with C0 = 1/2,
which becomes

|h(x)− h(y)| ≤ |x− y|min (log 2, 2 (|x− 1|+ |y − 1|)) ≤ 2|x− y| (|x− 1|+ |y − 1|) .

Otherwise, if x < 1/2 or y < 1/2, we have 2(|x− 1|+ |y − 1|) ≥ 1. Therefore,

min

(
| log(C0)|, 1

C0
(|x− 1|+ |y − 1|)

)
≤ | log(C0)| ≤ 2| log(C0)| (|x− 1|+ |y − 1|) .

Combining the two results above yields the inequality (3.1) when h(x) > h(y).
It remains only to consider the case h(x) ≤ h(y) and y ≥ C0. If x < y, (3.2)

implies log(ξ) ≥ 0, which gives the result of (3.3). Otherwise, x > y implies log(ξ) ≤ 0.
Since x ≥ C0 and y ≥ C0, it holds that ξ ≥ C0, and therefore 0 ≥ log(ξ) ≥ log(C0),
which also yields (3.5). The rest of the proof is the same as the previous case.

With the help of the above lemma, we could give an upper bound of the difference
of entropy functions η(f (1))− η(f (2)) in the following lemma.

Lemma 3.4. For f (1) = (f
(1)
1 , . . . , f

(1)
N ) ∈ RN+ and f (2) = (f

(2)
1 , . . . , f

(2)
N ) ∈ RN+

with ‖f (1)‖1 = ‖f (2)‖1 = V , given 0 < C0 ≤ 1, if f
(1)
i ≥ C0 for all 1 ≤ i ≤ N and

f (2) satisfies either of the following conditions:

1. f
(2)
i ≥ C0 for all 1 ≤ i ≤ N ;

2. η(f (2)) < η(f (1));
then it holds that

|η(f (1))− η(f (2))| ≤ max (2, 2| log(C0)|) ‖f (1) − f (2)‖2
(
‖f (1) − 1‖2 + ‖f (2) − 1‖2

)
.

Proof. For simplicity, we use M to denote the constant max (2, 2| log(C0)|) in this

proof. In the first case f
(2)
i ≥ C0 > 0 for all 1 ≤ i ≤ N , we can plug x = f

(1)
i and

y = f
(2)
i in Lemma 3.3 and sum over all 1 ≤ i ≤ N . By using ‖f (1)‖1 = ‖f (2)‖1, we

can obtain that

|η(f (1))− η(f (2))| ≤M
N∑
i=1

(
|(f (1)

i − 1)(f
(1)
i − f (2)

i )|+ |(f (2)
i − 1)(f

(1)
i − f (2)

i )|
)

∆vi.

The lemma can be proven by the Cauchy-Schwarz inequality.
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In the second case η(f (2)) < η(f (1)), we have

η(f (1))− η(f (2))

=
∑

h(f
(1)
i )≤h(f

(2)
i )

(
h(f

(1)
i )− h(f

(2)
i )
)

∆vi +
∑

h(f
(1)
i )>h(f

(2)
i )

(
h(f

(1)
i )− h(f

(2)
i )
)

∆vi

≤
∑

h(f
(1)
i )>h(f

(2)
i )

(
h(f

(1)
i )− h(f

(2)
i )
)

∆vi

≤M
∑

h(f
(1)
i )>h(f

(2)
i )

(
|(f (1)

i − 1)(f
(1)
i − f (2)

i )|+ |(f (2)
i − 1)(f

(1)
i − f (2)

i )|
)

∆vi,

where the last inequality is again the result of Lemma 3.3. The lemma naturally
follows by extending the range of summation of i to 1, . . . , N and applying the Cauchy-
Schwarz inequality.

In the proof of case 2, we applied Lemma 3.3 only to f
(1)
i and f

(2)
i with h(f

(1)
i ) >

h(f
(2)
i ). This allows us to relax the condition “f

(1)
i ≥ C0 for all 1 ≤ i ≤ N” in the case

η(f (1)) > η(f (2)). In fact, we need f
(1)
i > C0 only for the components that require

Lemma 3.3. We write this result in the following corollary:

Corollary 3.5. For f (1) = (f
(1)
1 , . . . , f

(1)
N ) ∈ RN+ and f (2) = (f

(2)
1 , . . . , f

(2)
N ) ∈

RN+ with ‖f (1)‖1 = ‖f (2)‖1 = V , we assume η(f (1)) > η(f (2)). If there exists 0 <

C0 < 1 such that for any i = 1, . . . , N , either f
(1)
i ≥ C0 or h(f

(1)
i ) ≤ h(f

(2)
i ) is

satisfied, then it holds that

|η(f (1))− η(f (2))| ≤ max (2, 2| log(C0)|) ‖f (1) − f (2)‖2
(
‖f (1) − 1‖2 + ‖f (2) − 1‖2

)
.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. The convexity of η(·) implies

η(fn+1 + β(1− fn+1)) ≤ βη(1) + (1− β)η(fn+1).

By (2.7) with η(1) = 0, the above inequality is equivalent as

(3.6) β ≤ η(fn+1)− η(f(tn+1))

η(fn+1)
.

The numerator in (3.6) can be estimated by

η(fn+1)− η(f(tn+1))

≤M‖fn+1 − f(tn+1)‖2
(
‖fn+1 − 1‖2 + ‖f(tn+1)− 1‖2

)
(Lemma 3.4)

≤M‖fn+1 − f(tn+1)‖2
(

1 +
√
‖f(tn+1)‖∞

)
‖fn+1 − 1‖2, (Lemma 3.2)

where M = max(2, 2| log(C0)|). On the other hand, according to Lemma 3.1, the
denominator in (3.6) satisfies

η(fn+1) ≥ 1

2‖fn+1‖∞
‖fn+1 − 1‖22.

Therefore,

‖β(1− fn+1)‖2 ≤ 2M‖fn+1‖∞(1 +
√
‖f(tn+1)‖∞)‖fn+1 − f(tn+1)‖2.
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In this case, we would like to give a remark on the practical choice of βp in

(2.4). Instead of solving η(fn+1 + βp(1 − fn+1)) = η(fn), we can simply take β̂p =
(η(fn+1)− η(fn))/η(fn+1), which equals the upper bound in (3.6). Note that the

convexity of function η(·) implies η(fn) = (1−β̂p)η(fn+1)+β̂pη(1) ≥ η(fn+1+β̂p(1−
fn+1)). Therefore, under the condition of Theorem 2.3, if we change the numerical

solution at (n+1)th step to fn+1 + β̂p(1−fn+1), it still holds that ‖β̂p(1−fn+1)‖2 ≤
M‖f(tn+1)− fn+1‖2.

3.2. Proof of Theorem 2.2. Different from the previous proof, in Theorem 2.2,
we allow the solution to have components arbitrarily close to zero, so that Lemma 3.4
cannot be directly applied. To overcome this difficulty, we introduce a regularization
term before using Lemma 3.4. The details are given as follows.

Proof of Theorem 2.2. For simplicity, we let ε = ‖fn+1 − f(tn+1)‖2. To avoid
dealing with zero components, we first regularize the numerical solution fn+1 by

(3.7) fn+1,1 = fn+1 + ε(1− fn+1),

after which fn+1,1
i ≥ ε for all i = 1, . . . , N . On the other hand, since ‖1− fn+1‖∞ ≤

max(1, ‖f‖∞ − 1) ≤ ‖f‖∞, the L2 norm of the perturbation introduced by the regu-
larization satisfies

‖ε(1− fn+1)‖2 ≤
√
V ‖fn+1‖∞ε.

After perturbation, if η(fn+1,1) < η(f(tn+1)), then we have β < ε so that the
conclusion of the theorem is drawn. If η(fn+1,1) > η(f(tn+1)), we can find β2 ∈ (0, 1]
such that

η(fn+1,1 + β2(1− fn+1,1)) = η(f(tn+1)),

which is identical to (2.7) by replacing fn+1 to fn+1,1. Therefore, we can set C0 = ε
in Theorem 2.3 to obtain

‖β2(1− fn+1,1)‖2 ≤M1‖fn+1,1 − f(tn+1)‖2,

and by the proof of Theorem 2.3, we know that

M1 = 4 max (1, |log ε|) ‖fn+1,1‖∞(1 +
√
‖f(tn+1)‖∞)

≤ 4(1 + |log ε|)‖fn+1‖∞(1 +
√
‖f(tn+1)‖∞),

since ‖fn+1,1‖∞ ≤ ‖fn+1‖∞.
If we define

(3.8) f̂
n+1

= fn+1,1 + β2(1− fn+1,1) = fn+1 + (ε+ β2 − εβ2)(1− fn+1),

then by η(f̂
n+1

) = η(f(tn+1)) we know that β = ε+ β2 − εβ2. Thus it holds that

‖β(1− fn+1)‖2 = ‖f̂
n+1
− fn+1‖2 ≤ ‖f̂

n+1
− fn+1,1‖2 + ‖fn+1,1 − fn+1‖2

≤M1‖fn+1,1 − f(tn+1)‖2 + ‖fn+1,1 − fn+1‖2
≤M1(‖fn+1,1 − fn+1‖2 + ε) + ‖fn+1,1 − fn+1‖2
≤M1(

√
V ‖fn+1‖∞ε+ ε) +

√
V ‖fn+1‖∞ε ≤M2ε(| log ε|+ 1),

where M2 = 8(
√
V ‖fn+1‖∞ + 1)‖fn+1‖∞(1 +

√
‖f(tn+1)‖∞).

The proof of this theorem follows the two-step procedure, which will also be
applied in the proof of Theorem 2.4.
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3.3. Proof of Theorem 2.4. To prove Theorem 2.4, we deal with the compo-
nents with fn+1

i < 2
3 and fn+1

i > 2
3 separately. The difference between these two

cases can be seen from the following lemma:

Lemma 3.6. For f (1) ∈ RN+ and f (2) ∈ RN+ with ‖f (1) − f (2)‖∞ ≤ 1
3 , define

f (3) = f (1) + β1(1− f (1)),

where β1 = 3‖f (1) − f (2)‖∞. If ‖f (1)‖1 = V , then f (3) satisfies following properties:

1. For all k such that f
(1)
k < 2

3 , it holds that h(f
(3)
k ) ≤ h(f

(2)
k );

2. For all k such that f
(1)
k ≥ 2

3 , it holds that f
(3)
k ≥ 2

3 ;

3. ‖f (3) − f (1)‖∞ ≤ 3‖f (1)‖∞‖f (1) − f (2)‖∞.

Proof. For those k such that f
(1)
k < 2

3 , we have 1− f (1)
k ≥ 1

3 . Thus

f
(3)
k − f (1)

k = β1(1− f (1)
k ) ≥ 3|f (1)

k − f (2)
k | · (1− f

(1)
k ) ≥ |f (1)

k − f (2)
k | ≥ f

(2)
k − f (1)

k ,

which yields f
(3)
k ≥ f

(2)
k . Since f

(3)
k is the convex combination of 1 and f

(1)
k , we

have 0 ≤ f
(3)
k ≤ 1. Since h(·) is monotonically decreasing on [0, 1], we conclude that

h(f
(3)
k ) ≤ h(f

(2)
k ).

The second property is obvious since f
(3)
k lies between f

(1)
k and 1.

As for the third property, it should be noted that ‖f (1)‖1 = V implies ‖f (1)‖∞ ≥
1. Therefore,

‖f (3) − f (1)‖∞ = β1‖1− f (1)‖∞
≤ max(1, ‖f (1)‖∞ − 1)β1 ≤ 3‖f (1)‖∞‖f (1) − f (2)‖∞.

The first property in Lemma 3.6 shows how we deal with the small components,
and this only holds when β1 is proportional to the difference between f (1) and f (2)

measured by the infinity norm, leading to the form of the right-hand side in the
conclusion of Theorem 2.4. For the remaining terms, an O(1) lower bound exists, so
that the same technique as Theorem 2.3 can be applied. The details of the proof are
given below:

Proof of Theorem 2.4. By Lemma 3.6, we could pick β1 = 3‖fn+1 − f(tn+1)‖∞
and construct

(3.9) fn+1,1 = fn+1 + β1(1− fn+1),

If η(fn+1,1) ≤ η(f(tn+1)), the proof is already completed. If η(fn+1,1) > η(f(tn+1)),

we construct f̂
n+1

as (3.8) such that η(f̂
n+1

) = η(f(tn+1)), and thus β = β1 + β2 −
β1β2. According to Lemma 3.6, those components i where h(fn+1,1

i ) > h(fi(tn+1))

satisfy fn+1,1
i ≥ 2

3 . Therefore, Corollary 3.5 could be applied with C0 = 2
3 , and we

could mimic the proof of Theorem 2.3 with only replacement from Lemma 3.4 to
Corollary 3.5 in the proof. As a result, by the conclusion of Theorem 2.3, it holds
that

‖β2(1− fn+1,1)‖2 ≤M1‖f(tn+1)− fn+1,1‖2,

where M1 = 4 max (1, | log(C0)|) ‖fn+1,1‖∞(1 +
√
‖f(tn+1)‖∞) taken from the proof

of Theorem 2.3. Moreover, fn+1,1 inM1 could be replaced by fn+1 since ‖fn+1,1‖∞ ≤
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‖fn+1‖∞. Then, similar to the second step in the proof of Theorem 2.2, it holds that

‖f̂
n+1
− fn+1‖2 ≤ ‖f̂

n+1
− fn+1,1‖2 + ‖fn+1,1 − fn+1‖2

≤M1‖f(tn+1)− fn+1,1‖2 + ‖fn+1,1 − fn+1‖2
≤M1

√
V ‖f(tn+1)− fn+1,1‖∞ +

√
V ‖fn+1,1 − fn+1‖∞

≤M1

√
V ‖f(tn+1)− fn+1‖∞ +

√
V (M1 + 1)‖fn+1,1 − fn+1‖∞

≤
(
M1

√
V + 3

√
V (M1 + 1)‖fn+1‖∞

)
‖f(tn+1)− fn+1‖∞,

where the last “≤” is the result of Lemma 3.6. This completes the proof since ‖β(1−
fn+1)‖2 = ‖f̂

n+1
− fn+1‖2.

3.4. Proof of Theorem 2.5. In this subsection, we will prove Theorem 2.5.
Before that, we would like to introduce two lemmas. Lemma 3.7 comes from opti-
mization, which illustrates the infinity norm of optimal solution could be bounded by
the L2 norm of it. Based on Lemma 3.7, we make a decomposition of the (relative)
entropy function in (3.21) and then introduce Lemma 3.11 to estimate the difference
of decomposed entropy functions.

As assumed in the theorem, we suppose all the components of f are sorted in the
ascending order:

f1 ≤ f2 ≤ · · · ≤ fN = ‖f‖∞.
Note that this does not affect the definition of entropy and the numerical scheme for
the entropy fix.

Lemma 3.7. For any C1, Cf ∈ (0, 1] and positive integer N , let I1 = min{I |∑I
i=1 ∆vi ≥ C1V }. If f ∈ RN+ satisfies

fi ≤ 1/2 for all i = 1, . . . , I1 and
1

| log f1|
≥ Cf
| log fI1 |

,

then when ε < 1
2

√
C1V , the solution g∗ = (g∗1 , . . . , g

∗
I1

)T ∈ RI1 of the following
optimization problem

(3.10) argmin
g1,...,gI1

I1∑
i=1

h(fi + gi)∆vi, s.t.

I1∑
i=1

g2
i∆vi ≤ ε2,

satisfies 0 ≤ g∗I1 ≤ · · · ≤ g
∗
1 ≤ (

√
C1V Cf )−1ε and Cf ≤ g∗I1/g

∗
1 ≤ 1.

Proof. The proof utilizes the Karush–Kuhn–Tucker (KKT) sufficient conditions
for optimization problems [11, Chapter 3.5]. It is easy to verify that both the objec-
tive function and the constraint are continuously differentiable convex functions with
respect to (g1, . . . , gI1)T . Therefore, if the following conditions hold for λ∗ ∈ R and
g∗ = (g∗1 , . . . , g

∗
I1

)T ,

(3.11)



h′(fi + g∗i ) + 2λ∗g∗i = 0, ∀ 1 ≤ i ≤ I1,
I1∑
i=1

(g∗i )2∆vi ≤ ε2,

λ∗ ≥ 0,

λ∗(

I1∑
i=1

(g∗i )2∆vi − ε2) = 0,
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then g∗ is the global minimum of the optimization problem.
First, we claim that λ∗ 6= 0, so that

(3.12)

I1∑
i=1

(g∗i )2∆vi = ε2

due to the last equation in (3.11). If λ∗ equals 0, then h′(fi + g∗i ) = 0, which yields
g∗i = 1− fi ≥ 1

2 . Therefore,

I1∑
i=1

(g∗i )2∆vi ≥
∑I1
i=1 ∆vi

4
≥ C1V

4
> ε2,

which contradicts with the second inequality in (3.11).
Now we would like to establish the existence and uniqueness of the solution. We

first focus on the first equation in (3.11). For any 1 ≤ i ≤ I1 and fixed λ∗ > 0, there
exist one unique g∗i ∈ (0, 1) satisfying h′(fi + g∗i ) + 2λ∗g∗i = 0. This is because the
function ζi(x) := h′(fi + x) + 2λ∗x is monotonically increasing, and

ζ(0) = log fi ≤ log(
1

2
) < 0, ζ(1) ≥ 2λ∗ > 0.

Thus it remains to demonstrate that λ∗ is unique. Inspired by the first equation in
(3.11), we define

σ(x) = −h
′(fi + x)

2x
= − log(fi + x)

2x
, x ∈ (0, 1− fi].

Then its inverse function σ−1
i (y) satisfies

(3.13) y = − log(fi + σ−1
i (y))

2σ−1
i (y)

and σ−1
i (y) =

W0(2ye2yfi)− 2yfi
2y

,

where W0(·) is the Lambert W function [5] satisfying W0(x)eW0(x) = x. For σi(·) and
σ−1
i (·), we have the following properties:

1. σi(x) is monotonically decreasing, so is σ−1
i (x) (this requires fi ≤ 1

2 );

2. σi(g
∗
i ) = λ∗ and g∗i = σ−1

i (λ∗);
3. σ−1

i (0) = 1− fi ≥ 1
2 and σ−1

i (y)→ 0 as y → +∞.

Here the limit of σ−1
i (y) at +∞ can be obtained by the inequality (see [8])

W0(x) ≤ log(x)− log(log(x)) +
e

e− 1

log(log(x))

log(x)
, ∀x ≥ e.

Furthermore, if we define

Ξ(y) =

I1∑
i=1

[σ−1
i (y)]2∆vi, y ∈ [0,+∞),

then by the three properties of σi, we have
1. Ξ(y) is a decreasing function since each σ−1

i (y) is monotonically decreasing;
2. Ξ(λ∗) = ε2 according to (3.12);

3. Ξ(0) ≥ 1
4

∑I1
i=1 ∆vi > ε2, and Ξ(y)→ 0 as y → +∞.
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These properties show the existence and uniqueness of λ∗.
Next, we will show g∗I1 ≤ · · · ≤ g

∗
1 . For any 1 ≤ i ≤ j ≤ I1, fi ≤ fj implies

σj(g
∗
j ) = λ∗ = σi(g

∗
i ) ≥ σj(g∗i ).

Using the fact that σj(·) is decreasing, we see that g∗j ≤ g∗i . To get the bound of g∗1 ,
we need the following two results:

• By (3.13), we have

lim
y→+∞

σ−1
i (y)

σ−1
1 (y)

= lim
y→+∞

log(fi + σ−1
i (y))

log(f1 + σ−1
1 (y))

=
log(fi)

log(f1)
≥ Cf ;

• By straightforward calculation, we have

d

dy

(
σ−1
i (y)

σ−1
1 (y)

)
=

W0(2ye2yf1)−W0(2ye2yfi)

y(1 +W0(2ye2yf1))(1 +W0(2ye2yfi))

σ−1
i (y)

σ−1
1 (y)

≤ 0.

These results indicate that
g∗i
g∗1

=
σ−1
i (λ∗)

σ−1
1 (λ∗)

≥ Cf ,

and thus

g∗1 = ε

(
I1∑
i=1

(g∗i )2

(g∗1)2
∆vi

)−1/2

≤ ε

(
I1∑
i=1

C2
f∆vi

)−1/2

≤ ε√
C1V Cf

.

This completes the proof.

One corollary of the above lemma is the extension to a continuous version, with
identical optimal solution g∗ in the sense of piesewise constant function. For the ease
of this extension, we would like to introduce the (partial) sum of first i parameters
∆vi as

(3.14) S0 = 0, Si =

i∑
j=1

∆vj , i = 1, . . . , N.

Then we have the following lemma.

Corollary 3.8. Under the condition of Lemma 3.7, if a piesewise constant func-
tion defined on (0, SI1 ] is introduced as

f(v) = fi, v ∈ (Si−1, Si], i = 1, . . . , I1,

then the solution g∗(v) ∈ L2((0, SI1 ]) of the following optimization problem

(3.15) argmin
g∈L2((0,SI1

])

∫ SI1

0

h(f(v) + g(v))dv, s.t. ‖g‖22 :=

∫ SI1

0

(g(v))2dv ≤ ε2,

is equal to a piecewise constant function a.e. as

g∗(v) = g∗i , v ∈ (Si−1, Si], i = 1, . . . , I1,

where g∗i is the component of the optimal solution g∗ in Lemma 3.7.
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Proof. To prove the corollary, it suffices to show that for every i = 1, · · · , I1, the
function g∗(v) is a constant on (Si−1, Si] except for a set with measure zero, so that
the optimization problem (3.15) is essentially equivalent to (3.10). Suppose that g∗(v)
is essentially not a constant on (Si−1, Si] for some i. We define the function ĝ(v) by

ĝ(v) =

{
1

∆vi

∫ Si

Si−1
g∗(v) dv, if v ∈ (Si−1, Si],

g∗(v), otherwise.

By Hölder’s inequality (on (Si−1, Si]), it is easy to find ‖ĝ‖22 ≤ ‖g∗‖22 ≤ ε2. Moreover,
using Jensen’s inequality on convex function h(fi + ·), we obtain

(3.16)

∫ Si

Si−1

h(f(v) + ĝ(v)) dv = ∆vih(fi + ĝ(v)) ≤
∫ Si

Si−1

h(fi + g∗(v)) dv.

Note that g∗(·) is the optimal solution, implying that the equality must hold for (3.16).
However, since h(fi + ·) is strictly convex, the equality holds only when g∗(v) is a
constant on (Si−1, Si], which contradicts our assumption. This completes the proof
of the corollary.

Another important corollary of Lemma 3.7 is to pick β1 = O(‖fn+1−f(tn+1)‖2)
and construct fn+1,1 following (3.9), such that the entropy of fn+1,1 is less than the
entropy of f(tn+1) in the range of i ≤ I1.

Corollary 3.9. Let ε := ‖fn+1 − f(tn+1)‖2. Suppose fn+1 satisfies the condi-

tion of Lemma 3.7 and ε <
√
C1V Cf

2 . Let β1 = 2ε√
C1V Cf

and

(3.17) fn+1,1 = fn+1 + β1(1− fn+1).

Then fn+1,1 satisfies

(3.18)

I1∑
i=1

h(fn+1,1
i )∆vi ≤

I1∑
i=1

h(fi(tn+1))∆vi.

Proof. Let g∗1 , . . . , g
∗
I1

be the solution of the optimization problem (3.10). Since

I1∑
i=1

(fn+1
i − fi(tn+1))2∆vi ≤ ‖fn+1 − f(tn+1)‖22 = ε2,

it holds that
I1∑
i=1

h(fn+1
i + g∗i )∆vi ≤

I1∑
i=1

h(fi(tn+1))∆vi.

To prove (3.18), it suffices to show

(3.19)

I1∑
i=1

h(fn+1,1
i )∆vi ≤

I1∑
i=1

h(fn+1
i + g∗i )∆vi.

By the conclusion of Lemma 3.7,

fn+1,1
i = fn+1

i + β1(1− fn+1
i ) ≥ fn+1

i +
β1

2
= fn+1

i +
ε√

C1V Cf
≥ fn+1

i + g∗i ,
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for all 1 ≤ i ≤ I1. Noticing that β1 < 1 by the constraint ε <
√
C1V Cf

2 , we obtain

fn+1,1
i < 1. Hence, the monotonicity of h(·) yields

h(fn+1,1
i ) ≤ h(fn+1

i + g∗i ), ∀i = 1, . . . , I1.

Multiplying ∆vi and summing up the above inequalities for i yields (3.19).

By Corollary 3.9, we have performed our first step that reduce the entropy of the
smallest part of fn+1 (from fn+1

1 to fn+1
I1

) below the entropy of the exact solution

in the same section. If the smallest component beyond this section fn+1
I1+1 already

has the magnitude O(1), for instance, fn+1
I1+1 ≥

1
2 , then the remaining part can be

processed using the same technique as in Theorem 2.2 and Theorem 2.4. Therefore,
below we will only focus on the case where fn+1

I1+1 < 1/2, and this inspires us to further
decompose the remaining components into two parts by introducing I2 such that

(3.20) fn+1
I2
≤ 1

2
, fn+1

I2+1 >
1

2
.

Then we will have η(f)− V = H1(f) +H2(f) +H3(f) for any f ∈ RN+ , where
(3.21)

H1(f) =

I1∑
i=1

h(fi)∆vi, H2(f) =

I2∑
i=I1+1

h(fi)∆vi, H3(f) =

N∑
i=I2+1

h(fi)∆vi.

Note that this decomposition also includes the case fn+1
I1+1 ≥

1
2 , for which we can

choose I2 = I1, so that H2(fn+1) = 0.
Lemma 3.11 will show some properties of above decomposition. Before that, a

quotient F (x, y, C), which will be used in the proof of Lemma 3.11, is introduced as

(3.22) F (x, y, C) =
h(x+ y)− h(x+ Cy)

h(x)− h(x+ y)
,

where 0 ≤ x ≤ 1/2, C > 1 and 0 ≤ y ≤ 1/(2C). It is easy to find F (x, y, C) ≥ 0 in
its domain of definition. Furthermore, the following lemma gives the positive lower
bound of F (x, y, C) for fixed C, where the proof utilizes the (partial) derivatives of
F (x, y, C) and its detail is left in Appendix A.

Lemma 3.10. For any C1 ∈ (0, 1], there exists C2 > 1 depending on C1, such that
F (x, y, C2) given in (3.22) satisfies

F (x, y, C2) ≥ 1

C1
, ∀0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1

2C2
.

Lemma 3.11. Under the condition of Corollary 3.9 and the decomposition of
(3.21), the following properties are satisfied:

1. H2(fn+1,1)−H2(f(tn+1)) ≤ 1
C1

(H1(fn+1)−H1(fn+1,1));

2. There exists a constant M1 > 1 depending on C1 such that when ε ≤
√
C1V Cf

2M1
,

the vector

(3.23) fn+1,2 = fn+1,1 +M1β1(1− fn+1,1)

satisfies H1(fn+1,1)−H1(fn+1,2) ≥ 1
C1

(H1(fn+1)−H1(fn+1,1)).
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Proof. To prove the first statement, we use the convexity of H2(·) to obtain
(3.24)
H2(fn+1,1) = H2(fn+1 + β1(1− fn+1)) ≤ max(H2(fn+1), H2(1)) = H2(fn+1).

Therefore,

(3.25)

H2(fn+1,1)−H2(f(tn+1))

= H2(fn+1,1)−H2(fn+1) +H2(fn+1)−H2(f(tn+1))

≤ H2(fn+1)−H2(f(tn+1)) ≤ H2(fn+1)−H2(fn+1 + g∗∗),

where g∗∗ = (g∗∗1 , . . . , g∗∗N )T ∈ RN is the solution of following minimization problem:

argmin
‖g‖2≤ε

H2(fn+1 + g).

The existence of g∗∗ is because H2(fn+1 + g) is a continuous function (w.r.t. g)
defined on a closed set and the constrain ‖g‖2 ≤ ε also gives a closed set for g. The
solution g∗∗ satisfies that g∗∗i ≥ 0 for all I1 < i ≤ I2, since replacing any negative
component of g by zero will lead to a smaller value for the objective function.

For any i = I1 + 1, . . . , I2 and j = 1, . . . , I1, the convexity of h(·) implies

(3.26) h(fn+1
i )− h(fn+1

i + g∗∗i ) ≤ h(fn+1
j )− h(fn+1

j + g∗∗i ).

To extend the above inequality to functions defined on R+ with support in [0, V ],
which is convenient for our proof in the following step, we would like to follow the
notation in (3.14) and represent fn+1 and g∗∗ by piesewise constant functions fn+1(v)
and g∗∗(v) respectively as

fn+1(v) = fn+1
i , g∗∗(v) = g∗∗i , v ∈ (Si−1, Si], i = 1, . . . , I2,

and both fn+1(v) and g∗∗(v) equal zero if v > SI2 . Using the functions fn+1(v) and
g∗∗(v), the inequality (3.26) is equivalent to: for any w ∈ (SI1 , SI2) and v ∈ (S0, SI1),

h(fn+1(w))− h(fn+1(w) + g∗∗(w)) ≤ h(fn+1(v))− h(fn+1(v) + g∗∗(w)).

Since g∗∗(w) = 0 for w ≥ SI2 , the above inequality actually holds for any w ∈
(SI1 ,+∞). Therefore, we choose w = v + kSI1 with k ≥ 1 to obtain
(3.27)

H2(fn+1)−H2(fn+1 + g∗∗)

=

I2∑
i=I1+1

(
h(fn+1

i )− h(fn+1
i + g∗∗i )

)
∆vi

=

∫ SI2

SI1

(
h(fn+1(v))− h(fn+1(v) + g∗∗(v))

)
dv

=

⌈
SI2

−SI1
SI1

⌉∑
k=1

∫ SI1

0

(
h(fn+1(v + kSI1))− h(fn+1(v + kSI1) + g∗∗(v + kSI1))

)
dv

≤

⌈
SI2

−SI1
SI1

⌉∑
k=1

∫ SI1

0

(
h(fn+1(v))− h(fn+1(v) + g∗∗(v + kSI1))

)
dv.
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Since ‖g∗∗‖22 ≤ ‖g∗∗‖22 ≤ ε2, for any 1 ≤ k ≤ dSI2
−SI1

SI1
e, we have

(3.28)

∫ SI1

0

h(fn+1(v) + g∗∗(v + kSI1))dv

≥
∫ SI1

0

h(fn+1(v) + g∗(v))dv

=

I1∑
j=1

h(fn+1
j + g∗j )∆vj ≥

I1∑
j=1

h(fn+1,1
j )∆vj ,

where g∗(v) and g∗i stand for the solutions of the optimization problem (3.15) and
(3.10), respectively; the equality is the conclusion of Corollary 3.8, and the last “≥”
comes from the inequality (3.19). Inserting (3.28) into (3.27) yields

(3.29)
H2(fn+1)−H2(fn+1 + g∗∗) ≤

d
SI2

−SI1
SI1

e∑
k=1

I1∑
j=1

(
h(fn+1

j )− h(fn+1,1
j )

)
∆vj

≤ V

SI1
(H1(fn+1)−H1(fn+1,1)).

Since the definition of I1 implies SI1 ≥ C1V , concatenating (3.25) and (3.29) proves
the first statement.

The second statement will be proved componentwisely. We set M1 = 2C2, where
C2 is determined by Lemma 3.10 with C1 being chosen as the constant C1 appearing
in the first statement. Then, for any 1 ≤ i ≤ I1, it holds that

fn+1,1
i = fn+1

i + β1(1− fn+1
i ) ≤ fn+1

i + β1.

Moreover, when ε ≤
√
C1V Cf

2M1
, it could be found that β1 ≤ 1/M1 and

fn+1,2
i = fn+1

i + (β1 +M1β1 −M1β
2
1)(1− fn+1

i )

≥ fn+1
i +M1β1(1− fn+1

i ) ≥ fn+1
i + C2β1,

where we have used fn+1
i ≤ 1

2 and M1 = 2C2. Therefore, the monotonicity of h(·) in
the interval of [0, 1] implies

h(fn+1,1
i )− h(fn+1,2

i )

h(fn+1
i )− h(fn+1,1

i )
≥ h(fn+1

i + β1)− h(fn+1
i + C2β1)

h(fn+1
i )− h(fn+1

i + β1)
= F (fn+1

i , β1, C2) ≥ 1

C1
,

where the function F (·, ·, ·) is defined in (3.22) and the last inequality is due to
Lemma 3.10. By noticing h(fn+1

i ) − h(fn+1,1
i ) ≥ 0, the second statement can then

be easily derived.

With the preparation of Lemma 3.11, we can start to prove Theorem 2.5.

Proof of Theorem 2.5. If fn+1
I1
≥ 1

2 , (2.8) implies log(fn+1
1 ) ≥ − 1

Cf
log(2), which

means fn+1
1 ≥ 2−1/Cf . Then, from Theorem 2.3, we get ‖β(1−fn+1)‖2 ≤M‖fn+1−

f(tn+1)‖2 where M > 0 depends on 2−1/Cf , ‖fn+1‖∞ and ‖f(tn+1)‖∞. This com-
pletes the proof.

Otherwise, if fn+1
I1

< 1
2 , we would like to introduce I2 and decompose η(f) fol-

lowing (3.20) and (3.21). After that, we construct fn+1,1 and fn+1,2 from (3.9)
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with β1 = ‖f(tn+1) − fn+1‖2/(
√
C1V Cf ) and (3.23) with β2 = M1β1, respectively,

where the M1 is the constant in Lemma 3.11. Then we set δ =
√
C1V Cf/2, and if

‖fn+1 − f(tn+1)‖ < δ, it holds that

H1(fn+1,2) +H2(fn+1,2)−H1(f(tn+1))−H2(f(tn+1))

=
(
H1(fn+1,2)−H1(fn+1,1)

)
+
(
H1(fn+1,1)−H1(f(tn+1))

)
+
(
H2(fn+1,2)−H2(fn+1,1)

)
+
(
H2(fn+1,1)−H2(f(tn+1))

)
≤
(
H1(fn+1,2)−H1(fn+1,1)

)
+ 0 (Corollary 3.9)

+

(
−H1(fn+1)−H1(fn+1,1)

C1

)
+

(
H1(fn+1)−H1(fn+1,1)

C1

)
(Lemma 3.11)

= H1(fn+1,2)−H1(fn+1,1) ≤ 0,

where the last inequality is similar to (3.24) which utilizes the convexity of H1(·).
Therefore, by the decomposition in (3.21),

(3.30)

η(fn+1,2)− η(f(tn+1)) ≤ H3(fn+1,2)−H3(f(tn+1))

=
∑

fn+1
i > 1

2

(
h(fn+1,2

i )− h(fi(tn+1))
)

∆vi.

From the construction of fn+1,2, we know fn+1,2
i is a convex combination of 1 and

fn+1
i , so fn+1

i > 1
2 implies fn+1,2

i > 1
2 . Therefore (3.30) can be further extended as

(3.31) η(fn+1,2)− η(f(tn+1)) ≤
∑

fn+1,2
i > 1

2

(
h(fn+1,2

i )− h(fi(tn+1))
)

∆vi.

The remaining part of the proof is similar to the proof of Theorem 2.4. If
η(fn+1,2) ≤ η(f(tn+1)), the proof is done. Otherwise, we have η(fn+1,2) > η(f(tn+1)),

and we can continue to find f̂
n+1

and β3 such that

f̂
n+1

= fn+1,2 + β3(1− fn+1,2),

and η(f̂
n+1

) = η(f(tn+1)). Due to the inequality (3.31), we can follow the proof of
Lemma 3.4 (case (ii)) and Theorem 2.3 to show

‖β3(1− fn+1,2)‖2 ≤M2‖f(tn+1)− fn+1,2‖2,

where M2 > 0 is a constant depending on ‖fn+1‖∞ (because ‖fn+1,2‖∞ ≤ ‖fn+1‖∞)

and ‖f(tn+1)‖∞. Therefore, η(f̂
n+1

) ≤ η(f(tn+1)), and

‖f̂
n+1
− fn+1‖2

≤ ‖f̂
n+1
− fn+1,2‖2 + ‖fn+1,2 − fn+1‖2

≤M2‖f(tn+1)− fn+1,2‖2 + ‖fn+1,2 − fn+1‖2
≤M2‖f(tn+1)− fn+1‖2 + (1 +M2)‖fn+1,2 − fn+1‖2
= M2‖f(tn+1)− fn+1‖2 + (1 +M2)(β1 + β2 − β1β2)‖1− fn+1‖2

≤
(
M2 +

(1 +M1)(1 +M2)‖fn+1‖∞√
C1Cf

)
‖f(tn+1)− fn+1‖2,
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where the last inequality utilizes (β1 + β2 − β1β2) ≤ β1 + β2 and ‖1 − fn+1‖2 ≤√
V ‖fn+1‖∞. If we denote the constant in front of ‖f(tn+1)−fn+1‖2 as M , we have

proved the constructed

f̂
n+1

= fn+1,2 + β3(1− fn+1,2)

= fn+1 + (β1 + β2 + β3 − β1β2 − β2β3 − β1β3 + β1β2β3)(1− fn+1),

such that η(f̂
n+1

) ≤ η(f(tn+1)) and ‖f̂
n+1
− fn+1‖2 ≤ M‖f(tn+1) − fn+1‖2. Due

to the monotonicity of H(fn+1 + β(1− fn+1)) w.r.t. β, if we construct β from (2.7),

‖β(1− fn+1)‖2 ≤ ‖f̂
n+1
− fn+1‖2 ≤M‖fn+1 − f(tn+1)‖2.

4. Numerical examples. We now present two numerical examples to show the
effect of our entropy fix. In order to construct cases where the numerical scheme
frequently violates the entropy inequality, we deliberately select highly oscillatory
initial data. We would like to remark that such an entropy fix may only need to be
applied occasionally in many applications.

4.1. Linear Fokker-Planck equation. In this example, we consider the one-
dimensional linear Fokker-Planck equation (also known as the drift-diffusion equa-
tion):

(4.1) ft = fxx + (V ′(x)f)x, t > 0, x ∈ (0, 1),

with periodic boundary condition f(t, 0) = f(t, 1) and potential function

V (x) =
1

2π
cos (20πx) .

Let M(x) = exp(−V (x)), then (4.1) can be written equivalently as

(4.2) ft =

(
M

(
f

M

)
x

)
x

.

If we further define g(t, x) = f(t, x)/M(x), then (4.2) becomes

(4.3) gt =
1

M
(Mgx)x , t > 0, x ∈ (0, 1).

We will focus on the discretization of (4.3). Initial condition is taken as

g(0, x) = 1.2 +

20∑
j=1

j

210
sin (2jπx) .

Note that
∑20
j=1 j = 210, so 0.2 ≤ g(0, x) ≤ 2.2. We partition [0, 1] into N = 64

grids uniformly with mesh size ∆x = 1/N and take central difference for spatial
discretization. Denote gj = g(t, j∆x), Mj = M(j∆x) and Mj+1/2 = M((j+ 1/2)∆x)
for j = 0, . . . , N − 1, (4.3) can be approximated by

(4.4)
dgj
dt

=
1

Mj

Mj+1/2(gj+1 − gj)−Mj−1/2(gj − gj−1)

(∆x)2
.
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The exact solution of (4.4) can be calculated by evaluating the eigenvalues and eigen-
vectors of the right-hand side of (4.4).

The semi-discrete scheme (4.4) (time is kept continuous) satisfies the conservation
of mass and the monotonicity of entropy with weight Mj . In fact, it is easy to verify∑N−1
j=0 Mjgj remains as constant. For the entropy, we have

d
(∑N−1

j=0 Mjgj log gj

)
dt

=
1

(∆x)2

N−1∑
j=0

(
Mj+1/2(gj+1 − gj)−Mj−1/2(gj − gj−1)

)
log gj

= − 1

(∆x)2

N−1∑
j=0

Mj−1/2(gj − gj−1)(log gj − log gj−1) ≤ 0.

(4.5)

We now discretize (4.4) by the implicit midpoint (i.e., Crank–Nicolson) method.
This time discretization still conserves the mass. However, there is no guarantee
that the entropy will decay monotonically in time (in fact, it does not). In Figure 3,
we report the time evolution of the entropy with and without the entropy fix. Two
different time steps ∆t = 1/512 and ∆t = 1/1024 are considered. In both cases, it
is clear that the entropy decreases monotonically with the help of the entropy fix.
Meanwhile, the L2 error of the solution remains almost the same with and without
the entropy fix. It is interesting to note that when ∆t = 1/512, the entropy fix is
only needed at the first few time steps. On the other hand, when ∆t = 1/1024, the
entropy fix is required only after t = 0.02.

4.2. Nonlinear Boltzmann equation. In this example, we consider a nonlin-
ear model introduced in [3], which results from a Fourier method for the spatially
homogeneous Boltzmann equation. The governing equation reads

(4.6)
dfr(t)

dt
=

∑
p,q,s∈X

Arspq (fp(t)fq(t)− fr(t)fs(t)) , r ∈ X ,

where fr represents the approximation of the distribution function on a uniform 3D
lattice index set X = {(r1, r2, r3) | ri = 0, . . . ,M − 1 for i = 1, 2, 3}. In [3], the
coefficients Arspq are determined in such a way that the semi-discrete scheme (4.6)
decays the entropy. However, this property may not hold when the time is discretized.

In our experiment, we choose M = 17, and the values of Arspq are given in Appen-
dix B. The initial condition is taken as

fr(0) = 3.2 +

10∑
j=1

j

55

[
sin
(
jπ
( r1

M
− 1

2

))
+ sin

(
jπ
( r2

M
− 1

2

))
+ sin

(
jπ
( r3

M
− 1

2

))]
.

We solve (4.6) by the forward Euler method with time step ∆t = 0.0007. The results
are displayed in Figure 4, from which we can see that the entropy fix method guaran-
tees the monotonicity of the entropy. The numerical error is computed by comparison
with the numerical solution computed with a smaller time step ∆t = 0.000175, with
and without the entropy fix. It can be seen that the two error curves almost coincide
with each other, meaning that the entropy fix does not ruin the numerical accuracy.

5. Conclusions. This paper focuses on the entropic method for a conservative
and positive system of ordinary differential equations. When the numerical solution at
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Fig. 3. Example of the linear Fokker-Planck equation. Time evolution of the entropy
H(g) =

∑N−1
j=0 (gj log gj−gj)Mj∆x and the L2 relative error ‖g−gexact‖2/‖gexact‖2 = (

∑N−1
j=0 (gj−

gexact,j)2Mj∆x)1/2/(
∑N−1

j=0 (gexact,j)2Mj∆x)1/2, where ∆x = 1/64, ∆t = 1/512 in the top two fig-

ures and ∆t = 1/1024 in the bottom two figures.

the next time step violates the monotonicity of entropy, our entropic method revises
it by a linear interpolation to the constant state. The resulting scheme decays the
entropy monotonically, while the order of local truncation error has a slight reduction
in general. However, in some special cases, the numerical order is proved to be
retained after entropic revision. Numerical experiments validate our results. Future
work includes the extension of the entropic method to spatially inhomogeneous kinetic
equations such as the Boltzmann equation and the radiative transfer equations.

Appendix A. Proof of Lemma 3.10. This proof is composed of three steps:
1. F (x, y, C) ≥ F (x, 1

2C , C) for 0 ≤ x ≤ 1
2 , C > 1 and 0 ≤ y ≤ 1

2C ;
2. F (x, 1

2C , C) ≥ min(F (0, 1
2C , C), F ( 1

2 ,
1

2C , C)) for 0 ≤ x ≤ 1
2 and C > 1;

3. for any C1 ∈ (0, 1], there is C2 > 1 depending on C1 such that F (0, 1
2C2

, C2) ≥
1
C1

and F ( 1
2 ,

1
2C2

, C2) ≥ 1
C1

.

A.1. First step. It is sufficient to show ∂F (x,y,C)
∂y ≤ 0 for y ≥ 0, from which

F (x, y, C) ≥ F (x, 1
2C , C) for 0 ≤ y ≤ 1

2C . By the expression of F (x, y, C) in (3.22), it
could be calculated that

(A.1)
∂F (x, y, C)

∂y
=

F1(x, y, C)

(h(x)− h(x+ y))
2 ,
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Fig. 4. Example of the nonlinear Boltzmann equation. Time evolution of the entropy
H(f) =

∑
r∈X (fr log fr − fr)∆v and the L2 relative error ‖f − fexact‖2/‖fexact‖2 = (

∑
r∈X (fr −

fexact,r)2∆v)1/2/(
∑

r∈X (fexact,r)2∆v)1/2, where ∆v = (3(3 +
√

2)/17)3 and ∆t = 0.0007. fexact
is the numerical solution evaluated with time step ∆t = 0.000175.

where

F1(x, y, C) = x log (y + x) (log (x)− log (yC + x))

+ Cx log (yC + x) (log (y + x)− log (x))

+ yC (log (y + x)− log (yC + x)) .

Then we take the derivative of F1(x, y, C) with respect to y,

(A.2)
∂F1(x, y, C)

∂y
=

F2(x, y, C)

(y + x) (yC + x)
,

where

F2(x, y, C) = x2
(
C2 (log (y + x)− log (x))− log (yC + x) + log (x)

)
+ yCx (−2 log (yC + x)− C (−2 log (y + x) + log (x) + 1))

+ yCx (log (x) + 1) + y2C2 (log (y + x)− log (yC + x)) .

We continue to take the derivative of F2(x, y, C) w.r.t. y,

∂F2(x, y, C)

∂y
= C(C − 1)x− C (−2Ch(x+ y) + 2h (x+ Cy) + (C − 1)h(x)) .

When C > 1, the convexity of h(·) implies

h(x+ y) ≤
(

1− 1

C

)
h(x) +

1

C
h(x+ Cy).

Therefore,

−2Ch(x+ y) + 2h (x+ Cy) + (C − 1)h(x) ≥ (1− C)h(x).

As a result,
∂F2(x, y, C)

∂y
≤ C(C − 1)(h(x) + x) ≤ 0,
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where the last inequality utilizes h(x) + x = x log(x) ≤ 0 when x ≤ 1
2 .

∂F2(x,y,C)
∂y ≤ 0 implies F2(x, y, C) is decreasing with respect to y for fixed x

and C. At the same time, it is easy to verify that F2(x, 0, C) = 0. Therefore,
F2(x, y, C) ≤ F2(x, 0, C) = 0 for y ≥ 0.

From (A.2) and F2(x, y, C) ≤ 0, it is easy to get ∂F1(x,y,C)
∂y ≤ 0, which means

F1(x, y, C) is decreasing with respect to y for fixed x and C. Combining with
F1(x, y, C) |y=0= 0, we could find F1(x, y, C) ≤ 0 for y ≥ 0.

Finally, plugging F1(x, y, C) ≤ 0 into (A.1), we could conclude that ∂F (x,y,C)
∂y ≤ 0

for y ≥ 0.

A.2. Second step. For simplicity, We would like to introduce G(x,C) to denote
F (x, 1

2C , C) as

(A.3) G(x,C) = F (x,
1

2C
,C) =

h(x+ 1/(2C))− h(x+ 1/2)

h(x)− h(x+ 1/(2C))
,

where the second equality is achieved by plugging y = 1/(2C) into (3.22). We will
show that for fixed C > 1, G(x,C) is increasing and then decreasing for 0 < x ≤ 1

2 ,
from which it is easy to see G(x,C) ≥ min(G(0, C), G( 1

2 , C)). The idea is similar to
the first step, which utilizes the sign of derivative.

By the expression of G(x,C) in (A.3), a direct calculation shows

(A.4)
∂G(x,C)

∂x
=

G1(x,C)

2C
(
h (x)− h

(
x+ 1

2C

))2 ,
where

G1(x,C) = C

(
log

(
x+

1

2

)
− 1

)(
log (x)− log

(
x+

1

2C

))
−
(

log (x)− log

(
x+

1

2

))(
log

(
x+

1

2C

)
− 1

)
.

Again, we taken the derivative of G1(x,C) w.r.t. x,

(A.5)
∂G1(x,C)

∂x
=

G2(x,C)

x (2x+ 1) (2Cx+ 1)
,

where

G2(x,C) = 4C2x2

(
log (x)− log

(
x+

1

2C

))
− log

(
x+

1

2C

)
+ 4Cx

(
log

(
x+

1

2

)
− log

(
x+

1

2C

))
+ 1− C

+ C

(
−4x2

(
log (x)− log

(
x+

1

2

))
+ log

(
x+

1

2

))
.

We continue to take the derivative of G2(x,C) w.r.t. x,

∂G2(x,C)

∂x
= 8C

(
−Ch

(
x+

1

2C

)
+ (C − 1)h(x) + h

(
x+

1

2

))
.
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The convexity of h(·) and C > 1 implies

h

(
x+

1

2C

)
≤
(

1− 1

C

)
h(x) +

1

C
h

(
x+

1

2

)
,

which means

−Ch
(
x+

1

2C

)
+ (C − 1)h(x) + h

(
x+

1

2

)
≥ 0.

Therefore, ∂G2(x,C)
∂x ≥ 0 for 0 < x ≤ 1

2 , meaning G2(x,C) is increasing w.r.t. x for
fixed C. On the other hand,

lim
x→0

G2(x,C) = − log

(
1

C

)
− C(1 + log(2)) + 1 + log(2)

≤ C − 1− C(1 + log(2)) + 1 + log(2) = − log(2)(C − 1) < 0,

and

G2(
1

2
, C) = −C − (C + 1)

2
log

(
1

2C
+

1

2

)
− C (C − 1) log(2) + 1 ≥ 0.

Therefore, for fixed C, there exists 0 < G0
2 ≤ 1

2 , such that G2(x,C) ≤ 0 for x ≤ G0
2

and G2(x,C) ≥ 0 for x ≥ G0
2. The reason for G2( 1

2 , C) ≥ 0 can be revealed from
taking derivatives, i.e.,

dG2( 1
2 , C)

dC
=

1

C
+ 3 log(2)− 2 log

((
C + 1

C

)(C+1)
)
,

d2G2( 1
2 , C)

d(C)2
=

2

C
− 1

C2
− 2 log

(
1

C
+ 1

)
,

d3G2( 1
2 , C)

d(C)3
=

2

C4 + C3
> 0.

d3G2( 1
2 ,C)

d(C)3 > 0 implies
d2G2( 1

2 ,C)

d(C)2 is increasing, which gives

d2G2( 1
2 , C)

d(C)2
≤ lim
C→∞

d2G2( 1
2 , C)

d(C)2
= 0.

Therefore,
dG2( 1

2 ,C)

dC is decreasing,

dG2( 1
2 , C)

dC
≥ lim
C→∞

dG2( 1
2 , C)

dC
= 3 log(2)− 2 > 0.

As a result, G2( 1
2 , C) is increasing for C > 1 and G2( 1

2 , C) ≥ G2( 1
2 , 1) = 0.

Since G2(x,C) ≤ 0 for x ≤ G0
2 and G2(x,C) ≥ 0 for x ≥ G0

2, we could find
G1(x,C) is decreasing on (0, G0

2] and increasing on [G0
2,

1
2 ] from (A.5). On the other

hand, due to C > 1 and log(C) ≤ C − 1,

lim
x→0

G1(x,C) = lim
x→0

((1− C) log(2) + log(C) + 1− C) log(x) =∞.

Together with

G1(
1

2
, C) = (C + log(2)) log

(
1

C
+ 1

)
− log(2)(1 + log(2)) ≤ 0,
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we could get for fixed C, there exists 0 < G0
1 ≤ 1

2 , such that G1(x,C) ≥ 0 for x ≤ G0
1

and G1(x,C) ≤ 0 for x ≥ G0
1. Similar to G2( 1

2 , C), the reason for G1( 1
2 , C) ≤ 0 can

be revealed from taking derivatives.

dG1( 1
2 , C)

dC
= log

(
1

C
+ 1

)
− C + log(2)

C(1 + C)
,

d2G1( 1
2 , C)

d(C)2
=
C(log(4)− 1) + log(2)

C2 (C + 1) 2
> 0,

which means
dG1( 1

2 ,C)

dC is increasing w.r.t. C. Therefore,

dG1( 1
2 , C)

dC
≤ lim
C→∞

dG1( 1
2 , C)

dC
= 0,

which implies G1( 1
2 , C) is decreasing for C > 1. Hence, G1( 1

2 , C) ≤ G1( 1
2 , 1) = 0.

Using (A.4), together with G1(x,C) ≥ 0 for x ≤ G0
1 and G1(x,C) ≤ 0 for

x ≥ G0
1, we could get G(x,C) is increasing on (0, G0

1] and then decreasing on [G0
1,

1
2 ]

with respect to x.

A.3. Third step. With the notation in (A.3), we would like to evaluate G(0, C)
and G(1/2, C)) one by one.

On the one hand, for G(0, C), since log(2C) ≤ 2
√
C − 1 for C ≥ 1 (which can be

proved by the monotonicity of log(2C)− 2
√
C + 1), it holds that

G(0, C) =
h( 1

2C )− h( 1
2 )

h(0)− h( 1
2C )

=
C(1 + log(2))

log (2C) + 1
− 1 ≥ 1 + log(2)

2

√
C − 1.

Therefore, for any C1 ∈ (0, 1], we could take C2 =
(

2(1+C1)
C1(1+log(2))

)2

, which gives

G(0, C2) ≥ 1
C1

. Furthermore, it is easy to find C2 =
(

2
(1+log(2))

)2 (
1+C1

C1

)2

≥
16

(1+log(2))2 since 1+C1

C1
≥ 2 for 0 < C1 ≤ 1.

On the other hand, for G( 1
2 , C),

G(
1

2
, C) =

h( 1
2 + 1

2C )− h(1)

h( 1
2 )− h( 1

2 + 1
2C )

=
C + (C + 1)

(
log
(

1
C + 1

)
− log(2)

)
− 1

− (C + 1) log
(

1
C + 1

)
+ 1 + log(2)

.

Since (C + 1) log
(

1
C + 1

)
≥ 1, it holds that when C ≥ 16

(1+log(2))2 , the numerator

C + (C + 1)

(
log

(
1

C
+ 1

)
− log(2)

)
− 1 ≥ (1− log(2))C − log(2) > 0.

Then, we could utilize (C + 1) log
(

1
C + 1

)
≥ 1 in the denominator of G( 1

2 , C) and get

G(
1

2
, C) ≥ (1− log(2))C − log(2)

log(2)
.

Therefore, we could take C2 = max( 16
(1+log(2))2 ,

(C1+1) log(2)
C1(1−log(2)) ) to get G( 1

2 , C2) ≥ 1
C1

.

Combining the results of G(0, C2) and G( 1
2 , C2), we could conclude that for

any C1 ∈ (0, 1], there exists C2 = max
((

2(1+C1)
C1(1+log(2))

)2

, (C1+1) log(2)
C1(1−log(2))

)
such that
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G(0, C2) ≥ 1
C1

and G( 1
2 , C2) ≥ 1

C1
. In fact, for C1 ∈ (0, 1],

(
2(1+C1)

C1(1+log(2))

)2

≥
(C1+1) log(2)
C1(1−log(2)) . The derivative of their difference is

d

dC1

((
2(1 + C1)

C1(1 + log(2))

)2

− (C1 + 1) log(2)

C1(1− log(2))

)

=
−C1

(
−8 + log3(2) + 2 log2(2) + log(512)

)
+ 8− 8 log(2)

C3
1 (log(2)− 1)(1 + log(2))2

.

Since
(
−8 + log3(2) + 2 log2(2) + log(512)

)
< 0, the above numerator is greater than

8− 8 log(2) for 0 < C1 ≤ 1, which is positive. Combining with the negative denomi-
nator, the above derivative is negative, therefore,(

2(1 + C1)

C1(1 + log(2))

)2

− (C1 + 1) log(2)

C1(1− log(2))
≥
(

4

1 + log(2)

)2

− 2 log(2)

1− log(2)
> 0.

As a result, max
((

2(1+C1)
C1(1+log(2))

)2

, (C1+1) log(2)
C1(1−log(2))

)
=
(

2(1+C1)
C1(1+log(2))

)2

, and the third step

is proved with C2 =
(

2(1+C1)
C1(1+log(2))

)2

.

Appendix B. Coefficients in Eq. (4.6). The values of Arspq are given by

(B.1) Arspq =
1

M9

∑
l,h,k∈K

B̂σM (h− k, l − k)E−l(p− s)E−h(q − s)Ek(r − s),

where K is defined as K = {k | k = (k1, k2, k3),−m ≤ k1, k2, k3 ≤ m} with M =
2m + 1, and Ek(v) = exp( iπ

T k · v) is the Fourier basis on the period [−T, T ]3. The

kernel function B̂σM (·, ·) are defined by

B̂σM (i, j) := B̂(i mod M, j mod M)σM (i mod M)σM (j mod M),

where mod is the symmetric modulo function such that each component of i mod M
ranges from −m to m, and σM (i) = σ̃M (i1)σ̃M (i2)σ̃M (i3) where σ̃M (β) is the one-
dimensional modified Jackson filter [12] given by

σ̃M (β) =
(m+ 1− |β|) cos

(
π|β|
m+1

)
+ sin

(
π|β|
m+1

)
cot
(

π
m+1

)
m+ 1

.

In the example in subsection 4.2, we adopt the kernel modes for the case of the
Maxwell molecules presented in [9] with

B̂(k, l) :=

∫ 1

0

r2 Sinc(ξr) Sinc(ηr) dr =
(ξ + η) sin(ξ − η)− (ξ − η) sin(ξ + η)

2ξη(ξ2 − η2)
,

where ξ = |k + l|λπ, η = |k − l|λπ, and λ = 2/(3 +
√

2). In the numerical simulation,
we take M = 17 and T = 3/λ.
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