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A note on infinite antichain density

Paul Balister∗ Emil Powierski∗ Alex Scott∗† Jane Tan∗

Abstract

Let F be an antichain of finite subsets of N. How quickly can the
quantities |F ∩ 2[n]| grow as n → ∞? We show that for any sequence
(fn)n≥n0

of positive integers satisfying
∑∞

n=n0
fn/2

n ≤ 1/4, fn0
= 1 and

fn ≤ fn+1 ≤ 2fn, there exists an infinite antichain F of finite subsets of
N such that |F ∩ 2[n]| ≥ fn for all n ≥ n0. It follows that for any ε > 0
there exists an antichain F ⊆ 2N such that

lim inf
n→∞

|F ∩ 2[n]| ·
(

2n

n log1+ε n

)−1

> 0.

This resolves a problem of Sudakov, Tomon and Wagner in a strong
form, and is essentially tight.

1 Introduction

For a set X , let 2X denote the power set of X , and let [n] = {1, . . . , n}. A
family F of sets is an antichain if A 6⊆ B for all distinct A,B ∈ F . A well-
known theorem of Sperner [5] states that any antichain F ⊆ 2[n] has size at
most

(

n
⌊n/2⌋

)

; the upper bound is achieved by the antichain consisting of all

sets of size ⌊n/2⌋. Sperner’s theorem is a fundamental result in combinatorics
and has led to a huge body of subsequent research (see, for example, [1, 2, 3]).

Now suppose that F is an (infinite) collection of finite subsets of the natural
numbers. How fast can |F ∩ 2[n]| grow? It follows immediately from Sperner’s
theorem that

|F ∩ 2[n]| ≤
(

n

⌊n/2⌋

)

= O(2n/
√
n). (1.1)

However, the extremal families for Sperner’s theorem for different values of n
are far from being nested, so it is not a priori clear that anything close to this
bound can be achieved.

This problem was investigated recently by Sudakov, Tomon, and Wag-
ner [6]. They show that, in fact, the upper bound on the asymptotic growth
rate given by (1.1) can be improved by a polynomial factor. Indeed, they note
that the following upper bound follows easily from Kraft’s inequality [4].
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Theorem 1 (Sudakov, Tomon, and Wagner [6]). Let F ⊆ 2N be an antichain.

Then
∞
∑

n=1

|F ∩ 2[n]|
2n

≤ 2. (1.2)

It follows immediately that |F ∩ 2[n]| cannot grow as quickly as 2n/n log n,
that is,

lim inf
n→∞

|F ∩ 2[n]| ·
(

2n

n log n

)−1

= 0. (1.3)

Turning to lower bounds, Sudakov, Tomon, and Wagner used an argument
based on a carefully chosen family of random walks to construct an antichain
with asymptotic growth matching (1.3) up to a polylogarithmic term.

Theorem 2 (Sudakov, Tomon, and Wagner [6]). There exists an antichain

F ⊆ 2N with

lim inf
n→∞

|F ∩ 2[n]| ·
(

2n

n log46 n

)−1

> 0.

They go on to speculate that the bound in Theorem 1 is essentially optimal,
and that the exponent 46 in Theorem 2 can be improved to 1+ε for any ε > 0.
We show that this is indeed the case. In fact we prove a stronger result, giving
essentially optimal bounds on the growth rate of |F ∩ 2[n]|. Our main theorem
uses a condition that matches the form taken by (1.2) and shows that, under
natural additional assumptions, any growth rate for which the stated series is
convergent can be attained.

Theorem 3. Let (fn)n≥n0
be a nondecreasing sequence of positive integers for

which fn0
= 1,

∞
∑

n=n0

fn
2n

≤ 1

4

and fn
2n

is nonincreasing (so fn ≤ fn+1 ≤ 2fn). Then there exists an antichain

F ⊆ 2N such that

|F ∩ 2[n]| ≥ fn

for all n ≥ n0.

We remark that if 1 < fn0
< 2n0/8n0, then one obtains the same result

provided
∞
∑

n=n0

fn
2n

≤ 1

4
− 2n0 ·

fn0

2n0
.

Indeed, it is enough to set fn = ⌈fn0
/2n0−n⌉ for n < n0 and apply Theorem 3

to the new sequence (fn)n≥n′

0
, where n′

0 = max{n : fn = 1}.
By taking fn to be about 2n/(n logn1+ε) for any ε > 0, the following result,

answering the question of Sudakov, Tomon, and Wagner, is immediate.

Corollary 4. There exists an antichain F ⊆ 2N such that

|F ∩ 2[n]| = 2n

n log1+o(1) n
.
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2 Antichain construction

In this section, we prove Theorem 3. We use standard notation throughout.
We identify infinite binary ({0, 1}-)strings with subsets of N in the usual way,
that is, a string x1x2 · · · corresponds to the set {i ∈ N : xi = 1}. Recall that
in lexicographic order, for distinct binary strings x1x2 · · · and y1y2 · · · we have
x1x2 · · · <lex y1y2 · · · if xi < yi, where i = min{j : xj 6= yj}, and similarly for
finite strings.

The elements of our antichain will each consist of two concatenated parts
where the initial segment encodes the number of 1’s in the remainder of the
string. By construction, these elements (in particular the initial segments) nat-
urally occur in reverse lexicographic order and are built in blocks of elements
with the same initial segment.

The set of strings that we use as initial segments have the property that no
string is an initial segment of any other. Such a set is called a prefix code. This
condition, while being much weaker than that required for an antichain, gets
us “halfway” there, as it ensures that elements with prefixes earlier in reverse
lexicographic order cannot be subsets of those with later prefixes. To obtain
our antichain, we will then append strings to each prefix in such a way that
later elements cannot be subsets of earlier ones.

Proof of Theorem 3. By assumption, all fn are positive. Let k0 = n0 − 1, and
for k ≥ k0 define

ℓk = max
{

n : fn
2n

≥ 1
2k+1

}

.

We note that ℓk is well defined as fn/2
n → 0 and fn ≥ 1 for n ≥ n0, which

also gives ℓk ≥ k + 1. Also, as fn is nondecreasing, ℓk+1 > ℓk.
Define ak = ℓk − k for k ≥ k0 and note that ak > 0.

Claim 1.
∑∞

k=k0
ak
2k

≤ 1.

Proof. We note that for any k ≥ k0 by definition of ℓk and by monotonicity of
(fn/2

n)n≥n0
, we have fn

2n
≥ 2−(k+1) for all n ∈ (ℓk−1, ℓk]. Setting ℓk0−1 = k0 =

n0 − 1 we thus get

ℓk − ℓk−1

2k+1
≤

ℓk
∑

n=ℓk−1+1

fn
2n

.

Now as
∑

k≥k0

ℓk − ℓk−1

2k+1
=

(1

2
− 1

4

)

∑

k≥k0

ℓk − k0
2k

,

we have
∑

k≥k0

ak
2k

≤
∑

k≥k0

ℓk − k0
2k

≤ 4
∑

n≥n0

fn
2n

≤ 1.

We greedily construct a prefix code (ck,i)k≥k0,i∈[ak] consisting of ak many
strings of length k with the property that the elements are lexicographically
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decreasing when ordered so that their indices (k, i) are lexicographically in-
creasing. Such a sequence is given by setting ck,i to be the string of length k
with digits ck,i(1), . . . , ck,i(k) defined by

k
∑

j=1

ck,i(j)

2j
= 1− sk−1 −

i

2k

where sk =
∑k

i=k0
ai/2

i. That is, we take ck,i to be the first k binary digits

of the binary representation of the fraction 1− sk−1 − i
2k
, which is guaranteed

to be positive since
∑∞

k=k0
ak/2

k ≤ 1. Equivalently, this sequence may be
described by starting with the string of length k0 consisting of all 1’s, and then
each string of length k ≥ k0 is obtained by subtracting 1/2k from the previous
string considered as a binary expansion of a fraction. For example, if k0 = 2,
a2 = 1, a3 = 3, and a4 = 5, then the first six strings would be c2,1 = 11,
c3,1 = 101, c3,2 = 100, c3,3 = 011, c4,1 = 0101, c4,2 = 0100.

It is not hard to see that for two distinct strings in the sequence (ck,i), at
the first position where they differ the earlier string has a 1 and the later one
a 0. It follows that the ck,i indeed form a lexicographically decreasing prefix
code.

Now given a particular string ck,i of length k, let Fk,i be the set of all binary
strings of length ℓk satisfying the following conditions:

(1) The first k digits are precisely ck,i.

(2) There are precisely i many 1’s after the kth digit.

(3) If k > k0, there is at least one 1 after the ℓk−1th digit.

We then define the family

F :=
⋃

k≥k0,
i∈[ak ]

Fk,i

and view this as a subset of 2N by filling out the strings with 0’s in the usual
way.

Claim 2. F is an antichain.

Proof. Take any distinct x = x1x2x3 . . . , y = y1y2y3 . . . ∈ F , say with x ∈ Fk,i

and y ∈ Fk′,i′. If k = k′ and i = i′, then x and y have the same number of 1’s
after the kth digit. Since x and y are distinct but agree on the first k digits,
this means we find j and j′ such that xj = 0, yj = 1, xj′ = 1, and yj′ = 0.
Hence we may assume that k ≤ k′, and if k = k′, then i < i′.

By construction, we have that ck,i appears earlier than ck′,i′ in reverse
lexicographic order. It follows that xj = 1 and yj = 0, where j is the first
position at which x and y differ, and moreover this must occur at some j ≤ k
as the ck,i form a prefix code. In addition, if k < k′, then by condition (3)
there is some position j > ℓk′−1 for which yj = 1. But all 1’s in x occur within
the first ℓk ≤ ℓk′−1 places, so xj = 0. Otherwise, if k = k′ and i < i′, then
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by condition (2) this means that x has fewer 1’s after digit k than y does, so
there is necessarily some position j for which xj = 0 and yj = 1. Thus, x is
neither a subset nor a superset of y.

Claim 3. For each k ≥ k0 and n ∈ (ℓk−1, ℓk] there are at least 2n−k−1 strings

in F ∩ 2[n].

Proof. We proceed by induction on k. For k = k0, condition (3) is void. Thus
we have 2n−k0 − 1 choices of binary strings b between positions k0 + 1 and n
that have at least one 1. Denoting concatenation of strings by multiplication,
for each b there is precisely one corresponding string in F agreeing with b in
these positions, namely, ck0,ib, where i is the number of 1’s in b. Note that,
since ak = ℓk − k for all k ≥ k0 by definition, the number of 1’s in b does not
exceed ak, which ensures that ck0,ib can be found in F .

Now suppose k > k0. Applying the induction hypothesis for k − 1 and
n′ = ℓk−1 we see we have at least 2ℓk−1−(k−1) − 1 strings that have no 1 after
ℓk−1, that is, |F ∩2[ℓk−1]| ≥ 2ℓk−1−(k−1)−1. Now consider the number of strings
that have at least one 1 after ℓk−1. We have 2n−k − 2ℓk−1−k choices of binary
strings b between positions k + 1 and n such that b has at least one 1 after
ℓk−1, and, as above, for each b there is precisely one corresponding string ck,ib
in F agreeing with b in these positions. Since ℓk > ℓk−1, this makes a total of
at least

2n−k − 2ℓk−1−k + 2ℓk−1−(k−1) − 1 ≥ 2n−k − 1

strings in F ∩ 2[n].

Finally, for n ∈ (ℓk−1, ℓk] we have fn/2
n < 2−k by definition of ℓk−1. Hence

2n−k > fn so we have constructed an antichain F that contains at least 2n−k−
1 ≥ fn strings in F ∩ 2[n]. This concludes the proof of Theorem 3.
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