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STABILITY AND ERROR ANALYSIS OF IMEX SAV SCHEMES FOR THE
MAGNETO-HYDRODYNAMIC EQUATIONS ∗

XIAOLI LI† , WEILONG WANG‡ , AND JIE SHEN§

Abstract. We construct and analyze first- and second-order implicit-explicit (IMEX) schemes based on the
scalar auxiliary variable (SAV) approach for the magneto-hydrodynamic equations. These schemes are linear,
only require solving a sequence of linear differential equations with constant coefficients at each time step, and are
unconditionally energy stable. We derive rigorous error estimates for the velocity, pressure and magnetic field of
the first-order scheme in the two dimensional case without any condition on the time step. Numerical examples
are presented to validate the proposed schemes.
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1. Introduction. We consider in this paper numerical approximation of the following
magneto-hydrodynamic (MHD) equations [18]:

∂u

∂t
+ (u · ∇)u− ν∆u+∇p− α(∇× b)× b = 0 in Ω× J, (1.1a)

∂b

∂t
+ η∇× (∇× b) +∇× (b× u) = 0 in Ω× J, (1.1b)

∇ · u = 0, ∇ · b = 0 in Ω× J, (1.1c)

with boundary and initial conditions

u = 0, b · n = 0, n× (∇× b) = 0 on ∂Ω× J,

u(x, 0) = u0(x), b(x, 0) = b0(V) in Ω,

where Ω is an open bounded domain in R
d (d = 2, 3) with a sufficiently smooth boundary ∂Ω,

n is the unit outward normal of the domain Ω, J = (0, T ], (u, p,b) represent respectively the
unknown velocity, pressure and magnetic field. The parameters ν and η are kinematic viscosity
and magnetic diffusivity, respectively, and α = 1/(4πµρ) with µ as the magnetic permeability
and ρ as the fluid density.

The MHD system is used to describe the interaction between a viscous, incompressible,
electrically conducting fluid and an external magnetic field. When a conducting fluid is placed
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in an existing magnetic field, the fluid motion produces electric currents which in turn create
forces on the fluid and change the magnetic field itself. It has been widely used in many science
and engineering applications, such as liquid metal cooling for nuclear reactors, sustained plasma
confinement for controlled thermonuclear fusion, etc [8, 6]. The mathematical theory of MHD
equations can be found in [18].

Numerical approximation of the MHD equations is challenging, as it involves delicate non-
linear coupling between the velocity and magnetic field in addition to the difficulties associated
with the Navier-Stokes equations and Maxwell equations. There exists a large literature devoted
to constructing compatible spatial discretization for the MHD equations, see [28, 2, 17, 7, 4] and
related references. In this paper, we are only concerned with time discretization, which can be
coupled with any well developed compatible spatial discretization.

The MHD equations (1.1) is energy dissipative. More precisely, taking the inner products of
(1.1a) and (1.1b) with u and αb, respectively, summing up the results, we find that the nonlinear
terms do not contribute to the energy and that the following energy dissipation law holds:

d

dt
E(u,b) = −ν‖∇u‖2 − αη‖∇ × b‖2 with E(u,b) =

1

2
‖u‖2 +

α

2
‖b‖2. (1.2)

It is thus desirable to construct numerical schemes which satisfy a discrete energy dissipation
law.

Most existing work use fully implicit or semi-implicit treatments for the nonlinear terms
so that the effect of nonlinear coupling can cancel each other and a discrete energy dissipa-
tion law can be derived. However, one needs to solve a nonlinear system or a coupled linear
system with time dependent coefficients at each time step. For examples, Armero and Simo
developed in [1] energy dissipative schemes for an abstract evolution equation with applications
to the incompressible MHD equations; Tone [25] considered an implicit Euler scheme for the 2D
MHD equations and established a uniform H2 stability; Layton et al. constructed in [12] two
partitioned methods for uncoupling evolutionary MHD flows; Hiptmair et al. [11] developed a
fully divergence-free finite element method for MHD equations with a semi-implicit treatment
of the nonlinear terms; Zhang et al. [30] proposed a second order linear BDF scheme with
an extrapolated treatment for the nonlinear terms and proved its unconditionally stability and
convergence, cf. also [29]; And most recently, Li et al. [13] proposed a fully discrete linearized
H1 conforming Lagrange finite element method, and derived the convergence based on the reg-
ularity of the initial conditions and source terms without extra assumptions on the regularity
of the solution. To alleviate the cost of solving fully coupled systems at each time step, Badia
et al. [3] developed an operator splitting algorithm by a stabilized finite element formulation
based on projections; Choi and Shen [5] constructed several efficient splitting schemes based on
the standard and rotational pressure-correction schemes with a semi-implicit treatment of the
nonlinear terms for the MHD equations.

From a computational point of view, it is desirable for a numerical scheme to treat the
nonlinear term explicitly while still being energy dissipative, so that one only needs to solve
simple linear equations with constant coefficients at each time step. However, with a direct
explicit treatment of the nonlinear terms, their energy contribution no longer vanishes, so it
becomes very difficult to derive a uniform bound for the numerical solution. Liu and Pego [16]
constructed a first-order scheme with fully explicit treatment of the nonlinear terms and showed
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that its numerical solution is bounded with the time step sufficiently small, but their scheme
is not shown to be energy dissipative. The recently proposed scalar auxiliary variable (SAV)
approach [21, 20, 22] provides a general approach to construct linear, decoupled unconditionally
energy stable schemes for gradient flows. The approach has been extended to Navier-Stokes
equations in [15]. However, the scheme in [15] requires solving a nonlinear algebraic equation
whose well posedness is not guaranteed. We introduced in [14] a different SAV approach which
leads to purely linear and unconditionally stable schemes for the Navier-Stokes equations, and
proved corresponding error estimates.

The aim of this work is to extend the approach proposed in [14] to the MHD equations which
are much more complicated with nonlinear couplings between the velocity and magnetic fields.
Our main contributions are two-folds:

• We construct first- and second-order IMEX SAV schemes for the MHD equations and
show that they are unconditionally energy stable. These schemes only require solving a
sequence of differential equations with constant coefficients at each time step so they are
very efficient and easy to implement.

• We establish rigorous error estimates for the first-order scheme in the two-dimensional
case without any condition on the time step.

Compared to the Navier-Stokes equations or Maxwell’s equations, the error analysis for the
MHD equations is much more involved due to the nonlinear coupling terms. Our error analysis
uses essentially the unconditional bounds of the numerical solution that we derive for our SAV
schemes. To the best of our knowledge, this is the first linear, unconditional energy stable and
convergent schemes with fully explicit treatment of nonlinear terms for the MHD equations.

The paper is organized as follows. In Section 2, we construct our IMEX SAV schemes and
prove their stability. In Section 3, we carry out a rigorous error analysis for the first-order IMEX
SAV scheme in the two-dimensional case. We present some numerical experiments to validate
our schemes in Section 4, and conclude with a few remarks in Section 5.

2. The SAV schemes and their energy stability. In this section, we construct first-
and second-order IMEX schemes based on the SAV approach for the MHD equations, and show
that they are unconditionally energy stable.

We introduce a scalar auxiliary variable (SAV):

q(t) = exp(−
t

T
), (2.1)

and expand the system (1.1) as follows:






































∂u

∂t
− ν∆u+∇p+ exp(

t

T
)q(t)(u · ∇u− α(∇× b)× b) = 0, (2.2)

∂b

∂t
+ η∇× (∇× b) + exp(

t

T
)q(t)∇× (b× u) = 0, (2.3)

∇ · u = 0, ∇ · b = 0, (2.4)

dq

dt
= −

1

T
q + exp(

t

T
)
(

(u · ∇u,u)− α ((∇× b)× b,u) + α (∇× (b× u),b)
)

. (2.5)

Since the sum of the nonlinear terms in (2.5) is zero so (2.5) is equivalent to the time derivative
of (2.1). Hence, with q(0) = 1, the exact solution of (2.5) is given by (2.1), so that (2.2)-(2.4)

3



is exactly the same as (1.1). Therefore, the above system is equivalent to the original system.
Note that we have, in addition to the original energy law (1.2), an additional energy law

1

2

d

dt
(‖u‖2 + α‖b‖2 + |q|2) = −ν‖∇u‖2 − αη‖∇ × b‖2 −

1

T
|q|2. (2.6)

Note that, unlike in the original SAV approach, the SAV q(t) is related to the nonlinear part of
the free energy, here the SAV q(t) is pure artificial but will allow us to construct unconditional
energy stable, with respect to the energy in (2.6), schemes with fully explicit treatment of the
nonlinear terms.

2.1. The IMEX SAV schemes. We set

∆t = T/N, tn = n∆t, dtg
n+1 =

gn+1 − gn

∆t
, for n ≤ N.

Scheme I (first-order): Find (un+1, pn+1, qn+1,bn+1) by solving

dtu
n+1 − ν∆un+1 +∇pn+1 = exp(

tn+1

T
)qn+1(α(∇× bn)× bn − un · ∇un), (2.7)

dtb
n+1 + η∇× (∇× bn+1) + exp(

tn+1

T
)qn+1∇× (bn × un) = 0, (2.8)

∇ · un+1 = 0, ∇ · bn+1 = 0, (2.9)

un+1|∂Ω = 0, bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0, (2.10)

dtq
n+1 = −

1

T
qn+1 + exp(

tn+1

T
)

(

(un · ∇un,un+1)− α((∇× bn)× bn,un+1) + α(∇× (bn × un),bn+1)
)

, (2.11)

We now describe how to solve the semi-discrete-in-time scheme (2.7)-(2.10) efficiently. We

denote Sn+1 = exp( t
n+1

T )qn+1 and set










bn+1 = bn+1
1 + Sn+1bn+1

2 , (2.12)

un+1 = un+1
1 + Sn+1un+1

2 , (2.13)

pn+1 = pn+1
1 + Sn+1pn+1

2 . (2.14)

Plugging (2.12)-(2.14) in the scheme (2.7)-(2.10), we find that un+1
i , pn+1

i (i = 1, 2) satisfy






















un+1
1 − un

∆t
= ν∆un+1

1 −∇pn+1
1 , (2.15)

un+1
2

∆t
+ un · ∇un = ν∆un+1

2 −∇pn+1
2 + α(∇× bn)× bn, (2.16)

∇ · un+1
i = 0, un+1

i |∂Ω = 0, i = 1, 2. (2.17)

Next we determine bn+1
i (i = 1, 2) from























bn+1
1 − bn

∆t
+ η∇× (∇× bn+1

1 ) = 0, (2.18)

bn+1
2

∆t
+ η∇× (∇× bn+1

2 ) +∇× (bn × un) = 0, (2.19)

∇ · bn+1
i = 0, bn+1

i · n|∂Ω = 0, n× (∇× bn+1
i )|∂Ω = 0, i = 1, 2. (2.20)
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Once un+1
i , pn+1

i , bn+1
i (i = 1, 2) are known, we can determine explicitly Sn+1 from (2.11) as

follows:
(

T +∆t

T∆t
− exp(

2tn+1

T
)A2

)

exp(−
tn+1

T
)Sn+1 = exp(

tn+1

T
)A1 +

1

∆t
qn, (2.21)

where

Ai = (un · ∇un, ũn+1
i )− α

(

(∇× bn)× bn,un+1
i

)

+ α
(

∇× (bn × un),bn+1
i

)

, i = 1, 2.

Finally, we can obtain un+1, pn+1 and bn+1 from (2.12)-(2.14).

In summary, at each time step, we only need to solve two generalized Stokes equations
in (2.15)-(2.17), and two elliptic equations (2.18)-(2.20) with constant ciefficients plus a linear
algebraic equation (2.21) at each time step. Hence, the scheme is very efficient.

Scheme II (second-order): Find (un+1, pn+1, qn+1,bn+1) by solving

3un+1 − 4un + un−1

2∆t
− ν∆un+1 +∇pn+1

= exp(
tn+1

T
)qn+1

(

α(∇× b̄
n+1

)× b̄
n+1

− ūn+1 · ∇ūn+1
)

, (2.22)

3bn+1 − 4bn + bn−1

2∆t
+ η∇× (∇× bn+1) + exp(

tn+1

T
)qn+1∇× (b̄

n+1
× ūn+1) = 0, (2.23)

∇ · un+1 = 0, ∇ · bn+1 = 0, (2.24)

un+1|∂Ω = 0, bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0, (2.25)

3qn+1 − 4qn + qn−1

2∆t
= −

1

T
qn+1 + exp(

tn+1

T
)

[

α((∇× (b̄
n+1

× ūn+1),bn+1)− α((∇× b̄
n+1

)× b̄
n+1

,un+1) + (ūn+1 · ∇ūn+1,un+1)
]

,(2.26)

where v̄n+1 = 2vn−vn−1 for any function v. For n = 0, we can compute (u1, p1, q1, b1) by the
first-order scheme described above.

The second-order scheme (2.22)-(2.26) can be implemented the same way as the first-order
scheme (2.7)-(2.11).

2.2. Energy Stability. We show below that the first- and second-order SAV schemes (2.7)-
(2.11) and (2.22)-(2.26) are unconditionally energy stable. We shall use ‖ · ‖ and (·, ·) to denote
the norm and inner product in L2(Ω), and < ·, · > to denote the inner product in L2(∂Ω).

Theorem 2.1. The scheme (2.7)-(2.11) is unconditionally stable in the sense that

En+1 − En ≤ −ν∆t‖∇u
n+1‖2 − ηα∆t‖∇b

n+1‖2 −
1

T
∆t|qn+1|2, ∀∆t, n ≥ 0, (2.27)

where

En+1 =
1

2
‖un+1‖2 +

α

2
‖bn+1‖2 +

1

2
|qn+1|2.
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Proof. Taking the inner product of (2.7) with ∆tun+1 and using the identity

(a− b, a) =
1

2
(|a|2 − |b|2 + |a− b|2), (2.28)

we have

‖un+1‖2 − ‖un‖2

2
+

‖un+1 − un‖2

2
+ ν∆t‖∇un+1‖2 +∆t(∇pn+1,un+1)

= ∆t exp(
tn+1

T
)qn+1

(

α(∇× bn)× bn,un+1)− un · ∇un,un+1)
)

.

(2.29)

Taking the inner product of (2.8) with α∆tbn+1 and using the identity

∇× (∇× bn+1) = −∆bn+1 +∇(∇ · bn+1), (2.30)

we have

α
‖bn+1‖2 − ‖bn‖2

2
+ α

‖bn+1 − bn‖2

2
+ ηα∆t‖∇bn+1‖2

+ α∆t exp(
tn+1

T
)qn+1

(

∇× (bn × un),bn+1
)

= 0.

(2.31)

Multiplying (2.11) by qn+1∆t leads to

|qn+1|2 − |qn|2

2
+

1

2
|qn+1 − qn|2 +

1

T
∆t|qn+1|2

= ∆tqn+1 exp(
tn+1

T
)
(

(un · ∇un,un+1)− α((∇× bn)× bn,un+1) + α(∇× (bn × un),bn+1)
)

.

(2.32)
Then summing up (2.29) with (2.31)-(2.32) results in

‖un+1‖2 − ‖un‖2 + α‖bn+1‖2 − α‖bn‖2 + |qn+1|2 − |qn|2

+ |qn+1 − qn|2 + ‖un+1 − un‖2 ++‖bn+1 − bn‖2

≤ −2ν∆t‖∇un+1‖2 − 2ηα∆t‖∇bn+1‖2 −
2

T
∆t|qn+1|2,

which implies the desired result.
We observe that the discrete energy dissipation law (2.27) is an approximation of the con-

tinuous energy dissipation law (2.6).

Theorem 2.2. The scheme (2.22)-(2.26) is unconditionally stable in the sense that

En+1 − En ≤ −∆t(ν‖∇u
n+1‖2 + ηα‖∇b

n+1‖2 +
1

T
|qn+1|2), ∀∆t, n ≥ 0, (2.33)

where

En+1 =
1

4
(‖un+1‖2 + α‖bn+1‖2 + |qn+1|2)

+
1

4
(‖2un+1 − u

n‖2 + α‖2bn+1 − b
n‖2 + |2qn+1 − qn|2).

(2.34)
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Proof. Taking the inner product of (2.22) with 4∆tun+1 and using the identity

2(3a− 4b+ c, a) = |a|2 + |2a− b|2 − |b|2 − |2b− c|2 + |a− 2b+ c|2, (2.35)

we have

‖un+1‖2 + ‖2un+1 − un‖2 − ‖un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

+ 4ν∆t‖∇un+1‖2 + 4∆t(∇pn+1,un+1)

= 4∆t exp(
tn+1

T
)qn+1

(

α((∇× b̄
n+1

)× b̄
n+1

,un+1)− (ūn+1 · ∇ūn+1,un+1)
)

.

(2.36)

Taking the inner product of (2.23) with 4α∆tbn+1 leads to

α(‖bn+1‖2 + ‖2bn+1 − bn‖2 − ‖bn‖2 − ‖2bn − bn−1‖2 + ‖bn+1 − 2bn + bn−1‖2)

+ 4ηα∆t‖∇bn+1‖2 + 4α∆t exp(
tn+1

T
)qn+1

(

∇× (b̄
n+1

× ūn+1),bn+1
)

= 0.
(2.37)

Multiplying (2.26) by 4∆tqn+1 leads to

|qn+1|2 + |2qn+1 − qn|2 − |qn|2 − |2qn − qn−1|2 + |qn+1 − 2qn + qn−1|2

=−
4∆t

T
|qn+1|2 + 4∆tqn+1 exp(

tn+1

T
)((ūn+1 · ∇)ūn+1,un+1)

− 4α∆tqn+1 exp(
tn+1

T
)
(

((∇× b̄
n+1

)× b̄
n+1

,un+1)− (∇× (b̄
n+1

× ūn+1),bn+1)
)

.

(2.38)

Then summing up (2.36) with (2.37)-(2.38) results in

‖un+1‖2 + ‖2un+1 − un‖2 + α‖bn+1‖2 + α‖2bn+1 − bn‖2

+ |qn+1|2 + |2qn+1 − qn|2 + ‖un+1 − 2un + un−1‖2 + α‖bn+1 − 2bn + bn−1‖2

+ |qn+1 − 2qn + qn−1|2 +
4∆t

T
|qn+1|2 + 4ν∆t‖∇un+1‖2 + 4ηα∆t‖∇bn+1‖2

≤‖un‖2 + ‖2un − un−1‖2 + α‖bn‖2 + α‖2bn − bn−1‖2 + |qn|2 + |2qn − qn−1|2,

which implies the desired result.

Note that the discrete energy defined in (2.34) is a second-order approximation of the contin-
uous energy defined in (2.6), and (2.33) is an approximation of the continuous energy dissipation
law (2.6).

3. Error Analysis. In this section, we carry out a rigorous error analysis for Scheme I
(2.7)-(2.11) in the two-dimensional case. Similar analysis can also be carried out for Scheme II
but the process is much more tedious so we opt to only consider Scheme I here. We emphasize
that while both schemes can be used in the three-dimension case, the error analysis can not be
easily extended to the three-dimension case due to some technical issues. Hence, we set d = 2
in this section.
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3.1. Preliminaries. We describe below some notations and results which will be frequently
used in the analysis. We use C, with or without subscript, to denote a positive constant, which
could have different values at different places.

We use the standard notations L2(Ω), Hk(Ω) and Hk
0 (Ω) to denote the usual Sobolev spaces.

The norm corresponding to Hk(Ω) will be denoted simply by ‖ · ‖k. The vector functions and
vector spaces will be indicated by boldface type.

We define

L2
0(Ω) = {p ∈ L2(Ω) :

∫

Ω
qdx = 0},

Hk(Ω) = (Hk(Ω))d, H1
0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},

H1
n(Ω) = {v ∈ H1(Ω) : v · n|∂Ω = 0},

V = {v ∈ H1
0(Ω) : ∇ · v = 0},

H = {v ∈ (L2(Ω))2 : ∇ · v = 0, v · n|∂Ω = 0}.

The following formulae are essential and useful for our analysis

(∇× v)× v = (v · ∇)v−
1

2
∇|v|2, (3.1)

v× (w× z) = (v · z)w− (v ·w)z, (3.2)

∇× (v×w) = (w · ∇)v− (v · ∇)w+ (∇ ·w)v− (∇ · v)w, (3.3)

(v×w)× z · q = (v×w) · (z× q) = −(v×w) · (q× z), (3.4)
∫

Ω
(∇× v) ·wdx =

∫

Ω
v · (∇×w)dx+

∫

∂Ω
(n× v) ·wds. (3.5)

Define the Stokes operator

Au = −P∆u, ∀ u ∈ D(A) = H2(Ω) ∩V,

where P is the orthogonal projector in L2(Ω) ontoH, and the Stokes operator A is an unbounded
positive self-adjoint closed operator in H with domain D(A). We then derive from the above
and Poincaré inequality that [24, 10]

‖∇v‖ ≤ c1‖A
1

2v‖, ‖∆v‖ ≤ c1‖Av‖, ∀ v ∈ D(A) = H2(Ω) ∩V, (3.6)

and

‖v‖ ≤ c1‖∇v‖, ∀ v ∈ H1
0(Ω), ‖∇v‖ ≤ c1‖Av‖, ∀ v ∈ D(A). (3.7)

We recall the following inequalities will be used in the sequel [7, 27]:

‖∇ × v‖0 ≤ c1‖∇v‖0, ‖∇ · v‖0 ≤ c1‖∇v‖0, ∀ v ∈ H1(Ω), (3.8)

‖∇ × v‖20 + ‖∇ · v‖20 ≥ c1‖v‖
2
1, ∀ v ∈ H1

n(Ω), (3.9)

and the following well-known inequalities which are valid with d = 2 [16]:

‖v‖L4 ≤ c1‖v‖
1/2
0 ‖v‖

1/2
1 , ∀ v ∈ H1(Ω), (3.10)
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‖v‖L∞ ≤ c1‖v‖
1/2
1 ‖v‖

1/2
2 , ∀ v ∈ H2(Ω), (3.11)

where c1 is a positive constant depending only on Ω.
Next we define the trilinear form b(·, ·, ·) by

b(u,v,w) =

∫

Ω
(u · ∇)v ·wdx.

We can easily obtain that the trilinear form b(·, ·, ·) is a skew-symmetric with respect to its last
two arguments, i.e.,

b(u,v,w) = −b(u,w,v), ∀ u ∈ H, v,w ∈ H1(Ω), (3.12)

and

b(u,v,v) = 0, ∀ u ∈ H, v ∈ H1(Ω). (3.13)

By using a combination of integration by parts, Holder’s inequality, and Sobolev inequalities[23,
19, 9], we have that for d ≤ 4,

b(u,v,w) ≤























c2‖u‖1‖v‖1‖w‖1,
c2‖u‖2‖v‖‖w‖1,
c2‖u‖2‖v‖1‖w‖,
c2‖u‖1‖v‖2‖w‖,
c2‖u‖‖v‖2‖w‖1,

(3.14)

and that for d = 2, we have

b(u,v,w) ≤











c2‖u‖
1/2
1 ‖u‖1/2‖v‖

1/2
1 ‖v‖1/2‖w‖1,

c2‖u‖
1/2
1 ‖u‖1/2‖Av‖1/2‖v‖1/2‖w‖,

c2‖Au‖
1/2‖u‖1/2‖v‖1‖w‖,

(3.15)

where c2 is a positive constant depending only on Ω.
We will frequently use the following discrete version of the Gronwall lemma:

Lemma 3.1. Let ak, bk, ck, dk, γk, ∆tk be nonnegative real numbers such that

ak+1 − ak + bk+1∆tk+1 + ck+1∆tk+1 − ck∆tk ≤ akdk∆tk + γk+1∆tk+1 (3.16)

for all 0 ≤ k ≤ m. Then

am+1 +
m+1
∑

k=0

bk∆tk ≤ exp

(

m
∑

k=0

dk∆tk

)

{a0 + (b0 + c0)∆t0 +
m+1
∑

k=1

γk∆tk}. (3.17)

Finally, we may drop the dependence on x if no confusion can arise. In particular, we set

{

en+1
b

= bn+1 − b(tn+1), en+1
u = un+1 − u(tn+1),

en+1
p = pn+1 − p(tn+1), en+1

q = qn+1 − q(tn+1).
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3.2. Error estimates for the velocity and magnetic field. In this subsection, we derive
the following error estimates for the velocity u and magnetic field b.

Theorem 3.2. Assuming u ∈ H2(0, T ;H−1(Ω))
⋂

H1(0, T ;H2(Ω))
⋂

L∞(0, T ;H2(Ω)), and
b ∈ H2(0, T ;H−1(Ω))

⋂

H1(0, T ;H2(Ω))
⋂

L∞(0, T ;H2(Ω)), then for the scheme (2.7)-(2.11),
we have

‖em+1
u ‖2 + ‖em+1

b
‖2 + |em+1

q |2 + ν∆t

m
∑

n=0

‖∇en+1
u ‖2

+ η∆t
m
∑

n=0

‖∇en+1
b

‖2 +∆t
m
∑

n=0

|en+1
q |2 +

m
∑

n=0

‖en+1
u − enu‖

2

+

m
∑

n=0

‖en+1
b

− enb‖
2 +

m
∑

n=0

|en+1
q − enq |

2 ≤ C(∆t)2, ∀ 0 ≤ n ≤ N − 1,

where C is a positive constant independent of ∆t.

The proof of the above theorem will be carried out with a sequence of lemmas below.

We start first with the following uniform bounds which are direct consequence of the energy
stability in Theorem 2.1.

Lemma 3.3. Let (un+1, pn+1, qn+1, bn+1) be the solution of (2.7)-(2.11), then we have

‖um+1‖2 + ‖bm+1‖2 + |qm+1|2 ≤ k1, ∀ 0 ≤ m ≤ N − 1, (3.18)

and

∆t
m
∑

n=0

‖un+1‖21 +∆t
m
∑

n=0

‖bn+1‖21 ≤ k2, ∀ 0 ≤ m ≤ N − 1, (3.19)

where the constants ki (i = 1, 2) are independent of ∆t.

Next, we derive a first bound for the velocity errors.

Lemma 3.4. Under the assumptions of Theorem 3.2, we have

‖en+1
u ‖2 − ‖enu‖

2

2∆t
+

‖en+1
u − enu‖

2

2∆t
+

ν

2
‖∇en+1

u ‖2

≤ exp(
tn+1

T
)en+1

q

(

α((∇× b
n)× b

n, en+1
u )− (un · ∇u

n, en+1
u )

)

+ C(‖u(tn)‖22 + ‖u(tn+1)‖22 + ‖enu‖
2
1)‖e

n
u‖

2 +C(‖enb‖
2
1 + ‖b(tn+1)‖22)‖e

n
b ‖

2

+ C∆t

∫ tn+1

tn
(‖ut‖

2
2 + ‖utt‖

2
−1 + ‖bt‖

2
2)dt, ∀ 0 ≤ n ≤ N − 1,

(3.20)
where C is a positive constant independent of ∆t.

Proof. Let Rn+1
u be the truncation error defined by

Rn+1
u =

∂u(tn+1)

∂t
−

u(tn+1)− u(tn)

∆t
=

1

∆t

∫ tn+1

tn
(tn − t)

∂2u

∂t2
dt. (3.21)
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Subtracting (2.2) at tn+1 from (2.7), we obtain

dte
n+1
u − ν∆en+1

u +∇en+1
p = Rn+1

u

+ exp(
tn+1

T
)q(tn+1)(u(tn+1) · ∇u(tn+1)− un · ∇un)

+ α exp(
tn+1

T
)qn+1((∇× bn)× bn − (∇× b(tn+1))× b(tn+1)).

(3.22)

Taking the inner product of (3.22) with en+1
u , we obtain

‖en+1
u ‖2 − ‖enu‖

2

2∆t
+

‖en+1
u − enu‖

2

2∆t
+ ν‖∇en+1

u ‖2 + (∇en+1
p , en+1

u ) = (Rn+1
u , en+1

u )

+ exp(
tn+1

T
)
(

q(tn+1)u(tn+1) · ∇u(tn+1)− qn+1un · ∇un, en+1
u

)

+ α exp(
tn+1

T
)
(

qn+1(∇× bn)× bn − q(tn+1)(∇× b(tn+1))× b(tn+1), en+1
u

)

.

(3.23)

For the first term on the right hand side of (3.23), we have

(Rn+1
u , en+1

u ) ≤
ν

16
‖∇en+1

u ‖2 + C∆t

∫ tn+1

tn
‖utt‖

2
−1dt. (3.24)

For the second term on the right hand side of (3.23), we have

exp(
tn+1

T
)
(

q(tn+1)u(tn+1) · ∇u(tn+1)− qn+1un · ∇un, en+1
u

)

=
(

(u(tn+1)− un) · ∇u(tn+1), en+1
u

)

+
(

un · ∇(u(tn+1)− un), en+1
u

)

− exp(
tn+1

T
)en+1

q

(

un · ∇un, en+1
u

)

.

(3.25)

Using Cauchy-Schwarz inequality and recalling Lemma 3.3 and (3.14), the first term on the right
hand side of (3.25) can be bounded by

(

(u(tn+1)− un) · ∇u(tn+1), en+1
u

)

≤ c2(1 + c1)‖u(t
n+1)− un‖‖u(tn+1)‖2‖∇en+1

u ‖

≤
ν

16
‖∇en+1

u ‖2 + C‖u(tn+1)‖22‖e
n
u‖

2 + C‖u(tn+1)‖22∆t

∫ tn+1

tn
‖ut‖

2dt.

(3.26)

The second term on the right hand side of (3.25) can be estimated as follows by using the similar
procedure in [14],

(un · ∇(u(tn+1)− un), en+1
u )

=
(

un · ∇(u(tn+1)− u(tn)), en+1
u

)

−
(

enu · ∇enu, e
n+1
u

)

−
(

u(tn) · ∇enu, e
n+1
u

)

≤c2(1 + c1)‖∇en+1
u ‖(‖un‖‖

∫ tn+1

tn
utdt‖2 + ‖enu‖‖u(t

n)‖2)

+ c2(1 + c1)‖e
n
u‖

1/2‖enu‖
1/2
1 ‖enu‖

1/2‖enu‖
1/2
1 ‖∇en+1

u ‖

≤
ν

16
‖∇en+1

u ‖2 + C(‖u(tn)‖22 + ‖enu‖
2
1)‖e

n
u‖

2 + C∆t

∫ tn+1

tn
‖ut‖

2
2dt.

(3.27)
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For the last term on the right hand side of (3.23), we have

exp(
tn+1

T
)
(

qn+1(∇× bn)× bn − q(tn+1)(∇× b(tn+1))× b(tn+1), en+1
u

)

=exp(
tn+1

T
)en+1

q

(

(∇× bn)× bn, en+1
u

)

+
(

(∇× (bn − b(tn+1)))× bn, en+1
u

)

+
(

(∇× b(tn+1))× (bn − b(tn+1)), en+1
u

)

.

(3.28)

The second term on the right hand side of (3.28) can be transformed into

((∇× (bn − b(tn+1))) × bn, en+1
u )

=
(

(∇× enb)× enb, e
n+1
u

)

+
(

(∇× enb)× b(tn), en+1
u

)

+
(

(∇× (b(tn)− b(tn+1)))× bn, en+1
u

)

.

(3.29)

Using the identity (3.1), the first term on the right hand side of (3.29) can be bounded by

(

(∇× enb)× enb, e
n+1
u

)

=
(

(enb · ∇)enb, e
n+1
u

)

−
1

2

(

∇|enb|
2, en+1

u

)

≤ C‖enb‖
1/2‖enb‖

1/2
1 ‖enb‖

1/2‖enb‖
1/2
1 ‖∇en+1

u ‖

≤
ν

16
‖∇en+1

u ‖2 + C‖enb‖
2
1‖e

n
b‖

2.

(3.30)

Using (3.2), (3.4) and integration by parts (3.5), the second term on the right hand side of (3.29)
can be controlled by

(

(∇× enb)× b(tn), en+1
u

)

=−
(

en+1
u × b(tn),∇× enb

)

=−
(

∇× (en+1
u × b(tn)), enb

)

− < n× (en+1
u × b(tn)), enb >

=
(

(en+1
u · ∇)b(tn), enb

)

−
(

(b(tn) · ∇)en+1
u , enb

)

≤
ν

16
‖∇en+1

u ‖2 + C‖b(tn)‖22‖e
n
b‖

2,

(3.31)

where we use the identity

∇× (v×w) = (w · ∇)v− (v · ∇)w, ∀ v,w ∈ H.

Lemma 3.3 and (3.14), the last term on the right hand side of (3.29) can be estimated by

(

(∇× (b(tn)− b(tn+1))) × bn, en+1
u

)

≤
ν

16
‖∇en+1

u ‖2 + C‖bn‖2∆t

∫ tn+1

tn
‖bt‖

2
2dt.

(3.32)

For the last term on the right hand side of (3.28), we have

(

(∇× b(tn+1))× (bn − b(tn+1)), en+1
u

)

≤
ν

16
‖∇en+1

u ‖2 + C‖b(tn+1)‖22‖e
n
b‖

2 + C∆t

∫ tn+1

tn
‖bt‖

2dt.
(3.33)
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Finally, combining (3.23) with (3.25)-(3.33) leads to the desired result.

We derive below a bound for the errors of the magnetic field.
Lemma 3.5. Under the assumptions of Theorem 3.2, we have

‖en+1
b

‖2 − ‖en
b
‖2

2∆t
+

‖en+1
b

− en
b
‖2

2∆t
+

η

2
‖∇en+1

b
‖2

≤− exp(
tn+1

T
)en+1

q

(

∇× (bn × u
n), en+1

b

)

+ C(‖u(tn+1)‖22 + ‖enb‖
2
1)‖e

n
b‖

2

+ C(‖enu‖
2
1 + ‖b(tn+1)‖22)‖e

n
u‖

2 + C∆t

∫ tn+1

tn
‖ut‖

2
2dt

+ C∆t

∫ tn+1

tn
(‖bt‖

2 + ‖btt‖
2
−1)dt, ∀ 0 ≤ n ≤ N − 1,

(3.34)
where C is a positive constant independent of ∆t.

Proof. Let Rn+1
b

be the truncation error defined by

Rn+1
b

=
∂b(tn+1)

∂t
−

b(tn+1)− b(tn)

∆t
=

1

∆t

∫ tn+1

tn
(tn − t)

∂2b

∂t2
dt. (3.35)

Subtracting (2.3) at tn+1 from (2.8) and using (2.30), we obtain

dte
n+1
b

− η∆en+1
b

=exp(
tn+1

T
)q(tn+1)∇× (b(tn+1)× u(tn+1))

− exp(
tn+1

T
)qn+1∇× (bn × un) +Rn+1

u .

(3.36)

Taking the inner product of (3.36) with en+1
b

, we obtain

‖en+1
b

‖2 − ‖en
b
‖2

2∆t
+

‖en+1
b

− en
b
‖2

2∆t
+ η‖∇en+1

b
‖2

=exp(
tn+1

T
)q(tn+1)

(

∇× (b(tn+1)× u(tn+1)), en+1
b

)

− exp(
tn+1

T
)qn+1

(

∇× (bn × un), en+1
b

)

+ (Rn+1
b

, en+1
b

).

(3.37)

The first two terms on the right hand side of (3.37) can be recast as

exp(
tn+1

T
)
(

q(tn+1)∇× (b(tn+1)× u(tn+1))− qn+1∇× (bn × un), en+1
b

)

=
(

∇× [(b(tn+1)− bn)× u(tn+1)], en+1
b

)

+
(

∇× [bn × (u(tn+1)− un)], en+1
b

)

− exp(
tn+1

T
)en+1

q

(

∇× (bn × un), en+1
b

)

.

(3.38)

By using (3.11), (3.8) and integration by parts (3.5), we have
(

∇×[(b(tn+1)− bn)× u(tn+1)], en+1
b

)

=
(

(b(tn+1)− bn)× u(tn+1),∇× en+1
b

)

≤
η

6
‖∇en+1

b
‖2 + C‖u(tn+1)‖22e

n
b‖

2 + C‖u(tn+1)‖22∆t

∫ tn+1

tn
‖bt‖

2dt.
(3.39)
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Thanks to (3.10) and (3.8), we have

(

∇×[bn × (u(tn+1)− un)], en+1
b

)

=
(

bn × (u(tn+1)− un),∇× en+1
b

)

=
(

enb × (u(tn+1)− u(tn)),∇× en+1
b

)

−
(

enb × enu,∇× en+1
b

)

+
(

b(tn+1)× (u(tn+1)− un),∇× en+1
b

)

≤
η

6
‖∇en+1

b
‖2 + C‖enb‖

2
L4‖e

n
u‖

2
L4 + C‖b(tn+1)‖22‖e

n
u‖

2

+ C‖enb‖
2∆t

∫ tn+1

tn
‖ut‖

2
2dt+ C‖b(tn+1)‖22∆t

∫ tn+1

tn
‖ut‖

2dt

≤
η

6
‖∇en+1

b
‖2 + C‖enb‖

2
1‖e

n
b‖

2 + C(‖enu‖
2
1 + ‖b(tn+1)‖22)‖e

n
u‖

2

+ C‖enb‖
2∆t

∫ tn+1

tn
‖ut‖

2
2dt+ C‖b(tn+1)‖22∆t

∫ tn+1

tn
‖ut‖

2dt.

(3.40)

For the last term on the right hand side of (3.37), we have

(Rn+1
b

, en+1
b

) ≤
η

6
‖∇en+1

b
‖2 +C∆t

∫ tn+1

tn
‖btt‖

2
−1dt. (3.41)

Combining (3.37) with (3.38)-(3.41) leads to the desired result.

In the next lemma, we derive a bound for the errors with respect to q.

Lemma 3.6. Under the assumptions of Theorem 3.2, we have

|en+1
q |2 − |enq |

2

2∆t
+

|en+1
q − enq |

2

2∆t
+

1

2T
|en+1

q |2

≤ exp(
tn+1

T
)en+1

q

(

u
n · ∇u

n, en+1
u

)

− α exp(
tn+1

T
)en+1

q

(

(∇× b
n)× b

n, en+1
u

)

+ α exp(
tn+1

T
)en+1

q

(

∇× (bn × u
n), en+1

b

)

+ C‖un‖21‖e
n
u‖

2

+ C(‖enb‖
2
1 + ‖un‖21 + ‖b(tn+1)‖21)‖e

n
b‖

2 + C∆t

∫ tn+1

tn
‖qtt‖

2dt

+ C∆t

∫ tn+1

tn
(‖ut‖

2
0 + ‖bt‖

2
1)dt, ∀ 0 ≤ n ≤ N − 1,

(3.42)
where C is a positive constant independent of ∆t.
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Proof. Subtracting (2.4) from (2.11) leads to

en+1
q − enq

∆t
+

1

T
en+1
q = Rn+1

q

+ exp(
tn+1

T
)((un · ∇un,un+1)− (u(tn+1) · ∇u(tn+1),u(tn+1)))

− α exp(
tn+1

T
)
(

((∇× bn)× bn,un+1)− ((∇× b(tn+1))× b(tn+1),u(tn+1))
)

+ α exp(
tn+1

T
)
(

(∇× (bn × un),bn+1)− (∇× (b(tn+1)× u(tn+1)),b(tn+1))
)

,

(3.43)
where

Rn+1
q =

dq(tn+1)

dt
−

q(tn+1)− q(tn)

∆t
=

1

∆t

∫ tn+1

tn
(tn − t)

∂2q

∂t2
dt. (3.44)

Multiplying both sides of (3.43) by en+1
q yields

|en+1
q |2 − |enq |

2

2∆t
+

|en+1
q − enq |

2

2∆t
+

1

T
|en+1

q |2 = Rn+1
q en+1

q

+ exp(
tn+1

T
)en+1

q ((un · ∇un,un+1)− (u(tn+1) · ∇u(tn+1),u(tn+1)))

− α exp(
tn+1

T
)en+1

q

(

((∇× bn)× bn,un+1)− ((∇× b(tn+1))× b(tn+1),u(tn+1))
)

+ α exp(
tn+1

T
)en+1

q

(

(∇× (bn × un),bn+1)− (∇× (b(tn+1)× u(tn+1)),b(tn+1))
)

.

(3.45)

We bound the right hand side of the above as follows:

Rn+1
q en+1

q ≤
1

12T
|en+1

q |2 + C∆t

∫ tn+1

tn
‖qtt‖

2dt. (3.46)

The second term on the right hand side of (3.45) can be estimated as

exp(
tn+1

T
)en+1

q

(

(un · ∇un,un+1)− (u(tn+1) · ∇u(tn+1),u(tn+1))
)

=exp(
tn+1

T
)en+1

q

(

un · ∇un, en+1
u

)

+ exp(
tn+1

T
)en+1

q

(

un · ∇(un − u(tn+1)),u(tn+1)
)

+ exp(
tn+1

T
)en+1

q

(

(un − u(tn+1)) · ∇u(tn+1),u(tn+1)
)

.

(3.47)

Thanks to (3.14) and Lemma 3.3, we bound the second term on the right hand side of (3.47) by

exp(
tn+1

T
)en+1

q

(

un · ∇(un − u(tn+1)),u(tn+1)
)

≤ C‖un‖1‖u(t
n+1)− u(tn)− enu‖0‖u(t

n+1)‖2|e
n+1
q |

≤
1

12T
|en+1

q |2 + C‖un‖21‖e
n
u‖

2 + C‖u(tn+1)‖22∆t

∫ tn+1

tn
‖ut‖

2
0dt.

(3.48)
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The third term on the right hand side of (3.47) can be bounded by

exp(
tn+1

T
)en+1

q

(

(un − u(tn+1)) · ∇u(tn+1),u(tn+1)
)

≤ C‖u(tn+1)− un‖‖u(tn+1)‖1‖u(t
n+1)‖2|e

n+1
q |

≤
1

12T
|en+1

q |2 + C‖enu‖
2 + C∆t

∫ tn+1

tn
‖ut‖

2dt.

(3.49)

The second to last term on the right hand side of (3.45) can be recast as

−α exp(
tn+1

T
)en+1

q

(

((∇× bn)× bn,un+1)− ((∇× b(tn+1))× b(tn+1),u(tn+1))
)

=α exp(
tn+1

T
)en+1

q

(

((∇× (b(tn+1)− bn))× bn,u(tn+1)
)

+ α exp(
tn+1

T
)en+1

q

(

((∇× b(tn+1))× (b(tn+1)− bn),u(tn+1)
)

− α exp(
tn+1

T
)en+1

q

(

(∇× bn)× bn, en+1
u

)

.

(3.50)

Thanks to (3.14), (3.15) and using the similar procedure in (3.31), the first term on the right
hand side of (3.50) can be estimated by

α exp(
tn+1

T
)en+1

q

(

(∇× (b(tn+1)− bn)× bn,u(tn+1)
)

=− α exp(
tn+1

T
)en+1

q

(

(∇× (u(tn+1)× bn),b(tn+1)− bn
)

=α exp(
tn+1

T
)en+1

q

(

(u(tn+1) · ∇)bn,b(tn+1)− bn
)

− α exp(
tn+1

T
)en+1

q

(

(bn · ∇)u(tn+1),b(tn+1)− bn
)

≤
1

12T
|en+1

q |2 + C‖enb‖
2
1‖e

n
b‖

2 + C‖u(tn+1)‖22‖b
n‖2∆t

∫ tn+1

tn
‖bt‖

2
1dt.

(3.51)

For the second term on the right hand side of (3.50), we have

α exp(
tn+1

T
)en+1

q

(

(∇× b(tn+1)× (b(tn+1)− bn),u(tn+1)
)

≤
1

12T
|en+1

q |2 +C‖b(tn+1)‖21‖e
n
b‖

2 + C‖u(tn+1)‖22∆t

∫ tn+1

tn
‖bt‖

2dt.

(3.52)

Using (3.10) and (3.8) and the integration by parts (3.5), the last term on the right hand side
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of (3.45) can be bounded by

α exp(
tn+1

T
)en+1

q

(

(∇× (bn × un),bn+1)− (∇× (b(tn+1)× u(tn+1)),b(tn+1))
)

≤α exp(
tn+1

T
)en+1

q

(

∇× ((bn − b(tn+1))× un),b(tn+1)
)

+ α exp(
tn+1

T
)en+1

q

(

∇× (b(tn+1)× (un − u(tn+1))),b(tn+1)
)

+ α exp(
tn+1

T
)en+1

q

(

∇× (bn × un), en+1
b

)

≤α exp(
tn+1

T
)en+1

q

(

∇× (bn × un), en+1
b

)

+
1

12T
|en+1

q |2

+ C‖un‖21‖e
n
b‖

2 + C‖enu‖
2 + C‖b(tn+1)‖22∆t

∫ tn+1

tn
(‖bt‖

2
1 + ‖ut‖

2)dt.

(3.53)

Finally, combining (3.47)-(3.53) in (3.45) leads to the desired result.
Now we are in the position to prove Theorem 3.2 by using Lemmas 3.4-3.6.
Proof of Theorem 3.2.
Multiplying both sides of (3.34) by α and summing up this inequality with (3.20) and (3.42)

lead to

‖en+1
u ‖2 − ‖enu‖

2

2∆t
+

‖en+1
u − enu‖

2

2∆t
+

ν

2
‖∇en+1

u ‖2 + α
‖en+1

b
‖2 − ‖en

b
‖2

2∆t

+ α
‖en+1

b
− en

b
‖2

2∆t
+

αη

2
‖∇en+1

b
‖2 +

|en+1
q |2 − |enq |

2

2∆t
+

|en+1
q − enq |

2

2∆t
+

1

2T
|en+1

q |2

≤C(‖b(tn+1)‖22 + ‖enu‖
2
1)‖e

n
u‖

2 + C(‖enb‖
2
1 + ‖un‖21)‖e

n
b‖

2

+ C∆t

∫ tn+1

tn
(‖ut‖

2
2 + ‖utt‖

2
−1 + ‖qtt‖

2)dt

+ C∆t

∫ tn+1

tn
(‖bt‖

2
2 + ‖btt‖

2
−1)dt.

(3.54)

Multiplying (3.54) by 2∆t and summing over n, n = 0, 1, . . . ,m, and applying the discrete
Gronwall lemma 3.1, we have

‖em+1
u ‖2 + ‖en+1

b
‖2 + |em+1

q |2 + ν∆t

m
∑

n=0

‖∇en+1
u ‖2

+ η∆t

m
∑

n=0

‖∇en+1
b

‖2 +∆t

m
∑

n=0

|en+1
q |2 +

m
∑

n=0

‖en+1
u − enu‖

2

+

m
∑

n=0

‖en+1
b

− enb‖
2 +

m
∑

n=0

|en+1
q − enq |

2

≤C(‖u‖2H1(0,T ;H2(Ω)) + ‖u‖2H2(0,T ;H−1(Ω)) + ‖u‖2
L∞(0,T ;H2(Ω))

)(∆t)2

+ C(‖b‖2H1(0,T ;H2(Ω)) + ‖b‖2H2(0,T ;H−1Ω)))(∆t)2

+ C(‖b‖2
L∞(0,T ;H2(Ω))

+ ‖q‖2H2(0,T ))(∆t)2,

(3.55)
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which concludes the proof of Theorem 3.2.

3.3. Error estimates for the pressure. The main result in this section is the following
error estimate for the pressure.

Theorem 3.7. Assuming u ∈ H2(0, T ;L2(Ω))
⋂

H1(0, T ;H2(Ω))
⋂

L∞(0, T ;H2(Ω)), b ∈
H2(0, T ;L2(Ω))

⋂

H1(0, T ;H2(Ω))
⋂

L∞(0, T ;H2(Ω)), p ∈ L2(0, T ;L2
0(Ω)), then for the first-

order scheme (2.7)-(2.11), we have

∆t
m
∑

n=0

‖en+1
p ‖2L2(Ω)/R ≤ C(∆t)2, ∀ 0 ≤ m ≤ N − 1, (3.56)

where C is a positive constant independent of ∆t.

Proof. In order to prove the above results, we need to first establish an estimate on ‖dte
n+1
u ‖.

Thanks to Theorem 3.2, we have

‖em+1
u ‖2 + ‖em+1

b
‖2 +∆t

m
∑

n=0

(‖∇en+1
u ‖2 + ‖∇en+1

b
‖2) ≤ C(∆t)2, (3.57)

which implies that

‖un+1‖1 ≤ C
(

(∆t)1/2 + ‖u(tn+1)‖1

)

, ‖bn+1‖1 ≤ C
(

(∆t)1/2 + ‖b(tn+1)‖1

)

. (3.58)

Taking the inner product of (3.22) with Aen+1
u + dte

n+1
u , we obtain

(1 + ν)
‖∇en+1

u ‖2 − ‖∇enu‖
2

2∆t
+ ‖dte

n+1
u ‖2 + ν‖Aen+1

u ‖2

=exp(
tn+1

T
)
(

q(tn+1)u(tn+1) · ∇u(tn+1)− qn+1un · ∇un, Aen+1
u + dte

n+1
u

)

+ α exp(
tn+1

T
)
(

qn+1(∇× bn)× bn − q(tn+1)(∇× b(tn+1))× b(tn+1), Aen+1
u + dte

n+1
u

)

+ (Rn+1
u , Aen+1

u + dte
n+1
u ).

(3.59)
For the first term on the right hand side of (3.59), we have

exp(
tn+1

T
)
(

q(tn+1)u(tn+1) · ∇u(tn+1)− qn+1un · ∇un, Aen+1
u + dte

n+1
u

)

=− exp(
tn+1

T
)en+1

q

(

(un · ∇)un, Aen+1
u + dte

n+1
u

)

+
(

(u(tn+1)− un) · ∇u(tn+1), Aen+1
u + dte

n+1
u

)

+
(

un · ∇(u(tn+1)− un), Aen+1
u + dte

n+1
u

)

.

(3.60)
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Thanks to (3.15) and (3.58), the first term on the right hand side of (3.60) can be bounded by

− exp(
tn+1

T
)en+1

q

(

un · ∇un, Aen+1
u + dte

n+1
u

)

=− exp(
tn+1

T
)en+1

q

(

un · ∇enu, Ae
n+1
u + dte

n+1
u

)

− exp(
tn+1

T
)en+1

q

(

(un · ∇u(tn), Aen+1
u + dte

n+1
u

)

≤C|en+1
q |‖un‖1/2‖∇un‖1/2‖enu‖

1/2‖Aenu‖
1/2‖Aen+1

u + dte
n+1
u ‖

+ C|en+1
q |‖un‖1‖u(t

n)‖22‖Ae
n+1
u + dte

n+1
u ‖

≤
1

12
‖dte

n+1
u ‖2 +

ν

24
‖Aen+1

u ‖2 +
ν

8
‖Aenu‖

2

+ C(∆t+ ‖u(tn)‖21)‖e
n
u‖

2 + C(∆t+ ‖u(tn)‖21)|e
n+1
q |2.

(3.61)

The second term on the right hand side of (3.60) can be estimated by

(

(u(tn+1)− un) · ∇u(tn+1), Aen+1
u + dte

n+1
u

)

≤C‖u(tn+1)− un‖1‖u(t
n+1)‖2‖Ae

n+1
u + dte

n+1
u ‖

≤
1

12
‖dte

n+1
u ‖2 +

ν

24
‖Aen+1

u ‖2 + C‖enu‖
2
1

+ C‖u(tn+1)‖22∆t

∫ tn+1

tn
‖ut‖

2
1dt.

(3.62)

Using (3.15) and (3.58), the last term on the right hand side of (3.60) can be controlled by

(

un · ∇(u(tn+1)− un), Aen+1
u + dte

n+1
u

)

=
(

un · ∇(u(tn+1)− u(tn)), Aen+1
u + dte

n+1
u

)

−
(

un · ∇enu, Ae
n+1
u + dte

n+1
u

)

≤C‖un‖1‖u(t
n+1)− u(tn)‖2‖Ae

n+1
u + dte

n+1
u ‖

+ C‖un‖
1/2
1 ‖un‖

1/2
0 ‖Aenu‖

1/2‖enu‖
1/2‖Aen+1

u + dte
n+1
u ‖

≤
1

12
‖dte

n+1
u ‖2 +

ν

24
‖Aen+1

u ‖2 +C(∆t+ ‖u(tn+1)‖21)‖e
n
u‖

2

+
ν

8
‖Aenu‖

2 + C(∆t+ ‖u(tn)‖21)∆t

∫ tn+1

tn
‖ut‖

2
2dt.

(3.63)

For the second term on the right hand side of (3.59), we have

α exp(
tn+1

T
)
(

qn+1(∇× bn)× bn − q(tn+1)(∇× b(tn+1))× b(tn+1), Aen+1
u + dte

n+1
u

)

=α exp(
tn+1

T
)en+1

q

(

(∇× bn)× bn, Aen+1
u + dte

n+1
u

)

+ α
(

(∇× (bn − b(tn+1)))× bn, Aen+1
u + dte

n+1
u

)

+ α
(

(∇× b(tn+1))× (bn − b(tn+1)), Aen+1
u + dte

n+1
u

)

.

(3.64)
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Thanks to (3.11) and and (3.58), the first term on the right hand side of (3.64) can be bounded
by

α exp(
tn+1

T
)en+1

q

(

(∇× bn)× bn, Aen+1
u + dte

n+1
u

)

=α exp(
tn+1

T
)en+1

q

(

(∇× bn)× enb, Ae
n+1
u + dte

n+1
u

)

+ α exp(
tn+1

T
)en+1

q

(

(∇× bn)× b(tn), Aen+1
u + dte

n+1
u

)

≤C‖∇ × bn‖‖enb‖
1/2
1 ‖enb‖

1/2
2 ‖Aen+1

u + dte
n+1
u ‖

+ C|en+1
q |‖∇ × bn‖‖b(tn)‖2‖Ae

n+1
u + dte

n+1
u ‖

≤
1

12
‖dte

n+1
u ‖2 +

ν

24
‖Aen+1

u ‖2 +
η

8
‖∆enb‖

2

+ C(∆t+ ‖b(tn)‖21)‖e
n
b‖

2
1 +C(∆t+ ‖b(tn)‖21)|e

n+1
q |2.

(3.65)

The last two terms on the right hand side of (3.64) can be estimated by

α
(

(∇×(bn − b(tn+1)))× bn, Aen+1
u + dte

n+1
u

)

+ α
(

(∇× b(tn+1))× (bn − b(tn+1)), Aen+1
u + dte

n+1
u

)

≤C‖enb + b(tn)− b(tn+1)‖1‖e
n
b‖

1/2
1 ‖enb‖

1/2
2 ‖Aen+1

u + dte
n+1
u ‖

+ C‖enb + b(tn)− b(tn+1)‖1‖b(t
n)‖2‖Ae

n+1
u + dte

n+1
u ‖

+ C‖∇ × b(tn+1)‖L4‖bn − b(tn+1)‖L4‖Aen+1
u + dte

n+1
u ‖

≤
1

12
‖dte

n+1
u ‖2 +

ν

24
‖Aen+1

u ‖2 +
η

8
‖∆enb‖

2

+ C‖enb‖
2
1 +C‖b(tn+1)‖22∆t

∫ tn+1

tn
‖bt‖

2
1dt.

(3.66)

For the last term on the right hand side of (3.59), we have

(Rn+1
u , Aen+1

u + dte
n+1
u ) ≤

1

12
‖dte

n+1
u ‖2 +

ν

24
‖Aen+1

u ‖2 + C∆t

∫ tn+1

tn
‖utt‖

2dt. (3.67)

Combining (3.59) with (3.60)-(3.67), we have

(1 + ν)
‖∇en+1

u ‖2 − ‖∇enu‖
2

2∆t
+

1

2
‖dte

n+1
u ‖2 +

3ν

4
‖Aen+1

u ‖2

≤
η

4
‖∆en

b
‖2 +

ν

4
‖Aenu‖

2 +C(∆t+ ‖u(tn)‖21)‖e
n
u‖

2
1 + C(∆t+ ‖b(tn)‖21)‖e

n
b
‖21

+ C(∆t+ ‖u(tn)‖21 + ‖b(tn)‖21)|e
n+1
q |2

+ C∆t

∫ tn+1

tn
(‖ut‖

2
2 + ‖utt‖

2 + ‖bt‖
2
1)dt.

(3.68)

Next we shall balance the first term on the right hand side of (3.68) by using the error equation
(3.36) for magnetic field. We proceed as follows.
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Taking the inner product of (3.36) with −∆en+1
b

+ dte
n+1
b

, we obtain

(1 + η)
‖∇en+1

b
‖2 − ‖∇en

b
‖2

2∆t
+ ‖dte

n+1
b

‖2 + η‖∆en+1
b

‖2

=exp(
tn+1

T
)q(tn+1)

(

∇× (b(tn+1)× u(tn+1)),−∆en+1
b

+ dte
n+1
b

)

− exp(
tn+1

T
)qn+1

(

∇× (bn × un),−∆en+1
b

+ dte
n+1
b

)

+ (Rn+1
b

,−∆en+1
b

+ dte
n+1
b

).

(3.69)

The first two terms on the right hand side of (3.69) can be recast as

exp(
tn+1

T
)q(tn+1)

(

∇× (b(tn+1)× u(tn+1)),−∆en+1
b

+ dte
n+1
b

)

− exp(
tn+1

T
)qn+1

(

∇× (bn × un),−∆en+1
b

+ dte
n+1
b

)

=
(

∇× [(b(tn+1)− bn)× u(tn+1)],−∆en+1
b

+ dte
n+1
b

)

+
(

∇× [bn × (u(tn+1)− un)],−∆en+1
b

+ dte
n+1
b

)

− exp(
tn+1

T
)en+1

q

(

∇× (bn × un),−∆en+1
b

+ dte
n+1
b

)

.

(3.70)

Noting (3.3) and (3.14), the first term on the right hand side of (3.70) can be bounded by

(

∇×[(b(tn+1)− bn)× u(tn+1)],−∆en+1
b

+ dte
n+1
b

)

≤C‖b(tn+1)− bn‖1‖u(t
n+1)‖2‖dte

n+1
b

−∆en+1
b

‖

≤
1

8
‖dte

n+1
b

‖2 +
η

16
‖∆en+1

b
‖2 + C‖enb‖

2
1

+ C‖u(tn+1)‖22∆t

∫ tn+1

tn
‖bt‖

2
1dt.

(3.71)

For the second term on the right hand side of (3.70), we have

(

∇×[bn × (u(tn+1)− un)],−∆en+1
b

+ dte
n+1
b

)

=
(

∇× [enb × (u(tn+1)− un)],−∆en+1
b

+ dte
n+1
b

)

+
(

∇× [b(tn)× (u(tn+1)− un)],−∆en+1
b

+ dte
n+1
b

)

≤C‖enb‖
1/2
1 ‖enb‖

1/2
2 ‖u(tn+1)− un‖1‖dte

n+1
b

−∆en+1
b

‖

+ C‖b(tn)‖2‖u(t
n+1)− un‖1‖dte

n+1
b

−∆en+1
b

‖

≤
1

8
‖dte

n+1
b

‖2 +
η

16
‖∆en+1

b
‖2 +

η

8
‖∆enb‖

2 +C‖enb‖
2
1

+ C‖b(tn)‖22∆t

∫ tn+1

tn
‖ut‖

2
1dt.

(3.72)
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Thanks to (3.3) and (3.14), the last term on the right hand side of (3.70) can be

− exp(
tn+1

T
)en+1

q

(

∇× (bn × un),−∆en+1
b

+ dte
n+1
b

)

=− exp(
tn+1

T
)en+1

q

(

∇× (enb × un),−∆en+1
b

+ dte
n+1
b

)

− exp(
tn+1

T
)en+1

q

(

∇× (b(tn)× un),−∆en+1
b

+ dte
n+1
b

)

≤C|en+1
q |‖enb‖

1/2
1 ‖enb‖

1/2
2 ‖un‖1‖dte

n+1
b

−∆en+1
b

‖

+ C|en+1
q |‖b(tn)‖2‖u

n‖1‖dte
n+1
b

−∆en+1
b

‖

≤
1

8
‖dte

n+1
b

‖2 +
η

16
‖∆en+1

b
‖2 +

η

8
‖∆enb‖

2

+ C(∆t+ ‖u(tn)‖21)‖e
n
b‖

2
1 + C(∆t+ ‖u(tn)‖21)|e

n+1
q |2.

(3.73)

For the last term on the right hand side of (3.69), we have

(Rn+1
b

,−∆en+1
b

+ dte
n+1
b

) ≤
1

8
‖dte

n+1
b

‖2 +
η

16
‖∆en+1

b
‖2 + C∆t

∫ tn+1

tn
‖btt‖

2dt. (3.74)

Combining (3.69) with (3.70)-(3.74), we obtain

(1 + η)
‖∇en+1

b
‖2 − ‖∇en

b
‖2

2∆t
+

1

2
‖dte

n+1
b

‖2 +
3η

4
‖∆en+1

b
‖2

≤
η

4
‖∆enb‖

2 + C(∆t+ ‖u(tn)‖21)‖e
n
b‖

2
1 + C(∆t+ ‖u(tn)‖21)|e

n+1
q |2

+ C∆t

∫ tn+1

tn
(‖ut‖

2
1 + ‖bt‖

2
1 + ‖btt‖

2)dt.

(3.75)

Summing up (3.75) with (3.68) leads to

(1 + ν)
‖∇en+1

u ‖2 − ‖∇enu‖
2

2∆t
+

1

2
‖dte

n+1
u ‖2 +

3ν

4
‖Aen+1

u ‖2

+ (1 + η)
‖∇en+1

b
‖2 − ‖∇en

b
‖2

2∆t
+

1

2
‖dte

n+1
b

‖2 +
3η

4
‖∆en+1

b
‖2

≤
η

2
‖∆enb‖

2 +
ν

4
‖Aenu‖

2 + C(∆t+ ‖u(tn)‖21)‖e
n
u‖

2
1

+ C(∆t+ ‖u(tn)‖21 + ‖b(tn)‖21)(‖e
n
b‖

2
1 + |en+1

q |2)

+ C∆t

∫ tn+1

tn
(‖ut‖

2
2 + ‖utt‖

2 + ‖bt‖
2
1 + ‖btt‖

2)dt.

(3.76)

Multiplying (3.76) by 2∆t and summing over n, n = 0, 2, . . . ,m, and applying the discrete
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Gronwall lemma 3.1, we obtain

‖∇em+1
u ‖2 +∆t

m
∑

n=0

‖dte
n+1
u ‖2 + ν∆t

m
∑

n=0

‖Aen+1
u ‖2

+ ‖∇em+1
b

‖2 +∆t
m
∑

n=0

‖dte
n+1
b

‖2 + η∆t
m
∑

n=0

‖∆en+1
b

‖2

≤C(∆t+ ‖u(tn)‖21 + ‖b(tn)‖21)∆t

m
∑

n=0

(‖enu‖
2
1 + ‖enb‖

2
1)

+ C∆t

m
∑

n=0

|en+1
q |2 + C(∆t)2.

(3.77)

Combining the above estimate with Theorem 3.2, we finally obtain

∆t
m
∑

n=0

‖dte
n+1
u ‖2 + ‖∇em+1

u ‖2 + ν∆t
m
∑

n=0

‖Aen+1
u ‖2 + ‖∇em+1

b
‖2

+∆t

m
∑

n=0

‖dte
n+1
b

‖2 + η∆t

m
∑

n=0

‖∆en+1
b

‖2 ≤ C(∆t)2.

(3.78)

We are now in position to prove the pressure estimate. Taking the inner product of (3.22)
with v ∈ H1

0(Ω), we obtain

(∇en+1
p ,v) =− (dte

n+1
u ,v) + ν(∆en+1

u ,v) + (Rn+1
u ,v)

+ exp(
tn+1

T
)
(

q(tn+1)(u(tn+1) · ∇)u(tn+1)− qn+1(un · ∇)un,v
)

+ α exp(
tn+1

T
)
(

qn+1(∇× bn)× bn − q(tn+1)(∇× b(tn+1))× b(tn+1),v
)

.

(3.79)

We derive from

‖en+1
p ‖L2(Ω)/R ≤ sup

v∈H
1
0(Ω)

(∇en+1
p ,v)

‖∇v‖
, (3.80)

and (3.25)-(3.27) that, for all v ∈ H1
0(Ω),

exp(
tn+1

T
)
(

q(tn+1)(u(tn+1) · ∇)u(tn+1)− qn+1(un · ∇)un,v
)

=
q(tn+1)

exp(− tn+1

T )

(

(u(tn+1)− un) · ∇u(tn+1),v
)

−
en+1
q

exp(− tn+1

T )
((un · ∇)un,v)

+
q(tn+1)

exp(− tn+1

T )

(

un · ∇(u(tn+1)− un),v
)

≤C(‖enu‖1 + ‖

∫ tn+1

tn
utdt‖1 + |en+1

q |)‖∇v‖,

(3.81)
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and for the last term on the right hand side of (3.79), by using (3.28)-(3.33), we have

α exp(
tn+1

T
)
(

qn+1(∇× bn)× bn − q(tn+1)(∇× b(tn+1))× b(tn+1),v
)

=α exp(
tn+1

T
)en+1

q

(

(∇× bn)× bn, en+1
u

)

+ α
(

∇× (bn − b(tn+1))× bn, en+1
u

)

+ α
(

(∇× b(tn+1))× (bn − b(tn+1)), en+1
u

)

≤C(‖enb‖1 + ‖bn‖‖

∫ tn+1

tn
btdt‖1 + |en+1

q |)‖∇v‖.

(3.82)
Finally thanks to Theorem 3.2 and (3.78), we can derive from the above that

∆t

m
∑

n=0

‖en+1
p ‖2L2(Ω)/R ≤ C∆t

m
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n=0

(
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n+1
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2
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2
1 + |en+1
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)

+ C(∆t)2
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t0
‖bt‖

2
1dt

+ C(∆t)2
∫ tm+1

t0
(‖ut‖

2
1 + ‖utt‖

2
−1)dt ≤ C(∆t)2.

The proof is complete.

4. Numerical experiments. In this section we provide some numerical experiments to
validate the SAV schemes developed in the previous sections.

Although we only discussed semi-discretization in time in the previous sections, the IMEX
SAV schemes can be coupled with any compatible spatial discretization. More precisely, let
Xh ⊂ H1

0(Ω), Mh ⊂ L2
0(Ω) and Wh ⊂ H1

n(Ω) be a set of compatible approximation spaces for
the velocity, pressure and magnetic field, a fully discrete first-order IMEX SAV scheme is as
follows: (un+1

h , pn+1
h ,bn+1

h ) in (Xh,Mh,Wh) and qn+1
h ∈ R such that

(dtu
n+1
h ,vh) + ν(∇un+1

h ,vh)− (pn+1
h ,∇ · vh) = α exp(

tn+1

T
)qn+1

h ((∇× bn
h)× bn

h,vh)

− exp(
tn+1

T
)qn+1

h (un
h · ∇un

h),vh), ∀vh ∈ Xh, (4.1)

(∇ · un+1
h , ξh) = 0, ∀ξh ∈ Mh, (4.2)

(dtb
n+1
h ,wh) + η(∇× bn+1

h ,∇×wh) + η(∇ · bn+1
h ,∇ ·wh)

+ exp(
tn+1

T
)qn+1

h (∇× (bn
h × un

h),wh) = 0, ∀wh ∈ Wh, (4.3)

dtq
n+1
h = −

1

T
qn+1
h + exp(

tn+1

T
)

(

(un
h · ∇un

h,u
n+1
h )− α((∇× bn

h)× bn
h,u

n+1
h ) + α(∇× (bn

h × un
h),b

n+1
h )

)

. (4.4)

Second-order fully discrete IMEX SAV scheme can be constructed similarly.
Following the same procedure as in the proof of Theorem 2.1, namely, setting vh = un+1

h ,
ξh = pn+1

h , wh = αbn+1
h in (4.1)-(4.3) respectively and taking the inner product of (4.4) with
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qn+1
h , we can obtain the following stability result: The scheme (4.1)-(4.4) is unconditionally
stable in the sense that

En+1
h − En

h ≤− ν∆t‖∇un+1
h ‖2 − ηα∆t‖∇bn+1

h ‖2

− ηα∆t‖∇ × bn+1
h ‖2 −

1

T
∆t|qn+1

h |2, ∀∆t, n ≥ 0,
(4.5)

where

En+1
h =

1

2
‖un+1

h ‖2 +
α

2
‖bn+1

h ‖2 +
1

2
|qn+1
h |2.

In our simulation, we use (P2, P1, P2) finite-elements to approximate velocity, pressure and
magnetic field, respectively. Note that the (P2, P1) finite-elements for velocity and pressure
satisfy the inf-sup conditions so that one can easily show that the fully discrete scheme (4.1)-
(4.4) coupled with (P2, P1, P2) finite elements are well posed and can be solved following the
procedure described in Section 2.

In this example, we set Ω = (0, 1)× (0, 1), ν = 0.01, η = 0.01, α = 1, T = 1. The right hand
side of the equations is computed according to the analytic solution given as below:































u1(x, y, t) = πk sin2(πx) sin(πy) cos(t),

u2(x, y, t) = −πk sin(πx) sin2(πy) cos(t),

p(x, y, t) = k(x− 1/2)(y − 1/2) cos(t)/10,

b1(x, y, t) = k sin(πx) cos(πy) cos(t),

b2(x, y, t) = −k cos(πx) sin(πy) cos(t),

where k = 0.01. To test the time accuracy, we choose h = 0.005 so that the spatial discretization
error is negligible compared to the time discretization error for the time steps used in this
experiment.

Table 4.1

Errors and convergence rates with the first-order scheme (2.7)-(2.11)

∆t ‖uh − u‖H1 Order ‖uh − u‖L2 Order ‖ph − p‖L2 Order

1/2 8.26E-3 — 1.34E-3 — 2.66E-5 —

1/4 3.96E-3 1.06 7.16E-4 0.91 1.16E-5 1.12

1/8 1.93E-3 1.04 3.70E-4 0.95 5.41E-6 1.10

1/16 9.52E-4 1.04 1.89E-4 0.97 2.61E-6 1.05

1/32 4.72E-4 1.01 9.51E-5 0.99 1.28E-6 1.03

1/64 2.35E-4 1.01 4.78E-5 0.99 6.33E-7 1.01

Numerical results for this example with first- and second-order schemes are presented in
Tables 4.1-4.4. We observe that the results for the first-order scheme (2.7)-(2.11) are consistent
with the error estimates in Theorems 3.2 and 3.7. While second-order convergence rates for the
velocity, pressure and magnetic field were observed for the second-order scheme (2.22)-(2.26).

5. Concluding remarks. We constructed first- and second-order discretization schemes
in time based on the SAV approach for the MHD equations. The nonlinear terms are treated ex-
plicitly in our schemes so they only require solving a sequence of linear differential equations with
constant coefficients at each time step. Thus, the schemes are efficient and easy to implement.
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Table 4.2

Errors and convergence rates with the first-order scheme (2.7)-(2.11)

∆t ‖bh − b‖H1 Order ‖bh − b‖L2 Order

1/2 4.52E-3 — 1.22E-3 —

1/4 2.10E-3 1.11 6.39E-4 0.94

1/8 1.00E-3 1.07 3.27E-4 0.97

1/16 4.89E-4 1.04 1.65E-4 0.98

1/32 2.41E-4 1.02 8.31E-5 0.99

1/64 1.20E-4 1.01 4.17E-5 1.00

Table 4.3

Errors and convergence rates with the second-order scheme (2.22)-(2.26)

∆t ‖uh − u‖H1 Order ‖uh − u‖L2 Order ‖ph − p‖L2 Order

1/2 6.43E-3 — 8.84E-4 — 1.94E-5 —

1/4 1.99E-3 1.70 2.32E-4 1.93 5.23E-6 1.89

1/8 5.49E-4 1.85 5.35E-5 2.12 1.38E-6 1.92

1/16 1.44E-4 1.93 1.26E-5 2.09 3.53E-7 1.96

1/32 3.70E-5 1.96 3.05E-6 2.04 8.92E-8 1.99

1/64 1.03E-5 1.85 7.52E-7 2.02 2.24E-8 1.99

Despite the fact that the nonlinear terms are treated explicitly, we proved that our schemes
are unconditionally energy stable. This is made possible by introducing a purely artificial scalar
auxiliary variable, q(t), which enables the nonlinear contributions to the energy to cancel with
each other as in the continuous case, leading to the unconditionally energy stability.

By using the unconditional energy result which leads to uniform bound on the numerical
solution , we derived rigorous error estimates for the velocity, pressure and magnetic field of the
first-order scheme in the two-dimensional case without any condition on the time step. To the
best of our knowledge, this is the first linear, unconditional energy stable and convergent scheme
with fully explicit treatment for the MHD equations. We believe that the error estimates can
also be established for the second-order scheme in the two-dimensional case although the process
will surely be much more tedious. However, it appear that the error estimates can not be easily
extended to the three dimensional case as our proof uses essentially some inequalities which are
only valid in the two-dimensional case.
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