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Abstract. Multigrid methods are popular for solving linear systems derived from discretizing
PDEs. Local Fourier Analysis (LFA) is a technique for investigating and tuning multigrid methods.
P-multigrid is popular for high-order or spectral finite element methods, especially on unstructured
meshes. In this paper, we introduce LFAToolkit.jl, a new Julia package for LFA of high-order
finite element methods. LFAToolkit.jl analyzes preconditioning techniques for arbitrary systems of
second order PDEs and supports mixed finite element methods. Specifically, we develop LFA of
p-multigrid with arbitrary second-order PDEs using high-order finite element discretizations and
examine the performance of Jacobi and Chebyshev smoothing for two-grid schemes with aggressive
p-coarsening. A natural extension of this LFA framework is the analysis of h-multigrid for finite
element discretizations or finite difference discretizations that can be represented in the language of
finite elements. With this extension, we can replicate previous work on the LFA of h-multigrid for
arbitrary order discretizations using a convenient and extensible abstraction. Examples in one, two,
and three dimensions are presented to validate our LFA of p-multigrid for the Laplacian and linear
elasticity.
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1. Introduction. Multigrid methods [4, 6, 29] are popular for solving linear
systems derived from discretizing PDEs. Local Fourier Analysis (LFA) [3, 33] is a
powerful tool for predicting multigrid performance and tuning of multigrid compo-
nents by examining the spectral radius and/or condition number of the symbol of the
underlying operator, which enables sharp predictions for large-scale problems.

High-order finite element methods offer accuracy advantages over low-order finite
elements [13, 24, 25]; however, high-order finite elements are less common because
a linear operator or the Jacobian of a non-linear operator rapidly loses sparsity in a
sparse matrix representation. Matrix-free formulations of these methods [7, 14, 20],
provide efficient implementations of these methods on modern hardware [8, 15, 21].

LFA of h-multigrid with high-order finite elements was developed in [17] for La-
grange bases with uniformly spaced nodes. P-multigrid, developed by Rønquist and
Patera [28], is based on decreasing the order of the bases in high-order or spectral
finite element methods rather than aggregating elements to coarsen the mesh. While
it is possible [12] to use high-order finite element methods with matrix-free imple-
mentation of h-multigrid preconditioning on complex problems, p-multigrid can be a
more natural fit for high-order methods on unstructured meshes. The benefits of us-
ing p-multigrid for matrix-free operators on unstructured meshes for solid mechanics
engineering applications is discussed in [9].

In this paper, we develop LFA of p-multigrid with arbitrary second-order PDEs

∗This work is supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem, in-
cluding software, applications, hardware, advanced system engineering and early testbed platforms,
in support of the nation’s exascale computing imperative.
†Department of Computer Science, University of Colorado, Boulder, CO (jeremy@jeremylt.org).
‡Department of Computer Science, University of Colorado, Boulder, CO (jed@jedbrown.org).
§Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada (yun-

hui.he@uwaterloo.ca).

1

ar
X

iv
:2

10
8.

01
75

1v
2 

 [
m

at
h.

N
A

] 
 1

8 
Ja

n 
20

23

mailto:jeremy@jeremylt.org
mailto:jed@jedbrown.org
mailto:yunhui.he@uwaterloo.ca
mailto:yunhui.he@uwaterloo.ca


2 J. L. THOMPSON, J. BROWN, AND Y. HE

using high-order finite element discretizations and investigate Jacobi and Chebyshev
smoothing for two-grid schemes by way of LFAToolkit.jl [30], a new Julia package for
LFA of high-order finite element methods. Several software packages have been devel-
oped for LFA of h-multigrid methods [26, 19, 33], however, to the best of our knowl-
edge, no packages implement LFA of p-multigrid methods, especially with arbitrary
PDEs. Although [32] discussed LFA of p-multigrid for the discontinuous Galerkin
method, this formulation cannot be extended to the continuous Galerkin method.
Our LFA formulation for p-multigrid with high-order finite element discretizations
for the continuous Galerkin method can be generalized to reproduce previous work
on h-multigrid for high-order finite elements [17] and can be extended to LFA for h-
multigrid of finite difference discretizations that can be represented via finite element
discretizations as well as LFA of block smoothers [23, 10]. Our work here could be
represented in terms of the aLFA framework [19]; however we choose a representation
that will be familiar for the high-order finite element and spectral elements com-
munity. We give details on the mathematical representation of LFA of grid-transfer
operators for p-multigrid for the continuous Galerkin method, which seems absent
in current literature. Moreover, our LFA framework for p-multigrid generalizes and
unifies classical LFA for h-multigrid, which would be a rich area for research.

We investigate the performance of Jacobi and Chebyshev semi-iterative smoothers
for p-multigrid with aggressive coarsening for the scalar Laplacian in one and two
dimensions, and we validate our LFA of p-multigrid with the scalar Laplacian in
three dimensions against numerical experiments. Our analysis demonstrates that the
performance of p-multigrid with these two smoothers degrades as we coarsen more
aggressively. Finally, we analyze the performance of p-multigrid with a Chebyshev
smoother for three dimensional linear elasticity to demonstrate ability of our LFA
framework to handle more complex PDEs.

This paper is organized as follows. In section 2 we outline the notation for LFA
used in this paper. In section 3 we develop the notation for LFA of second-order
PDEs with arbitrary order bases, dimension, and number of components used in
LFAToolkit.jl, and we use this notation to develop LFA of p-multigrid and the Jacobi
and Chebyshev smoothers. Section 4 contains numerical results investigating the
performance of Jacobi and Chebyshev smoothing for p-multigrid on the one, two, and
three dimensional scalar Laplacian and three dimensional linear elasticity. Finally,
section 5 contains concluding remarks.

1.1. Reproducibility. The numerical results for LFA in this paper were gen-
erated using the Julia package LFAToolkit.jl [30]. This package is under active de-
velopment and may be found on GitHub at jeremylt/LFAToolkit.jl. This repository
contains Julia scripts and interactive Jupyter notebooks that can replicate the tables
and plots in this paper.

Our numerical experiments demonstrating actual convergence rates of p-multigrid
were conducted using libCEED [8] with PETSc [2] p-multigrid example found in the
libCEED repository.

2. Definitions and Notation. Consider a scalar Toeplitz operator Lh on an
infinite one dimensional uniform nodal grid Gh,

Lh =̂ [sκ]h (κ ∈ V ) ;

Lhwh (x) =
∑
κ∈V

sκwh (x+ κh) ,(2.1)

https://github.com/jeremylt/LFAToolkit.jl
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where V ⊂ Z is a finite index set, sκ ∈ R are constant coefficients, and wh (x) is a l2

function on Gh. In the terminology of stencils, sκ are stencil weights that are nonzero
on the neighborhood κ ∈ V .

Since Lh is Toeplitz, it can be diagonalized by the standard Fourier modes
ϕ (θ, x) = eıθx/h, with i2 = −1, which alias according to ϕ(θ + 2π, x) = ϕ(θ, x)
on all grid points x ∈ hZ.

Definition 2.1 (Symbol of Lh). If for all grid functions ϕ (θ, x) we have

(2.2) Lhϕ (θ, x) = L̃h (θ)ϕ (θ, x) ,

then we define L̃h (θ) =
∑
κ∈V sκe

ıθκ as the symbol of Lh, where ı2 = −1.

This definition can be extended to a q × q linear system of operators by

(2.3) Lh =

L
1,1
h · · · L1,q

h
...

...
...

Lq,1h · · · Lq,qh

 ,
where Li,jh , i, j ∈ {1, 2, . . . , q} are given by scalar Toeplitz operators describing how
component j appears in the equation for component i. The components here may
represent different fields and/or nodes of a finite element basis. The symbol of Lh,

denoted L̃h, is a q × q matrix-valued function of θ given by
(
L̃h

)
i,j

= L̃i,jh (θ). For a

system of equations representing an error propagation operator in a relaxation scheme,
the spectral radius of the symbol matrix determines how rapidly the scheme decreases
error at a target frequency.

These definitions are readily extended to d dimensions by taking the neighborhood
V ⊂ Zd and letting θ ∈ [−π, π)d. For standard coarsening from a fine grid with a
mesh size h to a coarse grid with a mesh size of H = 2h, low frequencies are given
by θ ∈ T low = [−π/2, π/2)

d
and high frequencies are given by θ ∈ [−π, π)

d \ T low or

equivalently by periodicity, θ ∈ T high = [−π/2, 3π/2)
d \ T low.

3. Local Fourier Analysis for P-Multigrid. We now develop the LFA formu-
lation used in LFAToolkit.jl, first in one dimension and then in multiple dimensions,
followed by LFA of polynomial smoothers and LFA of p-multigrid with high-order
finite elements.

3.1. High-Order Finite Elements. We will use the representation of the weak
form of linear second-order PDEs described in [7], which is given by

(3.1) 〈v, f (u)〉 =

∫
Ω

[
vT ∇vT

] [f0,0 f0,1

f1,0 f1,1

] [
u
∇u

]
=

∫
Ω

fv, ∀v ∈ V

for some suitable V ⊆ H1
0 (Ω). In this equation, fi,j may come from a linear PDE

or the linearization of a non-linear problem. Boundary terms have been omitted, as
they are not present on the infinite uniform grid Gh.

This omission of boundary conditions corresponds to periodic boundary condi-
tions on a finite domain; however, in practice LFA on the infinite uniform grid offers
good predictions for finite domains with other boundary conditions [33].

Selecting a finite element basis, we can discretize this weak form and produce

(3.2) Au = b.
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Using the algebraic representation of PDE operators given in [7], the PDE oper-
ator A is of the form

(3.3) A = GTAeG, with Ae = BTDB,

where G represents the element assembly operator, B is a basis operator which com-
putes the values and derivatives of the basis functions at the quadrature points, and
D is a block diagonal operator which provides the pointwise application of the bilin-
ear form on the quadrature points, to include quadrature weights and the change in
coordinates between the physical and reference space.

Consider the specific case of a block Toeplitz operator representing an arbitrary
second order scalar PDE in one dimension with Lagrange basis of polynomial degree
p given in the form of (3.2) and (3.3). The basis B is defined on the mesh grid with
points given by xi, for i ∈ {1, 2, . . . , p+ 1} on one element. The nodes on the left
and right boundaries of the element map to the same Fourier mode when localized to
nodes unique to a single finite element, so we can compute the symbol matrix of size
p× p as

(3.4) Ã = QT
(
Ae �

[
eı(xj−xi)θ/h

])
Q,

where � represents pointwise multiplication of the elements, h is the length of the
element, and i, j ∈ {1, 2, . . . , p+ 1}. In the pointwise product Ae�

[
eı(xj−xi)θ/h

]
, the

(i, j) entry is given by (Ae)i,j e
ı(xj−xi)θ/h. Q is a (p+ 1) × p matrix that localizes

Fourier modes to each finite element, given by

(3.5) Q =

[
I
e0

]
=


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1
1 0 · · · 0

 .

We refer to Q as the Fourier mode localization operator.
The computation of this symbol matrix extends to more complex PDE with mul-

tiple components and in higher dimensions. Multiple components are supported by
extending the p× p system of Toeplitz operators in (3.4) to a (n · p)× (n · p) system
of operators, where n is the number of components in the PDE. The localization op-
erator for a multi-component PDE is given by Qn = In ⊗Q, where In is the identity
matrix with size n × n. In general, we omit the subscript indicating the number of
components for the localization operator.

The infinite uniform grid Gh is extended into higher dimensions by taking the
direct sum of the one dimensional grid. Tensor products are used to extend the
one dimensional bases into higher dimensions. The basis evaluation operators in two
dimensions are given by

Binterp2d = Binterp1d ⊗Binterp1d,

Bgrad2d =

[
Bgrad1d ⊗Binterp1d

Binterp1d ⊗Bgrad1d

]
,

(3.6)

where Binterp∗d and Bgrad∗d are the basis interpolation and gradient operators, re-
spectively.
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In a similar fashion, the localization operator for Fourier modes in two dimensions
is given by

(3.7) Q2d = Q⊗Q.

As with tensor product bases, an analogous computation can be done in higher di-
mensions. Again, we generally omit the subscript indicating the dimension of the
Fourier mode localization operator.

Definition 3.1. The symbol matrix of a finite element operator for an arbitrary
second order PDE with any basis order, dimension, and number of components is
given by

(3.8) Ã = QT
(
Ae �

[
eı(xj−xi)·θ/h

])
Q,

where � represents pointwise multiplication of the elements, h is the length of the ele-
ment in each dimension, θ is the target frequency in each dimension, i, j ∈ {1, 2, . . . , n·
(p+ 1)

d}, n is the number of components, p is the polynomial degree of the discretiza-
tion, and d is the dimension of the finite element basis. Ae is the finite element
operator for the element and Q is the localization of Fourier modes on an element.

Note that this LFA notation is applicable to any second-order PDE with a weak
form that can be represented by (3.3). This representation is used in LFAToolkit.jl,
where the users provide the finite element basis B, the node to mode mapping Q, and
the pointwise representation of the weak form D, and the software can provide the
LFA of the PDE with various preconditioners. The nodes may be defined by points xi
or more generally, as dual basis functions that may be applied to the Fourier modes;
however, we restrict ourselves to nodal bases in this paper.

If the pointwise representation of the weak form D has a tensor product struc-
ture, then the element operator Ae and therefore the symbol Ã will have a tensor
product structure, as shown in [17]. We omit this optimization in this analysis and
LFAToolkit.jl in favor of supporting second-order PDEs that do not have a tensor
product decomposition.

3.2. Polynomial Smoothers. Multigrid methods require a fine grid smoother,
typically applied both before and after the coarse grid correction is computed. In this
section, we compute the symbol of the error propagation operator for two polynomial
smoothers, Jacobi and Chebyshev.

The error propagation operator for a smoother is given by S = I−M−1A, where
M−1 is given by the particular smoother under investigation. The LFA-predicted
convergence factor is given by the maximum spectral radius of the symbol across all
frequencies

(3.9) µ (ω) = max
θ∈T

ρ
(
S̃ (ν, ω,θ)

)
,

where ρ
(
S̃ (ν, ω,θ)

)
denotes the spectral radius of the matrix symbol S̃. Our goal

is to select tuning parameters for the polynomial smoothers to minimize the LFA-
predicted convergence factor of two-grid p-multigrid cycles with agressive coarsening.

3.2.1. Jacobi Smoother. With Jacobi smoothing, M−1 is given by a weighted
inverse of the true operator diagonal, ω diag (A)

−1
. Following the derivation from



6 J. L. THOMPSON, J. BROWN, AND Y. HE

(a) Spectrum of Jacobi for p = 2 (b) Spectrum of Jacobi for p = 4

Fig. 3.1: Jacobi smoothing for high-order finite elements for the 1D Laplacian.

subsection 3.1, the symbol of the Jacobi error propagation operator therefore is given
by

(3.10) S̃ (ω,θ) = I− M̃−1 (ω,θ) Ã (θ) = I− ω
(
QT diag (Ae) Q

)−1
Ã (θ) ,

where M̃−1 has been simplified by the fact that eı(xi−xi)·θ/h = 1.
If multiple pre or post-smoothing passes are used by our multigrid algorithm, we

take the product of the symbol matrix with itself to represent repeated application of
the Jacobi smoother.

Definition 3.2. The symbol of the error propagation operator for Jacobi smooth-
ing is given by

(3.11) S̃ (ν, ω,θ) =
(
I− ω

(
QT diag (Ae) Q

)−1
Ã (θ)

)ν
,

where ν is the number of smoothing passes and ω is the smoothing parameter.

Using Definition 3.2, we plot the eigenvalues of M̃−1Ã (θ) over the interval θ ∈
[−π/2, 3π/2) in Figures 3.1a and 3.1b for the one dimensional Laplacian with a 2nd
and 4th degree H1 Lagrange basis functions on Gauss-Lobatto points. The eigenvalues
have been colored to identify the characteristic curves.

3.2.2. Chebyshev Smoother. Damped Jacobi with parameter ω is based on
the degree 1 monic polynomial with root at α = 1/ω > 0. For ν = 1 smoothing
passes, this is the minimal degree 1 monic polynomial on the interval [α − c, α + c]
for any positive c. However, for ν ≥ 2, the Jacobi smoother is a degree ν monic
polynomial that is not minimal on the interval (because it “concentrates” at the
center α). Chebyshev smoothers are based on a stable recurrence for the polynomial
of any degree that is minimial on the specified target interval of the positive real
axis, which should contain the eigenvalues of all modes the smoother is responsible
for. It is well known that polynomial smoothers allow more aggressive coarsening than
Jacobi [5]. For further discussion of the error propagation properties of the Chebyshev
semi-iterative method, see [16].

We use the Jacobi preconditioned operator, (diag A)
−1

A, in this iteration instead
of the finite element operator A, similar to the discussion in [1].
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The terms in the Chebyshev semi-iterative method can be modeled by the three
term recurrence relation given by

(3.12) uk = − (rk−1 + αuk−1 + βk−2uk−2) /γk−1,

with left-preconditioned residual rk−1 = (diag A)
−1

(b−Auk−1). The target interval
[λmin, λmax] = [α− c, α+ c] should be selected to be as narrow as possible while con-

taining the eigenvalues of the preconditioned operator (diag A)
−1

A that the smoother
is responsible for. (Other polynomial methods should be used for operators that are
not symmetric positive definite or nearly so.) The parameters β and γ are given by
the recurrence

(3.13)
β0 = − c2

2α γ0 = −α
βk = c

2
Tk(η)
Tk+1(η) =

(
c
2

)2 1
γk

γk = c
2
Tk+1(η)
Tk(η) = − (α+ βk−1).

In this equation, Ti (ζ) = 2ζTi−1 (ζ)− Ti−2 (ζ) are the classical Chebyshev polynomi-
als, which are evaluated at the point η = −α/c. First order Chebyshev is equivalent
to Jacobi smoothing with the classical choice of parameter value of ω = 1/α, so we
should expect relatively poor smoothing for k = 1.

The residual in the Chebyshev semi-iterative method can therefore be modeled
by the three term recurrence

(3.14) rk =
(

(diag A)
−1

Ark−1 − αrk−1 − βk−2rk−2

)
/γk−1.

Using the recurrence relation given in (3.14), we can define the error propagation
of the kth order Chebyshev smoother in terms of the error in the first term:

(3.15)

E0 = I

E1 = I− 1
α (diag A)

−1
A

Ek =
(

(diag A)
−1

AEk−1 − αEk−1 − βk−2Ek−2

)
/γk−1

With this recursive definition of the error propagation operator, we can define the
symbol for Chebyshev smoothing.

Definition 3.3. The symbol of the error propagation operator for a kth order
Chebyshev smoother based on the Jacobi preconditioned operator is given by

(3.16) S̃ (ν, k,θ) =
(
Ẽk

)ν
,

where ν is the number of smoothing passes and Ẽk (θ) is given by the recursive defi-
nition

(3.17)

Ẽ0 (θ) = I

Ẽ1 (θ) = I− 1
αÃJÃ (θ)

Ẽk (θ) =
(
ÃJÃ (θ) Ẽk−1 (θ)− αẼk−1 (θ)− βk−2Ẽk−2 (θ)

)
/γk−1

with ÃJ =
(
QT diag (Ae) Q

)−1
giving the symbol of the Jacobi operator.

Using Definition 3.3, we plot the eigenvalues of M̃−1Ã (θ) in Figures 3.2a and 3.2b
for the one dimensional Laplacian with a 2nd and 4th degree H1 Lagrange basis
functions on Gauss-Lobatto points. In both plots, we use the computation of the
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(a) Spectrum of Chebyshev for p = 2 (b) Spectrum of Chebyshev for p = 4

Fig. 3.2: Chebyshev smoothing for high-order finite elements for the 1D Laplacian.

extremal eigenvalues discussed below. These eigenvalues have been colored to identify
the characteristic curves. We see improved smoothing when compared to the Jacobi
smoothing in Figures 3.1a and 3.1b.

The Chebyshev semi-iterative method is known to be sensitive to the quality of the
estimates of the extremal eigenvalues λmin and λmax. Large eigenvalues are associated
with higher frequencies for differential operators so λmin for effective smoothing is
not the minimal eigenvalue, which is hard to compute and goes to zero under grid
refinement. PETSc [2] estimates the eigenvalues of the preconditioned operator via

Krylov iterations, yielding an estimate of the maximal eigenvalue, λ̂max, which is
used to set the target interval according to λmin = 0.1λ̂max and λmax = 1.1λ̂max.
This default lower bound was chosen empirically for rapid coarsening with smoothed
aggregation AMG and the upper bound incorporates a safety due to λ̂max generally
being an underestimate of the true maximum eigenvalue.

In LFAToolkit.jl, we also want to target the upper part of the spectrum of the
error; we estimate the spectral radius of the symbol of the Jacobi preconditioned
operator by sampling the the frequencies at a small number of values to estimate
λ̂max. We then take λmin = 0.1λ̂max and λmax = 1.0λ̂max.

3.3. P-Multigrid. With this representation of the symbol of high-order PDE
operators, we can derive the symbol of the p-multigrid two-grid error propagation
operator.

The two-grid multigrid error propagation operator is given by

(3.18) E2mg = Sf
(
I−PctofA

−1
c RftocAf

)
Sf ,

where Af represents the action of the PDE operator on the fine grid, Sf represents
the fine grid smoother error propagation operator, and A−1

c represents the coarse
grid solve, which may be another multigrid cycle. Pctof and Rftoc represent the grid
prolongation and restriction operators, respectively.

Some multigrid implementations allow the number of pre and post smoothing
passes to be set independently. This derivation of LFA for p-multigrid allows inde-
pendently setting these parameters; however, we omit this option in the notation for
simplicity.

This error propagation operator can represent both h-multigrid and p-multigrid,
depending upon the grid transfer operators and coarse grid representation chosen, but
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we focus on p-multigrid grid transfer operators in this paper.

3.3.1. Grid Transfer Operator. In p-multigrid, grid transfer operators can
be represented elementwise and can thus be easily represented in the form of (3.3).

The prolongation operator from the coarse to the fine grid interpolates low-order
basis functions at the nodes for the high-order basis functions. Figure 3.3 shows the
evaluation of second order basis function on the Gauss-Lobatto nodes for a fourth
order basis.

Fig. 3.3: P-Prolongation from Coarse Basis to Fine Basis Points in 1D.

The prolongation operator from the coarse to the fine grid can be represented by

Pctof = PT
f PePc

Pe = IDscaleBctof

(3.19)

where Bctof is an interpolation operator from the coarse grid basis to the fine grid
basis, Pf is the fine grid element assembly operator, Pc is the coarse grid element
assembly operator, and Dscale is a scaling operator to account for node multiplicity
across element interfaces. Restriction from the fine grid to the coarse grid is given by
the transpose, Rftoc = PT

ctof.
Following the derivation from subsection 3.1, we can derive the symbols of Pctof

and Rftoc.

Definition 3.4. The symbol of the p-prolongation is given by

(3.20) P̃ctof (θ) = QT
f

(
Pe �

[
eı(xj,c−xi,f )·θ/h

])
Qc,

where i ∈ {1, 2, . . . , n · (pfine + 1)
d}, h is the length of the element in each dimension,

j ∈ {1, 2, . . . , n · (pcoarse + 1)
d}, n is the number of components, pfine and pcoarse are

the polynomial degrees of the fine and coarse grid discretizations, respectively, and
d is the dimension of the finite element basis. The matrices Qf and Qc are the
localization mappings for the fine and coarse grid, respectively, and the element p-
prolongation operator is given by Pe = DscaleBctof. The nodes xj,c and are xi,f are
on the coarse and fine grids, respectively.

Definition 3.5. The symbol of p-restriction is given by the expression

(3.21) R̃ftoc (θ) = QT
c

(
Re �

[
eı(xj,f−xi,c)·θ/h

])
Qf ,
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where i ∈ {1, 2, . . . , n·(pcoarse + 1)
d}, h is the length of the element in each dimension,

j ∈ {1, 2, . . . , n · (pfine + 1)
d}, n is the number of components, pfine and pcoarse are

the polynomial degrees of the fine and coarse grid discretizations, respectively, and
d is the dimension of the finite element basis. The matrices Qf and Qc are the
localization mappings for the fine and coarse grid, respectively, and the element p-
restriction operator is given by Re = PT

e = BT
ctofDscale. The nodes xj,f and are xi,c

are on the fine and coarse grids, respectively.

3.3.2. Multigrid Error Propagation Symbol. Based on the previous discus-
sion, we can combine the expressions in p-multigrid to give the symbol of the error
propagation operator.

Definition 3.6. The symbol for the p-multigrid error propagation operator is
given by
(3.22)

Ẽ2mg (ν, ω,θ) = S̃f (ν, ω,θ)
[
I− P̃ctof (θ) Ã−1

c (θ) R̃ftoc (θ) Ãf (θ)
]

S̃f (ν, ω,θ) ,

where Ã is the symbol of the fine grid operator, S̃f (ν, ω,θ) is the symbol of the

smoother, and Ã−1
c (θ) is the symbol of the coarse grid solve. P̃ctof (θ) and R̃ftoc (θ)

represent the symbol of the grid prolongation and restriction operators, respectively.

Note again that this derivation is applicable for any PDE with a weak form that
can be represented by (3.3). This expression can be extended to represent multi-level
schemes by recursively applying Ẽ2mg until the coarsest grid is reached.

3.4. Extension to H-Multigrid. By using macro-elements, [22, 10], our LFA of
p-multigrid can be extended to LFA of h-multigrid. For 1D analysis, a macro-element
is single element comprising of a pair of sub-elements with separate quadrature spaces,
which is equivalent to partially assembling the finite element operator on two element
subdomains. Prolongation between a coarse grid element and a fine grid macro-
element is given by evaluating the coarse grid basis functions on the fine grid macro-
element nodes with the multiplicity correction, as shown in subsection 3.3.1. LFA in
higher dimensions is given by tensor-products of 1D basis operations, as before.

Fig. 3.4: H-Prolongation from Coarse Basis to Fine Basis Points in 1D.

In Figure 3.4, we see an example of interpolation from a coarse grid basis to a fine
grid macro-element basis. The linear shape functions are evaluated at the nodes of
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the fine grid macro-element, which is a pair of linear sub-elements. On the left linear
micro-element, there are two basis functions which are zero over the domain of the
right sub-element, and the reverse is also true. The element level operator, Ae, on
the fine grid macro-element assembles the element level operator for each sub-element
into the action of the PDE operator on the full macro-element.

For example, the fine and coarse grid element operators for the one dimensional
scalar Laplacian on quadratic elements are given by

(3.23) Ae,f =
2

3h


7 −8 1 0 0
−8 16 −8 0 0
1 −8 14 −8 1
0 0 −8 16 −8
0 0 1 −8 7

 ,
where h is the length of the macro-element, and

(3.24) Ae,c =
1

3h

 7 −8 1
−8 16 −8
1 −8 7

 .
The corresponding symbols are computed as in Definition 3.1 above.

Following the derivation from subsection 3.3.1, we can derive the symbols of grid
transfer operators for h-multigrid.

Definition 3.7. The symbol of the h-prolongation operator is given by

(3.25) P̃ctof (θ) = QT
f

(
Pe �

[
eı(xj,c−xi,f )·θ/h

])
Qc,

where i ∈
{

1, 2, . . . , n (mp+ 1)
d
}

, j ∈
{

1, 2, . . . , n (p+ 1)
d
}

, h is the length of the

macro-element, d is the dimension of the finite element bases, n is the number of com-
ponents, m is the coarsening factor or the number of micro-elements in each fine grid
macro-element, p is the polynomial degree of the discretization, and d is the dimension
of the finite element basis. The matrices Qf and Qc are the localization mappings for
the fine and coarse grid, respectively, and the macro-element h-prolongation operator
is given by Pe = IDscaleBctof.

Definition 3.8. The symbol of h-restriction operator is given by

(3.26) R̃ftoc (θ) = QT
c

(
Re �

[
eı(xj,f−xi,c)·θ/h

])
Qf ,

where i ∈
{

1, 2, . . . , n (p+ 1)
d
}

, j ∈
{

1, 2, . . . , n (mp+ 1)
d
}

, h is the length of the

macro-element, d is the dimension of the finite element bases, n is the number of com-
ponents, m is the coarsening factor or the number of micro-elements in each fine grid
macro-element, p is the polynomial degree of the discretization, and d is the dimension
of the finite element basis. The matrices Qf and Qc are the localization mappings for
the fine and coarse grid, respectively, and the macro-element h-restriction operator is
given by Re = PT

e = BT
ctofDscaleI.

By representing the fine grid with macro-elements and the prolongation operator
with this interpolation, this LFA of p-multigrid exactly reproduces the results of He
and MacLachlan [17] for LFA of high-order h-multigrid.
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Our LFA of h-multigrid presented here is based on a specific basis of the Fourier
space used in [22] rather than the commonly used Fourier modes, see [31, 33], where
the symbol of each component in multigrid methods is formed based on different har-
monic frequencies. The symbols of grid-transfer operators described in Definitions 3.7
and 3.8 give a general way for multigrid coarsening with factor m, and this framework
is simpler, especially for the high-order discretizations described in [17]. Also, our LFA
for h-multigrid is not restricted to finite element discretizations with uniformly spaced
nodes.

On uniform rectangular meshes, linear finite elements produce the same discetized
operator as finite differencing. The nine-point stencil for the Laplace operator in two
dimensions is given by

(3.27)
1

3

−1 −1 −1
−1 8 −1
−1 −1 −1


with a corresponding local Fourier analysis symbol given by

(3.28) Ã (θ1, θ2) =
2

3
(4− cos (θ1)− cos (θ2)− 2 cos (θ1) cos (θ2)) .

The assembled matrix for a single linear element in two dimensions is given by

(3.29) Ae =
1

3


2 −1/2 −1/2 −1
−1/2 2 −1 −1/2
−1/2 −1 2 −1/2
−1 −1/2 −1/2 2

 ,
with a corresponding local Fourier analysis symbol given by

Ã (θ1, θ2) = QT
(
Ae �

[
eı(xj−xi)·θ

])
Q

=
2

3
(4− cos (θ1)− cos (θ2)− 2 cos (θ1) cos (θ2)) ,

(3.30)

where Q =
[
1 1 1 1

]T
.

We can use the LFA of multigrid given by Definition 3.6 with the prolongation and
restriction symbols given by Definitions 3.7 and 3.8 to reproduce LFA of h-multigrid
methods for finite differencing where the stencil can be represented by a finite ele-
ment discretization. This LFA of arbitrary second-order PDEs with high-order finite
element discretizations agrees with previous work on LFA of PDE operators derived
with finite differencing with analogous stencils.

As mentioned before, our focus of this work is p-multigrid, so we will not expand
the discussion of h-multigrid further method here. Applying this LFA framework to
h-multigrid or hp-multigrid methods are topics for future research.

4. Numerical Results. In this section, we present numerical results for this
analysis for the scalar Laplacian in one and two dimensions with H1 Lagrange bases
on Gauss-Lobatto points with Gauss-Legendre quadrature. Next, we validate these re-
sults with numerical experiments for the scalar Laplacian in three dimensions. Lastly,
we consider linear elasticity in three dimensions.
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(a) Convergence for p = 4 to p = 2, ν = 1 (b) Convergence for p = 4 to p = 1, ν = 1

(c) Convergence for p = 4 to p = 2, ν = 2 (d) Convergence for p = 4 to p = 1, ν = 2

Fig. 4.1: Two-grid analysis for Jacobi smoothing for high-order finite elements for the
1D Laplacian.

4.1. Scalar Laplacian - 1D Convergence Factors.

4.1.1. Jacobi Smoothing. In Figure 4.1a and Figure 4.1b, we plot the two-
grid convergence factor for p-multigrid with a single iteration of Jacobi pre and post-
smoothing for the one dimensional Laplacian as a function of the Jacobi smoothing
parameter ω, and in Figure 4.1c and Figure 4.1d we plot the two-grid convergence
factor for p-multigrid with two iterations of Jacobi pre and post-smoothing for the one
dimensional Laplacian as a function of the Jacobi smoothing parameter ω. On the left
we show conservative coarsening from quartic to quadratic elements and on the right
we show more aggressive coarsening from quartic to linear elements. As expected,
the two-grid convergence factor decreases as we coarsen more rapidly. Also, the effect
of underestimating the optimal Jacobi smoothing parameter, ω, is less pronounced
than the effect of overestimating the smoothing parameter, especially with a higher
number of pre and post-smooths.

In contrast to the previous work on h-multigrid for high-order finite elements, [17],
poorly chosen values of ω < 1.0 can result in a spectral radius of the p-multigrid error
propagation symbol that is greater than 1, indicating that application of p-multigrid
with Jacobi smoothing at these parameter values will result in increased error.

The results in Table 4.1 provide the LFA convergence factor and optimal values
of ω for two-grid high-order p-multigrid for a variety of basis polynomial degrees and
coarsening factors.
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pfine to pcoarse ν = 1 ν = 2 ν = 3
ρmin ωopt ρmin ωopt ρmin ωopt

p = 2 to p = 1 0.137 0.63 0.060 0.69 0.041 0.72

p = 4 to p = 2 0.204 0.62 0.059 0.64 0.045 0.70
p = 4 to p = 1 0.591 0.77 0.350 0.77 0.207 0.77

p = 8 to p = 4 0.250 0.60 0.068 0.60 0.033 0.63
p = 8 to p = 2 0.668 0.73 0.446 0.73 0.298 0.73
p = 8 to p = 1 0.874 0.78 0.764 0.78 0.668 0.78

p = 16 to p = 8 0.300 0.57 0.090 0.57 0.035 0.58
p = 16 to p = 4 0.719 0.69 0.517 0.69 0.371 0.69
p = 16 to p = 2 0.906 0.73 0.820 0.73 0.743 0.73
p = 16 to p = 1 0.968 0.74 0.936 0.74 0.906 0.74

Table 4.1: Two-grid convergence factor and optimal Jacobi parameter for the 1D
Laplacian.

(a) Convergence for p = 4 to p = 2, ν = 1 (b) Convergence for p = 4 to p = 1, ν = 1

Fig. 4.2: Two-grid analysis for Chebyshev smoothing for high-order finite elements
for the 1D Laplacian.

Traditional estimates of the optimal smoothing parameter based upon extremal
eigenvalues of the preconditioned operator are incompatible with this LFA framework.
Optimal parameter estimation is an open question for high-order p-multigrid, but
optimization techniques, such as those discussed in [11], can be used to tune these
parameters, especially for more complex PDEs.

4.1.2. Chebyshev Smoothing. In Figures 4.2a and 4.2b we plot the two-grid
convergence factor for p-multigrid with Chebyshev pre and post-smoothing for the
one dimensional Laplacian as a function of the Chebyshev order, k. On the left we
show conservative coarsening from quartic to quadratic elements and on the right we
show more aggressive coarsening from quartic to linear elements. As expected, the
two-grid convergence factor degrades as we coarsen more rapidly.

The results in Table 4.2 provide the LFA-predicted convergence factor and optimal
values of k for two-grid high-order p-multigrid for a variety of coarsening rates and
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pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 2 to p = 1 0.545 0.220 0.063 0.017

p = 4 to p = 2 0.576 0.222 0.089 0.025
p = 4 to p = 1 0.623 0.269 0.089 0.070

p = 8 to p = 4 0.638 0.244 0.074 0.022
p = 8 to p = 2 0.657 0.260 0.097 0.059
p = 8 to p = 1 0.881 0.674 0.510 0.393

p = 16 to p = 8 0.664 0.253 0.075 0.022
p = 16 to p = 4 0.714 0.328 0.135 0.059
p = 16 to p = 2 0.907 0.741 0.602 0.496
p = 16 to p = 1 0.970 0.912 0.857 0.809

Table 4.2: Two-grid convergence factor with Chebyshev smoothing for 1D Laplacian.

orders of Chebyshev smoother. From this table, we can see that the effectiveness
of higher order Chebyshev smoothers degrades as we coarsen more aggressively, but
Chebyshev smoothing still provides better two-grid convergence than multiple pre and
post-smoothing Jacobi iterations.

λmin = 0.2λ̂max

pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 4 to p = 2 0.410 0.093 0.043 0.024
p = 4 to p = 1 0.611 0.250 0.106 0.071

p = 8 to p = 4 0.435 0.081 0.016 0.007
p = 8 to p = 1 0.891 0.739 0.623 0.529

p = 16 to p = 8 0.443 0.081 0.015 0.006
p = 16 to p = 1 0.973 0.931 0.894 0.861

λmin = 0.3λ̂max

pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 4 to p = 2 0.279 0.070 0.042 0.031
p = 4 to p = 1 0.638 0.332 0.184 0.104

p = 8 to p = 4 0.289 0.050 0.023 0.012
p = 8 to p = 1 0.899 0.777 0.682 0.599

p = 16 to p = 8 0.294 0.055 0.020 0.010
p = 16 to p = 1 0.975 0.942 0.913 0.885

Table 4.3: Two-grid convergence factor with Chebyshev smoothing for 1D Laplacian
with modified lower eigenvalue bound.

The results in Table 4.3 provide the LFA-predicted convergence factor for two-
grid high-order p-multigrid for a variety of coarsening rates and orders of Chebyshev
smoother with different scaling factors for the minimum eigenvalue estimate used
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(a) Convergence for p = 4 to p = 1, ν = 1 (b) Convergence for p = 4 to p = 1, ν = 2

Fig. 4.3: Convergence for high-order finite elements for the 2D Laplacian.

in the Chebyshev iterations. Increasing the lower eigenvalue estimate results in the
Chebyshev method better targeting high frequency error modes, which results in
improved two-grid convergence when halving the polynomial degree of the basis func-
tions. However, increasing the lower eigenvalue estimate results in worse two-grid
convergence for aggressive coarsening directly to linear elements.

4.2. Scalar Laplacian - 2D Convergence Factors.

4.2.1. Jacobi Smoothing. In Figure 4.3a and Figure 4.3b we show the two-grid
convergence factor for p-multigrid with one and two iterations of Jacobi smoothing,
respectively, for the two dimensional Laplacian as a function of the Jacobi smoothing
parameter ω.

pfine to pcoarse ν = 1 ν = 2 ν = 3
ρmin ωopt ρmin ωopt ρmin ωopt

p = 2 to p = 1 0.230 0.95 0.091 0.99 0.061 1.03

p = 4 to p = 2 0.388 0.82 0.151 0.82 0.078 0.83
p = 4 to p = 1 0.763 0.95 0.582 0.95 0.444 0.95

p = 8 to p = 4 0.646 0.79 0.418 0.79 0.272 0.79
p = 8 to p = 2 0.858 0.84 0.737 0.84 0.633 0.84
p = 8 to p = 1 0.952 0.87 0.907 0.87 0.864 0.87

Table 4.4: Two-grid convergence factor and optimal Jacobi parameter for 2D Lapla-
cian.

The results in Table 4.4 provide the LFA-predicted convergence factor and optimal
values of ω for two-grid high-order p-multigrid for a variety of basis polynomial degrees
and coarsening factors.

4.2.2. Chebyshev Smoothing. The results in Table 4.5 provide the LFA-
predicted convergence factor for two-grid high-order p-multigrid for a variety of coars-
ening rates and orders of Chebyshev smoother. The two-grid convergence factor still
degrades and the effectiveness of higher order Chebyshev smoothers is again reduced
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pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 2 to p = 1 0.621 0.252 0.075 0.039

p = 4 to p = 2 0.607 0.281 0.085 0.047
p = 4 to p = 1 0.768 0.424 0.219 0.127

p = 8 to p = 4 0.669 0.278 0.110 0.055
p = 8 to p = 2 0.864 0.633 0.456 0.336
p = 8 to p = 1 0.956 0.873 0.795 0.730

p = 16 to p = 8 0.855 0.613 0.435 0.319
p = 16 to p = 4 0.938 0.822 0.719 0.634
p = 16 to p = 2 0.976 0.928 0.882 0.842
p = 16 to p = 1 0.992 0.975 0.959 0.944

Table 4.5: Two-grid convergence factor with Chebyshev smoothing for 2D Laplacian.

as we coarsen more aggressively.

λmin = 0.2λ̂max

pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 4 to p = 2 0.450 0.137 0.067 0.050
p = 4 to p = 1 0.786 0.525 0.362 0.255

p = 8 to p = 4 0.668 0.330 0.172 0.106
p = 8 to p = 1 0.960 0.899 0.848 0.801

λmin = 0.3λ̂max

pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 4 to p = 2 0.407 0.106 0.073 0.059
p = 4 to p = 1 0.803 0.590 0.447 0.341

p = 8 to p = 4 0.691 0.409 0.256 0.164
p = 8 to p = 1 0.963 0.915 0.874 0.835

Table 4.6: Two-grid convergence factor with Chebyshev smoothing for 2D Laplacian
with modified lower eigenvalue bound.

The results in Table 4.6 provide the LFA-predicted convergence factor and opti-
mal values of k for two-grid high-order p-multigrid for a variety of coarsening rates
and orders of Chebyshev smoother with different scaling factors for the minimum ei-
genvalue estimate used in the Chebyshev iterations. As in one dimension, increasing
the lower eigenvalue estimate results in better two-grid convergence when conven-
tional coarsening by halving the polynomial degree of the basis functions but results
in worse two-grid convergence with aggressive coarsening.

4.3. Scalar Laplacian - 3D Convergence Factors. In this section, we com-
pare the LFA two-grid convergence factors to numerical results. Our numerical experi-
ments were conducted using the libCEED [8] with PETSc [2] multigrid example found
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in the libCEED repository. PETSc provides the mesh management, linear solvers, and
multigrid preconditioner while libCEED provides the matrix-free operator evaluation.

We recover the manufactured solution given by

(4.1) f (x, y, z) = xyz sin (πx) sin (π (1.23 + 0.5y)) sin (π (2.34 + 0.25z))

on the domain [−3, 3]
3

with Dirichlet boundary conditions for finite element discretiza-
tions with varying orders on approximately 8 million degrees of freedom for a variety
of test cases.

Although LFA is defined on infinite grids, which most naturally translate to pe-
riodic problems, LFA-predicted convergence factors are also accurate for appropriate
problems with other boundary conditions on finite grids after appropriate reformu-
lation of the analysis [27]. Since it is not feasable to tune multigrid individually for
each set of boundary conditions in engineering domains, we explore the sharpness
and robustness of infinite-grid LFA by comparing directly to the test problem with
Dirichlet boundary conditions.

4.3.1. Jacobi Smoothing. Since the Chebyshev smoothing is based upon the
Jacobi preconditioned operator, it is important to validate the LFA of the Jacobi
smoothing before considering Chebyshev smoothing. We use simple Jacobi smoothing
with a weight of ω = 1.0 to validate the LFA.

pfine to pcoarse LFA libCEED

p = 2 to p = 1 0.312 0.301

p = 4 to p = 2 1.436 1.402
p = 4 to p = 1 1.436 1.401

p = 8 to p = 4 1.989 1.885
p = 8 to p = 2 1.989 1.874
p = 8 to p = 1 1.989 1.875

Table 4.7: LFA and experimental two-grid convergence factors with Jacobi smoothing
for 3D Laplacian with ω = 1.0.

The results in Table 4.7 provide the LFA and experimental convergence factors
for the test problem. As expected, the high-order fine grid problems diverge with a
smoothing factor of ω = 1.0; however, the LFA provides reasonable upper bounds on
the true convergence factor seen in the experimental results.

4.3.2. Chebyshev Smoothing. We used the LFA estimates of the maximal
eigenvalue to set the extremal eigenvalues used the Chebyshev iteration in PETSc,
using λmin = 0.1λ̂max and λmax = 1.0λ̂max, where λ̂max is the estimated maximal
eigenvalue of the symbol of the Jacobi preconditioned operator.

Table 4.8 shows that the LFA predictions agree well with the experimental con-
vergence factors. As with the one and two dimensional results, rapid coarsening of the
polynomial degree of the bases decreases the effectiveness of higher order Chebyshev
smoothing.

4.4. Linear Elasticity - 3D Convergence Factors. To demonstrate the suit-
ability of this LFA formulation for more complex PDEs, we consider linear elasticity
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pfine to pcoarse k = 2 k = 3 k = 4
LFA libCEED LFA libCEED LFA libCEED

p = 2 to p = 1 0.253 0.222 0.076 0.058 0.041 0.033

p = 4 to p = 2 0.277 0.251 0.111 0.097 0.062 0.050
p = 4 to p = 1 0.601 0.587 0.416 0.398 0.295 0.276

p = 8 to p = 4 0.398 0.391 0.197 0.195 0.121 0.110
p = 8 to p = 2 0.748 0.743 0.611 0.603 0.506 0.469
p = 8 to p = 1 0.920 0.914 0.871 0.861 0.827 0.814

Table 4.8: LFA and experimental two-grid convergence factors with Chebyshev
smoothing for 3D Laplacian.

in three dimensions. The strong form of the static balance of linear momentum at
small strain for the three dimensional linear elasticity problem is given by [18] as

(4.2) ∇ · σ + g = 0,

where σ is the stress function and g is the forcing function. This strong form has the
corresponding weak form

(4.3)

∫
Ω

∇v : σdV −
∫
∂Ω

v · (σ · n̂) dS −
∫

Ω

v · gdV = 0,∀v ∈ V

for some displacement u ∈ V ⊂ H1 (Ω), where : denotes contraction over both com-
ponents and dimensions.

Linear elasticity constitutive modeling is based upon the Lamé parameters,

(4.4) λ =
Eν

(1 + ν) (1− 2ν)
, µ =

E

2 (1 + ν)
,

where E is the Young’s modulus and ν is the Poisson’s ratio for the materiel.
In the linear elasticity constitutive model, the symmetric strain tensor is given by

(4.5) ε =
1

2

(
∇u +∇uT

)
,

and the linear elasticity constitutive law is given by σ = C : ε where

(4.6) C =


λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ

µ
µ

µ

 .

We can represent this PDE in the form given by (3.3) and therefore investigate
the LFA of p-multgrid for this PDE.

The results in Table 4.9 provide the LFA convergence factor and optimal values
of k for two-grid high-order p-multigrid for a variety of coarsening rates and orders
of Chebyshev smoother. The LFA two-grid convergence factor for three dimensional
linear elasticity is much poorer than the LFA two-grid convergence factor for the three
dimensional scalar Laplacian, and the effect of rapid coarsening in the polynomial
degree of the basis functions is far more pronounced for linear elasticity.
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pfine to pcoarse k = 1 k = 2 k = 3 k = 4

p = 2 to p = 1 0.815 0.521 0.321 0.204

p = 4 to p = 2 0.878 0.666 0.499 0.382
p = 4 to p = 1 0.969 0.908 0.850 0.800

p = 8 to p = 4 0.939 0.826 0.725 0.643
p = 8 to p = 2 0.981 0.943 0.906 0.873
p = 8 to p = 1 0.995 0.984 0.973 0.963

Table 4.9: Two-grid convergence factor with Chebyshev smoothing for 3D linear
elasticity.

5. Conclusions. In this paper we developed LFA of p-multigrid with arbitrary
second-order PDEs using high-order finite element discretizations by using an operator
representation for efficient application of matrix-free implementations. We introduced
LFAToolkit.jl [30], a new Julia package for LFA of high-order finite element methods,
and used LFAToolkit.jl to investigate p-multigrid method with Jacobi and Chebyshev
semi-iterative method smoothing and aggressive coarsening strategies. We observed
that the performance of p-multigrid with these two polynomial smoothers degrades
as we coarsen more aggressively.

The LFA of p-multigrid framework presented here can be extended to the LFA
of h-multigrid methods and reproduces previous work in this area. Also, we briefly
described how this work can be extended to LFA of h-multigrid for finite difference
discretization stencils that can be represented as finite difference methods.

The LFA formulation in LFAToolkit.jl accurately predicts the performance of
two-grid p-multigrid with polynomial smoothers for the scalar Laplacian in three
dimensions and can provide two-grid convergence factors for more complex PDEs,
such as linear elasticity in three dimensions.
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