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UNBOUNDED CONTROL, INFIMUM GAPS, AND HIGHER ORDER
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Abstract. In optimal control theory one sometimes extends the minimization domain of a
given problem, with the aim of achieving the existence of an optimal control. However, this issue
is naturally confronted with the possibility of a gap between the original infimum value and the
extended one. Avoiding this phenomenon is not a trivial issue, especially when the trajectories are
subject to endpoint constraints. However, since the seminal works by Warga, some authors have
recognized ``normality"" of an extended minimizer as a condition guaranteeing the absence of an
infimum gap. Yet, normality is far from being necessary for this goal, a fact that makes the search
for weaker assumptions a reasonable aim. In relation to a control-affine system with unbounded
controls, in this paper we prove a sufficient no-gap condition based on a notion of higher order
normality, which is less demanding than the standard normality and involves iterated Lie brackets
of the vector fields defining the dynamics.
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1. Introduction. Let an endpoint constrained optimal control problem be
given, together with an extension of the minimization domain. With the expres-
sion (local) infimum gap one usually refers to the possibility that the cost of some
extended sense control-trajectory pair is strictly smaller than the local infimum cost
of the original problem. The occurrence of a gap is often independent of the cost
functional itself and is rather a purely dynamical phenomenon. Indeed, given a local
minimizing control-trajectory pair for the extended optimization problem, the occur-
rence of a gap is due to the fact that the endpoint constraint is locally separated, at
the final point of the minimizing trajectory, from the reachable set, which we define
as the set of the endpoints of strict sense trajectories close to the given trajectory.

Starting with Warga's pioneering works [34, 35, 36, 37], several papers have shown
that the occurrence of an infimum gap is sufficient for an extended sense control-
trajectory pair to be an abnormal extremal [22, 25, 26, 28, 29, 27, 12, 13, 14]. (Let us
recall that an extremal is called abnormal provided the corresponding cost multiplier
in the Maximum Principle can be chosen equal to zero, and normal otherwise.) In
particular, in [26] a generalization of Warga's criterion to a vast class of endpoint-
constrained minimum problems' extensions has been recently achieved through the
combined use of the notion of abundance (see [17, 36, 37]) and of a suitable set
separation theorem.

However, the contrapositive statement that normality guarantees the absence of
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UNBOUNDED CONTROL, GAPS, AND HIGHER ORDER NORMALITY 1437

a gap is far from being a necessary condition. Let us point out two aspects of the
question. On the one hand, in [26] the occurrence of a gap is shown to imply the linear
separability of an approximating cone to the original reachable set from any approxi-
mating cone to the endpoint constraint (see subsection 2.3 for the concept of approx-
imating cone). This linear separability translates into the abnormality of the mini-
mizer. On the other hand, in the first order Maximum Principle the approximating
cones to the reachable set are built as convex hulls of the so-called needle variations,
while several higher order Maximum Principles are basically obtained by enlarging
these first order approximating cones by means of new higher order (in the time-scale)
variations involving iterated Lie brackets (see, e.g., [2, 3, 10, 19, 18, 30, 6, 7, 33] and
references therein).

So, the question arises whether we can prove a gap-abnormality relation involving
iterated Lie brackets. In this paper we provide a positive answer to this question in the
case of an optimal unbounded control problem and its impulsive extension. Our main
achievement consists of a new gap-abnormality relation, which, besides generalizing
the known ones (see [22, 12]), involves a notion of higher order abnormality.

Let us introduce the minimum problem and its extension. The state space is a
Riemannian differential manifold (M, \langle \cdot , \cdot \rangle ), and the (space-time) endpoint constraint,
or target, is a closed subset T \subseteq \BbbR +\times M. We consider a cost function \Psi : \BbbR +\times M \rightarrow \BbbR 
and an energy upper bound K > 0 (possibly = +\infty ). The set U of (unbounded) strict
sense controls is defined as

U :=
\bigcup 
T>0

\bigl( 
\{ T\} \times L1

\bigl( 
[0, T ],C \times A

\bigr) \bigr) 
,

where C \subseteq \BbbR m is a closed cone and A \subset \BbbR q is a compact subset. For any strict
sense control (T, u, a) \in U, we call (T, u, a, x, v) a strict sense process if (x, v) is the
(unique) Carath\'eodory solution on [0, T ] to the Cauchy problem

(1.1)

\left\{             

dx

dt
(t) = f(x(t), a(t)) +

m\sum 
i=1

gi(x(t))u
i(t),

dv
dt

(t) = | u(t)| ,

(x, v)(0) = (\v x, 0),

where, for every a \in A, f(\cdot , a), g1, . . . , gm are given vector fields. Furthermore, a
strict sense process (T, u, a, x, v) is said to be feasible if (T, x(T )) \in T and v(T ) \leq K.
Incidentally, notice that for every t \in [0, T ], v(t) coincides with the L1 norm of the
control u on [0, t]. The original optimal control problem is defined as

(P) inf
\Bigl\{ 
\Psi (T, x(T )), (T, u, a, x, v) feasible strict sense process

\Bigr\} 
.

Since the controls u are unbounded and no growth conditions avoid the occurrence
of minimizing sequences of strict sense trajectories which converge to discontinuous
paths, following the graph completion approach (see, e.g., [9, 21, 20, 8, 15, 16, 5, 38,
4, 23]), we embed problem (P) into the extended optimal control problem

(Pe) inf
\Bigl\{ 
\Psi (y0(S), y(S)), (S,w0, w, \alpha , y0, y, \beta ) feasible extended sense process

\Bigr\} 
,

where (S,w0, w, \alpha , y0, y, \beta ) is an extended sense process when (S,w0, w, \alpha ) belongs to
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1438 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

the set W of extended sense controls, defined as

W :=
\bigcup 
S>0

\Bigl( 
\{ S\} \times 

\Bigl\{ 
(w0, w, \alpha ) \in L\infty ([0, S],\BbbR + \times C \times A) : w0 + | w| 

= 1 almost everywhere (a.e.)
\Bigr\} \Bigr) 
,

and (y0, y, \beta ) is the unique solution on [0, S] to

(1.2)

\left\{                       

dy0

ds
(s) = w0(s),

dy

ds
(s) = f(y(s), \alpha (s))w0(s) +

m\sum 
i=1

gi(y(s))w
i(s),

d\beta 

ds
(s) = | w(s)| ,

(y0, y,\beta )(0) = (0, \v x, 0).

As in the original problem, (S,w0, w, \alpha , y0, y, \beta ) is said to be feasible provided (y0, y, \beta )
(S) \in T\times [0,K]. Notice that by regarding y0 as a time reparameterization, the class of
strict sense processes can be identified with the subclass of extended sense processes
with w0 > 0 a.e. The elements of this subclass are referred to as embedded strict
sense processes. Precisely, given a strict sense process (T, u, a, x, v), through the time
change y0 := \sigma  - 1, where [0, T ] \ni t \mapsto \rightarrow \sigma (t) := t + v(t), we define the associated
embedded strict sense process as follows:

(1.3) (S,w0, w, \alpha , y0, y, \beta ) :=

\biggl( 
\sigma (T ),

dy0

ds
, (u \circ y0) \cdot dy

0

ds
, a \circ y0, y0, x \circ y0, v \circ y0

\biggr) 
.

Conversely, given any embedded strict sense process (S,w0, w, \alpha , y0, y, \beta ), we get the
corresponding strict sense process (T, u, a, x, v) using the time change \sigma := (y0) - 1.
This is a one-to-one relation from the set of strict sense processes to the subset of em-
bedded strict sense processes, in which clearly (T, u, a, x, v) is feasible if and only if the
associated process (S,w0, w, \alpha , y0, y, \beta ) is feasible, and \Psi (T, x(T )) = \Psi (y0(S), y(S)).
The impulsive extension consists of allowing the time derivative w0 to vanish on a set
of positive measure. In particular, if I \subseteq [0, S] is an interval on which w0 vanishes, at
time t := y0(I) the state y evolves instantaneously. (Alternatively, one can provide an
equivalent t-based description of this extension using bounded variation trajectories,
as done in [16, 5, 4, 23, 24].)

To state our main result, let us introduce the notion of a local infimum gap.
We say that at a feasible extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) there is a local
infimum gap if there exists some \delta > 0 such that

\Psi 
\bigl( 
\=y0( \=S), \=y( \=S)

\bigr) 
< inf \Psi (y0(S), y(S)),

where the infimum is taken over the set of feasible embedded strict sense processes
(S,w0, w, \alpha , y0, y, \beta ) such that d

\bigl( 
(S, y0, y, \beta ), ( \=S, \=y0, \=y, \=\beta )

\bigr) 
< \delta , the distance d being

defined in Definition 2.4 below.
We also need to specify the concept of higher order abnormality, in connection

with a higher order Maximum Principle for the extend problem recently obtained in
[3]. Let us define the Hamiltonian H by setting

H(x, p, p0, \pi , w
0, w, a) := p0w

0 + p \cdot 
\biggl( 
f(x, a)w0 +

m\sum 
i=1

gi(x)w
i

\biggr) 
+ \pi | w| .
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UNBOUNDED CONTROL, GAPS, AND HIGHER ORDER NORMALITY 1439

For simplicity, in this introduction we consider the special case where M = \BbbR n,
C = \BbbR m, and the vector fields f(\cdot , a), g1, . . . , gm are of class C\infty (see Definition 3.5 for
the general case). We say that a feasible extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta )
is a (first order) extremal of the extended problem (Pe) if there exists a nontrivial
four-tuple (p0, p, \pi , \lambda ) (with p0 \in \BbbR , p = p(\cdot ) absolutely continuous, and (\pi , \lambda ) \in 
\BbbR  - \times \BbbR + denoting the multiplier of the energy variable \beta and the cost multiplier,
respectively) that verifies the usual conditions of the Maximum Principle, namely,
the H-maximality, adjoint equation, and transversality (w.r.t. a given approximating
cone K to the target T at (\=y0, \=y)( \=S)). As is customary, a (first order) extremal is
said to be normal if for all choices of the multipliers (p0, p, \pi , \lambda ), the cost multiplier
\lambda is different from zero, while the extremal is said to be abnormal in the opposite
situation. If, in addition, \=\beta ( \=S) < K and the higher order condition\Biggl\{ 

p(s) \cdot B(\=y(s)) = 0 \forall s \in [0, \=S],

p(s) \cdot 
\bigl[ 
f\=\alpha (s), B

\bigr] 
(\=y(s)) \=w0(s) = 0 for a.e. s \in [0, \=S]

(where fa(\cdot ) := f(\cdot , a)) is satisfied for every iterated Lie bracket B of g1, . . . , gm,
we say that ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a higher order extremal. Finally, a higher order
extremal is said to be normal if for any choice of multipliers (p0, p, \pi , \lambda ), one has
\lambda \not = 0, while it is said to be abnormal when it is not normal. Referring the reader to
section 3 for details and a precise statement, we present here the main result of the
paper in a simplified form.

Theorem. If ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a feasible extended sense process at which
there is a local infimum gap and \=\beta ( \=S) < K, then, for any approximating cone to the
target at (\=y0( \=S), \=y( \=S)), ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a higher order abnormal extremal (see
Theorem 3.1).

Let us point out that, as illustrated by the example in section 5, a higher order
extremal might be an abnormal first order extremal while being a normal higher order
extremal. Therefore, Theorem 3.1 actually provides a new weaker sufficient condition
for the avoidance of an infimum gap.

Let us conclude this introduction with a couple of comments. First, in the present
paper we adopt the concept of Quasi Differential Quotient approximating cone (QDQ
approximating cone). A Quasi Differential Quotient is a notion of generalized differ-
ential for set-valued maps. It was introduced in [26] as a special case of Sussmann's
Approximate Generalized Differential Quotient (AGDQ) (see [32]), by requiring some
additional continuity properties for the involved selections. The main fact about QDQ
is the validity of a standard, nonpunctured, Open Mapping result, which (is not valid
for general AGDQs and) allows one to deduce a set separation criterion for QDQ ap-
proximating cones (see Corollary 2.1). In turn, the latter proves crucial in the proof
of Theorem 3.1. The second comment concerns the possibility of establishing suffi-
cient no-gap conditions through a notion of higher order normality for more general
systems. As mentioned above, by means of the concept of abundance, such a program
was pursued in [26] for the case of first order normality. Though utilizing abundance
for higher order variations in a general system does not look straightforward, nev-
ertheless the result presented in this paper might represent an initial step in that
direction.

This paper is organized as follows. In section 2 we introduce our precise assump-
tions, define the QDQ approximating cone, and describe its key properties. Section
3 is devoted to stating the main result, whose proof is given in section 4. Finally, in
section 5 we present an example.
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1440 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

2. Preliminaries.

2.1. Basic notation and main assumptions. We use the notation \BbbR + :=
[0,+\infty [ and \BbbR  - :=] - \infty , 0]. For any pair a, b \in \BbbR , we set a\wedge b := min\{ a, b\} . If N \geq 1
is an integer and \delta > 0, for any \v x \in \BbbR N we set BN

\delta (\v x) := \{ x \in \BbbR N : | x - \v x| \leq \delta \} and
BN

\delta := BN
\delta (0). When the dimension is clear from the context, we omit the superscript

N . Moreover, for every subset E \subseteq \BbbR N , we use 1E to denote the characteristic
function of E, namely, 1E(x) = 1 if x \in E and 1E(x) = 0 otherwise. For any
integer r \geq 0,

\bigl( 
M, \langle \cdot , \cdot \rangle 

\bigr) 
is a Riemannian differential manifold of class Cr+1 if M is

a Cr+1 differential manifold and \langle \cdot , \cdot \rangle is a Cr Riemannian metric on M. For every
x \in M and e, f \in TxM, \langle e, f\rangle x denotes the corresponding scalar product of e, f ,
and | e| x :=

\sqrt{} 
\langle e, e\rangle x is called the norm of e. We often omit the subscript and write

\langle e, f\rangle and | e| instead of \langle e, f\rangle x and | e| x. Given an interval I and a subset X \subseteq M,
we write AC(I,X) for the space of absolutely continuous functions, C0(I,X) for the
space of continuous functions, L1(I,X) for the space of Lebesgue integrable functions,
and L\infty (I,X) for the space of Lebesgue measurable, essentially bounded functions
defined on I and with values in X. We use \| \cdot \| L\infty (I,X) and \| \cdot \| L1(I,X) to denote the
essential supremum norm and the L1 norm, respectively. When no confusion may
arise, we simply write \| \cdot \| L\infty (I), \| \cdot \| L1(I), or also \| \cdot \| \infty , \| \cdot \| 1.

Throughout this paper, (M, \langle \cdot , \cdot \rangle ) is a C\infty Riemannian differential manifold, the
target T \subseteq \BbbR + \times M is a closed set, the control set A \subset \BbbR q is compact, while the
unbounded control set C \subseteq \BbbR m is a closed cone of the form C = C1 \times C2, where
m1,m2 \in \BbbN , m1 +m2 = m, and, if m1 \geq 1, C1 \subseteq \BbbR m1 is a closed cone that contains
the lines \{ rei : r \in \BbbR \} , for i = 1, . . . ,m1, and C2 \subset \BbbR m2 is a closed cone which does
not contain any straight line.

Furthermore, we assume the following regularity hypotheses:
(i) the drift dynamics f and the partial derivative Dxf are continuous on M\times A,

the vector fields g1, . . . , gm are of class C1 on M;
(ii) the final cost \Psi : \BbbR \times M \rightarrow \BbbR is of class C1 on \BbbR \times M.

Remark 2.1. The hypotheses on the cone C are not at all restrictive. Indeed,
they can be recovered by replacing the single vector fields gi with suitable linear
combinations of \{ g1, . . . , gm\} and by considering a corresponding linear transformation
of coordinates in \BbbR m.

Remark 2.2. Through minor changes, the requests that the set A is a compact
subset of \BbbR q and that f and Dxf are continuous w.r.t. a \in A could be replaced by the
assumption that A is just a set of parameters and the functions f , Dxf are locally
bounded in x, uniformly w.r.t. A.

Remark 2.3. As is customary, adding a state variable equal to the integral of the
Lagrangian, one might consider a more general cost

\Psi (T, x(T )) +

\int T

0

\ell 0(x(t), a(t)) + \ell 1(x(t), | u(t)| ) dt,

where \ell 0, \ell 1 are nonnegative and such that the extended Lagrangian L(x,w0, r, a) :=
\ell 0(x, a)w

0 + lim\rho \rightarrow w0 \ell 1
\bigl( 
x, \rho  - 1r

\bigr) 
\rho and the partial derivative DxL are continuous in

all variables, and L(x, 0, r, a) \equiv 0 (see [3]). Furthermore, by adding the new state

variables x0, \^x and by considering the trivial equations dx0

dt = 1, d\^x
dt = u, where

\^x = (xn+1, . . . , xn+m), and the initial conditions x0(0) = 0, \^x(0) = 0, one can even

allow f , g1, . . . , gm to depend on t and the function U(t) :=
\int t

0
u(\tau )d\tau as well.
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In order to specify the notion of local infimum gap anticipated in the introduction,
let us introduce a concept of distance between extended trajectories.

Definition 2.4. Let i = 1, 2, and for all (Si, y
0
i , yi, \beta i) with Si > 0 and continu-

ous functions (y0i , yi, \beta i) : [0, Si] \rightarrow \BbbR \times M \times \BbbR , define the distance

(2.1)
d
\bigl( 
(S1, y

0
1 , y1, \beta 1), (S2, y

0
2 , y2, \beta 2)

\bigr) 
:= | S1  - S2| + sup

s\in \BbbR +

d
\bigl( 
(\~y01 , \~y1,

\~\beta 1)(s), (\~y
0
2 , \~y2,

\~\beta 2)(s)
\bigr) 
,

where d is the distance on \BbbR \times M \times \BbbR 1 and (\~y0i , \~yi,
\~\beta i) denotes the extension to \BbbR +

of the function (y0i , yi, \beta i), such that (\~y0i , \~yi,
\~\beta i)(s) := (y0i , yi, \beta i)(Si) for all s > Si.

Remark 2.5. Given a feasible extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ), the
main results of this paper, of local nature, are still valid if the regularity hypothesis
(i) is assumed just on a d-neighborhood of the reference trajectory, and, instead of (ii),
we suppose \Psi merely continuous on a d-neighborhood of ( \=S, \=y0, \=y, \=\beta ) and differentiable
at the final point (\=y0, \=y)( \=S).

2.2. Cone transversality. Let us recall some elementary notions concerning
cones of linear spaces (see, e.g., [31, 32]). Let E be a finite-dimensional, real, linear
space, and let E\ast be its dual space. A subset K \subset E is a cone if \alpha k \in K for all
(\alpha , k) \in [0,+\infty [\times K. If D \subset E is any subset, let us set

span+D
.
=
\Bigl\{ \sum \ell 

i=1 \alpha ivi : \ell \in \BbbN , \alpha i \geq 0, vi \in D \forall i = 1, . . . , \ell 
\Bigr\} 
\subset E,

D\bot .
= \{ p \in E\ast : p \cdot w \leq 0 \forall w \in D\} \subset E\ast .

The convex cones span+D and D\bot are called the conic hull of D and the polar cone
of D, respectively. Let K1, K2 \subseteq E be convex cones. We say that K1 and K2 are
transversal if K1  - K2 :=

\bigl\{ 
k1  - k2 : (k1, k2) \in K1 \times K2

\bigr\} 
= E. K1 and K2 are

strongly transversal if they are transversal and K1 \cap K2 \supsetneq \{ 0\} .
Proposition 2.1. Two convex cones K1, K2 \subseteq E are transversal if and only

if they are either strongly transversal or are complementary linear subspaces, namely
K1 \oplus K2 = E (i.e., K1 +K2 = E and K1 \cap K2 = \{ 0\} ).

Saying that two convex cones K1 and K2 are not transversal is equivalent to
saying they are linearly separable.

Proposition 2.2. Two convex cones K1,K2 \subseteq E are not transversal if and only
if K1 and K2 are linearly separable, by which we mean that ( - K\bot 

1 \cap K\bot 
2 )\setminus \{ 0\} \not = \emptyset ,

namely, there exists a linear form \lambda \in E\ast \setminus \{ 0\} such that for all (k1, k2) \in K1 \times K2,
one has \lambda \cdot k1 \geq 0 and \lambda \cdot k2 \leq 0.

2.3. Quasi-differential quotients and approximating multicones. We call
a function \rho : \BbbR + \rightarrow \BbbR +\cup \{ +\infty \} a pseudo-modulus if it is monotonically nondecreasing
and lims\rightarrow 0+ \rho (s) = \rho (0) = 0.

Definition 2.6 (see [26, Def. 2.3]). Let G : \BbbR N \rightsquigarrow \BbbR n be a set-valued map,
(\=\varepsilon , \=y) \in \BbbR N \times \BbbR n, let \Lambda \subset Lin\{ \BbbR N ,\BbbR n\} be a compact set, and let \Gamma \subset \BbbR N be any
subset. We say that \Lambda is a Quasi Differential Quotient (QDQ) of G at (\=\varepsilon , \=y) in
the direction of \Gamma if there exists a pseudo-modulus \rho enjoying the property that for

1If x1, x2 \in M, the distance dM(x1, x2) is defined as the minimum among the \langle \cdot , \cdot \rangle -lengths of the
absolutely continuous curves with x1, x2 as endpoints.
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1442 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

any \delta > 0 with \rho (\delta ) < +\infty there is a continuous map (L\delta , h\delta ) : (\=\varepsilon + B\delta ) \cap \Gamma \rightarrow 
Lin\{ \BbbR N ,\BbbR n\} \times \BbbR n such that for all \varepsilon \in (\=\varepsilon +B\delta ) \cap \Gamma ,

\=y + L\delta (\varepsilon ) \cdot (\varepsilon  - \=\varepsilon ) + h\delta (\varepsilon ) \in G(\varepsilon ), min
L\prime \in \Lambda 

| L\delta (\varepsilon ) - L\prime | \leq \rho (\delta ), | h\delta (\varepsilon )| \leq \delta \rho (\delta ).

The notion of QDQ extends to differential manifolds as follows.

Definition 2.7 (see [26, Def. 2.4]). Let N, M be differential manifolds of
class C1. Assume that \~G : N \rightsquigarrow M is a set-valued map, (\=\varepsilon , \=y) \in N \times M, \~\Lambda \subset 
Lin\{ T\=\varepsilon N, T\=yM\} is a compact set, and \~\Gamma \subset N is any subset. Moreover, let \phi : U \rightarrow 
\BbbR N and \psi : V \rightarrow \BbbR n be charts defined on neighborhoods U and V of \=\varepsilon and \=y, re-
spectively, and assume that \phi (\=\varepsilon ) = 0, \psi (\=y) = 0. Let G : \BbbR N \rightarrow \BbbR n any extension of
the map \psi \circ \~G \circ \phi  - 1 : \phi (U) \rightarrow \BbbR n. We say that \~\Lambda is a QDQ of \~G at (\=\varepsilon , \=y) in the
direction of \~\Gamma if \Lambda := D\psi (\=y) \cdot \Lambda \cdot D\phi  - 1(0) is a QDQ of G at (0, 0) in the direction of
\Gamma := \phi (\~\Gamma \cap U).

In a linear space E, let us call any family of convex cones of E convex multicone.

Definition 2.8 (see [26, Def. 2.5]). Let M be a C1 differential manifold, E \subset M

a set, and z \in E. A QDQ approximating multicone to E at z is a convex multicone
K \subseteq TzM such that there exist an integer N \geq 0, a set-valued map G : \BbbR N \rightsquigarrow M,
a convex cone \Gamma \subset \BbbR N , and a QDQ \Lambda of G at (0, z) in the direction of \Gamma such that
G(\Gamma ) \subset E and K= \{ L \cdot \Gamma : L \in \Lambda \} .2 We say that such a triple (G,\Gamma ,\Lambda ) generates
the multicone K. If the triple (G,\Gamma ,\Lambda ) defining a QDQ approximating cone K can be
chosen so that G(\Gamma ) \subset E\setminus \{ z\} , then we say that the QDQ approximating multicone
K is z-ignoring.

Remark 2.9. Because of the local character of the notion of QDQ for a set-valued
map, one can equivalently say that a QDQ approximating multicone K to E at z is
z-ignoring if G(B\delta \cap \Gamma ) \subset E\setminus \{ z\} for some \delta > 0.

Remark 2.10. The classical Boltyanski approximating cone is a special case of a
QDQ approximating cone.

Definition 2.11. Let X be a topological space, and let D1,D2 \subset X, y \in D1\cap D2.
We say that D1 and D2 are locally separated at y provided there exists a neighborhood
V of y such that D1 \cap D2 \cap V = \{ y\} .

The following open-mapping-based result, obtained in [26], characterizes set sepa-
ration in terms of linear separation of QDQ approximating cones. It includes a crucial
approximation property (see (ii) below) whenever the cones are complementary linear
subspaces.

Theorem 2.1 (see [26, Thm. 2.3]). Let E1,E2 be subsets of a C1 differential
manifold M and let z \in E1 \cap E2. Assume that K1, K2 are QDQ approximating cones
of E1 and E2, respectively, at z. Then the following assertions hold true:

(i) if K1, K2 are strongly transversal, the sets E1, E2 are not locally separated;
(ii) if K1, K2 are linear subspaces, K1 \oplus K2 = TzM,3 and, for each i = 1, 2,

(Gi,\Gamma i,\Lambda i) is a triple that generates Ki with \Lambda i = \{ Li\} , Li \in Lin\{ \BbbR Ni ,\BbbR n\} ,
then there exists a sequence (\gamma 1k , \gamma 2k) \in \Gamma 1 \times \Gamma 2 such that zk \in G1(\gamma 1k) \cap 
G2(\gamma 2k) and zk \rightarrow z.

2When a QDQ approximating multicone is a singleton, namely K = \{ K\} , we say that K is a
QDQ approximating cone to E at z.

3In view of Proposition 2.1, only in this case nontransversality differs from nonstrong-
transversality.
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Corollary 2.1. Let E1,E2 be subsets of a C1 differential manifold M, and let
z \in E1 \cap E2. Assume that K1, K2 are QDQ approximating cones of E1 and E2,
respectively, at z, and that K1 (or, equivalently, K2) is z-ignoring. If the cones K1

and K2 are transversal, then the sets E1 and E2 are not locally separated.

Proof. In view of Theorem 2.1 we need only prove the result in the case when
K1 and K2 are transversal but not strongly transversal. This means that K1 and K2

are linear subspaces and K1 \oplus K2 = TzM. By Theorem 2.1 and the fact that K1 is
z-ignoring, we deduce that there are a nonnegative integer N , a convex cone \Gamma \subset \BbbR N ,
and a set-valued map G : \BbbR N \rightsquigarrow M such that \Lambda = \{ L\} \subset Lin(\BbbR N , TzM) is a QDQ of
G at (0, z) in the direction of \Gamma , K1 = L \cdot \Gamma , G(\Gamma ) \subseteq E1\setminus \{ z\} , and there is a sequence
(\gamma k) \subset \Gamma such that zk \in G(\gamma k) \cap E2 and zk \rightarrow z. Since G(\gamma k) \subseteq E1\setminus \{ z\} for every
k \in \BbbN , one has zk \in E1 \cap E2\setminus \{ z\} , so that E1 and E2 are not locally separated.

3. The main result.

3.1. Infimum gap. Let us use SW to denote the set of extended sense processes.
Furthermore, let SW+

\subset SW be the subset of embedded strict sense processes, by which
we mean those processes with controls in

W+ := \{ (S,w0, w, \alpha ) \in W : w0 > 0 a.e.\} .

Given a feasible extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) and r > 0, the setsR\prime r
W+

,

R\prime r
W \subset \BbbR \times M \times \BbbR , defined as

R\prime r
W+

:=
\Bigl\{ 
(y0, y, \beta )(S) : (S,w0, w, \alpha , y0, y, \beta ) \in SW+ , \bfd 

\bigl( 
(S, y0, y, \beta ), ( \=S, \=y0, \=y, \=\beta )

\bigr) 
< r

\Bigr\} 
,

R\prime r
W :=

\Bigl\{ 
(y0, y, \beta )(S) : (S,w0, w, \alpha , y0, y, \beta ) \in SW, \bfd 

\bigl( 
(S, y0, y, \beta ), ( \=S, \=y0, \=y, \=\beta )

\bigr) 
< r

\Bigr\} 
,

will be called the reachable set and the extended reachable set, respectively. The
occurrence of a local infimum gap is captured by the following definition.

Definition 3.1. Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be a feasible extended sense process.
We say that at ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) there is a local infimum gap if there exists r > 0
such that one has

(3.1) \Psi 
\bigl( 
\=y0( \=S), \=y( \=S)

\bigr) 
< inf

(y0,y,\beta )\in R\prime r
W+

\cap (T\times [0,K])
\Psi (y0, y).

Despite the name, the local infimum gap condition (3.1) is a fully dynamical
property. Indeed, it reflects the fact that no feasible embedded strict sense trajectories
do exist in a sufficiently small d-neighborhood of the extended trajectory ( \=S, \=y0, \=y, \=\beta ).
To make this rigorous, let us introduce the notion of isolated process.

Definition 3.2. A feasible extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is called
isolated if R\prime r

W+
\cap (T\times [0,K]) = \emptyset for some r > 0.

The following result is straightforward.

Lemma 3.1. Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be a feasible extended sense process. The
following statements are equivalent:

(i) there is a local infimum gap at ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta );
(ii) the process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is isolated;
(iii) there exists some \=r > 0 such that inf(y0,y,\beta )\in R\prime r

W+
\cap (T\times [0,K])

\~\Psi (y0, y) = +\infty 
for every continuous function \~\Psi and every r \in [0, \=r].
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3.2. Iterated Lie brackets. Before giving the notion of higher order extremal,
let us recall some basic facts concerning iterated Lie brackets.

If h1, h2 are C1 vector fields on a differential manifold M,4 the Lie bracket of h1
and h2 is defined, on any chart, as

[h1, h2](x) := Dh2(x) \cdot h1(x) - Dh1(x) \cdot h2(x)(=  - [h2, h1](x)).

As is well known, the map [h1, h2] is a true vector field, i.e., it can be defined intrinsi-
cally. Therefore, if the vector fields are sufficiently regular, one can iterate the brack-
eting process: for instance, given a 4-tuple h := (h1, h2, h3, h4) of vector fields one can
construct the brackets [[h1, h2], h3], [[h1, h2], [h3, h4]], [[[h1, h2], h3], h4], [[h2, h3], h4].
Accordingly, one can consider the (iterated) formal brackets B1 := [[X1, X2], X3],
B2 := [[X1, X2], [X3, X4]], B3 := [[[X1, X2], X3], X4], B4 := [[X2, X3], X4] (regarded
as sequence of letters X1, . . . , X4, commas, and left and right square parentheses), so
that, with obvious meaning of the notation, one has B1(h) = [[h1, h2], h3], B2(h) =
[[h1, h2], [h3, h2]], B3(h) = [[[h1, h2], h3], h4], B4(h) = [[h2, h3], h4].

The length of a formal bracket is the number of letters that are involved in it. For
instance, the brackets B1, B2, B3, B4 have lengths equal to 3, 4, 4, and 3, respectively.
By convention, we declare that a single variable Xi is a formal bracket of length 1.

The switch-number of a (formal) bracket B is the number r
B
defined recursively

on the nested structure of the bracket as

r
B
:= 1 if B has length 1; r

B
:= 2

\bigl( 
r
B1

+ r
B2

\bigr) 
if B = [B1, B2].

For instance, the switch-numbers of [[X3, X4], [[X5, X6], X7]] and [[X5, X6], X7] are 28
and 10, respectively. If there is no danger of confusion, we sometimes take the liberty
of speaking of ``length and switch-number of Lie brackets of vector fields.""

The regularity of a (nonformal) iterated Lie bracket depends on both the nested
structure of the underlying formal brackets and the involved vector fields. We will
use the following notion of bracket regularity for a string of vector fields (for a more
rigorous definition we refer to [11]).

Definition 3.3 (bracket regularity). Fix k \in \BbbN . If \mu \geq 0, r \geq 1, and \nu \geq 
\mu + r are integers, B = B(X\mu +1, . . . , X\mu +r) is an iterated formal bracket, and h =
(h1, . . . , h\nu ) is a string of vector fields, we say that h is of class CB+k if there is a
\nu -tuple (j1, . . . , j\nu ) \in \BbbN \nu such that hi is of class Cji for any i = 1, . . . , \nu and B(h) is
a vector field of class Ck. In this case, we call (B,h) an admissible Ck bracket pair.

For instance, if B = [[[X3, X4], [X5, X6]], X7], for any k \geq 0, a string h =
(h1, h2, h3, h4, h5, h6, h7, h8) is of class CB+k provided the vector fields h3, h4, h5, h6
are of class C3+k and h7 is of class C1+k.

3.3. Higher order extremals. Let us set

(3.2) C := \{ (w0, w) \in \BbbR + \times C : w0 + | w| = 1\} ,

and let us consider the unmaximized Hamiltonian H : T \ast M\times \BbbR \times \BbbR \times \BbbR +\times C\times A\rightarrow \BbbR ,

H(x, p, p0, \pi , w
0, w, a) := p0w

0 + p \cdot 
\biggl( 
f(x, a)w0 +

m\sum 
i=1

gi(x)w
i

\biggr) 
+ \pi | w| .

To give the notion of higher order extremal, we need one more definition.

4The regularity of the differential manifold M will be always assumed such that all considered
brackets can be classically defined. For simplicity, one can assume that M is of class C\infty .
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Definition 3.4. For every integer k \geq 0, we will use \frakB rk to denote the (possibly
empty) set of admissible Ck bracket pairs (B,h), such that h := (h1, . . . , h\nu ) is a
\nu -tuple of vector fields hj \in \{ g1, . . . , gm1

\} for every j = 1, . . . , \nu .

Let us consider, for instance, m1 \geq 10 and the pair B = [[X3, [X4, X5]], X6],
h = (h1, . . . , h6) := (g8, g10, g1, g4, g3, g1). Then, the vector field B(h) coincides with
the iterated Lie bracket [[g1, [g4, g3]], g1]. Moreover, the pair (B,h) \in \frakB rk (which
implies that B(h) \in Ck) provided g1 \in C2+k and g3, g4 \in C3+k.

In what follows, we will use the notation fa(\cdot ) := f(\cdot , a) for all a \in A.

Definition 3.5. Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be a feasible extended sense process.
Let K be a QDQ approximating cone to the target T at (\=y0, \=y)( \=S). We say that the
process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a \Psi -higher order extremal if there exist a lift (\=y, p) \in 
AC([0, \=S], T \ast M) and multipliers (p0, \pi , \lambda ) \in \BbbR \times \BbbR  - \times \BbbR + such that conditions (i)--(vi)
below are valid.

(i) (nontriviality) The triple (p0, p, \lambda ) is nontrivial, i.e.,

(3.3) (p0, p, \lambda ) \not = (0, 0, 0) .

Furthermore, if the trajectory \=y is not instantaneous, namely, if \=y0( \=S) > 0,
then (3.3) can be strengthened to

(3.4) (p, \lambda ) \not = (0, 0).

(ii) (nontranversality)

(3.5) (p0, p( \=S), \pi ) \in 
\bigl[ 
 - \lambda D\Psi 

\bigl( 
(\=y0, \=y)( \=S)

\bigr) 
 - K\bot \bigr] \times JK ,

where JK := \{ 0\} if \=\beta ( \=S) < K, and JK :=]0,+\infty [ if \=\beta ( \=S) = K. In particular,

(3.6) \pi = 0 provided \=\beta ( \=S) < K.

(iii) (Hamiltonian equations) The path (\=y, p) verifies, for a.e. s \in [0, \=S],

(3.7)
d

ds
(\=y, p)(s) = X \=H (s, \=y(s), p(s)) ,

where \=H = \=H(s, y, p) := H
\bigl( 
y, p, p0, \pi , \=w

0(s), \=w(s), \=\alpha (s)
\bigr) 
, and X \=H denotes the

(s-dependent) Hamiltonian vector field corresponding to \=H.5

(iv) (first order maximization) For a.e. s \in [0, \=S],

(3.8)
H
\Bigl( 
\=y(s), p(s), p0, \pi , \=w

0(s), \=w(s), \=\alpha (s)
\Bigr) 

= max
(w0,w,a)\in \bfC \times A

H(\=y(s), p(s), p0, \pi , w
0, w, a),

and, as soon as \=\beta (S) < K,

p(s) \cdot gi(\=y(s)) = 0 \forall s \in [0, \=S], i = 1, . . . ,m1,(3.9)

5If K = K(s, y, p) is a differentiable map on the cotangent bundle T \ast M, in any local system
of canonical coordinates (y, p), the Hamiltonian vector field XK corresponding to K is defined as
XK(s, y, p) := (DpK, - DyK) (s, y, p), so that (3.7) coincides with the extended system coupled with
the usual adjoint equation.
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(v) (vanishing of the Hamiltonian)

(3.10) max
(w0,w,a)\in \bfC \times A

H(\=y(s), p(s), p0, \pi , w
0, w, a) = 0 \forall s \in [0, \=S].

(vi) (higher order conditions) If \=\beta (S) < K and (B,h) \in \frakB r0,

p(s) \cdot B(h)(\=y(s)) = 0 \forall s \in [0, \=S].(3.11)

Furthermore, if (B,h) \in \frakB r1 for a.e. s \in [0, S], one has
(3.12)

p(s) \cdot 
\biggl( \bigl[ 
f\=\alpha (s), B(h)

\bigr] 
(\=y(s)) \=w0(s) +

m\sum 
j=m1+1

\bigl[ 
gj , B(h)

\bigr] 
(\=y(s)) \=wj(s)

\biggr) 
= 0.

Definition 3.6. Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be a feasible extended sense process,
which, given a QDQ approximating cone K of the target T at (\=y0, \=y)( \=S), is a higher
order \Psi -extremal. We say that ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a normal higher order \Psi -
extremal if for any choice of the multipliers (p0, p, \pi , \lambda ), one has \lambda \not = 0. Otherwise,
we say that it is an abnormal higher order extremal.6

Remark 3.7. The notion of extremal depends on the approximating cone K, so
one might more properly speak of extremal w.r.t. K. In this regard, the form of
(3.5) derives from the fact that, given K, as an approximating cone to the (y0, y, \beta )-
target T \times [0,K] at (\=y0, \=y, \=\beta )( \=S), one chooses K \times \BbbR if \=\beta ( \=S) < K and K\times ]  - \infty , 0]
if \=\beta ( \=S) = K. In particular, (K \times \BbbR )\bot = K\bot \times \{ 0\} if \=\beta ( \=S) < K, while one has
(K\times ] - \infty , 0])\bot = K\bot \times \BbbR + when \=\beta ( \=S) = K.

Remark 3.8. This notion of higher order extremal is slightly more general than
the one utilized in the Higher Order Maximum Principle established in [3]. Indeed,
besides considering a state y ranging on a Riemannian manifold (rather than on a
mere Euclidean space), we use QDQ approximating cones here, which are more general
than the Boltyanski approximating cones considered in [3].

3.4. Higher order normality and no-gap. Let us state our main result.

Theorem 3.1 (gap and higher order abnormality). Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta )
be a feasible extended sense process at which there is a local infimum gap. Then,
for every QDQ approximating cone K to the target T at (\=y0, \=y)( \=S), the process
( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is an abnormal higher order extremal.

The proof of this result will be given in section 4.
As a straightforward consequence of Theorem 3.1, we deduce the following suffi-

cient condition for the absence of gap.

Theorem 3.2 (higher order normality and no-gap). Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be
a feasible extended sense process which satisfies, for some r > 0,

\Psi ((\=y0, \=y)( \=S)) \leq inf
(y0,y,\beta )\in R\prime r

W+
\cap (T\times [0,K])

\Psi (y0, y).

If ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a normal higher order \Psi -extremal for some QDQ approx-
imating cone K to T at (\=y0, \=y)( \=S), then at ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) there is no local
infimum gap.

6The fact that a higher order extremal, as well as a classical extremal, is abnormal does not
depend on the cost function \Psi .
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Remark 3.9. As illustrated in the example of section 5, if \beta (S) < K, it may
happen that a higher order normal extremal is abnormal as a first order extremal.
Actually, this is the main motivation for a result such as the one stated in Theorem
3.2.

4. Proof of Theorem 3.1. The proof of the theorem relies on a set separation
argument, whose application is made possible by Theorem 4.1 below, which states that
the reachable set can be approximated by suitable ``higher order"" QDQ approximating
cones of the extended reachable set. This is far from being obvious, as the extended
reachable set may be quite larger than the reachable set (see Remark 4.9 below).

Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be a feasible extended sense process at which there is a
local infimum gap. In case \=\beta ( \=S) = K, the statement of Theorem 3.1 reduces to the
first order conditions (3.3), (3.4), (3.5), (3.7), (3.8), and (3.10), which follow from [26,
Theorem 5.2]. Hence, from now on we suppose \=\beta ( \=S) < K.

We will assume the simplifying hypothesis

M is an open subset of \BbbR n, so that we can identify T\=y( \=S)M with \BbbR n,

and the stronger regularity hypothesis

(H)b All the general regularity assumptions are verified and, moreover, f and the
partial derivatives Dx1f, . . . ,Dxnf are uniformly continuous and bounded on
M\times A; the vector fields g1, . . . , gm, their derivatives, and, for all bracket pairs
(B,h) \in \frakB r0, the Lie brackets B(h), are uniformly continuous and bounded.

Both hypotheses are not restrictive, because of the local character of the result.

4.1. Rate-independence of the extended control system. Let us enlarge
the set of extended sense processes considered up to now by introducing the larger
set of extended sense controls \~W \supset W, defined as

\~W :=
\bigcup 
S>0

\Bigl( 
\{ S\} \times 

\Bigl\{ 
(w0, w, \alpha ) \in L\infty ([0, S],\BbbR + \times C \times A) : ess inf(w0 + | w| ) > 0

\Bigr\} \Bigr) 
,

and the subset \~W+ := \{ (S,w0, w, \alpha ) \in \~W : w0 > 0 a.e.\} \subset \~W. Let S \~W, S \~W+
denote

the set of processes (S,w0, w, \alpha , y0, y, \beta ), where (S,w0, w, \alpha ) \in \~W and (S,w0, w, \alpha ) \in 
\~W+, respectively, while (y0, y, \beta ) is the corresponding solution on [0, S] of (1.2).

In section 4 we will refer to the elements of S \~W as extended sense processes, while
any element of the subset S \~W+

will be called an embedded strict sense process. Finally,

we will say that (S,w0, w, \alpha , y0, y, \beta ) \in S \~W is canonical when (S,w0, w, \alpha ) \in W, i.e.,
w0+ | w| = 1 a.e. With this convention, all of the extended sense processes considered
so far were canonical.

By rate-independence of the extended control system (1.2) we mean that, given
any strictly increasing, surjective, absolutely continuous function \sigma : [0, S] \rightarrow [0, \~S]
with absolutely continuous inverse, ( \~S, \~w0, \~w, \~\alpha , \~y0, \~y, \~\beta ) is an extended sense process
if and only if the process (S,w0, w, \alpha , y0, y, \beta ) given by

(w0, w) :=
\Bigl( 
( \~w0, \~w) \circ \sigma 

\Bigr) d\sigma 
ds
, (\alpha , y0, y, \beta ) :=

\Bigl( 
\~\alpha , \~y0, \~y, \~\beta 

\Bigr) 
\circ \sigma 

is an extended sense process (see [21, sect. 3]). If we call any two extended sense
processes as above equivalent and write ( \~S, \~w0, \~w, \~\alpha , \~y0, \~y, \~\beta ) \sim (S,w0, w, \alpha , y0, y, \beta ),7

we can single out a special representative in any \sim equivalence class.

7Actually, \sim is an equivalence relation on the set S \~W .
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1448 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

Definition 4.1. Given (S,w0, w, \alpha , y0, y, \beta ) \in S \~W, we set [0, S] \ni s \mapsto \rightarrow \sigma (s) :=
y0(s) + \beta (s), and define the canonical parameterization of (S,w0, w, \alpha , y0, y, \beta ) as

(Sc, w
0
c , wc, \alpha c, y

0
c , yc, \beta c) :=

\biggl( 
\sigma (S), ((w0, w) \circ \sigma  - 1) \cdot d\sigma  - 1

ds
, (\alpha , y0, y, \beta ) \circ \sigma  - 1

\biggr) 
.

Note that w0
c (s)+ | wc(s)| = 1 for a.e. s \in [0, Sc], so that (Sc, w

0
c , wc, \alpha c, y

0
c , yc, \beta c)

is a canonical extended sense process. One can easily verify that an extended sense
process is canonical if and only if it coincides with its canonical parameterization.

By considering the enlarged set \~W of extended sense controls, the original control
system (1.1) can be embedded into the extended system (1.2) when the latter is
thought of as defined on the \sim quotient space, and the set of strict sense processes
can be identified with S \~W+

. Precisely, any strict sense process (T, u, a, x, v) is in

one-to-one correspondence with the \sim equivalence class [(S,w0, w, \alpha , y0, y, \beta )], where
(S,w0, w, \alpha , y0, y, \beta ) is the canonical embedded strict sense process defined in (1.3).
Notice that every ( \~S, \~w0, \~w, \~\alpha , \~y0, \~y, \~\beta ) which is \sim equivalent to (S,w0, w, \alpha , y0, y, \beta )
verifies \~w0 > 0 a.e.; hence it belongs to S \~W+

.
Since an extended sense process is feasible if and only if any equivalent process is

feasible (and the costs of equivalent processes do coincide), in the extended optimiza-
tion problem and the definition of local infimum gap we have the freedom to consider
indifferently one of the following classes of extended sense processes: (i) the set of all
extended sense processes, or (ii) the subclass of canonical extended sense processes (as
we have done in the previous sections), or even (iii) any subclass of extended sense
processes (S,w0, w, \alpha , y0, y, \beta ) such that R1 \leq w0 + | w| \leq R2 a.e. 0 < R1 < R2.

Precisely, from the rate-independence of the extended system it easily follows that
(a) at a feasible process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) \in S \~W there is a local infimum gap

(w.r.t. feasible processes in S \~W+
) if and only if there is a local infimum gap

at every process (S,w0, w, \alpha , y0, y, \beta ) \sim ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta );
(b) at a feasible canonical extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) there is a

local infimum gap w.r.t. feasible processes in S \~W+
if and only there is a local

infimum gap w.r.t. feasible canonical processes in SW+
only.

On the one hand, as a consequence of (a) it is by no means restrictive to investigate
the gap issue just for a canonical process. On the other hand, in view of Lemma 3.1
the property (b) implies that the reference process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is isolated
among all feasible processes in S \~W+

, namely, there exists some r > 0 such that

(4.1) R\prime r
\~W+

\cap (T\times [0,K]) = \emptyset .

Here, for any \=r > 0 we define the sets R\prime \=r
\~W+

and R\prime \=r
\~W as the reachable set and the

extended reachable set of subsection 3.1, except that the sets of canonical controls W+

and W are replaced with \~W+ and \~W, respectively. In any case, in this section we refer
to R\prime \=r

\~W+
and R\prime \=r

\~W as the reachable set and the extended reachable set, respectively.

4.2. Higher order QDQ approximating cones.

4.2.1. Some technical preliminaries. Hypothesis (H)b guarantees that if we
introduce the compact set

W\prime :=

\biggl\{ 
(w0, w, a) \in \BbbR + \times C \times A :

1

2
\leq w0 + | w| \leq 4

\biggr\} D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 1

47
.1

62
.2

2.
66

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNBOUNDED CONTROL, GAPS, AND HIGHER ORDER NORMALITY 1449

for any (w0, w, \alpha ) \in L1([0, \=S],W\prime ) there exists a unique solution (y0, y, \beta )[w0, w, \alpha ]
to (1.2) defined on the whole interval [0, \=S]. Moreover, it is straightforward to check
that the input-output map

\Phi : L1([0, \=S],W\prime ) \rightarrow C0([0, \=S],\BbbR \times M \times \BbbR )

(w0, w, \alpha ) \mapsto \rightarrow (y0, y, \beta )[w0, w, \alpha ]

is continuous when L1([0, \=S],W\prime ) is endowed with the L1 norm. In particular, for
some constant C > 0 the map \Phi enjoys the Lipschitz continuity properties

\| (y0, y, \beta )[w0, w, \alpha ] - (y0, y, \beta )[ \~w0, \~w, \~\alpha ]\| \infty (4.2)

\leq Cmeas
\Bigl\{ 
s \in [0, \=S] : (w0, w, \alpha )(s) \not = ( \~w0, \~w, \~\alpha )(s)

\Bigr\} 
,

\| (y0, y, \beta )[w0, w, \alpha ] - (y0, y, \beta )[ \~w0, \~w,\alpha ]\| \infty \leq C \| (w0, w) - ( \~w0, \~w)\| \infty (4.3)

for every (w0, w, \alpha ), ( \~w0, \~w,\alpha ), ( \~w0, \~w, \~\alpha ) \in L1([0, \=S],W\prime ).8 Actually, a stronger Lip-
schitz condition involving the distance between the primitives of the controls (w0, w)
holds true trivially. Moreover, at least in the case when the drift is a-independent, an
even stronger Lipschitz condition involving the Fr\'echet distance on both sides is valid
(see, e.g., [9, 21, 15].)

Consider now the subset W \subset W\prime of extended control values given by

W :=

\biggl\{ 
(w0, w, a) \in \BbbR + \times C \times A :

1

2
\leq w0 + | w| \leq 2

\biggr\} 
,

the subclass of extended sense controls with fixed endtime

\~W
\=S :=

\Bigl\{ 
(w0, w, \alpha ) : ( \=S,w0, w, \alpha ) \in \~W, (w0, w, \alpha )(s) \in W for a.e. s \in [0, \=S]

\Bigr\} 
,

and the subset

\~W
\=S

+ :=
\Bigl\{ 
(w0, w, \alpha ) : (w0, w, \alpha ) \in \~W

\=S , w0(s) > 0 for a.e. s \in [0, \=S]
\Bigr\} 
\subset \~W

\=S .

Since ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is a canonical process, clearly ( \=w0, \=w, \=\alpha ) \in \~W
\=S . Further-

more, it is an isolated process even when one considers only embedded strict sense
processes defined on the fixed interval [0, \=S] and with controls assuming values in the
set W. More precisely, if we introduce the reachable set and the extended reachable
set at fixed time \=S, defined as

(4.4)
R\prime r

\~W
\=S

+
:=
\Bigl\{ 
(y0, y, \beta )[w0, w, \alpha ]( \=S) \in R\prime r

\~W+
: (w0, w, \alpha ) \in \~W

\=S
\Bigr\} 
\subseteq R\prime r

\~W+
,

R\prime r
\~W \=S :=

\Bigl\{ 
(y0, y, \beta )[w0, w, \alpha ]( \=S) \in R\prime r

\~W : (w0, w, \alpha ) \in \~W
\=S
\Bigr\} 
\subseteq R\prime r

\~W,

respectively, we have that R\prime r
\~W

\=S
+
\cap (T\times [0,K]) = \emptyset for the same r as in (4.1).

We will need the following technical result, which, for a given extended sense con-
trol (w0, w, \alpha ), establishes some regularity properties of a certain operator \theta (w0,w,\alpha )(\cdot ),
mapping any \delta \in ]0, 1] into an embedded strict sense control.

8Unlike inequality (4.2), which is valid for general control systems, condition (4.3) is an easy
consequence of the fact that the original dynamics function is affine in u.
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Lemma 4.1. There exists some positive constant D > 0 such that for every ex-
tended sense control (w0, w, \alpha ) \in \~W

\=S, the map \theta (w0,w,\alpha ) : [0, 1] \rightarrow \~W
\=S, defined by

setting \theta (w0,w,\alpha )(\delta ) :=
\bigl( 
w0 + \delta 

1+\delta | w| ,
1

1+\delta w,\alpha 
\bigr) 
for all \delta \in [0, 1], verifies

\theta (w0,w,\alpha )(]0, 1]) \subseteq \~W
\=S

+ ,

\| (y0, y, \beta )[w0, w, \alpha ] - (y0, y, \beta )
\bigl[ 
\theta (w0,w,\alpha )(\delta )

\bigr] 
\| \infty \leq D \delta ,(4.5)

\| (y0, y, \beta )
\bigl[ 
\theta (w0,w,\alpha )(\delta 1)

\bigr] 
 - (y0, y, \beta )

\bigl[ 
\theta (w0,w,\alpha )(\delta 2)

\bigr] 
\| \infty \leq D| \delta 1  - \delta 2| (4.6)

for all \delta , \delta 1, \delta 2 \in [0, 1].

Proof. Observe that (\theta (w0,w,\alpha )(0) = (w0, w, \alpha )) and for any \delta \in ]0, 1] one has

\theta (w0,w,\alpha )(\delta ) \in \~W
\=S

+ \subset \~W
\=S . Indeed, for almost every s \in [0, \=S] one has

w0(s) +
\delta 

1 + \delta 
| w(s)| \geq \delta 

2(1 + \delta )
> 0,

w0(s) +
\delta 

1 + \delta 
| w(s)| + 1

1 + \delta 
| w(s)| = w0(s) + | w(s)| \in 

\biggl[ 
1

2
, 2

\biggr] 
.

Moreover, by the trivial estimates\bigm\| \bigm\| \bigm\| \bigm\| w0 +
\delta 1

1 + \delta 1
| w|  - 

\biggl( 
w0 +

\delta 2
1 + \delta 2

| w| 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 

\infty 
\leq 2| \delta 1  - \delta 2| 

(1 + \delta 1)(1 + \delta 2)
,

\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + \delta 1
| w|  - 1

1 + \delta 2
| w| 
\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq 2| \delta 1  - \delta 2| 
(1 + \delta 1)(1 + \delta 2)

,

valid for all \delta 1, \delta 2 \in [0, 1], and by the Lipschitz property (4.3), we get (4.5), (4.6).

Let [0, \=S]2 \ni (s, s1) \mapsto \rightarrow \~M(s, s1) \in Lin(\BbbR \times \BbbR n\times \BbbR ;\BbbR \times \BbbR n\times \BbbR ) be the fundamental
matrix solution of the variational equation

(4.7)
d\~v

ds
(s) = D(y0,y,\beta )

\left(     
\=w0(s)

f(\=y(s), \=\alpha (s)) \=w0(s) +

m\sum 
i=1

gi(\=y(s)) \=wi(s)

| \=w(s)| 

\right)     \cdot \~v(s)

corresponding to the control system (1.2) (and to the reference process).9 Let us use
\~Mi,j to denote the entry (i, j) of \~M , where i and j range from 0 to n+1, so that, for
all s \in [0, \=S], one has

\~M0,j(s, s1) = \~Mj,0(s, s1) = \delta 0,j for j = 0, . . . , n+ 1,
\~Mn+1,j(s, s1) = \~Mj,n+1(s, s1) = \delta n+1,j for j = 0, . . . , n+ 1,
\~Mi,r(s, s1) =Mi,r(s, s1) for i, r = 1, . . . , n,

where M denotes the fundamental matrix solution of the state-variational equation

(4.8)
dv

ds
(s) =

\Biggl( 
Dxf(\=y(s), \=\alpha (s))w

0(s) +

m\sum 
i=1

Dgi(\=y(s)) \=wi(s)

\Biggr) 
\cdot v(s).

9Namely, for each vector \~v :\in \BbbR 1+n+1 and each s1 \in [0, \=S], the function \~v(\cdot ) := \~M(\cdot , s1)\~v is the
solution of (4.7) with initial condition \~v(s1) = \~v.
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4.2.2. Needle variations. Let us recall the basic notion of needle variation,
which is used to produce a first order tangent approximation of the reachable set
R\prime r

\~W at (\=y0, \=y, \=\beta )( \=S).

Definition 4.2. Any \xi = (w0, w, a) \in W will be called a needle variation gener-
ator or a variation generator of length 1.

Definition 4.3. Let \xi = (w0, w, a) be a needle variation generator, and let \=s \in 
]0, \=S]. For any control ( \^w0, \^w, \^\alpha ) \in \~W

\=S, the family\Biggl\{ 
( \^w0, \^w, \^\alpha )\varepsilon \xi ,\=s(s) :=

\Biggl\{ 
(w0, w, \alpha ) if s \in [\=s - \varepsilon , \=s],

( \^w0, \^w, \^\alpha )(s) if s \in [0, \=s - \varepsilon [\cup ]\=s, \=S],
\varepsilon \in ]0, \=s[

\Biggr\} 

is called a needle control approximation of ( \^w0, \^w, \^\alpha ) at \=s associated to \xi .

At a given time \=s and to every variation generator \xi , let us associate an infinitesi-
mal variation of the reference extended sense trajectory (\=y0, \=y, \=\beta ), whose y-component
coincides with a standard needle variation.

Definition 4.4. Let us consider the (full measure) subset ]0, \=S]Leb \subset ]0, \=S] of
Lebesgue points10 of s \mapsto \rightarrow 

\bigl( 
\=w0(s), f(\=y(s), \=\alpha (s)) \=w0(s)+

\sum m
i=1 gi(\=y(s)) \=w

i(s), | \=w| (s)
\bigr) 
. For

every \=s \in ]0, \=S]Leb and every needle variation generator \xi = (w0, w, a), we call needle
variation at \=s the vector (v0

\xi ,\=s,v\xi ,\=s,v
v
\xi ,\=s) given by

(4.9)

v0
\xi ,\=s := w0  - \=w0(\=s),

v\xi ,\=s := f(\=y(\=s), a)w0  - f(\=y(\=s), \=\alpha (\=s)) \=w0(s) +

m\sum 
i=1

gi(\=y(\=s))
\bigl( 
wi  - \=wi(\=s)

\bigr) 
,

vv
\xi ,\=s := | w|  - | \=w(\=s)| .

Standard continuity estimates imply the following fact.

Lemma 4.2. Assume that \=s \in ]0, \=S]Leb. For every needle variation generator \xi =
(w0, w, a) we get

(4.10)

\left(  y0\varepsilon ( \=S) - \=y0( \=S)
y\varepsilon ( \=S) - \=y( \=S)
\beta \varepsilon ( \=S) - \=\beta ( \=S)

\right)  = \varepsilon \~M( \=S, \=s) \cdot 

\left(  v0
\xi ,\=s

v\xi ,\=s

vv
\xi ,\=s

\right)  + h(\varepsilon ) = \varepsilon 

\left(  v0
\xi ,\=s

M( \=S, \=s) \cdot v\xi ,\=s

vv
\xi ,\=s

\right)  + h(\varepsilon ),

where (y0\varepsilon , y\varepsilon , \beta \varepsilon ) := (y0, y, \beta )[( \=w0, \=w, \=\alpha )\varepsilon \xi ,\=s], ( \=w
0, \=w, \=\alpha )\varepsilon \xi ,\=s is the needle control approx-

imation of ( \=w0, \=w, \=\alpha ) at \=s associated to \xi , and h is continuous and verifies | h(\varepsilon )| \leq 
\varepsilon \rho (\varepsilon ), where \rho is a pseudo-modulus.11

4.2.3. Bracket-like variations. To every admissible bracket pair (B,h), with
B of length \geq 2, one can link a control which generates a trajectory locally approxi-
mating the iterated Lie bracket B(h). Such a control can be defined using one of the
approaches outlined in [1, 10, 11, 18, 19] and references therein.

Proposition 4.1 (see [11]). Assume hypothesis (H)b. Let (B,h) be an admis-
sible bracket pair in \frakB r0 of length l \geq 2. Then, for every point \~x \in \BbbR n, there exists

10Given G \in L1([a, b],\BbbR N ), s \in (a, b] is a Lebesgue point if lim\delta \rightarrow 0+
1
\delta 

\int (s+\delta )\wedge \=S
s - \delta | G(\sigma ) - G(s)| d\sigma =

0. By the Lebesgue differentiation theorem, the set of Lebesgue points has measure b - a.
11See subsection 2.3 for the definition of ``pseudo-modulus.""
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\=\varepsilon > 0 such that for any \sigma \in ]0, \=\varepsilon 1/l], one can construct a piecewise constant control
wB,\sigma such that

(4.11) y\sigma (\sigma ) = \~x+

\biggl( 
\sigma 

r
B

\biggr) l

B(h)(\~x) + o(\sigma l),

where y\sigma denotes the solution to the Cauchy problem dy
ds =

\sum n
i=1 gi(y)w

i
B,\sigma , y(0) = \~x,

and rB is the switch-number of the formal bracket B.

Definition 4.5. A bracket pair \xi = (B,h) \in \frakB r0 of length l (\geq 2) will also be
called a bracket-like variation generator of length l.

Bracket-like approximation is a classical issue in geometric control theory (see,
e.g., [1, 6, 7, 10, 18]). Here, we fully exploit the unboundedness of the controls u, which
translates into the possibility of choosing w0 = 0 during the variation: namely, the
variation is implemented during an interval in which the (original) time is constant.

Definition 4.6 (bracket-like variation). For every \=s \in ]0, \=S] and every bracket-
like variation generator \xi = (B,h) \in \frakB r0 of length l, l \geq 2, we call bracket-like
variation at \=s, the vector

(4.12) (v0
\xi ,\=s,v\xi ,\=s) :=

\biggl( 
0,
B(h)(\=y(\=s))

(rB)l

\biggr) 
.12

Definition 4.7 (bracket-like approximation). Fix \=s \in ]0, \=S], and let \xi = (B,h)

in \frakB r0 be a bracket-like variation generator of length l. Set \v \varepsilon := min
\bigl\{ 
\=\varepsilon ,
\bigl( 
\=s
2

\bigr) l \bigr\} 
,13 and

for each \varepsilon \in ]0, \v \varepsilon ], consider the dilation \varphi \varepsilon : [\=s - 2\varepsilon 1/l, \=s - \varepsilon 1/l] \rightarrow [\=s - 2\varepsilon 1/l, \=s] defined
by setting, for all \sigma \in [\=s - 2\varepsilon 1/l, \=s - \varepsilon 1/l],

(4.13) \varphi \varepsilon (\sigma ) := (\=s - 2\varepsilon 1/l) + 2
\bigl( 
\sigma  - (\=s - 2\varepsilon 1/l)

\bigr) 
.

For any control ( \^w0, \^w, \^\alpha ) \in \~W
\=S, let us define

(4.14) ( \^w0, \^w, \^\alpha )\varepsilon \xi ,\=s(s) :=

\left\{         
\Bigl( 
2 \^w0, 2 \^w, \^\alpha 

\Bigr) 
\circ \varphi \varepsilon (s) if s \in [\=s - 2\varepsilon 1/l, \=s - \varepsilon 1/l[,\Bigl( 

0,w\xi ,\varepsilon 1/l(s - (\=s - \varepsilon 1/l)), a
\Bigr) 

if s \in [\=s - \varepsilon 1/l, \=s],\bigl( 
\^w0, \^w, \^\alpha 

\bigr) 
(s) if s \in [0, \=s - 2\varepsilon 1/l[\cup ]\=s, S],

where a \in A is arbitrary and w\xi ,\varepsilon 1/l is defined as in Proposition 4.1. We refer to the

family of controls
\bigl\{ 
( \^w0, \^w, \^\alpha )\varepsilon \xi ,\=s : \varepsilon \in ]0, \v \varepsilon ]

\bigr\} 
as a bracket-like control approximation of

( \^w0, \^w, \^\alpha ) at \=s associated to \xi = (B,h).14

Lemma 4.3 (asymptotics of bracket-like variations). Let us consider a bracket-
like variation generator \xi = (B,h) \in \frakB r0 of length l. For every (\=s, \varepsilon ) \in ]0, \=S]\times ]0, \v \varepsilon ],15

12We do not define a \beta -component of the bracket-like variation since when we implement a control
wB,\sigma , the increment in the (y0, y)-direction is of order \varepsilon l, while in the \beta -direction it is of order \varepsilon .

13\=\varepsilon is defined in Proposition 4.1.
14Observe that ( \^w0, \^w, \^\alpha )\varepsilon \xi ,\=s \in L1([0, \=S],W\prime ) but it may not belong to the set \~W

\=S . However, it

belongs to \~W
\=S when ( \^w0, \^w, \^\alpha ) is a canonical control.

15\v \varepsilon is as in Definition 4.7.
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UNBOUNDED CONTROL, GAPS, AND HIGHER ORDER NORMALITY 1453

consider the bracket-like control approximation ( \=w0, \=w, \=\alpha )\varepsilon \xi ,\=s of ( \=w0, \=w, \=\alpha ) at \=s associ-

ated to \xi . Then, setting (y0\varepsilon , y\varepsilon , \beta \varepsilon ) := (y0, y, \beta )[( \=w0, \=w, \=\alpha )\varepsilon \xi ,\=s], one has

y0\varepsilon ( \=S) - \=y0( \=S) = \varepsilon \bfv 0
\xi ,\=s = 0,

y\varepsilon ( \=S) - \=y( \=S) = \varepsilon M( \=S, \=s) \cdot \bfv \xi ,\=s + h(\varepsilon ) = \varepsilon M( \=S, \=s) \cdot B(\bfh )(\=y(\=s))

(rB )l
+ h(\varepsilon ),

\beta \varepsilon ( \=S) - \=\beta ( \=S) = \varepsilon 
1
l ,

with h : [0, \v \varepsilon ] \mapsto \rightarrow \BbbR n continuous and verifying | h(\varepsilon )| \leq \varepsilon \rho (\varepsilon ) \forall \varepsilon \in [0, \v \varepsilon ] for some pseudo-
modulus \rho .

Proof. The results concerning y0\varepsilon and \beta \varepsilon are trivial. As for y\varepsilon , it is not difficult
to prove that (see [3, Lemma 6.9])

(4.15) y\varepsilon ( \=S) - \=y( \=S) = \varepsilon M( \=S, \=s) \cdot B(h)(\=y(\=s))

(r
B
)l

+ h(\varepsilon ), h(\varepsilon ) = o(\varepsilon ).

Hence, if we set \rho (\varepsilon ) := 1
\varepsilon max\eta \in [0,\varepsilon ] | h(\eta )| for any \varepsilon \in ]0, \v \varepsilon ], \rho (0) := lim\varepsilon \rightarrow 0+ \rho (\varepsilon ) = 0,

and \rho (\varepsilon ) := +\infty for any \varepsilon > \v \varepsilon , \rho turns out to be a pseudo-modulus and h : [0, \v \varepsilon ] \rightarrow \BbbR n

verifies | h(\varepsilon )| \leq \varepsilon \rho (\varepsilon ) for any \varepsilon \in [0, \v \varepsilon ]. To prove the continuity of \varepsilon \mapsto \rightarrow h(\varepsilon ), let us
begin observing that it is equivalent to the continuity of the map \varepsilon \mapsto \rightarrow y\varepsilon ( \=S).

The right continuity at \varepsilon 0 = 0 is straightforward. Let us show that \varepsilon \mapsto \rightarrow y\varepsilon ( \=S) is
right continuous at any \varepsilon 0 \in ]0, \v \varepsilon [. By the continuity of the input-output map, in order
to show that lim\varepsilon \rightarrow \varepsilon +0

y\varepsilon ( \=S) = y\varepsilon 0( \=S) it is enough to estimate, for every \varepsilon \in ]\varepsilon 0, \v \varepsilon ], the

L1-distance
\int \=S

0
| ( \=w0, \=w, \=\alpha )\varepsilon \xi ,\=s(s) - ( \=w0, \=w, \=\alpha )\varepsilon 0\xi ,\=s(s)| ds. Let us observe that

(4.16)

\int \=S

0

| ( \=w0, \=w, \=\alpha )\varepsilon \xi ,\=s(s) - ( \=w0, \=w, \=\alpha )\varepsilon 0\xi ,\=s(s)| ds =
\int \=s

\=s - 2\varepsilon 1/l
| \=w\varepsilon 

\xi ,\=s(s) - \=w\varepsilon 0
\xi ,\=s(s)| ds

=

\int \=s - 2\varepsilon 
1/l
0

\=s - 2\varepsilon 1/l
| 2 \=w \circ \varphi \varepsilon (s) - \=w(s)| ds+

\int \=s - \varepsilon 1/l

\=s - 2\varepsilon 
1/l
0

2| \=w \circ \varphi \varepsilon (s) - \=w \circ \varphi \varepsilon 0(s)| ds

+

\int \=s - \varepsilon 
1/l
0

\=s - \varepsilon 1/l
| w\varepsilon (s) - 2 \=w \circ \varphi \varepsilon 0(s)| ds+

\int \=s

\=s - \varepsilon 
1/l
0

| w\varepsilon (s) - w\varepsilon 0(s)| ds,

where we have set w\varepsilon (s) := w\xi ,\varepsilon 1/l(s - (\=s - \varepsilon 1/l)) and w\varepsilon 0(s) := w
\xi ,\varepsilon 

1/l
0

(s - (\=s - \varepsilon 1/l0 )) for

a.e. s. Each of the first and the third terms in the right-hand side of (4.16) is clearly
bounded above by 6| \varepsilon  - \varepsilon 0| . As for the remaining terms, let us choose a continuous

L1-approximation \=wc of \=w such that
\int \=s

0
| \=wc(s) - \=w(s)| ds < | \varepsilon 1/l0  - \varepsilon 1/l| . Let \rho c be the

modulus of continuity of \=wc. Then, the second term on the right-hand side of (4.16)
can be estimated as\int \=s - \varepsilon 1/l

\=s - 2\varepsilon 
1/l
0

2| \=w \circ \varphi \varepsilon (s) - \=w \circ \varphi \varepsilon 0(s)| ds \leq 
\int \=s - \varepsilon 1/l

\=s - 2\varepsilon 
1/l
0

2| \=w \circ \varphi \varepsilon (s) - \=wc \circ \varphi \varepsilon (s)| ds

+

\int \=s - \varepsilon 1/l

\=s - 2\varepsilon 
1/l
0

2| \=wc \circ \varphi \varepsilon (s) - \=wc \circ \varphi \varepsilon 0(s)| ds+
\int \=s - \varepsilon 1/l

\=s - 2\varepsilon 
1/l
0

2| \=wc \circ \varphi \varepsilon 0(s) - \=w \circ \varphi \varepsilon 0(s)| ds

=

\int \=s

\=s+2\varepsilon 1/l - 4\varepsilon 
1/l
0

| \=w(s) - \=wc(s)| ds+
\int \=s - \varepsilon 1/l

\=s - 2\varepsilon 
1/l
0

2| \=wc \circ \varphi \varepsilon (s) - \=wc \circ \varphi \varepsilon 0(s)| ds

+

\int \=s - 2
\Bigl( 
\varepsilon 1/l - \varepsilon 

1/l
0

\Bigr) 
\=s - 2\varepsilon 

1/l
0

| \=w(s) - \=wc(s)| ds \leq 2| \varepsilon 1/l0  - \varepsilon 1/l| + \rho c(| \varepsilon 0  - \varepsilon | ).
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1454 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

Let us examine the fourth term on the right-hand side of (4.16). One has

\int \=s

\=s - \varepsilon 
1/l
0

| w\varepsilon (s) - w\varepsilon 0(s)| ds =
\int \varepsilon 

1/l
0

0

\bigm| \bigm| \bigm| w\xi ,\varepsilon 1/l

\Bigl( 
\sigma + \varepsilon 1/l  - \varepsilon 

1/l
0

\Bigr) 
 - w

\xi ,\varepsilon 
1/l
0

(\sigma )
\bigm| \bigm| \bigm| d\sigma 

=

\int \varepsilon 
1/l
0

0

\bigm| \bigm| \bigm| w\xi ,\varepsilon 
1/l
0

\Bigl( \varepsilon 0
\varepsilon 

\Bigl( 
\sigma + \varepsilon 1/l  - \varepsilon 

1/l
0

\Bigr) \Bigr) 
 - w

\xi ,\varepsilon 
1/l
0

(\sigma )
\bigm| \bigm| \bigm| d\sigma ,

where, in turn, we have changed the integral variable \sigma = s - (\=s - \varepsilon 
1/l
0 ) and used the

two (equivalent) relations

(4.17) w\varepsilon (s) = w\varepsilon 0

\Bigl( 
s
\varepsilon 0
\varepsilon 

\Bigr) 
\forall s \in [0, \varepsilon ], w\varepsilon 0(s) = w\varepsilon 

\biggl( 
s
\varepsilon 

\varepsilon 0

\biggr) 
\forall s \in [0, \varepsilon 0].

Let wc
\varepsilon 0 be a continuous map satisfying the relation

\int \=s

0
| wc

\varepsilon 0(\sigma ) - w
\xi ,\varepsilon 

1/l
0

(\sigma )| ds < | \varepsilon 1/l0  - 
\varepsilon 1/l| , and let \rho c,\varepsilon 0 be a modulus of continuity for wc

\varepsilon 0 . Then, we get\int \=s

\=s - \varepsilon 
1/l
0

| w\varepsilon (s) - w\varepsilon 0(s)| ds

\leq 2
\Bigl( \varepsilon 0
\varepsilon 

\Bigr) 1/l
| \varepsilon 1/l0  - \varepsilon 1/l| + \rho c,\varepsilon 0

\biggl( \Bigl( \varepsilon 0
\varepsilon 

\Bigr) 1/l
| \varepsilon 1/l0  - \varepsilon 1/l| + | \varepsilon 1/l0  - \varepsilon 1/l| 

\biggr) 
,

where \varepsilon 0
\varepsilon < 1. From the previous relations we deduce that the map \varepsilon \mapsto \rightarrow y\varepsilon (\=s) is right

continuous at any \varepsilon 0 > 0.
It remains to show that the function \varepsilon \mapsto \rightarrow y\varepsilon ( \=S) is left continuous at any \varepsilon 0 \in ]0, \v \varepsilon ].

To this aim, one can proceed similarly as above by writing for any \varepsilon \in 
\bigr] 
\varepsilon 0
2 , \varepsilon 0

\bigl[ 
a relation similar to (4.16), in which the roles of \varepsilon and \varepsilon 0 are interchanged. The
resulting estimates are very similar to the previous ones, with exception of the term

(4.18)

\int \=s

\=s - \varepsilon 1/l
| w\varepsilon (s) - w\varepsilon 0(s)| ds =

\int \varepsilon 1/l

0

\bigm| \bigm| \bigm| w\xi ,\varepsilon 1/l (\sigma ) - w
\xi ,\varepsilon 

1/l
0

(\sigma + \varepsilon 
1/l
0  - \varepsilon 1/l)

\bigm| \bigm| \bigm| d\sigma 
=

\int \varepsilon 1/l

0

\bigm| \bigm| \bigm| w\xi ,\varepsilon 
1/l
0

\Bigl( \varepsilon 0
\varepsilon 
\sigma 
\Bigr) 
 - w

\xi ,\varepsilon 
1/l
0

(\sigma + \varepsilon 
1/l
0  - \varepsilon 1/l)

\bigm| \bigm| \bigm| d\sigma ,
where, in turn, we have used the change of variable \sigma = s - (\=s - \varepsilon 1/l) and relation (4.17).

If wc
\varepsilon 0 is a continuous L1-approximation of w

\xi ,\varepsilon 
1/l
0

satisfying the relation
\int \=s

0
| wc

\varepsilon 0(\sigma ) - 

w
\xi ,\varepsilon 

1/l
0

(\sigma )| ds < | \varepsilon 1/l0  - \varepsilon 1/l| and \~\rho c,\varepsilon 0 is a modulus of continuity for wc
\varepsilon 0 , one can

obtain an estimate akin to (4.18), where now \varepsilon 0
\varepsilon < 2. This concludes the proof of the

continuity of the map \varepsilon \mapsto \rightarrow y\varepsilon ( \=S) (and hence of \varepsilon \mapsto \rightarrow h(\varepsilon )) for any \varepsilon \in [0, \v \varepsilon ].

4.2.4. Composition of several variations. Let us define the family of varia-
tion generators as the set

\Xi := W \cup \frakB r0.

Let us fix (\xi , \=s) \in \Xi \times ]0, \=S] and, for an \~\varepsilon \in ]0, 1] small enough and any \varepsilon \in ]0, \~\varepsilon ], let us
introduce the operator

A\varepsilon 
\xi ,\=s : L

\infty \bigl( [0, \=S],\BbbR + \times C \times A
\bigr) 

\rightarrow L\infty \bigl( [0, \=S],\BbbR + \times C \times A
\bigr) 

(w0, w, \alpha ) \mapsto \rightarrow A\varepsilon 
\xi ,\=s(w

0, w, \alpha ) := (w0, w, \alpha )\varepsilon \xi ,\=s.
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Lemma 4.4. Let N be a positive integer, and let us consider an N -tuple of vari-
ation generators \vec{}\xi := (\xi 1, . . . , \xi N ) \in \Xi N of lengths (l1, . . . , lN ). Fix (\=s1, . . . , \=sN ) \in 
]0, \=S]N , where 0 =: \=s0 < \=s1 < \cdot \cdot \cdot < \=sN \leq \=S and \=sj \in ]0, \=S]Leb as soon as lj = 1. For
each \vec{}\varepsilon := (\varepsilon 1, . . . , \varepsilon N ) \in ]0, \~\varepsilon [N for some \~\varepsilon \in ]0, 1[ small enough,16 set

(w0\vec{}\varepsilon , w\vec{}\varepsilon , \alpha \vec{}\varepsilon ) := A\varepsilon N
\xi N ,\=sN

\circ \cdot \cdot \cdot \circ A\varepsilon j
\xi j ,\=sj

\circ \cdot \cdot \cdot \circ A\varepsilon 1
\xi 1,\=s1

( \=w0, \=w, \=\alpha ), 17

and let
\bigl( 
\=S,w0\vec{}\varepsilon , w\vec{}\varepsilon , \alpha \vec{}\varepsilon , y0\vec{}\varepsilon , y\vec{}\varepsilon , \beta \vec{}\varepsilon 

\bigr) 
denote the corresponding process of the extended

system (1.2). Then, there exist a pseudo-modulus \rho and a continuous map h :
[0, \~\varepsilon ]N \rightarrow \BbbR 1+n such that for every s \in ]\=sN , \=S] and every \vec{}\varepsilon \in ]0, \~\varepsilon [N , one has

(4.19)

\biggl( 
y0\vec{}\varepsilon (s) - \=y0(s)
y\vec{}\varepsilon (s) - \=y(s)

\biggr) 
=

N\sum 
j=1

\varepsilon j

\biggl( 
v0
\xi j ,\=sj

M(s, \=sj)v\xi j ,\=sj

\biggr) 
+ h(\vec{}\varepsilon ), | h(\vec{}\varepsilon )| \leq | \vec{}\varepsilon | \rho (| \vec{}\varepsilon | ),

and

(4.20) \beta \vec{}\varepsilon (s) - \=\beta (s) =
\sum 
j\in I1

\varepsilon j (| wj |  - | \=w(\=sj)| ) + | \vec{}\varepsilon | \rho (| \vec{}\varepsilon | ) +
\sum 

j\in \{ 1,...,N\} \setminus I1

(\varepsilon j)
1
lj ,

where I1 := \{ j = 1, . . . , N : lj = 1\} . In particular, if all \xi j are needle variations, i.e.
\xi j := (w0

j , wj , \alpha j) for every j = 1, . . . , N , then

\beta \vec{}\varepsilon (s) - \=\beta (s) =

N\sum 
j=1

\varepsilon j
\bigl( 
| wj |  - | \=w(\=sj)| 

\bigr) 
+ | \vec{}\varepsilon | \rho (| \vec{}\varepsilon | ).

Proof. Apart from the specification on the continuity of the function h, this re-
sult is proved in [3, Lemma 6.10]. Instead, the continuity of h is a straightforward
consequence of the continuity properties established in Lemmas 4.2 and 4.3.

4.2.5. Approximating the original reachable set by higher order ex-
tended cones. Let Pr : \BbbR \times M \times \BbbR \rightarrow \BbbR \times M denote the projection defined by
setting Pr(y0, y, \beta ) := (y0, y) for all (y0, y, \beta ) \in \BbbR \times M \times \BbbR .

For any r > 0, let us introduce the projections Rr
\~W

\=S
+

and Rr
\~W \=S of the reachable

set and the extended reachable set at fixed time \=S, respectively,

Rr
\~W

\=S
+

:= Pr(R\prime r
\~W

\=S
+
), Rr

\~W \=S := Pr(R\prime r
\~W \=S ).

Definition 4.8. Let N > 0 be an integer, let \vec{}\xi := (\xi 1, . . . , \xi N ) \in \Xi N be an N -
tuple of variation generators, and fix (\=s1, . . . , \=sN ) \in ]0, \=S]N as in Lemma 4.4. The
convex cone in \BbbR 1+n,

(4.21) R\vec{}\xi := span+
\biggl\{ \biggl( 

v0
\xi j ,\=sj

M( \=S, \=sj) \cdot v\xi j ,\=sj

\biggr) 
: j = 1, . . . , N

\biggr\} 
\subseteq \BbbR 1+n,

will be called a higher order extended variational cone corresponding to the feasible
extended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ). In the case when all N variations are

16Precisely, we require that \~\varepsilon \leq 
\bigl( \=s1 - \=s0
2(l1 - 1)\wedge 1 \wedge \=\varepsilon 1/l1

\bigr) 
\wedge \cdot \cdot \cdot \wedge 

\bigl( \=sN - \=sN - 1

2(lN - 1)\wedge 1 \wedge \=\varepsilon 1/lN
\bigr) 
, where \=\varepsilon is as in

Proposition 4.1.
17Since ( \=w0, \=w) \in L1([0, \=S],C) and the intervals [\=sj  - 2(lj - 1)\wedge 1\varepsilon 

1/lj
j , \=sj ] are disjoint by the choice

of \~\varepsilon , the control (w0\vec{}\varepsilon , w\vec{}\varepsilon , \alpha \vec{}\varepsilon ) turns out to belong to \~W\=S .
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1456 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

needle variations, i.e., \xi j = (w0
j , wj , aj), j = 1, . . . N , we can also define the standard

(first order) extended variational cone in \BbbR 1+n+1,

(4.22) R\prime 
\vec{}\xi 
:= span+

\left\{   
\left(  v0

\xi j ,\=sj

M( \=S, \=sj) \cdot v\xi j ,\=sj

vv
\xi j ,\=sj

\right)  : j = 1, . . . N

\right\}   \subseteq \BbbR 1+n+1.18

In Theorem 4.1 below we establish that R\vec{}\xi is a QDQ approximating cone to the

union of \{ (\=y0, \=y)( \=S)\} with the reachable set Rr
\~W

\=S
+

. Though we already know that R\vec{}\xi 

is a QDQ (actually, a Boltyanski) approximating cone to the extended reachable set
Rr

\~W \=S (see [3]), the fact that R\vec{}\xi approximates Rr
\~W

\=S
+

\cup \{ (\=y0, \=y)( \=S)\} as well is trivial

because of the strict inclusion Rr
\~W

\=S
+

\cup \{ (\=y0, \=y)( \=S)\} \subsetneq Rr
\~W \=S .

Theorem 4.1. Let ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) be the reference canonical, feasible ex-
tended sense process at which there is a local infimum gap such that \=\beta ( \=S) < K. Then,
for some r > 0 the higher order extended variational cone R\vec{}\xi is a (\=y0, \=y)( \=S)-ignoring

QDQ approximating cone to Rr
\~W

\=S
+

\cup \{ (\=y0, \=y)( \=S)\} at (\=y0, \=y)( \=S).

Remark 4.9. The fact that the QDQ approximating coneR\vec{}\xi is (\=y
0, \=y)( \=S)-ignoring

is crucial in order to apply the set separation result of Corollary 2.1 in the proof of
Theorem 3.1.

Remark 4.10. Whenever no variation \xi j is bracket-like, then one can establish
a result like Theorem 4.1 for the whole variable (y0, y, \beta ) as well. Indeed, if all
\xi j are needle variation generators, the (first order) extended variational cone R\prime 

\vec{}\xi 
\subset 

\BbbR 1+n+1 turns out to be a (\=y0, \=y, \=\beta )( \=S)-ignoring, QDQ approximating cone to R
\prime r
\~W

\=S
+

\cup 
\{ (\=y0, \=y, \=\beta )( \=S)\} at (\=y0, \=y, \=\beta )( \=S). This can be straightforwardly deduced from a general
result established in [26] by means of the notion of ``abundance.""

Proof of Theorem 4.1. For some positive integer N > 1, let \vec{}\xi := (\xi 1, . . . , \xi N ) \in 
\Xi N be an N -tuple of variation generators and fix (\=s1, . . . , \=sN ) \in ]0, \=S]N as in Definition
4.4. Set \=\delta := \~\varepsilon , \Gamma := [0,+\infty [N , and for any \vec{}\varepsilon := (\varepsilon 1, . . . , \varepsilon N ) \in B\=\delta \cap \Gamma , set

( \=w0, \=w, \=\alpha )\vec{}\varepsilon := ( \=w0, \=w, \=\alpha )\vec{}\varepsilon \xi ,\=s, (y0
\vec{}\varepsilon 

, y\vec{}\varepsilon ) := (y0, y)[( \=w0, \=w, \=\alpha )\vec{}\varepsilon ].

By Lemma 4.4, we have

(4.23)

\biggl( 
y0

\vec{}\varepsilon 

( \=S) - \=y0( \=S)
y\vec{}\varepsilon ( \=S) - \=y( \=S)

\biggr) 
= L \cdot \vec{}\varepsilon + h(\vec{}\varepsilon ) \forall \vec{}\varepsilon := (\varepsilon 1, . . . , \varepsilon N ) \in B\=\delta \cap \Gamma ,

where the linear operator L \in Lin(\BbbR N ,\BbbR n) is defined as

L :=

\biggl( 
v0
\xi 1,\=s1

. . . . . . v0
\xi N ,\=sN

M( \=S, \=s1)v\xi 1,\=s1 . . . . . . M( \=S, \=sN )v\xi N ,\=sN

\biggr) 
,

and h is a continuous function which, for some pseudo-modulus \rho , verifies | h(\vec{}\varepsilon )| \leq 
| \vec{}\varepsilon | \rho (| \vec{}\varepsilon | ) for all \vec{}\varepsilon \in B\=\delta \cap \Gamma . Let us now define the set-valued map G : B\=\delta \cap \Gamma \rightsquigarrow \BbbR 1+n

by setting

G(\vec{}\varepsilon ) :=

\Biggl\{ \Biggl( 
y0
\bigl[ 
\theta ( \=w0, \=w,\=\alpha )\vec{}\varepsilon (\delta 

2)
\bigr] 
( \=S)

y
\bigl[ 
\theta ( \=w0, \=w,\=\alpha )\vec{}\varepsilon (\delta 

2)
\bigr] 
( \=S)

\Biggr) 
: \delta \in ]0, \=\delta ]

\Biggr\} 
\forall \vec{}\varepsilon \in B\=\delta \cap \Gamma ,

18In this case, one clearly has R\vec{}\xi 
= Pr(R\prime 

\vec{}\xi 
).
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where the function r \mapsto \rightarrow \theta ( \=w0, \=w,\=\alpha )\vec{}\varepsilon (r) is defined as in Lemma 4.1. It follows from the
latter that the map

\^h\delta (\vec{}\varepsilon ) :=

\Biggl( 
y0
\bigl[ 
\theta ( \=w0, \=w,\=\alpha )\vec{}\varepsilon (\delta 

2)
\bigr] 
( \=S) - y0

\vec{}\varepsilon 

( \=S)

y
\bigl[ 
\theta ( \=w0, \=w,\=\alpha )\vec{}\varepsilon (\delta 

2)
\bigr] 
( \=S) - y\vec{}\varepsilon ( \=S)

\Biggr) 

satisfies the relation\bigm| \bigm| \bigm| \^h\delta (\vec{}\varepsilon )\bigm| \bigm| \bigm| \leq E\delta 2 \forall \delta \in ]0, \=\delta ], \forall \vec{}\varepsilon \in B\=\delta \cap \Gamma 

for a suitable constant E \geq 0. Furthermore, using Lemmas 4.2 and 4.3 and standard
ODE results about the continuous dependence of solutions on initial data, one deduces
that the mapping \vec{}\varepsilon \mapsto \rightarrow \^h\delta (\vec{}\varepsilon ) is continuous at each \vec{}\varepsilon \in B\=\delta \cap \Gamma . Then, Lemma 4.1 and
(4.23) imply that for any \delta \in ]0, \=\delta ] and for every \vec{}\varepsilon \in B\delta \cap \Gamma ,\biggl( 

\=y0( \=S)
\=y( \=S)

\biggr) 
+ L \cdot \vec{}\varepsilon + h\delta (\vec{}\varepsilon ) \in G(\vec{}\varepsilon ),

where h\delta (\vec{}\varepsilon ) := h(\vec{}\varepsilon ) + \^h\delta (\vec{}\varepsilon ) is continuous and verifies

| h\delta (\vec{}\varepsilon )| \leq | \vec{}\varepsilon | \rho (| \vec{}\varepsilon | ) + E\delta 2 \leq \delta (\rho (\delta ) + E\delta ) \forall \vec{}\varepsilon \in B\delta \cap \Gamma .

Setting \Lambda = \{ L\} and extending arbitrarily G to a set-valued map G : \BbbR N \rightsquigarrow \BbbR 1+n,
the previous arguments show that for every r > 0, R\vec{}\xi is a QDQ approximating cone

to Rr
\~W

\=S
+

\cup \{ (\=y0, \=y)( \=S)\} at (\=y0, \=y)( \=S), generated by the triple (G,\Gamma ,\Lambda ). Furthermore,

by the fact that ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is an isolated process, there exists some r > 0
such that R\prime r

\~W
\=S

+
\cap (T \times [0,K]) = \emptyset (see (4.1)). In addition, since we are assuming

\=\beta ( \=S) < K, we can choose this r so that the projection Rr
\~W

\=S
+

satisfies

(4.24) Rr
\~W

\=S
+

\cap T = \emptyset .

In view of Lemma 4.1, for such r (by reducing \=\delta , if necessary) one has G(B\=\delta \cap \Gamma ) \subset 
Rr

\~W
\=S

+

. Hence, (\=y0, \=y)( \=S), which is in T by definition, cannot belong to G(B\=\delta \cap \Gamma ) and

the QDQ approximating cone R\vec{}\xi is (\=y0, \=y)( \=S)-ignoring (see also Remark 2.9).

4.3. Conclusion of the proof of Theorem 3.1. Let us recall that the ex-
tended sense process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is canonical, isolated, feasible, and such

that \=\beta ( \=S) < K. Let N > 0 be an integer, let \vec{}\xi := (\xi 1, . . . , \xi N ) \in \Xi N be an N -tuple
of variation generators and fix (\=s1, . . . , \=sN ) \in ]0, \=S]N as in Definition 4.4. As observed
in the proof of Theorem 4.1, for some r > 0 the condition (4.24) holds true, namely,
the sets T and Rr

\~W
\=S

+

\cup \{ (\=y0, \=y)( \=S)\} are locally separated at (\=y0, \=y)( \=S). Let K be a

QDQ approximating cone to the target set T at (\=y0, \=y)( \=S), as in the statement of
Theorem 3.1. Since, by Theorem 4.1, the higher order extended variational cone R\vec{}\xi 

is a (\=y0, \=y)( \=S)-ignoring QDQ approximating cone to Rr
\~W

\=S
+

\cup \{ (\=y0, \=y)( \=S)\} at (\=y0, \=y)( \=S),

from Corollary 2.1 it follows that the convex cones K and R\vec{}\xi are not transversal. As
a consequence, in view of Proposition 2.2 they are linearly separated, namely, there
exists (\zeta 0, \zeta ) \in (T(\=y0,\=y)( \=S)(\BbbR \times M))\ast \setminus \{ 0\} such that (\zeta 0, \zeta ) \in  - K\bot \cap R\bot 

\vec{}\xi 
. Setting
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p0 := \zeta 0, p(s) := \zeta \cdot M( \=S, s) for every s \in [0, \=S], where M( \=S, s) is the fundamental
matrix of the state-variational equation defined in (4.8), we get

(p0, p) \not = 0, (p0, p( \=S)) \in  - K\bot ,

and
dp

ds
(s) =  - p(s) \cdot 

\biggl( 
Dxf(\=y(s), \=\alpha (s)) \=w

0(s) +

m\sum 
i=1

Dgi(\=y(s)) \=w
i(s)

\biggr) 
.

When coupled with the dynamics, the last equation can be expressed as the Hamil-
tonian system d

ds (\=y, p) (s) = X \=H (s, (\=y, p)(s)) for almost every s \in [0, \=S]. Moreover,

from (\zeta 0, \zeta ) \in 
\bigl( 
R\vec{}\xi 

\bigr) \bot 
it follows that, for every j = 1, . . . , N ,

(4.25) 0 \geq \zeta 0 v
0
\xi j ,\=sj + \zeta \cdot 

\bigl( 
M( \=S, \=sj) \cdot v\xi j ,\=sj

\bigr) 
= p0 v

0
\xi j ,\=sj + p(\=sj) \cdot v\xi j ,\=sj .

Therefore, the lift (\=y, p) and the multipliers p0 = \zeta 0, \pi = 0, and \lambda = 0 satisfy the
nontriviality condition (3.3), the nontransversality condition (3.5), and the adjoint
equation (3.7) of Definition 3.5. Moreover, for a needle variation generator \xi j =
(w0

j , wj , aj), by (4.25) we get
(4.26)

H
\Bigl( 
\=y(\=sj), p(\=sj), p0, 0, w

0
j , wj , aj

\Bigr) 
 - H

\Bigl( 
\=y(\=sj), p(\=sj), p0, 0, \=w

0(\=sj), \=w(\=sj), \=\alpha (\=sj)
\Bigr) 
\leq 0,

while for a bracket-like variation generator \xi j = (Bj ,hj), we obtain

(4.27) p(\=sj) \cdot Bj(hj)(\=y(\=sj)) \leq 0.

So far, we have obtained the maximality condition (3.8), the condition (3.9), and

the higher order conditions (3.11) for every finite set of variation generators \vec{}\xi :=
(\xi 1, . . . , \xi N ) \in \Xi N of lengths (l1, . . . , lN ) and of times (\=s1, . . . , \=sN ) \in ]0, \=S]N verifying
0 =: \=s0 < \=s1 < \cdot \cdot \cdot < \=sN \leq \=S, with \=sj \in ]0, \=S]Leb as soon as lj = 1. It remains to prove
(i) the validity of (4.26) for every control (w0

j , wj , aj) \in W and almost every time,

and (ii) the validity of (4.27) for every admissible bracket pair (B,h) \in \frakB r0 and for
all times s. Actually, this can be obtained through Cantor's intersection theorem, as
done in, e.g., [31, 26, 3]. The vanishing of the Hamiltonian (3.10) follows from the
fact that we have proven the maximality condition on the larger set of control values
W, which contains the set of canonical values C\times A in its interior. Indeed, since the
process ( \=S, \=w0, \=w, \=\alpha , \=y0, \=y, \=\beta ) is canonical, by (4.26) one has

H
\Bigl( 
\=y(s), p(s), p0, \pi , \=w

0(s), \=w(s), \=\alpha (s)
\Bigr) 
= max

(w0,w,a)\in \bfW 
H(\=y(s), p(s), p0, \pi , w

0, w, a)

= max
(w0,w,a)\in \bfC \times A

H(\=y(s), p(s), p0, \pi , w
0, w, a)

for a.e. s \in [0, \=S]. Now, as one can easily verify, the two maxima cannot coincide if at
some s max(w0,w,a)\in \bfC \times AH(\=y(s), p(s), p0, \pi , w

0, w, a) \not = 0, so (3.10) is proved. Finally,
the drift-involving higher order conditions (3.12) can be achieved by differentiation
(see [3, Cor. 4.5]).

5. Example: Higher order normality. In the following example the absence
of an infimum gap, while being undetectable by means of first order conditions, is en-
sured by proving that the extended sense minimizer is a normal higher order extremal
and applying Theorem 3.2.
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Let U := L1([0, 1],\BbbR 3) and consider the optimal control problem

(5.1)

\left\{                     

minimize \Psi (x(1))
over the processes (u, x) \in U \times AC([0, 1],\BbbR 4) such that

dx

dt
(t) = f(x(t)) +

3\sum 
i=1

gi(x(t))u
i(t),

dv
dt

(t) = | u(t)| ,

(x, v)(0) = ( - 1, 0, 0, 0, 0), (x(1), v(1)) \in T\times [0, 3],

where x = (x1, x2, x3, x4), f(x) = (0, x2, 0, (x3)2), g1(x) = (1, 0, - x2, 0), g2(x) =
(0, - 1, x1, 0), g3(x) = (1, 0, 0, 0), T := \{ 0\} \times \{ 0\} \times \{ 0\} \times \BbbR , and \Psi (x) = x4. Set
W :=

\bigcup 
S>0

\bigl( 
\{ S\} \times 

\bigl\{ 
(w0, w) \in L\infty ([0, S],\BbbR + \times \BbbR 3) : w0 + | w| = 1 a.e.

\bigr\} \bigr) 
.

The corresponding extended optimal control problem reads

(5.2)

\left\{                               

minimize \Psi (y(S))
over the extended sense controls (S,w0, w) \in W and the functions
(y0, y, \beta ) \in AC([0, S],\BbbR + \times \BbbR 4 \times \BbbR +) such that
dy0

ds
(s) = w0(s),

dy

ds
(s) = f(y(s))w0(s) +

3\sum 
i=1

gi(y(s))w
i(s),

d\beta 

ds
(s) = | w(s)| ,

(y0, y, \beta )(0) = (0, - 1, 0, 0, 0, 0), (y0, y, \beta )(S) \in \{ 1\} \times T\times [0, 3],

where y = (y1, y2, y3, y4) and w = (w1, w2, w3). The extended sense control\bigl( 
\=S, \=w0, \=w1, \=w2, \=w3

\bigr) 
:=
\bigl( 
2,1[1,2],1[0,1], 0, 0

\bigr) 
\in W

generates the extended sense trajectory\bigl( 
\=y0, \=y1, \=y2, \=y3, \=y4, \=\beta 

\bigr) 
(s) :=

\bigl( 
(s - 1)1[1,2], (s - 1)1[0,1], 0, 0, 0, s

\bigr) 
, s \in [0, 2].

The extended sense process ( \=S, \=w0, \=w, \=y0, \=y, \=\beta ) is clearly a minimizer for the extended
problem (5.2), as the cost is increasing along all trajectories of the system. The
unmaximized Hamiltonian of the problem is

H(x, p, p0, \pi , w
0, w)

:=
\Bigl( 
p0 + p2x

2 + p4
\bigl( 
x3
\bigr) 2\Bigr) 

w0 +
\bigl( 
p1  - p3x

2
\bigr) 
w1 +

\bigl( 
 - p2 + p3x

1
\bigr) 
w2 + p1w

3 + \pi | w| ,

where p = (p1, p2, p3, p4). By the first order maximum principle in [3, Thm. 3.1] there
exist \lambda \geq 0, an adjoint arc (p0, p) \in AC([0, 2],\BbbR \times \BbbR 4), and \pi \leq 0 satisfying the first
order necessary conditions (i)--(v) in Definition 3.5 of higher order \Psi -extremal. In
particular, \pi = 0 since \=\beta (2) = 2 < 3, and \lambda , p0, and p satisfy

(a) the nontriviality condition

(p0(s), p(s), \lambda ) \not = (0, 0, 0) \forall s \in [0, 2];

D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 1

47
.1

62
.2

2.
66

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1460 M. MOTTA, M. PALLADINO, AND F. RAMPAZZO

(b) the adjoint end-time problem19

(5.3)\left\{       
\biggl( 
dp0
ds

,
dp1
ds

,
dp2
ds

,
dp3
ds

,
dp4
ds

\biggr) 
(s) =

\bigl( 
0, 0, p3(s) \=w

1(s) - \=w0(s)p2(s), 0, 0
\bigr) 
, s \in [0, 2],\Bigl( 

p0, p1, p2, p3, p4

\Bigr) 
(2) =

\Bigl( 
C0, C1, C2, C3, - \lambda 

\Bigr) 
for some constants C0, C1, C2, C3 \in \BbbR ;

(c) the first order maximality and the vanishing condition, for a.e. s \in [0, 2],

0 = H(\=y(s), p(s), p0(s), \pi , \=w
0(s), \=w(s)) = max

(w0,w)\in \bfC 
H(\=y(s), p(s), p0(s), \pi , w

0, w);

(d) the first order relations for all s \in [0, 2],

p(s) \cdot gi(\=y(s)) = 0, i = 1, 2, 3.

Integrating (5.3), one gets p0 \equiv C0, p1 \equiv C1, p3 \equiv C3, p4 \equiv  - \lambda , and

(5.4) p2(s) :=

\Biggl\{ 
C2e

2 - s, 1 \leq s \leq 2,

C2e+ C3(s - 1), 0 \leq s < 1.

By condition (d) one easily obtains C1 = C2 = 0, while the maximality condition
(c) on the interval [1, 2] implies that C0 = 0. The maximality condition (c) on the
interval [0, 1] now reads as

max
(w0,w1,w2)

\bigl\{ 
( - C3(s - 1) + C3(s - 1))w2

\bigr\} 
= 0.

Since this condition is verified for every C3 \in \BbbR , the previous analysis shows that
the extended sense process ( \=S, \=w0, \=w, \=y0, \=y, \=\beta ) is a (first order) abnormal extremal in
that we can choose the multipliers \lambda = 0, p0 \equiv 0, p(s) = (0, C3(s - 1)1[0,1], C3, 0) on
[0, 2] for some C3 \not = 0. Hence, a first order normality criterion for no-gap, like the
one obtained in [22], does not allow one to exclude the presence of a gap between
the infimum cost of the extended problem and the original problem. However, the
higher order maximum principle in [3, Thm. 4.1] establishes that, with reference to
the process ( \=S, \=w0, \=w, \=y0, \=y, \=\beta ), there are multipliers (p0, p, \pi , \lambda ) which, in addition
to complying with the previous conditions (a)--(d), also satisfy, in particular, the
following second order condition:

(5.5) p(s) \cdot [g3, g2](\=y(s)) = C3 = 0.

Hence, C3 = 0, so that (p0, p) \equiv 0, and the nontriviality condition (a) implies that
\lambda \not = 0 necessarily. Therefore, ( \=S, \=w0, \=w, \=y0, \=y, \=\beta ) is a normal second order \Psi -extremal
and the higher order normality criterion for no-gap in Theorem 3.2 guarantees the
absence of an infimum gap.
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