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Abstract. We consider the Max-Cut problem. Let G = (V,E) be a graph

with adjacency matrix (aij)ni,j=1. Burer, Monteiro & Zhang proposed to find,

for n angles {θ1, θ2, . . . , θn} ⊂ [0, 2π], minima of the energy

f(θ1, . . . , θn) =
n∑

i,j=1

aij cos (θi − θj)

because configurations achieving a global minimum leads to a partition of size

0.878·Max-Cut(G). This approach is known to be computationally viable and
leads to very good results in practice. We prove that by replacing cos (θi − θj)

with an explicit function gε(θi− θj) global minima of this new functional lead

to a (1 − ε) · Max-Cut(G). This suggests some interesting algorithms that
perform well. It also shows that the problem of finding approximate global

minima of energy functionals of this type is NP-hard in general.

1. Introduction

1.1. Max-Cut. We consider a classical problem: given a graph G = (V,E), what
is the best decomposition of its vertices into two sets such that the number of edges
between the two sets is maximal? Max-Cut is known to be NP-hard.

Figure 1. Decomposing Vertices of a Graph into two sets so that
many edges run between them.

It is easy to see that by picking the subsets uniformly at random, we will get, in
expectation, a partition such that at least |E|/2 edges run between them. This
shows that it is easy to find a partition such that 0.5 ·Max-Cut(G) edges run
between them. In a seminal paper, Goemans & Williamson [11] constructed a
0.878−approximation algorithm for Max-Cut, where the constant is given by

0.878 · · · = 2

π
min

0≤θ≤π

θ

1− cos (θ)
.
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The algorithm uses semi-definite programming and randomized rounding (random-
ized rounding is explained in greater detail below). If the Unique Games Conjecture
is true, this is the best possible approximation ratio for Max-Cut [13] that can
be computed in polynomial time. It is known unconditionally that approximating
Max-Cut by any factor better than 16/17 ∼ 0.941 is also NP-hard [1, 12, 21].

1.2. Kuramoto Oscillators. Kuramoto Oscillators refers to a broad class of prob-
lems where we are given n particles θ1, . . . , θn ∈ S1 ∼= [0, 2π]. These particles, which
often depend on time, are assumed to be coupled in some nontrivial way (we refer
to the surveys [8, 9]). A particularly nice setting is to define the energy

f(θ1, . . . , θn) =

n∑
i,j=1

aij cos (θi − θj),

where aij ∈ {0, 1} is the entry of an adjacency matrix of a graph whose structure
models the dependency between the particles. The particles are then assumed to
move along the gradient of the energy, the overarching question is whether the
underlying graph structure forces some type of universal behavior on the particles.
The energy landscape of this particular energy, for example, is quite intricate.
Taylor [19] proved that if each vertex is connected to at least µ(n− 1) vertices for
µ ≥ 0.9395, then f(θ1, . . . , θn) does not have local maxima that are not also global.
This was then improved by Ling, Xu & Bandeira [16] to µ ≥ 0.7929 and J. Lu and
the author [17] to µ ≥ 0.7889. Townsend, Stillman & Strogatz [20] suggest that
the critical value could be µc = 0.75 – they also identify networks with µ = 0.75
having interesting spectral properties. These results mirror consideration by Burer,
Monteiro & Zhang [6] and are partially inspired by those.

1.3. The Approach of Burer, Monteiro & Zhang. Burer, Monteiro & Zhang
[6] proposed a particular rank-two relaxation of the Goemans-Williamson approach
[11]. We recall that Goemans-Williamson suggested to relax

2 · |E| − 4 ·MaxCut(G) = min
xi∈{−1,1}

n∑
i,j=1

aijxixj

by replacing the xi ∈ {−1, 1} with unit vectors vi ∈ Rn and xixj with 〈vi, vj〉.
This is clearly a more general problem but one that is amenable to being solved
with SDP methods in polynomial time. In the last step, they perform a randomized
rounding step and prove that this leads to a 0.878·Max-Cut approximation. Burer,
Monteiro & Zhang [6] suggest that it might be possible to bypass the SDP step by
arguing directly on the relaxed problem in R2. Parametrizing unit vectors in R2 by
an angle θ ∈ S1, we see that 〈

vθi , vθj
〉

= cos (θi − θj)

and this leads to the notion of energy f : (S1)n ∼= [0, 2π]n → R

f(θ1, . . . , θn) =

n∑
i,j=1

aij cos (θi − θj).

Burer, Monteiro & Zhang propose to minimize this energy instead and then use
the same randomized rounding step as in the Goemans-Williamson approach. The
success of this particular relaxation will depend on two competing factors.
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• Upside. There is no longer any need for solving a semi-definite program
(which becomes computationally expensive when n is large), one simply
has to find a configuration of particles {θ1, . . . , θn} ⊂ [0, 2π] for which the
energy is small. Moreover, there is no need to find the global minimum
(but: the smaller the energy, the better the configuration).
• Downside. Without the SDP, there is no particular insight into how one

would start looking for a good configuration {θ1, . . . , θn} ⊂ [0, 2π]. Gra-
dient descent methods are at the mercy of the energy landscape, it might
potentially be hard to find a configuration for which the energy is small.

In practice, the (hypothetical) downside does not seem to cause any difficulties, the
Burer, Monteiro & Zhang (BUR02) approach is known to work very well. Indeed, in
an extensive 2018 comparison, Dunning, Gupta & Silberholz [10] compared 37 dif-
ferent heuristics over 3296 problem instances concluding: “The best overall heuristic
on the expanded instance library with respect to the performance of its mean so-
lution across the five replicates for each instance was max-cut heuristic BUR02,
which not only matched the best performance on 22.9% of instances but also had
strictly better performance than any other heuristic on 16.2% of instances and a
mean deviation of only 0.3%.” It is not entirely understood why this relaxation
works so well and this is being actively studied, we refer to Boumal, Voroninski,
Bandeira [2, 3], Ling [15] and Ling, Xu & Bandeira [16].

2. The Result

2.1. Main Idea. Our main idea is the following: the cosine arises naturally when
considering the inner product between two vectors since〈

vθi , vθj
〉

= cos (θi − θj).
However, since we are not actually using any type of SDP approach, we do not
really have to use the cosine. Maybe there are other functions g : S1 → [−1, 1] that
are as good or possibly even better? The only constraint is that the randomized
rounding step, when applied to a minimal energy configuration, should work well.
We will consider more general notions of a Kuramoto-type energy of the form

f(θ1, . . . , θn) =

n∑
i,j=1

aij · g(θi − θj),

where g : S1 ∼= [0, 2π]→ R is assumed to

(1) be differentiable everywhere,
(2) be symmetric in the sense of g(x) = g(−x) and
(3) to assume its maximum in g(0) = 1 and its minimum in g(π) = −1.

Minimizing such a Kuramoto-type energy will encourage that any two vertices
v1, v2 that are connected by an edge (v1, v2) ∈ E are moved to antipodal points
on the circle. If the underlying graph is bipartite, this will indeed be the unique
minimal energy configuration. For more general graphs, this is not so simple and
one would expect a minimal energy configuration to depend on the graph. We want
that minimal energy configurations are well-behaved with respect to randomized
rounding. For any given set of angles {θ1, . . . , θn} ⊂ S1, the randomized rounding
procedure results in an assignment of points into two sets as follows (see Fig. 2):
pick a random line going through the origin which splits the sets into the two groups
induced by two half-spaces and use those sets as a partition.
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Figure 2. Randomized Rounding: for given {θ1, . . . , θn} ⊂ S1,
we can pick a random line through the origin and the partition the
vertices of the Graph according to the two half-spaces.

We can analyze the expected behavior of randomized rounding completely in terms
of the energy f(θ1, . . . , θn). For the minimal energy configuration of Kuramoto-type
energies of this flavor, we obtain the following approximation result.

Theorem. Let g : S1 → R be an admissible function and let {θ1, θ2, . . . , θn} ⊂ S1 be
a minimal energy configuration of the associated energy. Then the expected number
of edges for a randomized rounding partition satisfies

E edges ≥
(

min
0≤x≤π

2

π

x

1− g(x)

)
·Max-Cut(G).

If g(x) = cos (x), we recover the classical 0.878 ·Max-Cut(G) result. However, for
more general g(x), the constant can be arbitrarily close to 1. We also show that
the size of the energy functional has immediate implications for the quality of the
randomized rounding step by proving the inequality

E edges ≥
[(

min
0≤x≤π

2

π

x

1− g(x)

)]
·
(
|E|
2
− 1

4
f(θ1, . . . , θn)

)
.

Thus, as in BUR02 [6], we do not necessarily need to find a global minimum, it
suffices to find configurations with small energy (and the smaller, the better).

0

1

−1

2ππ

g(x) = 10
9

(
cos (x) + cos (3x)

9

)

Figure 3. Minima of this energy give 0.93517 ·Max-Cut.
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Our result is especially interesting when ε > 0 is small. Indeed, it is known [1, 12, 21]
that as soon as ε < 1/17 any (1 − ε)−approximation of Max-Cut is necessarily
NP-hard. In fact, if the unique games conjecture [13] is true, then the Goemans-
Williamson approximation ratio of 0.878 ·Max-Cut is the best that one can do in
polynomial time. This has an interesting consequence for the energy landscape of
the energy f(θ1, . . . , θn) for functions g for which the constant is > 16/17: it must
then, in general, be NP-hard to find a configuration {θ1, . . . , θn} ⊂ S1 with energy
close to the global minimum. We believe this to be an interesting statement about
a large class of Kuramoto-type energy functionals.

2.2. Related results. We are not aware of any results of this type. Most closely
related in spirit is perhaps the idea of using oscillators to solve problems of this type
[7, 18, 23]. Wang & Roychowdhury [22], for example, consider systems of coupled
self-sustaining nonlinear oscillators. The main idea is that these are governed by a
Lyapunov function that is closely related to the Ising Hamiltonian of the coupling
graph which allows for approximations to Max-Cut.

2.3. Examples. We start with a completely explicit example and take an Erdős-
Renyi random graph G(500, 0.01). The graph has |V | = 500 vertices and |E| = 1549
edges. Several runs of Goemans-Williamson (GW) show Max-Cut(G) ≥ 1176. We
start by minimizing the BUR02 energy

f(θ1, . . . , θn) =

n∑
i,j=1

aij cos (θi − θj)

using a random initialization for the angles θ1, . . . , θn and standard gradient descent.
The result is shown in Fig. 4. We see that the points seem to be distributed all
over the circle and we get somewhat nice uniform control: the arising cut is never
too small and for certain angles clearly improves on the GW method.

angle

1185

1155

Figure 4. The distribution of points and the size of the cut ob-
tained as a function of the angle of random line.

The question is now whether this can be improved by picking a function different
from the cosine. There is a theoretical criterion (coming from Theorem 1) on how
this function should look like in the sense that

min
0≤x≤π

2

π

x

1− g(x)
should be close to 1.
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There are many such functions – a better understanding of which function g(x) to
choose would be interesting (see §2.5). We will use (throughout the paper)

g(x) =
99225

117469

(
cos (x) +

cos (3x)

9
+

cos (5x)

25
+

cos (7x)

49
+

cos (9x)

81

)
which comes from the Fourier series (normalized to g(0) = 1 = −g(π)) of (see §2.5)

1− 2

π
· dS1(0, x) =

{
1− 2x

π if 0 ≤ x ≤ π
1− 2(2π−x)

π if π ≤ x ≤ 2π,

where dS1(·, ·) is the shortest distance on S1 (always less than π). In particular,

min
0≤x≤π

2

π

x

1− g(x)
= 0.973

and every global minimum of this energy gives rise to a 0.973 ·Max-Cut approxi-
mation. We run gradient descent (using the previously obtained final configuration
of angles from the BUR02 method as initial set) and arrive at a nice result: the
best cut has an additional 15 edges and all the cuts are uniformly closer to the
maximum. Moreover, there is an additional ‘crystallization’ of the points, hard to
see in the picture, which are more structured (see §2.4).

angle

1200

1180

Figure 5. The distribution of points and the size of the cut ob-
tained as a function of the angle of random line.

This example appears to be quite typical for Erdős-Renyi random graphs. Typically
both the quality of the largest cut as well as the expected size of a random cut
increases (our proof suggests why the expected size would increase).

Graph |V | |E| GW BUR02 Our Method
Mesner Graph M22 77 616 400 420 420
Livingstone Graph 266 1463 955 981 991
Berlekamp-Van Lint-Seidel 243 2673 1572 1590 1606
Cameron Graph 231 3465 1870 1884 1896

Table 1. Lower bounds on Max-Cut obtained by three methods.
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One could wonder whether these are artifacts coming from the randomness of
the Erdős-Renyi graphs. We decided to compare performance on some structured
graphs for which we were unable to find the value of Max-Cut in the literature.
Several runs of each method leads to the bounds on Max-Cut in Table 1.

2.4. The Crystallization Phenomenon. Minimal energy configurations of our
functional tend to be somewhat structured. We start with an example. The 600-
cell is the finite regular four-dimensional polytope composed of 600 tetraheda. Its
skeleton G = (V,E) has |V | = 120 vertices and |E| = 720 edges. Max-Cut(G)
seems to be unknown. The Goemans-Williamson algorithm run over many instances
yields Max-Cut(G) ≥ 432. BUR02 improves this to Max-Cut(G) ≥ 436. Our
approach does not further improve on this and also shows Max-Cut(G) ≥ 436
(though the expected size of the cut increases). However, looking at the final
configuration of points (see Fig. 6), the final configurations are quite different.

Figure 6. Final configuration of BUR02 (left) and our method
(right) when applied to the skeleton graph of the 600-cell. Both
configurations show Max-Cut(G) ≥ 436.

We believe the reason for this ‘crystallization’ phenomenon to be the following: for
the particular function g that we use, we have

E edges ≥ 0.973 ·Max-Cut(G)

for the minimal energy configuration (though, of course, we cannot be sure of
having found a minimal energy configuration). This has a very powerful implication
because it means the for virtually every line, the induced partition is necessarily
very close to Max-Cut. Whenever the arising distribution of points is not simply
concentrated at two antipodal points, then the final configuration has to show
different ways how a partition of vertices with a number of edges close to Max-
Cut can be achieved. We believe that this explains the arising crystallization that
we observe. It also indicates that this such minima should actually induce a rather
interesting ordering of the vertices of the Graph in terms of groups that have strong
interactions with antipodal groups. One would assume that the highly structured
picture in Fig. 6 somehow reflects the underlying structure of the Graph.

2.5. Which g should one use? One important question is the choice of the
function g. Our main result suggests that we should pick

g(x) ∼ 1− 2

π
dS1(0, x)
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so that global minima correspond to a good approximation of Max-Cut. However,
this is counter-balanced by optimization concerns – the global minimum having
good properties will not be of any use to us if we cannot get close to it. At this
point, we have no good theoretical reason to choose any particular g(x) and we
believe this to be an interesting problem.

Question. What are good choices for g? Which properties of g
lead to the functional having ‘nice’ energy landscapes?

We found that g(x) being close to 1 − (2/π) · dS1(x, 0) is indeed beneficial for
the quality of the solution but also makes optimization harder. Smooth functions
tend to be easier to optimize, hence our choice to use a truncated Fourier series
approximation of 1 − (2/π) · dS1(x, 0). In practice, it may well be a good idea to
initialize with some g and then change the choice of g after a while.
Trigonometric Polynomials. We mention one particular reason that might speak
in favor if using trigonometric polynomials (and is completely unconnected to any
considerations about the energy landscape). Fix {θ1, . . . , θn} ⊂ S1. We can pick an
arbitrary θi, keep the remaining angles fixed and ask ourselves how the function

n∑
i,j=1

aij · g(θi − θj) behaves as a function of θi.

If g is a trigonometric polynomial of degree d, then this sum is, as a function of θi,
also a trigonometric polynomial of degree d because trigonometric polynomials of
degree d are an invariant subspace under translation. This means that this function,
as a function θi, is globally quite simple and we can find its global minimum. This
is particularly striking in the case of BUR02: the function

h(θi) =

n∑
j=1
j 6=i

aij · cos(θi − θj) +

n∑
j=1
j 6=i

aji · cos(θj − θi)

is a function of the form

h(θi) = A · cos (θi −B),

where A and B depend on all the other variables. However, such a function is very
easy to minimize globally: set θi = B+ 3π/2 (mod 2π). This persists when passing
from the cosine to trigonometric polynomials of degree d (which is a 2d−dimensional
vector space with rather nicely behaved functions in it that always have a lot of
structure and are easier to minimize than generic functions). This allows for non-
local optimization schemes along the following lines: pick a variable θi, freeze all
the other varables, compute where one would place θi to minimize the energy and
move it there. One would expect that the effectiveness of such a scheme depends
on the function g(x) which brings us back to the question raised above.

3. Proof

Proof. We will now prove the Theorem. The argument is identical to the classi-
cal randomized rounding argument except that we are working with an arbitrary
function g and track its dependence. Suppose the Max-Cut solution is given by the
splitting V = A∪B. Then we can set all the vertices in A to have angle θa = 0 and
all the angles in B to have θb = π and compute the energy of this configuration.
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There are Max-Cut(G) edges getting weight −1 and |E| −Max-Cut(G) edges
getting weight 1. Every edge is counted twice, therefore

min
θ1,...,θn

f(θ1, . . . , θn) ≤ 2 · |E| − 4 ·Max-Cut(G).

Suppose conversely that we have a configuration with small energy given by the
configuration of angles {θ1, θ2, . . . , θn} ⊂ [0, 2π]. The likelihood of two specific
vertices i, j ∈ V ending up in different partitions is given by the likelihood of θi
and θj being cut by a hyperplane. That quantity has a simple expression given by

P (θi, θj in different halfspaces) =
|θi − θj |S1

π
,

where |·| denotes the shortest distance on S1 (and is thus always less than π). Using
linearity of expectation, we can compute the expected number of edges across a
randomly chosen line

E edges =
1

2

n∑
i,j=1

aij · P (θi, θj in different halfspaces)

=
1

2

n∑
i,j=1

aij ·
|θi − θj |S1

π
.

At this point, we use that the distance function satisfies, tautologically,

|θi − θj |S1
π

≥
(

min
0≤x≤π

2

π

x

1− g(x)

)
· 1− g(θi − θj)

2
,

we have

1

2

n∑
i,j=1

aij
|θi − θj |

π
≥
(

min
0≤x≤π

2

π

x

1− g(x)

) n∑
i,j=1

aij
1− g(θi − θj)

4
.

This sum simplifies to
n∑

i,j=1

aij
1− g(θi − θj)

4
=
|E|
2
− 1

4

n∑
i,j=1

aijg(θi − θj)

=
|E|
2
− 1

4
f(θ1, . . . , θn).

Therefore, we have

E edges ≥
(

min
0≤x≤π

2

π

x

1− g(x)

) |E|
2
− 1

4

n∑
i,j=1

aij cos (θi − θj)

 .

The remaining question is simply how small we can make this Kuramoto-type
energy: by the argument above, we have

min
θ1,...,θn

f(θ1, . . . , θn) ≤ 2 · |E| − 4 ·Max-Cut(G).

Thus, if {θ1, . . . , θn} is a minimal energy configuration of the Kuramoto energy,

E edges ≥
(

min
0≤x≤π

2

π

x

1− g(x)

)
·Max-Cut(G)

which completes the argument. �
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