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Abstract

We prove that among all doubly connected domains of Rn (n ≥ 2) bounded by two
spheres of given radii, the Dirichlet heat content at any fixed time achieves its minimum
when the spheres are concentric. This is shown to be a special case of a more general
theorem concerning the optimal placement of a convex obstacle inside some larger domain
so as to maximize or minimize the Dirichlet heat content.
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1 Introduction

Let Ω be a bounded path-connected open subset of Rn (n ≥ 2) with smooth boundary, on
which we consider the (non-negative) Dirichlet Laplacian △Ω [19, 22] with eigenvalues

λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ · · · ≤ λk := λk(Ω) ≤ · · · → ∞

and associated normalized eigenfunctions {φk := φk(Ω)}∞k=1, that is, −△φk = λkφk in Ω,
φk|∂Ω = 0, and

∫
Ω φ

2
k = 1, where it is of no harm to assume that {φk}∞k=1 are real valued. It

is well known that due to interior regularity [26, §6.3.1] and boundary regularity [26, §6.3.2],
{φk}∞k=1 are elements of C∞(Ω) [26, §6.5.1]. Recall Weyl’s celebrated asymptotic formula
[14, 20]

lim
k→∞

λ
n/2
k

k
=

(4π)n/2Γ(n+2
2 )

|Ω| , (1.1)

where |Ω| means the volume of Ω, and an optimal uniform bound of Grieser [35] asserting

max
x∈Ω

|φk(x)| ≤ CΩk
n−1

2n (k ∈ N), (1.2)

where CΩ is some positive constant depending only on Ω.
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2 L. Li

The Dirichlet heat kernel pΩ(x, y, t) for Ω on Ω × Ω × (0,∞) was originally introduced
[20, 46] as the classical solution to the heat equation

△xpΩ =
∂pΩ

∂t

in Ω × (0,∞) subject to p(x, y, t) = 0 whenever x ∈ ∂Ω and

lim
t→0

∫

Ω
pΩ(x, y, t)u(y)dy = u(x)

uniformly for every function u continuous on Ω and vanishing on ∂Ω. It is uniquely determined
and traditionally written via Mercer’s theorem in functional analysis [45] as

pΩ(x, y, t) =
∞∑

k=1

e−λktφk(x)φk(y) ((x, y, t) ∈ Ω × Ω × (0,∞)). (1.3)

According to (1.1) and (1.2), we see that the series in (1.3) converges uniformly on Ω×Ω×[ǫ,∞)
for every ǫ > 0. Actually, by considering (1.1), (1.2) as well as the elliptic regularity [26, §6.3],
one easily gets that pΩ is a smooth function satisfying

(∂αpΩ)(x, y, t) =

∞∑

k=1

∂α
(
e−λktφk(x)φk(y)

)

for an arbitrary multi-partial derivative ∂α of 2n + 1 variables [21]. A striking property of
Dirichlet heat kernel is that pΩ is positive in the interior region Ω × Ω × (0,∞) [21, 36]. One
may also understand heat kernel from the viewpoint of probability theory [64, 65], or relate
it to wave kernel by considering the functional calculus

e−t△Ω =
1

2
√
πt

∫

R

cos(s
√

△Ω)e−
s2

4t ds (t > 0)

[16, 48, 63].
There are many derived concepts from Dirichlet heat kernel including the Dirichlet heat

trace of Ω defined by

ZΩ(t) =

∫

Ω
pΩ(x, x, t)dx =

∞∑

k=1

e−λkt (t > 0), (1.4)

and the Dirichlet heat content of Ω given as

HΩ(t) =

∫

Ω

∫

Ω
pΩ(x, y, t)dxdy =

∞∑

k=1

e−λkt
( ∫

Ω
φk(x)dx

)2
(t > 0). (1.5)

Both functions of positive time are known to have full short-time asymptotic expansions:

ZΩ(t) ∼ |Ω|
(4πt)n/2

+

∞∑

k=1

αk(Ω)t
k−n
2 (t→ 0), (1.6)
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HΩ(t) ∼ |Ω| +

∞∑

k=1

βk(Ω)t
k
2 (t→ 0). (1.7)

A tremendous amount of effort has been put to establish the existence of both formulae and
compute the coefficients in terms of the geometry of ∂Ω in the current [7, 8, 9, 52, 53, 61] and
more specific (such as smooth planar regions [66], polygonal domains [10, 11]) or general (such
as vector-valued elliptic operators [33, 34]) settings. The Dirichlet spectral zeta function for
Ω is defined as the meromorphic extension of

ζΩ : z 7→
∞∑

k=1

1

λzk
=

1

Γ(z)

∫
∞

0
tz−1ZΩ(t)dt (Re(z) >

n

2
) (1.8)

to the complex plane C whose singularities can be deduced from (1.6) and basic properties of
the Mellin transform [27] to be simple poles at n

2 ,
n−1
2 , . . . , 12 , and negative half-integers. The

regularized Dirichlet determinant of Ω, denoted by det(Ω), is then defined as exp(−dζΩ
dz (0)).

In much the same way,

TΩ : z 7→
∞∑

k=1

(
∫
Ω φk)

2

λzk
=

1

Γ(z)

∫
∞

0
tz−1HΩ(t)dt (Re(z) >

n

2
) (1.9)

admits a meromorphic extension to C whose singularities are simple poles at negative half-
integers. We also note that

k! · TΩ(k) = k

∫
∞

0
tk−1HΩ(t)dt (k ∈ N) (1.10)

is called k-th exit time moment of Ω [18, 62].
In this paper we are particularly interested in HΩ(t), which represents the total amount

of heat at time t of the (weak) solution to the heat equation △xψ = ∂ψ
∂t in Ω × (0,∞) with

initial temperature 1 and zero boundary conditions on ∂Ω× (0,∞). Since φ1 can be assumed
to be positive in Ω, we see that as t goes to infinity, the dominating term of the series in (1.5)
is the first one. In contrast to the heat trace series in (1.4), some higher terms in (1.5) could
vanish: if Ω is a ball [30, 39] or an annulus [47], then

∫

Ω
φ2 = · · · =

∫

Ω
φn+1 = 0,

which in turn yields

HΩ(t) = e−λ1t
( ∫

Ω
φ1

)2
+

∞∑

k=n+2

e−λkt
( ∫

Ω
φk

)2
(t > 0).

A beautiful result of Burchard and Schmuckenschläger [13] claims that HΩ(t) ≤ HB(t) for
all t > 0 provided that B is an open ball in R

n having the same volume of Ω. To compare,
Luttinger [50] established ZΩ(t) ≤ ZB(t) still for all t > 0, which, to the best of the author’s
knowledge, may be the first all-time comparison result in spectral theory. An advantage of such
kind of theorems is that they may deliver more information than isoperimetric inequalities for
a single quantity such as the Faber-Krahn inequality [14, 15] for the lowest eigenvalue λ1(Ω).
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The main purpose of this paper is to establish an all-time comparison theorem for the
Dirichlet heat content of domains with “holes”. Our result was motivated by the paper [24]
by El Soufi and Harrell concerning a similar result for heat trace. Let B be an open ball of
radius r1 in R

n such that its closure B is contained in another larger concentric open ball B

of radius r2 in R
n. Consider the Dirichlet eigenvalue problem on As := B\(B + sV ), where

V is a fixed unit vector in R
n and s ∈ [0, r2 − r1) is a displacement parameter.

V

As

It is known that

• (D1) λ1(As) is a strictly decreasing function of s [38, 43, 60] (see also [40]),

• (D2) λ2(As) attains its maximal value uniquely at s = 0 [25],

• (D3) ZAs
(t) is a non-decreasing function of s for every t > 0 [24],

• (D4) ZAs1
(t) < ZAs2

(t) as long as s1 < s2 are fixed and t > 0 is sufficiently small [6],

• (D5) det(As) is a strictly decreasing function of s [24].

We mention that (D5) also follows from (D3) and (D4) because due to Kac’s principle of not
feeling the boundary [4, 5, 48], the short-time asymptotic coefficients {αk(As)}∞k=1 in (1.6)
(with Ω replaced by As) are independent of s, from which it is routine [24, 67] to deduce

dζAs2

dz
(0) −

dζAs1

dz
(0) =

∫
∞

0

ZAs2
(t) − ZAs1

(t)

t
dt.

Apart from the Dirichlet eigenvalue problem on As, one may also consider Neumann boundary
conditions [2, 68], or mixed boundary conditions [40, 58], or the Steklov eigenvalue problem
[31, 55], or the mixed Steklov-Dirichlet problem [41, 68], or the p-Laplacian [1, 17], and so on.
Our main result reads as follows.

Theorem 1.1. For any t > 0, HAs
(t) is a strictly increasing function of s.

As an immediate corollary, we see that any order exit time moment of As is also a strictly
increasing function of the displacement parameter s.

Our proof relies on (weak, strong, and Friedman’s) maximum principles for parabolic
equations [26, 28, 29, 49, 59], Kac’s principle of not feeling the boundary, and Savo’s variational
formula for Dirichlet heat content [62].
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2 Heat kernel comparison

We assume that Ω, a bounded connected open subset of Rn with smooth boundary, can
be written as the union of pairwise disjoint non-empty sets

Ω = Ω−− ∪ Ω− ∪ (H ∩ Ω ∩ ∂Ω+) ∪ Ω+, (2.1)

where H (in black) is a hyperplane, Ω+ (in purple) and Ω− (in blue) are contained in distinct
connected components of Rn\H and they are symmetric with respect to the hyperplaneH, and
Ω−− (in red) adheres somewhere to Ω− but nowhere to Ω+. In other words, Ω\(H ∩Ω∩∂Ω+)
consists of two parts, one is Ω+ on one side of Rn\H, the other is Ω−−∪Ω−, and the reflection
image of Ω+ with respect to H is a proper subset of Ω−− ∪Ω−. We remark that Ω may have
several different decompositions of the form (2.1), and each partition is uniquely determined
by identifying Ω+. For any x ∈ Ω+, we let x∗ stand for the reflection point of x with respect
to H. As continuous curves in Ω connecting two points of Ω+ may have to pass through Ω−−,
we see that Ω+ is not necessarily connected. The reflection image of a continuous curve in
Ω+ is a continuous curve in Ω−, so Ω−− ∪ Ω− is easily seen to be connected. To freely apply
maximum principles for parabolic equations in the space-time Ω+× [0,∞), we further assume
that Ω+ is connected , unless otherwise stated. Later on we will see that this condition can be
dropped in many situations (see Remark 2.8).

M. van den Berg [4] showed that

∣∣∣pΩ(x, y, t) − 1

(4πt)n/2
exp(−|x− y|2

4t
)
∣∣∣ ≤ 2n

(4πt)n/2
exp(−3 − 2

√
2

nt
d2x) (2.2)

for all x, y ∈ Ω and t > 0, where dx := d(x, ∂Ω) is the distance of x from ∂Ω. Although this
quantified version of Kac’s principle of not feeling the boundary is not optimal for small times
[5, 48, 51], it well serves the purpose of the current paper.

We will consider smooth (C2 in x and C1 in t are actually enough) solutions to the heat
equation

△xψ =
∂ψ

∂t
(2.3)

in Ω+× (0, T ), where T is usually set to be arbitrarily large. Suppose some solution ψ admits
a unique continuous extension to Ω+× [0, T ], then the weak maximum principle for parabolic
equations [26, p. 368] ensures that both the maximal and minimal values of ψ over the compact
cylinder Ω+× [0, T ] are attained on the parabolic boundary (∂Ω+× (0, T ])∪ (Ω+×{0}) of the
cylinder. This principle does not exclude the possibility of attaining extremal values inside
Ω+ × (0, T ], and if that situation indeed occurs, say for example at (x0, t0) ∈ Ω+ × (0, T ],
then the strong maximum principle for parabolic equations [26, p. 375] guarantees that ψ is a
constant on Ω+× [0, t0]. We will also apply Friedman’s strong maximum principle [28], which
generalizes Hopf’s maximum principle [32, 37, 42] from elliptic equations to parabolic ones.
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Lemma 2.1. For any x ∈ H ∩Ω∩ ∂Ω+, y ∈ Ω+ and t > 0, one has pΩ(x, y, t) ≤ pΩ(x, y∗, t).

y

x

y∗

Proof. Let x ∈ H ∩ Ω ∩ ∂Ω+ be fixed, and consider

ψ(y, t) := pΩ(x, y, t) − pΩ(x, y∗, t)

on Ω+× (0,∞). It is well known that ψ is a continuous function (see the Introduction). Since
x is an interior point of Ω, one gets dx > 0. Given an arbitrary y ∈ Ω+, we now have two
cases to consider.

Case 1 : Suppose |x − y| < dx. Obviously, |x − y| = |x − y∗|. It then follows from (2.2)
that

|ψ(y, t)| ≤ 4n

(4πt)n/2
exp(−3 − 2

√
2

nt
d2x)

for all t > 0.
Case 2 : Suppose |x−y| ≥ dx. Since the Dirichlet heat kernel of an arbitrary open domain

is bounded above by the full space counterpart (see e.g. [20, (3.3)]), one gets

|ψ(y, t)| ≤ 2

(4πt)n/2
exp(−|x− y|2

4t
) ≤ 2

(4πt)n/2
exp(−d

2
x

4t
)

for all t > 0.

Considering both cases, we see that ψ(y, t) converges uniformly to the zero function on
Ω+ as t goes to 0. Consequently, ψ admits a unique continuous zero extension to Ω+× [0,∞).
Next, let y ∈ ∂Ω+ and t > 0 be arbitrary. If y ∈ H ∩Ω∩∂Ω+, then y = y∗, hence ψ(y, t) = 0;
else suppose y ∈ ∂Ω+\(H ∩ Ω ∩ ∂Ω+), then pΩ(x, y, t) = 0, which implies that ψ(y, t) ≤ 0.
To summarize, we see that ψ is non-positive on the parabolic boundary of Ω+ × [0,∞).
Obviously, ψ is a smooth solution (see the Introduction) to the equation (2.3) in Ω+ × (0, T )
(the variable x in (2.3) is accordingly changed to y) for arbitrarily large T , hence it follows
the weak maximum principle for parabolic equations by letting T → ∞ that ψ is non-positive
on Ω+ × [0,∞). This proves the lemma.

Corollary 2.2. For any x, y ∈ Ω+ and t > 0, one has pΩ(x, y, t) ≤ pΩ(x∗, y∗, t).

y

x

y∗

x∗
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Proof. Let ϕ be an arbitrary non-negative function in C∞
c (Ω+), and let dϕ denote the distance

between the support of ϕ, denoted as usual as supp(ϕ), and ∂Ω+. Consider

ψ(x, t) :=

∫

Ω+

(pΩ(x, y, t) − pΩ(x∗, y∗, t))ϕ(y)dy

on Ω+ × (0,∞), which is easily seen to be a continuous function. Given an arbitrary x ∈ Ω+,
we now have two cases to consider.

Case 1 : Suppose d(x, supp(ϕ)) <
dϕ
2 . This condition implies d(x, ∂Ω+) ≥ dϕ

2 . Since any
continuous curve with starting point x has to leave Ω+ first if it wants to escape from Ω,
one gets d(x, ∂Ω) ≥ d(x, ∂Ω+). Thus dx ≥ dϕ

2 . Similarly, we have d(x∗, ∂Ω) ≥ d(x∗, ∂Ω−),

which combined with d(x∗, ∂Ω−) = d(x, ∂Ω+), yields dx∗ ≥ dϕ
2 . It then follows from (2.2) by

considering |x− y| = |x∗ − y∗| for all y ∈ Ω+ that

|ψ(x, t)| ≤ 4n

(4πt)n/2
exp(−3 − 2

√
2

4nt
d2ϕ)

∫

Ω+

ϕ(y)dy

for all t > 0.
Case 2 : Suppose d(x, supp(ϕ)) ≥ dϕ

2 . Then |x∗ − y∗| = |x − y| ≥ dϕ
2 for all y ∈ supp(ϕ).

Since the Dirichlet heat kernel of an arbitrary open domain is bounded above by the full space
counterpart, one gets

|ψ(x, t)| ≤ 2

(4πt)n/2
exp(−

d2ϕ

16t
)

∫

Ω+

ϕ(y)dy

for all t > 0.
Considering both cases, we see that ψ(x, t) converges uniformly to the zero function on

Ω+ as t goes to 0. Consequently, ψ admits a unique continuous zero extension to Ω+× [0,∞).
Next, let x ∈ ∂Ω+ and t > 0 be arbitrary. If x ∈ H ∩Ω∩∂Ω+, then it follows from Lemma 2.1
that ψ(x, t) ≤ 0; else suppose x ∈ ∂Ω+\(H∩Ω∩∂Ω+), then pΩ(x, y, t) = 0 for all y ∈ supp(ϕ),
which implies that ψ(x, t) ≤ 0. To summarize, we see that ψ is non-positive on the parabolic
boundary of Ω+×[0,∞). Obviously, ψ is a smooth solution to the equation (2.3) in Ω+×(0, T )
for arbitrarily large T , hence it follows the weak maximum principle for parabolic equations
by letting T → ∞ that ψ is non-positive on Ω+ × [0,∞).

Finally, letting y ∈ Ω+ be fixed and {ϕi ∈ C∞
c (Ω+)}∞i=1, ϕi ≥ 0, be an approximation

of the Dirac measure at y, we get pΩ(x, y, t) ≤ pΩ(x∗, y∗, t) for all x ∈ Ω+ and t > 0. This
suffices to prove the corollary by continuity.

Remark 2.3. We should remark that Corollary 2.2 was first given by El Soufi and Harrell
in [24, line 8, p. 890]. They claimed that for any fixed x ∈ ∂Ω+, one can apply the weak
maximum principle for parabolic equations [26, §7.1] to the solution

ψ(y, t) 7→ pΩ(x, y, t) − pΩ(x∗, y∗, t)

of the heat equation △yψ = ∂ψ
∂t in Ω+×(0,∞). But ψ does not admit any continuous extension

to Ω+× [0,∞) if x is an element of ∂Ω+\(H ∩Ω∩∂Ω+) such that its reflection x∗ with respect
to H lies inside Ω (see the figure at the end of this remark), because due to Kac’s principle
of not feeling the boundary, we should have

ψ(x, t) = pΩ(x, x, t) − pΩ(x∗, x∗, t) = −pΩ(x∗, x∗, t) → −∞ (t → 0).
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x

x∗

In the rest part of the section we will prepare some strict inequalities for later use.

Theorem 2.4. For any x, y ∈ Ω+ and t > 0, one has pΩ(x, y, t) < pΩ(x∗, y∗, t).

Proof. We argue by contradiction and suppose, by considering Corollary 2.2, that there exists
(x0, y0, t0) ∈ Ω+ × Ω+ × (0,∞) such that pΩ(x0, y0, t0) = pΩ(x∗0, y

∗
0 , t0). Define

ψ(x, t) := pΩ(x, y0, t) − pΩ(x∗, y∗0 , t)

on Ω+×(0,∞). It is straightforward to check that ψ is a smooth solution to the equation (2.3)
in Ω+×(0,∞), and due to Corollary 2.2, ψ is everywhere non-positive. Note also ψ(x0, t0) = 0.
Thus we can apply, the strong maximum principle for parabolic equations to the restriction of
ψ to Ω+ × [ t02 , t0], to see that ψ is identical to zero on Ω+ × [ t02 , t0]. In particular, ψ(·, t0) ≡ 0
is equivalent to the fact that

pΩ(x, y0, t0) = pΩ(x∗, y∗0, t0)

for all x ∈ Ω+. Recall that the reflection image of Ω+ with respect to H is a proper subset
of Ω−− ∪ Ω−, so there exists an element x̃ of ∂Ω+\(Ω ∩H ∩ ∂Ω+) such that its reflection x̃∗

with respect to H lies inside Ω. At this point we get

pΩ(x̃, y0, t0) = pΩ(x̃∗, y∗0 , t0),

which is an absurd fact because the left hand side is zero while the right hand side is positive.
This finishes the proof of the theorem.

Remark 2.5. Based on the “log-concavity” results of Brascamp and Lieb [12], Bañuelos et
al. [3, Prop. 5.2] showed that for any t > 0, pU(x, x, t) is a strictly decreasing function of
|x|, where U is the open ball {x ∈ R

n : |x| < 1}. We remark that Theorem 2.4 provides a
second proof of this result by suitably identifying Ω and Ω+. To compare, Pascu and Gageonea
[56, 57] confirmed a conjecture of Laugesen and Morpurgo [44], which asserts that the diagonal
of the Neumann heat kernel for U is a strictly increasing radial function for any fixed time.

Theorem 2.6. For any x, y ∈ Ω+ and t > 0, one has

pΩ(x, y, t) + pΩ(x, y∗, t) < pΩ(x∗, y, t) + pΩ(x∗, y∗, t).

y

x

y∗

x∗
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As the proof of Theorem 2.6 is so similar to those of Corollary 2.2 and Theorem 2.4, we
only present a sketch.

Step 1 : Consider the continuous function

ψ(x, t) :=

∫

Ω+

(
pΩ(x, y, t) + pΩ(x, y∗, t) − pΩ(x∗, y, t) − pΩ(x∗, y∗, t)

)
ϕ(y)dy

on Ω+ × (0,∞), where ϕ ∈ C∞
c (Ω+) is non-negative and fixed.

Step 2 : Show, by applying (2.2) suitably, that ψ admits a unique continuous zero extension
to Ω+ × [0,∞) that is everywhere non-positive on the parabolic boundary of Ω+ × [0,∞).
The weak maximum principle for parabolic equations then ensures that ψ is non-positive on
Ω+ × [0,∞).

Step 3 : Taking a non-negative approximation of the Dirac measure at an arbitrary y ∈ Ω+

can yield

pΩ(x, y, t) + pΩ(x, y∗, t) ≤ pΩ(x∗, y, t) + pΩ(x∗, y∗, t)

for all x ∈ Ω+ and t > 0.

Step 4 : Suppose there was (x0, y0, t0) ∈ Ω+ × Ω+ × (0,∞) such that

pΩ(x0, y0, t0) + pΩ(x0, y
∗
0 , t0) = pΩ(x∗0, y0, t0) + pΩ(x∗0, y

∗
0, t0).

Then apply the strong maximum principle for parabolic equations to the smooth solution

ψ(x, t) := pΩ(x, y0, t) + pΩ(x, y∗0 , t) − pΩ(x∗, y0, t) − pΩ(x∗, y∗0, t)

of the equation (2.3) in Ω+ × ( t02 , t0) to get ψ(x, t0) = 0 for all x ∈ Ω+. But by picking an
element x̃ of ∂Ω+\(Ω ∩H ∩ ∂Ω+) such that its reflection x̃∗ with respect to H lies inside Ω,
we get ψ(x̃, t0) < 0, a contradiction.

Theorem 2.7. For any x ∈ Ω+, y ∈ Ω−− ∪ Ω− and t > 0, one has pΩ(x, y, t) < pΩ(x∗, y, t).

x

y

x∗

Proof. Let y ∈ Ω−− ∪ Ω− be fixed, and consider the continuous function

ψ(x, t) := pΩ(x, y, t) − pΩ(x∗, y, t)

on Ω+× (0,∞). It is straightforward to check that ψ solves the equation (2.3) in Ω+× (0,∞)
and is non-positive on ∂Ω+ × (0,∞). Hence for any 0 < ǫ < T < ∞, the weak maximum
principle for parabolic equations ensures that

max
(x,t)∈Ω+×[ǫ,T ]

ψ(x, t) ≤ max{0, sup
x∈Ω+

ψ(x, ǫ)}.
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We then note

sup
x∈Ω+

ψ(x, ǫ) ≤ sup
x∈Ω+

pΩ(x, y, ǫ)

≤ sup
x∈Ω+

1

(4πǫ)n/2
exp(−|x− y|2

4ǫ
)

=
1

(4πǫ)n/2
exp(−d(y,Ω+)2

4ǫ
),

where it is crucial to mention that

d(y,Ω+) > 0. (2.4)

Consequently, by combining the above inequalities and letting first ǫ → 0 then T → ∞, we
see that ψ is non-positive on Ω+ × (0,∞). The remaining issue of proving ψ being strictly
negative in Ω+×(0,∞) is similar to the corresponding part of Theorem 2.4, thus omitted.

Remark 2.8. According to the proof of Theorem 2.7, we point out that the connectedness
assumption on Ω+ in Lemma 2.1, Corollary 2.2, Theorems 2.4, 2.6 and 2.7 all can be dropped
as it suffices to consider the heat equation (2.3) in the Cartesian product of each individual
connected component of Ω+ with (0,∞). Take Corollary 2.2 for example: in case x and y

stay in the same connected component of Ω+, then apply Corollary 2.2 itself by redefining Ω+

as this component (see the top two figures at the end of this remark); otherwise, apply the
approximation technique introduced in the proof of Theorem 2.7 and note d(y,Ωx) > 0, where
Ωx denotes the connected component of Ω+ that contains x (see the bottom two figures). The
other theorems can be dealt with in much the same way.

yx yx

y

x

y

x

Remark 2.9. We point out that the smoothness assumption on Ω in Theorems 2.4, 2.6 and
2.7 can be dropped in two steps. Step 1: Given a bounded connected open subset of Rn of the
form (2.1), we can approximate it by an increasing sequence of connected compactly supported
smooth subdomains to get analogues of these theorems, obtaining inequalities rather than strict
inequalities at the moment. Step 2: These inequalities can then be improved to strict ones by
suitably appealing to the strong maximum principle for parabolic equations.
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Corollary 2.10. For any x ∈ Ω+ and t > 0, one has
∫

Ω
pΩ(x, y, t)dy <

∫

Ω
pΩ(x∗, y, t)dy.

To be clear, by considering Remarks 2.8 and 2.9, Ω ⊂ R
n is assumed to be a bounded connected

open set of the form (2.1).

Proof. It follows from Theorem 2.6 (see also Remarks 2.8 and 2.9) that

∫

Ω−∪Ω+

pΩ(x, y, t)dy <

∫

Ω−∪Ω+

pΩ(x∗, y, t)dy,

and from Theorem 2.7 (see also Remarks 2.8 and 2.9) that
∫

Ω−−

pΩ(x, y, t)dy <

∫

Ω−−

pΩ(x∗, y, t)dy.

Combining both strict inequalities proves the corollary.

3 Heat content optimization

In the previous section we have assumed that Ω, a bounded connected open subset of Rn

with smooth boundary, can be written as (2.1) with Ω+ being connected. Now we further
require that Ω is of the form Ω = Θ\B, where Θ is some open subset of Rn, B is a relatively
compact open convex subset of Θ such that it is symmetric with respect to the hyperplane
H given in (2.1), and Ω+ shares part of its boundary with B. Obviously, both Θ and B are
of smooth boundary, and Ω+ is uniquely determined by Ω, H and B. Let V denote the unit
normal vector of H pointing toward Ω+, and consider

Ωǫ := Θ\(B + ǫV )

for ǫ ∈ R with small enough modulus.

Ω

H

Ω+Ω−Ω−−

V

H

Theorem 3.1. For any t > 0, one has

dHΩǫ(t)

dǫ

∣∣∣
ǫ=0

> 0.
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Proof. It follows from Savo’s variational formula1 [62, Thm. 10] that for any t > 0,

dHΩǫ(t)

dǫ

∣∣∣
ǫ=0

= −
∫ t

0

[ ∫

∂B
〈V,N〉 ∂u

∂N
(x, τ)

∂u

∂N
(x, t− τ)dS(x)

]
dτ,

where N is the unit inner normal to the boundary of Ω, and

u(x, τ) :=

∫

Ω
pΩ(x, y, τ)dy (x ∈ Ω, τ > 0).

Note that (∂B)\H consists of two symmetric connected components, denoted by (∂B)+ and
(∂B)− respectively, and suppose (∂B)+ is contained in ∂Ω+. Thus by symmetry, one gets

dHΩǫ(t)

dǫ

∣∣∣
ǫ=0

= −
∫ t

0

[∫

(∂B)+

〈V,N〉
[ ∂u
∂N

(x, τ)
∂u

∂N
(x, t−τ)− ∂u

∂N
(x∗, τ)

∂u

∂N
(x∗, t−τ)

]
dS(x)

]
dτ.

Since u(x, τ) vanishes on (∂B)+×(0,∞) and is positive in Ω+×(0,∞), we see that ∂u
∂N (x, τ) ≥ 0

for all x ∈ (∂B)+ and τ > 0. Actually, this trivial inequality can be improved to

∂u

∂N
(x, τ) > 0 (3.1)

if we appeal to Friedman’s strong maximum principle concerning extremal values attained
at non-bottom part of the parabolic boundary [28, Thm. 2] (see also the books [29, 49, 59]),
which is an extension of Hopf’s maximum principle from elliptic equations to parabolic ones.
To employ this theorem, it remains to check that Ω+ has the interior ball property at every
element of (∂B)+, which obviously stands because of the convexity of B. Applying the same
maximum principle to u(x∗, τ) − u(x, τ), which vanishes on (∂B)+ × (0,∞) and is positive in
Ω+ × (0,∞) because of Corollary 2.10, we see that

∂u

∂N
(x∗, τ) >

∂u

∂N
(x, τ) (3.2)

for all x ∈ (∂B)+ and τ > 0. Observe from the convexity of B that the inner product between
V and N , as a function of x ∈ (∂B)+, is everywhere non-negative and assumes maximal value
1 at points with longest distance to H. Combining this observation with (3.2), (3.1), and the
variation formula displayed earlier proves the theorem.

Theorem 1.1 is an immediate consequence of our main result Theorem 3.1.

We mention that many illustrating examples about fundamental eigenvalue optimization
given in [38] can be transformed into the current heat content context with suitable modifi-
cations, notably sign-changing (maximum ⇋ minimum).

Acknowledgements. The author would like to thank Zhirun Zhan for helpful discussions.

1We refer the interested reader to [23, 54] for the first variation formula for the Dirichlet heat trace.
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