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Abstract. In this work, we describe a Bayesian framework for reconstructing the boundaries of
piecewise smooth regions in the X-ray computed tomography (CT) problem in an infinite-dimensional
setting. In addition to the reconstruction, we are also able to quantify the uncertainty of the predicted
boundaries. Our approach is goal oriented, meaning that we directly detect the discontinuities from
the data, instead of reconstructing the entire image. This drastically reduces the dimension of the
problem, which makes the application of Markov Chain Monte Carlo (MCMC) methods feasible. We
show that our method provides an excellent platform for challenging X-ray CT scenarios (e.g., in case
of noisy data, limited angle, or sparse angle imaging). We investigate the performance and accuracy
of our method on synthetic data as well as on real-world data. The numerical results indicate that
our method provides an accurate method in detecting boundaries of piecewise smooth regions and
quantifies the uncertainty in the prediction.
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1. Introduction. Computed tomography (CT) imaging is the task of recon-
structing a positive attenuation field (in the form of an image) from a finite number
of projections (e.g., sinograms). CT reconstruction is often formulated as an inverse
problem [30]. Filtered back-projection [37] is a classic reconstruction approach to solve
this inverse problem for some CT settings. However, the quality of the reconstructed
image is compromised by imaging challenges such as noise, sparse angle imaging (to
reduce the amount of harmful radiation), or limited angle imaging (to avoid obstacles
in the imaging site or due to application set-up, e.g., in mammography). Therefore,
finding alternative approaches for CT reconstruction has attracted attention in the
past few decades [8, 12, 41, 48, 49, 55].

In many CT reconstruction methods, such as algebraic iterative methods and
regularization methods [26], the goal is to identify objects in the image with approxi-
mately homogeneous attenuation coefficient distinct from the background attenuation
[15, 19, 24, 59]. Therefore, CT reconstruction is often followed by an image segmenta-
tion step to partition the image into piecewise smooth/constant regions. The bound-
aries between such regions often carry valuable information [56]. Error propagation
from reconstruction to segmentation, due to concatenation of such methods, can in-
troduce artifacts in the segmentation. Such effects are also amplified in case of noisy
or incomplete data.

To avoid such artifacts many methods attempt to combine the reconstruction
and the segmentation (and subsequently boundary extraction) steps. One common
approach is to describe the images as a level set of a smooth functions, see, e.g.,
[3, 8, 33, 41, 55, 60, 61] for selected examples. Lambda Tomography [20, 21, 52, 58]
is another approach in identifying boundaries. These methods are based on filtered
back-projection method where the filters are chosen to emphasize boundaries. An-

∗Submitted to the editors DATE.
Funding: This project was funded by a Villum Investigator grant (no. 25893) from The Villum

Foundation.
†Department of Applied Mathematics and Computer Science, Technical University of Denmark,

Kgs. Lyngby, Denmark (bmaaf@dtu.dk, yido@dtu.dk, pcha@dtu.dk).

1

ar
X

iv
:2

10
7.

06
60

7v
2 

 [
m

at
h.

N
A

] 
 1

9 
D

ec
 2

02
2

mailto:bmaaf@dtu.dk
mailto:yido@dtu.dk
mailto:pcha@dtu.dk


2 B. M. AFKHAM, Y. DONG, AND P. C. HANSEN

other common approach is to construct a deforming/parametric curve which evolves
to fit the boundaries between partitions, see, e.g., [12, 48, 49, 50] as a non-exhaustive
selection. Large parameter spaces, dependency on discretization, noisy data, and lim-
ited angle imaging can be challenging for some of the mentioned methods. Moreover,
all the methods mentioned above lack the quantification of the uncertainties in the
reconstructed/segmented images with respect to noisy/perturbed data. Uncertainty
quantification could be particularly important in applications where images are used
to determine the location and the size of objects. For example, in medical imaging,
CT reconstruction is used to track the evolution of tumor boundaries over time and
make treatment decisions.

A popular approach to characterize uncertainties for inverse problems is within
the Bayesian framework. In this approach, all quantities of a model are represented as
random variables. The solution to the inverse problem is then the probability distri-
bution, the posterior distribution, of the quantity of interest after all given information
(e.g., the prior belief in the model) is incorporated into the model. Qualities of the
posterior distribution can then be interpreted as the degree of confidence in predicting
the quantity of interest. In general, Markov Chain Monte Carlo (MCMC) methods
[38] are applied to explore the posterior distribution. In the context of X-ray CT, the
Bayesian framework has been successfully applied, especially for reconstructing the
attenuation field, see, e.g., [9, 10, 51, 55].

In the past decade, a formulation of a Bayesian inversion theory in an infinite di-
mensional setting has attracted attention, see [14] and the references therein. In this
setting, model parameters are modeled as random functions rather than real-valued
random variables. This provides a discretization-independent numerical platform for
exploring the posterior distribution. Although posterior distributions for such prob-
lems are in infinite dimensions, the MCMC methods for exploring such distributions
are similar to the more traditional (finite-dimensional) ones.

Infinite-dimensional Bayesian methods for tomography problems are not new. For
example, we mention recent works in the context of electrical impedance tomography
(EIT), inverse scattering problem and other partial differential equation based inverse
problems, see [7, 17, 16, 35, 27, 18, 44] and the references therein. The underlying
partial differential equation provides a natural platform (a Hilbert space) for the
infinite-dimensional random variable to be well defined. Detailed analysis of these
inverse problems in a Bayesian setting [14] shows that the solution (the posterior dis-
tribution) is well-defined and bounded under perturbations of the data. Therefore, the
Bayesian platform provides an alternative method to investigate the well-posedness
of an inverse problem.

However, to the best knowledge of the authors, we still lack a well-established
infinite-dimensional framework for the CT problem. In this paper, we show that the
well-posedness results, mentioned above, can be extended to the CT problem. This
provides an excellent tool to evaluate and quantify the uncertainties in the reconstruc-
tion and segmentation of images.

Here, we focus on looking for objects/inclusions in an image with a homogeneous
attenuation coefficient distinct from the background. Especially, we are interested in
reconstructing the boundaries of the objects and quantifying the uncertainties in this
reconstruction due to noisy or incomplete data. One approach in evaluating such un-
certainties is to consider a Markov random field (MRF) prior. We can estimate uncer-
tainties using, e.g., MCMC methods. The edges are then detected using thresholding-
based methods [40]. We call this approach the sampling-then-threshholding (STT)
method. The advantage of STT methods is that advanced methods for reconstruction
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and edge detection/segmentation have been proposed. But some of the challenges of
using STT methods are: 1) error propagation from reconstruction to segmentation; 2)
resolution dependency, i.e., the quality of reconstructed boundaries in STT depends
on the resolution of discretized attenuation field; 3) large computational cost due to
the large number of samples of a 2D reconstruction problem. These challenges make
the use of STT methods unattractive. In Figure 1, we show a numerical compari-
son between our method, which will be introduced later, and an STT method that
combines the two methods in [40, 51]. The STT method obtains the boundaries of
the objects in each sample after applying the edge detection algorithm. The mean
of the boundaries can give us some information on the uncertainties in the location
of the edges. But note that in this way we cannot really quantify the uncertainties
of the boundary curve. In addition, in Figure 1(f) we can clearly see the resolution
dependency.
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Fig. 1. Comparing the performance of our method and the sampling-then-threshholding (STT)
method which combines the methods in [40, 51]. (a) True attenuation field, (b) true boundary, (c) the
estimated boundary by using our method together with the 95% highest posterior density credibility
interval, (d) the mean of the attenuation reconstructions by STT, (e) the standard deviation of the
reconstructions by STT, (f) the mean of the boundaries by STT.

In this paper, we provide a goal-oriented, infinite-dimensional Bayesian frame-
work for the CT problem. In our method, we reconstruct the boundary directly, and
without the need for reconstructing the attenuation field. This avoids the error prop-
agation and reduces the dimensionality of the problem from finding a 2D image to
a 1D boundary of a region. In addition, we model the boundaries as random func-
tions in order to avoid resolution dependency. Our method consists of two stages:
in the stage 1, we approximate locations of all objects in order to maintain the well-
posedness of the problem that is only valid for single inclusion; in stage 2, we identify
the boundaries of each object, which can be parallelized with respect to the number
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of inclusions to further improve the efficiency. Our method provides an uncertainty
band around the boundary to quantify the reliability in the prediction of the bound-
aries. We apply the preconditioned Crank-Nicolson (pCN) method [11] as an MCMC
method for exploring the posterior. The pCN ensures that the reconstruction of the
boundaries is independent of the discretization of the random variables. Figure 1(c)
shows an example of our method predicting boundaries of the inclusion together with
the uncertainty in this prediction. It is clear that our result is resolution independent.

This paper is organized as follows: In Section 2 we formulate the CT problem
and introduce the Radon transform. The infinite dimensional Bayesian framework for
inverse problems is presented in Section 3 and Section 4. In Section 3, we introduce
the Matérn-Whittle random field and construct the log-Gaussian, level set and the
star-shaped priors. In Section 4, we construct a likelihood function for the CT prob-
lem, introduce the posterior, and discuss the the existence and the well-posedness of
the posterior distribution. In Section 5 we introduce our two-stage method to iden-
tify inclusion boundaries. We evaluate the performance of the method for simulated
images in Section 6 for single and multiple inclusions, as well as in sparse and limited
angle imaging settings. In addition, we show the performance of our method on a
real CT-scan of a tomographic X-ray data of a lotus root slice filled with different
chemical elements [5]. We present conclusive remarks in Section 7.

2. Radon Transform and Forward Model. Tomography, or slice/volume
imaging, comprises methods in reconstructing the internal structure of an object from
external measurements. In X-ray computed tomography, the X-rays interact with the
matter in the object, and we measure the attenuation of the rays on detectors placed
on the other side of the object [47].

A common approach in modeling X-ray interaction with an object is described
by line integrals over a density field. Let D ⊂ R2 be a bounded region with Lipschitz
boundary. Let 0 < α ∈ L2(D) denote a density field defined on D. This field
represents the attenuation of the X-rays [47]. A measurement can then be described
by the line integral

(2.1) Rθ,s[α] :=

∫
Lθ,s

α(x) dl.

Here, s ∈ [−1, 1] parameterizes points on the line L⊥θ passing through the origin and
making the angle θ ∈ [0, θmax), θmax ≤ π, with the x-axis. Furthermore, Lθ,s is the
perpendicular line to L⊥θ crossing it at point s, and dl is an infinitesimally small length
on Lθ,s. We assume that α has a compact support such that the integration in (2.1)
is carried over a finite section of Lθ,s.

Note that R·,· can be viewed as a linear functional from lines in R2 to R in
which case it is referred to as the Radon transform [26, 37, 46]. The simplest set of
measurement lines are a finite set of equidistant parallel lines perpendicular to L⊥θ ,
for a finite set of angles θ. This setup is referred to as the parallel-beam geometry.
The collected measurements of this type is commonly referred to as a sinogram.

We discretize θ into Nθ angles and s into Ns detector pixels to construct N :=
Nθ × Ns measurements. We define an observation vector y(α) ∈ RN to contain
elements of noisy measurement of type

(2.2) yi,j(α) = Rθi,sj [α] + εi,j , i = 1, . . . , Nθ, j = 1, . . . , Ns,

where εi,j are independent and identically distributed (i.i.d.) following N (0, σ2
n), for

some σnoise > 0. Note that, in general, noise in CT data is non-Gaussian. The choice
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of observation noise in (2.2) is an approximation. Representing (2.2) in vector form
we obtain

(2.3) y(α) = Gα+ ε.

Here, G : L2(D) → RN contains line-integrals Rθj ,sj referred to as the forward map
and ε ∼ N (0,Σ), with Σ = diag(σ2

noise, . . . , σ
2
noise). Note that since Rθj ,sj is linear

then G is locally Lipschitz. The task of finding α from y(α) forms an inverse problem.
This inverse problem is severely under-determined since α is infinite dimensional and
y is finite dimensional.

In many tomography applications we are interested in finding the discontinuities
of α and not reconstructing the entire α. In this paper, we take a goal-oriented
approach in finding and quantifying the uncertainty of discontinuities in α. Such
discontinuities can be parameterized with a significantly lower dimensionality than α.

In this paper, we take a Bayesian approach in representing the tomography in-
verse problem. Severe under-determination of the inverse problem is regularized by a
prior knowledge/assumption on α in the form of a probability distribution, which is
introduced in Section 3. In Section 4, we apply the Bayes’ theorem to combine the
prior distribution with the forward map G, then derive a novel posterior distribution
which represents the solution to the inverse problem.

3. Prior Models. In this section we introduce various prior modelling tech-
niques to construct a density field α, which is inspired by the works in [14, 17, 18, 1].
We first review how to construct random functions on a Hilbert space by Gaussian
random variables, then present two prior models used in our method.

3.1. Review of Gaussian Random Variables. Let (Ω,A,P) be a complete
probability space with Ω a measurable space, A a σ-algebra defined on Ω and P a
probability measure. Furthermore let (H, 〈·, ·〉) be a Hilbert space. See [28] for further
information on a probability space. A random element ξ ∈ H is called an H-valued
Gaussian random variable if 〈ξ, ζ〉, for all ζ ∈ H, is a real-valued Gaussian random
variable, i.e., measurable function on the probability space (Ω,A,P).

Theorem 3.1. [28] Let ξ be an H-valued Gaussian random variable. Then we
can find m ∈ H, the mean function, and a symmetric, non-negative and trace-class
linear operator Q : H → H, the covariance operator, such that

〈m, ζ〉 = E〈ξ, ζ〉, ∀ζ ∈ H,(3.1a)

〈Qζ, η〉 = E〈ξ −m, ζ〉〈ξ −m, η〉, ∀ζ, η ∈ H,(3.1b)

where E represents expectation. We write ξ ∼ N (m,Q) and say ξ is Gaussian with
measure P ◦ ξ−1.

Theorem 3.2. [25] Let m ∈ H and Q : H → H be a symmetric, non-negative
and trace-class linear covariance operator. Furthermore let {ei}i∈N be eigenfunctions
of Q and {λi}i∈N be eigenvalues of Q sorted in decreasing order. An H-valued random
variable ξ is a Gaussian random variable with the distribution N (m,Q) if and only if

(3.2) ξ = m+
∑
i∈N

√
λiβiei,

where {βi}i∈N is a sequence of i.i.d. real-valued random variables with distribution
N (0, 1). The expansion in (3.2) is referred to as the Karhunen-Loéve (KL) expansion
of ξ.
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Remark 3.3. In case all random variables are Gaussian random variables, we can
construct a probability measure on H using push-forward notation µ0 = ξ?(P). There-
fore, (H,B(H), µ0)), with B(H) the Borel σ-algebra, forms a probability space. We
refer to µ0 as the prior measure.

Theorem 3.2 indicates how we can construct random functions on a Hilbert space
H using a covariance operator Q. We can approximate the sum in (3.2) by truncating
it after NKL terms. We refer the reader to [28, 25] for convergence properties of the
KL expansion.

In the following subsection we introduce a family of covariance operators that we
can use to construct Gaussian random functions according to (3.2).

3.1.1. Matérn-Whittle Covariance. A widely used family of covariance op-
erators are the Matérn-Whittle covariance operators [28, 42, 44, 62] which allows
control over regularity, amplitude and correlation length of samples. Here we briefly
introduce this covariance operator but we refer the reader to Appendix A for a deeper
discussion.

A simplified Matérn-Whittle covariance operator [44] is given by

(3.3) Qγ,τ = (τ2I −∆)−γ .

Here, ∆ and I are the Laplacian and the identity operators in 1 or 2 dimensions,
respectively. Furthermore, τ = 1/` > 0 controls the correlation length and γ = ν + 1
is the smoothness parameter (see [34] for more detail). For the covariance operator
(3.3) to be well defined we need to impose proper boundary conditions. See [44] for
more detail on types of boundary conditions.

We note that in one dimension, i.e., when D ⊂ R, and for τ = 1 the zero-mean
Gaussian random variable ξ distributed according to the covariance Qγ,1 takes the
form

(3.4) ξ(x) = c
∑
i∈N

(
1

k

)γ (
ξ1
i sin(kx) + ξ2

i cos(kx)
)
,

for some constant c > 0. Here, ξ1
i , ξ

2
i ∼ N (0, 1) are real Gaussian random variables.

This type of Gaussian random variables will be used in later sections to model the
boundaries of inclusions.

3.2. Prior as a Push-Forward Measure. In this section we apply a nonlinear
transformation on Gaussian random variables to represent the image α. Assume that
α is piecewise constant, and we use the level set [17] and the star-shaped [18] fields
to construct it. Later, in Section 4, we discuss how to use these fields to construct a
likelihood function.

3.2.1. Level Set Parameterization. Let ξ be an H-valued Gaussian random
variable and take c ∈ R. Define Dls

i ⊂ D, for i = 1, 2 as

(3.5) Dls
1 := {x ∈ D | ξ(x) < 0}, Dls

2 := D\Dls
1 .

We define the level set mapping Fls : H → Lp(D), with 2 ≤ p <∞, as

(3.6) Fls[ξ](x) = a−1Dls
1

(x) + a+
1Dls

2
(x),

where 1Dls
i

(x), for i = 1, 2, is the indicator function and 0 < a− < a+. We define D0 =

D
ls

1 ∩D
ls

2 which contains the points of discontinuity. Throughout this paper we assume



UQ OF INCLUSION BOUNDARIES IN THE CONTEXT OF X-RAY TOMOGRAPHY 7

that m(D0) = 0 where m is the Lebesgue measure defined on D. This assumption is
to ensure that the boundary of the inclusions has indeed a lower dimensionality than
the image α. We refer the reader to [29] for more detail.

Remark 3.4. It is shown in [29] that the assumption m(D0) = 0 is sufficient for
Fls to be continuous. This means if {ξε}ε>0 is a sequence of functions such that for
any x ∈ D
(3.7) ξ(x)− ε ≤ ξε ≤ ξ(x) + ε,

then ‖Fls[ξ
ε]− Fls[ξ]‖Lp(D) → 0, µ0-almost surely.

3.2.2. Star-Shaped Parameterization. Let T = [0, 2π) and H ⊂ L2 (T) con-
tain period functions on T. Furthermore, define ϑ : D → [0, 2π) be the continuous
map from Cartesian coordinates to the angular component of polar coordinates. De-
fine star-shaped inclusions Di ⊂ D, for i = 1, . . . , Ninc, as

(3.8) Di(ξi, ci) := {x ∈ D | ‖x− ci‖2 < Flg (ξi(ϑ(x− ci)))},
where

(3.9) Flg[ξ] = exp(ξ)

defines the log-Gaussian field Flg : H → L2(D) in order to construct an image with
positive attenuation. Here ξ is an H-valued Gaussian random variable. Since D
is bounded, then Flg is almost surely a continuous map. In addition, ‖ · ‖2 is the
Euclidean norm and ci ∈ D for i = 1, . . . , Ninc are independent stochastic centers of
inclusions. Note that ci and ξi are not necessarily i.i.d. Let D0 := (D1∪· · ·∪DNinc

)C ,
where the superscript C represents the complement of a set. We define the star-shaped
mapping Fstar : HNinc × R2Ninc → Lp(D) with 2 ≤ p <∞ as

(3.10) Fstar[(ξ, c)](x) = a−1D0
(x) +

Ninc∑
i=1

a+
1Di(x),

where ξ = [ξ1, · · · , ξNinc
]T , c = [c1, · · · , cNinc

]T , a− < a+ ∈ R+ and we refer to a+

as the inclusion intensity. The following assumptions are considered when drawing
samples of ξi and ci:

(I) Di, for i = 1, . . . , Ninc are disjoint.
(II) ‖x1 − x2‖2 > d∂Dmin, for all x1 ∈ D1 ∪ · · · ∪DNinc

and x2 ∈ ∂D the boundary of
D. This insures all inclusions are away from the boundary of D.

(III) ‖x1 − x2‖2 > dDmin, for all x1 ∈ Di and x2 ∈ Dj for i 6= j and i, j 6= 0. This
insures that the inclusions are well separated.

Remark 3.5. It is shown in [18] that when Ninc = 1 and ξ is Lipschitz continuous
(e.g., γ > 1 in (3.3)) then Fstar is a continuous mapping. This means if {ξε}ε>0

and {cε}ε>0 are sequences of H-valued random variables and sequence of points in
D, respectively, such that ‖ξ − ξε‖∞ → 0 and ‖cε − c‖2 → 0, then Fstar[(ξ

ε, cε)] →
Fstar[(ξ, c)] in measure. When Ninc > 1, assumptions (I)-(III) ensures that we can
divide D into subregions with only single inclusions.

Remark 3.6. The background attenuation a−1D0 in (3.10) is constant. However,
in many applications a− varies smoothly in the domain. To account this variation,
we modify (3.10) to

(3.11) F noisy
star [ξ0, (ξ, c)](x) = Flg[ξ0](x)1D1

(x) +

Ninc∑
i=1

a+
1Di(x).



8 B. M. AFKHAM, Y. DONG, AND P. C. HANSEN

We distinguish between the noise term ε in (2.3) and the variation in the background
Flg[ξ0](x) in our model. The latter can accounts for experiment’s systematic error
while the former noise models the measurement error.

We need to specify a prior measure µ0 for (ξ, c). We define µ0 = µ1
0⊗µ2

0, where
µ1

0 is a Gaussian measure on HNinc and µ2
0 is a measure on R2Ninc (e.g., Lebesgue

measure). We assume that ξi and ci for i = 1, . . . , Ninc are independent, then µ1
0 and

µ2
0 can be factorized further into simpler measures as µ1

0 = µ1,1
0 ⊗ · · · ⊗ µ1,Ninc

0 and

µ2
0 = µ2,1

0 ⊗ · · · ⊗ µ2,Ninc

0 . For each i = 1, · · · , Ninc the random variable (ξi, ci) is in
the separable Hilbert space Xi := Hi × R2 equipped with the norm ‖(ξi, ci)‖Xi :=
‖ξi‖Hi + ‖ci‖2, and accordingly we define (ξ, c) ∈ X. Note that the superscript i in
Hi indicates the index of the space corresponding to the random variable ξi. This
should not be confused with the differentiability order of the Hilbert space.

4. The posterior distribution for the CT problem. In this section we derive
a novel posterior distribution for the CT problem. Before doing so, we first construct
the likelihood function based on the prior models introduced in Section 3. Then,
we show that this likelihood function fits in the Lipschitz-Hellinger well-posedness
framework in [14, 1]. Therefore, the posterior measure exists and is unique.

4.1. The Likelihood Function. Define the probability space (X,B(X),µ0)
and the image α(ξ) = Fls[ξ] or α(ξ, c) := Fstar[(ξ, c)]. In this section we only construct
the likelihood and the posterior based on the star-shaped field. The formulas regarding
the level set field follows immediately by setting c as a constant in the single inclusion
case. We refer the reader to [18] for a detailed discussion.

Recall that the noise ε is distributed according to ε ∼ N (0,Σ). We assume that ε
is independent of (ξ, c). With the star-shape field the negative log-likelihood function
Φ : X → R is formulated as the least squares distance

(4.1) Φ ((ξ, c);y) =
1

2
‖y − G(ξ, c)‖2Σ,

where G = G ◦ Fstar, and ‖ · ‖Σ = ‖Σ−1/2 · ‖2. For the CT problem with a single
inclusion, it satisfies the following conditions. We refer the reader to Appendix B for
the proof.

Proposition 4.1. Let (X,B(X), µ0) be the probability space defined above. The
negative log-likelihood Φ defined in (4.1) with a single inclusion, i.e. Ninc = 1, satisfies
the following conditions:

(i) There is a continuous function K : R+ × R+ → R+ such that for every ρ > 0,
(ξ1, c1) ∈ X, and bounded observation vector y with ‖y‖Σ ≤ ρ,

(4.2) 0 ≤ Φ((ξ1, c1),y) ≤ K(ρ, ‖(ξ1, c1)‖X).

(ii) For a fixed observation vector y ∈ RN , Φ(·;y) : X → R is continuous µ0-a.s.
on the probability space (X,B(X), µ0).

(iii) There exists a continuous map M : R+ × R+ → R+ such that for every pair of
observation vectors y1,y2 ∈ RN with ‖y1‖Σ, ‖y2‖Σ ≤ ρ, and every (ξ1, c1) ∈ X,

(4.3) |Φ((ξ1, c1),y1)− Φ((ξ1, c1),y2)| ≤M(‖(ξ1, c1)‖X , ρ)‖y1 − y2‖Σ.

4.2. Posterior Distribution. In this section we present Bayes’ theorem to
connect the prior measure with the likelihood function and construct the posterior
measure µy.
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Theorem 4.2. [14] Let Φ be the negative log-likelihood defined in (4.1) satisfying
Proposition 4.1 and µ0 be the prior measure defined on (XNinc ,B(XNinc)). Then there
is a posterior measure µy absolutely continuous with respect to µ0, i.e., µy � µ0,
and defined through the Radon-Nikodym derivative [28]

(4.4)
dµy

dµ0
=

1

Z
exp (−Φ((ξ, c);y)) ,

where Z is the normalization constant and for y-almost surely

(4.5) Z :=

∫
X

exp (−Φ((ξ, c);y)) µ0(d(ξ, c)) > 0.

We show in Appendix B that the posterior measure µy constructed with the star-
shaped prior in a single inclusion case is well-posed. Existence and well-posedness of
the posterior measure constructed with level-set prior together with a linear forward
map (e.g., the Radon transform G) is discussed in [17, 1]. In the next section we utlize
both priors to develop a two-stage method for identifying the location and boundaries
of inclusions in an image α.

5. Two-Stage Method for Detecting Inclusion Boundaries. In Section 3
we presented two prior models that are used in constructing a posterior distribution.
Subsection 4.2 shows the Bayesian formula for modelling the CT problem. In this
section we provide a two-stage method in detecting the location of inclusions in an
image and also estimate the boundary of the inclusions. In the first stage we use
the level set prior (3.6) to construct a posterior and use the mean to obtain the
approximated centers of inclusions. In the second stage we use the star-shape prior
to estimate the boundaries of the inclusions.

We remind the reader that the star-shaped prior for multiple inclusions with un-
known centers can be used to construct a posterior. However, constructing a sampling
method for such a posterior is challenging (e.g., the Metropolis-within-Gibbs-type
method can result in highly correlated samples and increased computational cost, see
[45]). The first stage of the method is to ensure that we can decompose the images
into regions containing a single inclusion. Remark 3.5 then guarantees that we can
converge to the right solution for each individual inclusion. This decomposition also
allows parallel computation with respect to the number of inclusions for exploring the
posterior.

5.1. Stage 1: Estimating Centers of Inclusions. In this section we construct
the posterior measure µy in (4.4) using the Matérn covariance (3.3) and the level set
map Fls introduced in (3.6).

We assume that the correlation-length parameter τ and the regularity parameter
γ are known. Once the covariance Qγ,τ is constructed we discretize (3.3) using a
finite differences (FD) discretization scheme with a pixel size of 2/Ns, where Ns is
the number of detector pixels. We truncate the KL expansion after NKL terms. We
propose two approaches to draw samples from a truncated KL expansion.

In the first approach we consider periodic boundary conditions on the box centered
at the origin with the size 2-by-2. Note that Qγ,τ is defined via its Fourier transform.
Therefore, this choice of boundary conditions allows efficient sampling from Qγ,τ
using the fast Fourier transform. For a sample ξ ∼ Qγ,τ we first compute the Fourier

transform ξ̂ of ξ, see Appendix A. We then use the inverse fast Fourier transform
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(IFFT) to obtain ξex. To Ensure that ξ is only valid in D we define ξ := ξex|D. The
image α is then constructed using the map Fls[ξ] for fixed a+, a− ≥ 0. This method
allows efficient generation of Gaussian samples.

An alternative sampling approach is to discretize Qγ,τ , e.g. using FD methods,
to obtain a covariance matrix. We can construct efficient sampling methods by com-
puting the Cholesky factor or the principle square root [4] of this covariance matrix.
Note that this computation is carried only once for a set of parameters τ and γ. The
image α is then construct by directly computing the KL expansion in (3.2) and using
the map Fls[ξ] for fixed a+, a− ≥ 0. In our numerical experiments we only used the
first approach.

We construct the posterior measure µy and explore it by using the preconditioned
Crank-Nicolson (pCN) method [11], which is introduced in Appendix C in detail. The
algorithm of Stage 1 is given in Algorithm 5.1.

Algorithm 5.1 Detecting inclusion centers

1: Construct the posterior measure µy using the level set prior for an observation
vector y.

2: Draw samples {ξ(j)}Nsample

j=1 by using pCN with Algorithm C.1.
3: Compute α = Fls[Eξ].
4: Estimate Ninc, c and bounding boxes �i with i = 1, · · · , Ninc from α.

To show the performance of our method in Stage 1, we consider two types of mean
for the density field suggested in [18]. The first mean is computed on the space H
and then push-forward to the density space using the map Fls, i.e. α = Fls[Eξ]. This
mean conserves the piecewise constant nature of the density field. The other type is
the sample mean in the density field, i.e., α̂ = EFls[ξ]. This mean does not construct
a piece-wise constant nature of the density field but provides an uncertainty estimate
on the boundaries of the inclusions.

We use α = Fls[Eξ] to estimate the approximate location of the inclusions. We can
use standard matrix/image segmentation methods (e.g., [57]) to identify individual
inclusions. This also gives us an estimate of the number of existing inclusions. The
center of mass for each inclusion is an approximation of the center for the star-shape
inclusion.

Remark 5.1. The center defined in the star-shaped inclusions is, in general, not
the center of mass. However, the center is just a modelling tool to describe inclusions
and it is not explicitly needed in most applications.

In Figure 2 we show an example of Stage 1. The true densities are generated
randomly using the noisy star-shaped prior (3.11). We consider a parallel-beam ge-
ometry described in Section 2 with 100 equidistantly spaced angles in [0◦, 180◦), i.e.
θmax = 180◦ and Nθ = 100. The detector length is set to 2 and centered at the origin,
thus, the size of a detector pixel is 2/Ns with Ns = 100. The number of inclusions is
unknown.

Table 1 lists the estimated centers of mass in Stage 1 compared with the star-
shaped centers used to generate Figures 2a and 2d. Note that the estimated centers
of mass are far from the centers assigned to the star-shaped inclusions, but they are
accurate estimates of the true centers of mass. We report that the method consistently
had similar results for other examples tested by the authors.

We notice that if assumption (III) in Subsection 3.2.2 is satisfied the inclusions
are well approximated. In the case of Figure 2d we see that Fls[Eξ] falsely identifies
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(a) True density α(ξ) (b) Fls(Eξ) (c) EFls(ξ)

(d) True density α(ξ) (e) Fls(Eξ) (f) EFls(ξ)

Fig. 2. Example of Stage 1 in identifying the location of the inclusions. Each row corresponds
to the same experiment.

Table 1
Prediction of centers

inclusion 1 inclusion 2 inclusion 3

star-shaped centers (−0.298, 0.452) (−0.157,−0.143) (0.382,−0.252)

exact centers of mass (−0.279, 0.548) (−0.139,−0.058) (0.424,−0.305)

estimated centers of mass (−0.272, 0.540) (−0.137,−0.059) (0.424,−0.300)

the two close inclusions as one. However, Figure 2f suggests that there is uncertainty
in detecting the inclusions and this can be interpreted as the violation of assumption
(III).

We assign a bounding box �i with i = 1, . . . , Ninc for each inclusion. We first
find the leftmost pixel of the ith inclusion in α, then set the leftmost position of �i

by subtracting dDmin/2 pixels in order to ensure assumption (III) in Subsection 3.2.2
is satisfied. We define the right, top and bottom bounds of �i in a similar manner.
These bounding boxes are essential for Stage 2, since they decompose the domain into
regions with a single inclusion each. Remark 3.5 ensures that there is a well-defined
posterior distribution on such regions for the star-shaped prior.

Remark 5.2. The main purpose of Stage 1 is to estimate the bounding boxes and
decompose the image into regions with a single inclusions. This can be achieved with
other methods, e.g., Bayesian methods with MRF-type priors [36] or Besov-type priors
[13, 32]. Although the sampling method used in Stage 1 is robust to discretization
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refinement, the forward mapping G is still dimension-dependent. We can speed up
Stage 1 by truncating the KL expansion with only 10 ∼ 20 modes to evaluate the
bounding boxes. In our experiments the computational costs of Stage 1 is negligible
compared to Stage 2.

Remark 5.3. We emphasize that the performance of Stage 2 depends on the cor-
rect detection of number of inclusions in Stage 1. If Stage 1 of the approach fails to
detect the correct number of bounding boxes, the true inclusions will not be supported
by the posterior in Stage 2.

5.2. Stage 2: Estimation and Uncertainty Quantification of the Bound-
aries of Inclusions. In this stage we construct the posterior measure µy using the
star-shaped prior. The number of inclusions Ninc is estimated in Stage 1 together
with the bounding boxes that decompose the domain into regions with a single inclu-
sion each. Note that in Stage 2 we only reconstruct the boundaries of the inlcusions
provided by Stage 1. We let ξi, for i = 1, . . . , Ninc be the H-valued random variables
with H = T([0, 2π)).

We assume that the correlation parameter τ = 1 and γ is known in (3.3). This
choice of τ indicates that points on the boundary are highly correlated. Since ξi
models the boundary of an inclusion, we may use the periodic boundary conditions
to construct Qγ,1. Furthermore, since ξi is 1D, we can assemble them directly from
(3.4). Furthermore, we assume m in (3.2) is a known constant for all ξi. The centers
of mass estimated in Stage 1 are used as the centers of the star-shaped inclusions.

The posterior measure µy is constructed following Subsection 4.2. We draw
samples from the posterior distribution using the Gibbs sampling method, which is
introduced in Appendix C, to estimate the two types of mean for the posterior, i.e.
αEc = Fstar[(Eξ,Ec)] and α̂Ec = EFstar[(ξ, c)], introduced in Subsection 5.1. Here, the
subscript Ec means that the expected image is drawn around the expected centers.

We consider the highest posterior density (HPD) credibility interval [22] to es-
timate the uncertainties in detecting the boundaries of the inclusions. A 95% HPD
interval for an 1D real-valued random variable with probability density π(x) is defined
by

IHPD = {x ∈ R|π(x) > cHPD}
where cHPD > 0 is the largest number such that

(5.1)

∫
{x∈R|π(x)>cHPD}

π(x) dx = 0.95,

i.e., the smallest interval with the highest credibility. Note that there are other
credibility intervals that can be used, e.g., the commonly used equal-tailed credibility
interval [22]. We choose the HPD credibility interval since it reveals the asymmetry
and multi-modal properties of the posterior. Furthermore, it contains the maximum
a posterior (MAP) estimate [22].

In Algorithm 5.2, we summarize how to use the HPD to quantify the uncertain-
ties in the estimated boundaries. Note that we compute the HPD intervals only with
respect to c, since we find that in the context of the experiments in this paper the
center of the star-shaped inclusion reveals the full modality of the posterior. Further-
more, the knowledge of the exact location of the center results in a posterior with a
single mode. The results for the latter is omitted for brevity.

In the last step of Algorithm 5.2 we quantify the local uncertainties for each angle
ϑ, then we construct a radial credibility band by interpolating the radial HPD intervals
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Algorithm 5.2 Visualizing the uncertainty in the estimated boundaries

1: Input Ninc, c and �i for i = 1, · · · , Ninc obtained in Stage 1 by using Algo-
rithm 5.1.

2: for i = 1, · · · , Ninc do
3: Construct the posterior measure µy using the star-shaped prior with a single

inclusion.
4: Draw samples {(ξ(j)

i , c
(j)
i )}Nsample

j=1 by using the Gibbs sampling method with
Algorithm C.2.

5: Using the samples of {c(j)i }
Nsample

j=1 , compute the HPD intervals IiHPD, which

includes N i
modes disjoint subintervals, {Ii,kHPD}

Nimodes

k=1 , according to N i
modes modes

in the posterior.

6: Compute the mean {(ξ̄ki , c̄ki )} of the samples {(ξ(j)
i , c

(j)
i )} with j ∈ Ii,kHPD for

k = 1, · · · , N i
modes.

7: Collect the HPD intervals based on the samples of {ξ(j)
i (ϑ)}j∈Ii,kHPD

for each

angle ϑ to represent the uncertainty in ξ̄ki (ϑ).
8: end for

for each inclusion. This estimate provides a local uncertainty quantification of the
shape of the inclusion. In addition, we also provide the global variance E‖ξi−Eξi‖2Hi
as a global uncertainty estimator for each inclusion.

Remark 5.4. The samples from the radial random variables ξi are generally cou-

pled with the samples of the centers c
(j)
i , due to the structure of the the posterior.

However, by ignoring the center component of the samples we can approximately
achieve independent samples of ξi. We plot the credibility band with respect to c̄ki ,
for i = 1, . . . , Ninc. This is only for illustration purposes and should not be confused
with samples of the random variable ξ|(ci = c̄ki ).

6. Numerical Results. In this section we test the presented method on syn-
thetic images with inclusions. The test images contain single and multiple inclusions
with boundaries with various regularities. We also test the method on a tomographic
X-ray data of a lotus root filled with attenuating objects.

6.1. Generated Inclusions. In this section, we consider synthetic images with
inclusions. We construct an image (attenuation field α) using the star-shaped prior.
We then apply our two-stage method to estimate the center of inclusions and quantify
the uncertainty in estimating the boundaries.

We consider the domain D to be the unit disk and construct the random attenu-
ation fields using the noisy star-shaped prior (3.11)

(6.1) αnoisy(x) = F noisy
star [ξ0, (ξ, c)](x),

where foreground and background attenuation is set to a+ = 1 and a− = 0.1, re-
spectively. Recall that ξ0 is the random variable that controls the fluctuations in the
background, while ξ determines the boundaries of the inclusions. We draw samples
from the noisy star-shaped density by first randomly choosing a center in the unit disk
and then taking ξ0 ∼ N (0, Qγ0,τ0) with γ0 = 2.5, τ0 = 50 as the parameters for the
background. We use a sampling-and-elimination method to ensure that the inclusion
appears inside the unit disk. We truncate the KL expansion after 100 terms.
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In our numerical tests, we use the scikit-image package [53] (version 0.19.0.dev0),
a Python image processing toolkit, to carry out the forward calculations, i.e., 2D
Radon transforms of images. The package uses the parallel beam geometry described
in Section 2. We set θmax = 180◦ and Nθ = 100 for a full set of images. The detector
length is set to 2 and centered at the origin. This means that L⊥θ is centered at the
origin and s ∈ [−1, 1].

In Stage 2 (Algorithm C.2) of our method, we first run a warm-up phase of 20
Gibbs iterations with NpCN = NMH = 500. We tune the parameters in the proposal
such that the loops within the Gibbs sampler provide an acceptance rate of 15%
to 25%. Then, we fix the parameters, set NpCN = NMH = 20, and calculate 2 × 104

samples from µy. We note that designing efficient MCMC methods for such posteriors
is an area of active research, see, e.g., [17, 18, 45].

6.1.1. Single Inclusion. In this section we consider attenuation fields α with a
single inclusion. We investigate the effect of the observation noise on the estimations
in our method. The results in this section are illustrated on randomly generated test
examples. The authors found similar results for all other test examples with same
setting.

To create ground truth images we use the noisy start-shaped prior (3.11), and set
the inclusion ξ1 ∼ N (0, Qγ1,τ1) with γ1 ∈ {2, 3} and τ1 = 1. We define the signal to
noise ratio (SNR) in an observation to be

(6.2) SNR =
‖y‖2
‖ε‖2

,

and define the noise level percentage in an observation to be 1/SNR× 100.
In Figure 3 we show the test problem with γ1 = 3 and noise level 1%. Here,

the true star-shaped center of the inclusion is c = (0.154,−0.215). We provide some
samples from the prior distribution and the posterior distribution according to Stage
2 of our method in Figures 4a and 4b. In addition, in Figures 4c to 4e we illustrate the
performance of our method. By using HPD we are able to quantify the uncertainties
of the boundaries according to each mode, which are given in Figures 4c and 4d.
For each mode although the estimated center does not match the true star-shaped
center, the boundary of the inclusion is still well reconstructed. The reason is that
the star-shaped center is not uniquely defined and is not consistent with the center
of the mass that is used in our method. Moreover, we would like to remind that the
main goal of our method is to reconstruct the boundary of the inclusion. Figure 4e
shows the posterior mean with the 99% HPD interval.

The posterior mean is not a good representation of the boundary due to the multi-
modal nature of the posterior. This is clearly seen in Figure 4e. Therefore, in the rest
of this section we let (ξ̄1

i , c̄
1
i ), computed from the first HPD interval Ii,1HPD, represent

the boundary. The choice of the first HPD is arbitrary. The authors confirm that in
the experiments in this work the quality of the reconstructed boundaries (ξ̄ki , c̄

k
i ) is

comparable for all HPD intervals Ii,kHPD.
In Figure 5 we present the diagnostics for the Gibbs sampler in Algorithm C.2 for

4 MCMC chains. The first chain is constructed by using the mass center obtained in
Stage 1 as the initial center for star-shaped inclusion. The other chains use a uniformly
distributed random initial guesses from the bounding box. In all our numerical results,
we only focus on samples in I1

HPD. We notice that the estimated boundaries detected
for other HPD intervals are comparable with the ones in I1

HPD in all our experiments.
Figure 5a shows the auto-correlation function (ACF) of these samples for each chain
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Fig. 3. Test problem for the single-inclusion case with regularity parameter γ1 = 3 and noise
level 1%.
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Fig. 4. Results of our method to the single-inclusion test problem shown in Figure 3. In
Figures 4c to 4e, the red curve and the red cross represent the true boundary and the true star-
shaped center. The blue cross and the blue curve represent Ec1 and Fstar[(Eξ1,Ec1)], respectively.

as well as the mean of all chains. We can see that ACF drops to 0 after a reasonable
number of samples.

We compute the effective sample size (ESS) of the MCMC samples following [54].
The ESS and the auto-correlation function is computed using the ArviZ [31] package
in Python. We refer the reader to [38, 54] for more detail on ESS.



16 B. M. AFKHAM, Y. DONG, AND P. C. HANSEN

The ESS for all chains are between 200 and 1000 samples. In Figure 5b we can
see that the mean curves of samples in I1

HPD for all chains match. This is a necessary
condition for the MCMC method to be converging [23].
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(b) mean curves

Fig. 5. Performance of the Gibbs sampler in Algorithm C.2. Here we only consider the samples
in I1HPD.

To illustrate the effect of the noise level, we apply our method to reconstruct the
boundary from sinograms including 2.5% and 5% noise, respectively. The true α is
the same as shown in Figure 3a, and the results are show in Figure 6. We can see that
our method can provide a good estimated boundary of the inclusion, although the
estimated star-shaped center increases the uncertainty in estimating the boundary.
It is clear that the accuracy of estimation increases as the noise level is reduced. In
Figure 6 the 99% HPD band represents the uncertainty in estimating the boundary of
the inclusion. We notice that the HPD band in all test cases completely covers the true
outline of the inclusions. Furthermore, it is significantly smaller for the test case with
smaller noise level. The HPD band does not provide a uniform uncertainty around
the boundary, as it is suggested in Figure 6. The variation in the uncertainty around
the boundary is a result of the estimated center and the choice of the Whittle-Matérn
covariance, i.e., the prior parameters.

To study the global uncertainty estimation, in Table 2 we list the global variances
E‖ξ1 − Eξ1‖2H for different noise levels. We notice that the relative difference in
variance among the test cases confirms the uncertainty that is visualized in Figure 6.
This confirms our intuition that larger observation noise results in larger uncertainty
in our estimation.

Table 2
Estimation of the global variances.

Figure 4c Figure 6a Figure 6b

E‖ξ1 − Eξ1‖2H 0.048 0.323 0.334

In the previous tests, we assume that we know the correct value of γ1. Now we
will discuss the importance of the setting of γ1. We generate the ground truth image
using γ1 = 2, and compare the results by applying our method with γ1 = 2 and 3,
which are shown in Figure 7.
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(b) 5% noise level

Fig. 6. Illustration of the performance of our method with respect to different noise levels. The
red cross represents the true star-shaped center, and the blue cross represents Ec1 from Stage 1.

With the correct γ1, we can see that the estimated curve in Figure 7c accurately
represents the true boundary. The location of some of the larger indentations in
boundary is also represented in the estimated boundary. For this example, we provide
some of the prior and posterior samples in Figures 7a and 7b, respectively.

Figure 7d shows the results by using γ1 = 3 in our method. The reconstructed
curve (the blue curve) is smoother than the true curve due to larger regularity param-
eter γ1. However, it fairly estimates the overall shape and orientation of the inclusion.
We notice that the HPD band around the boundary is wider than the one in Figure 7c.
A wrong choice of the prior parameters may be the reason for larger uncertainty in
the boundary.

In Figure 7 we also give the global variance in both cases. The relative differences
between the variances verifies the uncertainty bands indicated in the figures. We note
that the global variance in Figure 7d is significantly larger than the one in Figure 7c.
This can potentially be used to identify the correct regularity in case γ1 is unknown.
One approach can be to minimize the global variance over γ1. This is left as future
work.

6.1.2. Multiple Inclusions. In this section we consider attenuation fields α
that contain multiple inclusions. We construct the ground truth density fields using
the noisy star-shaped prior given in (3.11) with Ninc = 3. We let ξ0 ∼ N (0, Qγ0,τ0)
with γ0 = 2.5 and τ0 = 50, and set ξi ∼ N (0, Qγi,τ i) with γi = 3 and τ i = 1 for i =
1, . . . , Ninc. We expect the inclusions to contain smooth boundaries. Drawing samples
from αnoisy(x) requires sampling-and-elimination step to ensure that inclusions are
inside the domain and they do not collide. We truncate the KL expansion for ξ0 after
200 terms and for ξi, i = 1, . . . , Ninc, after 100 terms. In this test, we use the noise
level 1%. The CT scan geometry is the same as in the test problem in Subsection 6.1.
In Figure 8, we show a noisy sinogram as well as the true image. In our method,
Stage 1 serves for finding the bound boxe and the center to each inclusion. Then,
in Stage 2 the Gibbs samplers according to Algorithm 5.2 are run parallel for each
inclusion. We collect 104 samples from the posterior distribution with an addition of
103 samples in the burn-in stage.

The estimated boundaries are presented in Figure 8c. We notice that the centers
of all inclusions are estimated with high accuracy. Furthermore, the posterior mean
for the boundary of the inclusion provides a precise estimate for the true boundaries.
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(a) prior samples (b) posterior samples
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Fig. 7. Illustration of the performance of our method for for different values of the regularity
parameter γ1. The global variances, E‖ξ1 − Eξ1‖2H , in the estimations for Figures 7c and 7d are
0.0561 and 0.198, respectively.
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Fig. 8. Illustration of the uncertainty in detecting the boundary for an image with multiple
inclusions.

Note that the true inclusions have different size, shape and orientation (e.g., one of
the inclusions is more elongated). Although the prior distribution is set identical for
all inclusions, the method is able to find such subtle differences .

We list the global variance of ξi, i = 1, 2, 3, in Table 3. The HPD band illustrated
in Figure 8c is compatible with the estimated global variances. We report that we
find similar results for images with at most 5 inclusions. Given a good initial guess
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provided from Stage 1, we expect the method to perform as well for any number of
inclusions.

Table 3
Estimation of centers and variances.

Figure 8c

Inclusion number i = 1 i = 2 i = 3

True centers (−0.484, 0.146) (0.499, 0.246) (0.090,−0.423)

Estimated centers (−0.500, 0.128) (0.480, 0.209) (0.101,−0.439)

Variance in ξi 0.083 0.050 0.065

6.1.3. Sparse and limited angle imaging. In this section we estimate the
boundary of a single inclusion in a sparse and limited angle imaging configuration. We
compare measurement geometries where the number of angles is Nθ = 10 (compared
to Nθ = 100 in Subsections 6.1.1 and 6.1.2) and we set the angular range to be
[0, θmax) with θmax ∈ {180◦, 90◦, 45◦}. The interval [0, θmax) is uniformly discretized
into imaging angles θj , j = 1, . . . , Nθ. The regularity of the inclusion is chosen to
be γ1 = 2.5. The rest of the parameters for the forward problem and the sampling
methods are identical to those in Subsection 6.1.1.
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Fig. 9. Example of estimating the boundary of a single inclusion with sparse and limited angle
imaging. First row: a full set of angles with Nθ = 100; second row: sparse angles with Nθ = 10 as
illustrated by the arrows.

To understand the effect of the sparsity and imaging angles on estimations, we
compare the results by using our method to the case where a full set of angles (Nθ =
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100) is available with the ones from sparse and limited angle cases, see Figure 9.
We notice that the uncertainty in the estimation of the boundary of the inclusion is
significantly larger than the previous test cases. As we move from left to right, we
cannot notice a qualitative difference in the amount of uncertainty in the estimated
boundary. We notice the increase in the width of the uncertainty band as we move
from the top figures to the bottom figures. Therefore, the method is significantly
more sensitive to the number of observations than the number of imaging angle.

We remark that in all test cases in this section the estimated boundary (ξ̄1
i , c̄

1
i )

provides excellent approximations to the true boundary and the true center of the
star-shaped inclusion. Furthermore, we report that the overall behavior of the global
variances were comparable with the uncertainty presented in Figure 9 as seen in
Table 4.

Table 4
Estimation of the global variance.

Figure 9a Figure 9b Figure 9c Figure 9d Figure 9e Figure 9f

E‖ξ1 − Eξ1‖2H 0.0538 0.0485 0.0312 0.0571 0.0493 0.0320

6.2. Lotus Root. In this section we apply our method to tomographic X-ray
data of a lotus root filled with attenuating objects from the open data sets in [5, 6].
The data is taken over 360 angles around the object with the fan-beam geometry. We
apply filtered back-projection (FBP) to reconstruct the image α, which is shown in
Figure 10a and considered as the ground truth. The target of the test is to reconstruct
the boundary of a piece of circular chalk (made of calcium) placed inside the lotus
root.

−1 0 1

−1.0

−0.5

0.0

0.5

1.0

(a) the ground truth

−1 0 1

−1.0

−0.5

0.0

0.5

1.0

predicted curve
95% HPD

(b) the estimated boundary

Fig. 10. Prediction of the boundary of a circular piece of chalk in a 2D slice of a lotus root.

To test the performance of our method for real data, we down-sample the data
with 100 equidistantly spaced angles in [0, 180◦) as y. We assume that the noise
level is 1%, and set the foreground attenuation to be a+ = 0.025 and the background
attenuation to be a− = 0.001. In Stage 1 of our method we set the correlation length
for the Matérn-Whittle field to be ` = 0.02 and the regularity parameter γ = 3. The
rest of the modelling parameters are chosen identical to the previous tests.

The estimated curve for the circular chalk is presented in Figure 10b. Note that
our method does not provide a reconstructed image for the whole domain. Here,
we keep the ground truth behind the curve estimation as a visualization aid. It is
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clear that the curve precisely follows the outline of the circular chalk. Furthermore,
the estimated center appears approximately at the center of the inclusion, which is
consistent with the fact that the center of a star-shaped inclusion with a perfect
circular boundary is the same as the center of the mass. The HPD band around the
boundary of the inclusion suggests that the reconstruction is very accurate.

7. Conclusions. This work presents an infinite dimensional Bayesian framework
for the X-ray CT problem for goal-oriented estimation and uncertainty quantification
of inclusion boundaries. The proposed method reconstructs the boundaries of inclu-
sions with constant attenuation that can be represented as a star-shaped inclusion on
a smoothly varying background. Furthermore, we provide a HPD band around the
boundary to quantify the uncertainty of the reconstruction. The method is carried
out in two stages. In Stage 1 we identify approximate locations of the inclusions by
sampling the posterior constructed with the level set prior. This stage decomposes
the image into regions with a single inclusion. Stage 2 comprises sampling from the
posterior distribution constructed by using the star-shaped prior. The decomposition
of the image in Stage 1 guarantees the well-posedness of the reconstruction problem.

The numerical results show that our method reconstructs the boundaries of the
inclusions accurately and provides a reliable tool to quantify the uncertainty in the
prediction. Furthermore, the method consistently performs well in detecting inclu-
sions in challenging X-ray CT scenarios (e.g., for sparse and limited angle imaging).
Our results from applying the method to a real data, in the form of X-ray measure-
ments of a lotus root filled with a circular pieces of chalk, suggest that this method
can be extended to real world applications.

Acknowledgements. We thank Dr. Felipe Uribe for his help with the experi-
ments in Section 1. We would like to also thank the reviewers for their thoughtful
comments and efforts towards improving our manuscript.

Appendix A. More on The Matérn-Whittle Covariance. Recall D ⊂ R2

is a bounded region with Lipschitz boundary. We take H = L2(D). The covariance
function of two points x, y ∈ D for the Matérn-Whittle distribution [28, 42] is given
by

(A.1) qσ,ν,`(x1, x2) = σ2 21−ν

Γ(ν)

(‖x1 − x2‖2
`

)ν
Kν

(‖x1 − x2‖2
`

)
.

Here, ‖ · ‖2 is the Euclidean norm, ` > 0 is the spatial correlation length, ν > 0 is
the smoothness parameter, σ2 > 0 is the variance of the value of the field (amplitude
scale). Furthermore, Kν is the modified Bessel function of the second kind of order ν
[34, 42].

For ν = 1/2 (A.1) reduces to the exponential covariance qσ,1/2,` = σ2 exp(−d/`),
with d = |x1 − x2|. For larger ν the smoothness of qσ,ν,` increases. One way to see
this is that for ν = 1/2 + p with p ∈ N+ (A.1) can be written as a product of an
exponential with a polynomial of order p [2, 42]. Therefore, larger p contributes to
higher regularity. As p → ∞ the polynomial tends to an exponential function and
qσ,ν,` converges to the squared exponential (Gaussian) covariance function qσ,∞,` =
σ2 exp(−d2/(2`2)).

We can construct a discrete density function by discretizing D and computing
(A.1) for each pair of points. However, this approach gives in a full covariance matrix
for large correlation length. Inversion of such covariance matrices is challenging for
inverse problem applications [34, 44].
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An alternative approach is to formulate the covariance as a differential operator
of a stochastic partial differential equation (SPDE). A detailed discussion on how to
construct this SPDE is beyond the scope of this paper. Below we present a brief
sketch of this construction and refer the reader to [44, 62] for a detailed discussion.

The main idea is to construct an H-valued Gaussian random variable ξ from its
Fourier expansion. Let ψ be white noise onD, i.e. ψ has zero mean with the covariance
operator being the Dirac’s delta function q(x1, x2) = δ(‖x1−x2‖2). Subsequently, all

Fourier modes in ψ̂ will be present in the Fourier transform of ψ. Furthermore, let
S(w) be the Fourier transform of qσ,ν,`/σ

2, known as the power spectrum. Now we

can define ξ through its Fourier transformation by rescaling ψ̂ with S(w) as

(A.2) ξ̂ := σ
√
S(w)ψ̂.

By definition, ξ is a Gaussian random variable distributed according to the covariance
function qσ,ν,`. We recover ξ by applying the inverse Fourier transform to (A.2) and
obtain

(A.3)
1√
b(ν)`2

(I − `2∆)(ν+1)/2ξ = ψ, b(ν) = σ2 4πΓ(ν + 1)

Γ(ν)
.

Here ∆ is the Laplace operator and the covariance operator of ξ corresponding to the
covariance function qσ,ν,` is given by

(A.4) Qσ,ν,` = b`2(I − `2∆)−ν−1.

A simplification of (A.4) is presented in [17, 62] which takes the form

(A.5) Qγ,τ = (τ2I −∆)−γ .

Here, τ = 1/` > 0 controls the correlation length and γ = ν + 1 is the smoothness
parameter (see [34] for more detail). For the covariance operator (3.3) to be well
defined we need to impose proper boundary conditions. See [44] for more details on
types of boundary conditions.

Appendix B. Existence and Well-posedness of the posterior measure.
In this section we show that the CT problem introduced in Sections 4 and 5 is well-
posed. We assume that the attenuation field α is bounded and strictly positive, i.e.,
there exist α+, α− ∈ R+ such that α− < α < α+, and thus α ∈ L∞(D). We use S(D)
to denote the space of all such attenuation fields α. Recall that for an attenuation
field with a single inclusion, Fstar maps functions from X to S(D). Here, X = H×R2

forms a separable Hilbert space. The following proposition from [18] shows that Fstar

is a continuous map. We refer the reader to [18] for the full proof.

Proposition B.1. [18] Let Fstar : X → S(D) be the star-shaped map and let
{ξε1}ε>0 and {cε1}ε>0 be a sequence of functions in H and a sequence of points in
D, respectively, such that ‖ξ1 − ξε1‖∞ → 0 and ‖c1 − cε1‖2 → 0. Then, we have
Fstar[(ξ

ε
1, c

ε
1)]→ Fstar[(ξ1, c1)] in measure.

Let A be the Borel σ-algebra constructed on X with respect to the norm

(B.1) ‖(ξ1, c1)‖X := ‖ξ1‖H + ‖c1‖2.

To define a probability measure on X we assume that ξ1 and c1 are independent
random variables such that their joint probability measure takes the form µ0 = µ1

0⊗µ2
0,
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with µ1
0 = N (0, C) a Gaussian measure on H and µ2

0 the Lebesgue measure on D.
Now the triplet (X,A, µ0) forms a probability space. Furthermore, We define the
probability measure on S(D) to be the push-forward measure µ ◦ F−1

star.
To show Lipschitz-Hellinger well-posedness of the CT inverse problem with the

star-shaped prior we follow the framework in [1]. The structure of the proofs follows
[18] closely where we modify the proofs for a forward model constructed with the
Radon transform. We first need to prove that the likelihood function constructed
with the Radon transform is bounded, see Proposition 4.1. We provide the proof
here.

Proof of Proposition 4.1.

(i) The Radon transform G is a bounded linear operator, see Chapters 6.2 and 6.6
in [26]. Therefore, it is continuous and we can find a constant C > 0 such that
for α ∈ S(D) we have

(B.2) ‖Gα‖2 ≤ C‖α‖L∞(D) = Cα+.

Representing α by the star-shaped mapping defined in Equation (3.10), we have
‖Fstar((ξ1, c1))‖L∞(D) ≤ α+. It follows

(B.3)

Φ((ξ1, c1),y) ≤ 1

2

(
‖y‖2Σn + ‖G ◦ Fstar(ξ1, c1)‖2Σn

)
≤ 1

2

(
‖y‖2Σn + C‖Fstar(ξ1, c1)‖L∞(D)

)
≤ 1

2

(
ρ2 + Cα+

)
,

where ‖y‖Σn ≤ ρ. We define K(ρ) := 1
2

(
ρ2 + Cα+

)
.

(ii) In Proposition B.1 we show that Fstar is a continuous map. Furthermore, we
discussed in part (i) that G is also a continuous map. Therefore, for a fixed
y ∈ RN , Φ(·;y) is a composition of continuous maps. This concludes the proof.

(iii) Let (ξ1, c1) ∈ X and y1,y2 ∈ RN such that ‖y1‖Σn , ‖y2‖Σn ≤ ρ. We have

(B.4)

|Φ((ξ1, c1),y1)−Φ((ξ1, c1),y2)|

=
1

2
|〈y1 − y2,y1 + y2 − 2G(ξ1, c1)〉Σn |

≤ 1

2
‖y1 − y2‖Σn ‖y1 + y2 − 2G(ξ1, c1)‖

≤ 1

2
‖y1 − y2‖Σn (‖y1‖Σn + ‖y2‖Σn + 2‖G(ξ1, c1)‖Σn)

≤ (ρ+ Cα+)‖y1 − y2‖Σn .

We define M(ρ) := (ρ+ Cα+).

Now we show that the posterior measure µy is a well-defined measure on X.

Theorem B.2. The posterior measure µy Equation (4.4) is well-defined.

Proof. We showed in Proposition 4.1 that Φ(·;y) is µ0-a.s. continuous and
Φ((ξ1, c1), ·) is locally Lipschitz. This is sufficient condition for Φ to be jointly contin-
uous with respect to µ0 = µ1

0 ⊗ µ2
0, see the proof of theorem 3.8 in [18]. Therefore, it

is left to show that the normalization constant Z in Equation (4.4) is bounded away
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from zero. Define B := BH ×D ⊂ X, where BH is an open ball in H. For y ∈ RN ,
with ‖y‖Σn ≤ ρ we have

(B.5)

∫
X

exp(−Φ((ξ1, c1);y)) µ0(dξ) ≥
∫
B

exp(−Φ((ξ1, c1);y)) µ0(dξ)

≥
∫
B

exp(−K(ρ)) µ0(dξ)

= exp(−K(ρ))µ0(B) > 0.

Here we used positivity of the exponential function in the first inequality, and con-
dition (i) in Proposition 4.1. Note that since µ1

0 is Gaussian and BH is an open set
then the µ1

0(BH) > 0. Therefore, µ0(B) = µ1
0(BH)µ2

0(D) > 0.

Let µ1 and µ2 be two posterior probability measures defined on (H,B(H)) such
that they are both absolutely continuous with respect to the prior measure µ0. The
Hellinger distance [39] between µ1 and µ2 is given by

(B.6) dHell(µ1, µ2) =

√√√√1

2

∫
H

√
dµ1

dµ0
(ξ)−

√
dµ2

dµ0
(ξ) µ0(dξ).

Theorem B.3. [14] Let Φ be the negative log-likelihood defined (4.1) satisfying
assumptions (i)-(iii) in Proposition 4.1 and µ0 be the prior measure defined on (X,A).
Furthermore, let y,y′ ∈ RN be two observation vector such that ‖y−y′‖Σn ≤ ρ for a
fixed 0 ≤ ρ <∞. Then we can find C = C(ρ) > 0 such that

(B.7) dHell(µ
y, µy′

) ≤ C‖y − y′‖Σn .

Bayesian well-posedness expressed in Theorem B.3 means that the posterior dis-
tribution remains bounded when the observation vector y is perturbed.

Appendix C. Markov Chain Monte Carlo (MCMC) Methods. In this
section we briefly introduce the random walk Metropolis-Hastings (RWM) method
[43], the preconditioned Crank-Nicolson (pCN) method [11], and the Gibbs sampling
method [43]. These methods allow us to sample from the posterior measure µy. We
choose pCN to sample infinite dimensional Gaussian random variables as it is suitable
for random variables on function spaces. Furthermore, the convergence rate of this
method is independent of the cut off value NKL in (3.2).

Let f : H → Rk, be a µ0-measurable function. We approximate Ef as the ergodic
average

(C.1) Ef :=

∫
f µ0(dξ) = lim

Nsample→∞

1

Nsample

Nsample∑
i=1

f(ξ(i)).

Here, {ξ(i)}Nsample

i=1 is a Markov chain with a transition kernel Ky. We refer the reader
to [30] for properties of a transition kernel suitable for (C.1).

The aim of an MCMC method is to construct a transition function (a formula to
go from ξ(i) to ξ(i+1) in (C.1)) which result in an appropriate transition kernel Ky. As
an MCMC method, pCN is suitable for drawing samples from an H-valued Gaussian
random variables, and is robust under the discretization of the random variables.
We first introduce pCN to sample from a single Gaussian random variable ξ, then
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discuss how to generalize this to sample from multiple independent Gaussian random
variables.

Let µy be the posterior measure on a Hilbert space (H, 〈·, ·〉) and µ0 ∼ N (0, Q) be
a prior measure. Let K(ξ, ·) be the transition kernel on H and η denote a measure on
H ×H such that if ξ ∼ µy then ζ|ξ ∼ Ky(ξ, ·). We denote by η⊥ the measure where
the roles of ξ and ζ are reversed. If η⊥ is equivalent to η, in the sense of measure,
then the Radon-Nikodym derivative dη⊥/dη is well defined and we can define the
acceptance probability

(C.2) a(ξ, ζ) = min

{
1,
dη⊥

dη
(ξ, ζ)

}
.

This means ξ(i+1) := ζ with probability a(ξ(i+1), ζ) and ξ(i+1) := ξ otherwise.
The standard random walk proposal function results in η⊥ that is singular with

respect to η [11] when ξ is an H-valued function. This results in rejecting all proposed
moves with probability 1. The pCN proposal function [11] is given by

(C.3) ζ = (1− b2)1/2ξ + b%,

where % ∼ N (0, Q), and b ∈ [0, 1]. This choice of the proposal results in a well defined
dη⊥/dη given by [11]

(C.4)
dη⊥

dη
(ξ, ζ) = exp(η(ξ, ζ)− η(ζ, ξ)) = exp(Φ(ξ;y)− Φ(ζ;y)).

We summarize the pCN sampling method in Algorithm C.1.

Algorithm C.1 pCN for collecting Nsample samples

1: Set j = 0 and take the initial sample ξ(0).
2: for j ≤ Nsample do
3: Propose ζ = (1− b2)1/2ξ(k) + b%, % ∼ N (0, Q).
4: Set ξ(j+1) = ζ with probability a(ξ(j), ζ) defined in (C.2) together with (C.4),

otherwise ξ(j+1) = ξ(j).
5: j ← j + 1.
6: end for

Recall that star-shaped prior for each inclusion is defined as the joint random
variable (ξi, ci). To construct an MCMC method to sample from µy we use a Gibbs-
type [43] sampling method. Such methods alternatively sample from the random

variables ξi|ci,y and ci|ξi,y and constructed Markov chain [ξ
(j)
i , c

(j)
i ]

Nsample

j=1 contains
ergodic properties as in Equation (C.1) [43]. In this paper we construct a Gibbs
sampler following the structure:

(C.5) ξ
(j+1)
i ∼ Kc

(j)
i

y (ξ
(j)
i , ·), c

(j+1)
i ∼ Lξ

(j+1)
i

y (c
(j)
i , ·).

Here, Kciy and Lξiy are Metropolis-Hastings Markov kernel reversible with respect
to ξi|ci,y and ci|ξi,y, respectively. For the random variable ξi|ci,y we use a pCN
proposal function with the acceptance probability of

(C.6) a(ξi, ζ) = min{1, exp(Φ((ξi, ci);y)− Φ(ζ0, (ζ, ci);y)}.
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For the random variable ci|ξi,y we use the standard random walk MH proposal func-
tion with the acceptance probability of

(C.7) r(ci, o) = min{1, exp(Φ((ξi, ci);y)− Φ((ξi, o);y)}.

Note that we dropped the uniform prior in (C.7) as both ci and oi are restricted to
the same interval. We summarize the Gibbs sampler for µy constructed with the
star-shaped prior in Algorithm C.2. Here, NpCN and NMH represent the number of
within-Gibbs samples for each component.

Algorithm C.2 The Gibbs sampling method for collecting Nsample samples

1: Set j = 0 and take the initial sample (ξ
(0)
i , c

(0)
i ).

2: for j ≤ Nsample do

3: Set ξ
(j,0)
i = ξ

(j)
i .

4: for k ≤ NpCN do
5: Propose ζ = (1− b21)1/2ξ(j,k) + b1%, % ∼ N (0, Q).

6: Set ξ
(j,k+1)
i = ζ with probability a(ξ

(j,k)
i , ζ) defined in (C.6), otherwise

ξ
(j,k+1)
i = ξ

(j,k)
i .

7: k ← k + 1.
8: end for
9: Set ξ

(j+1)
i = ξ

(j,k+1)
i .

10: Set c
(j,0)
i = c

(j)
i .

11: for k ≤ NMH do
12: Propose o = c

(j,k)
i + b2ρ, ρ ∼ N (0, I).

13: Set c
(j,k+1)
i = o with probability r(c

(j,k)
i , o) defined in (C.7), otherwise

c
(j,k+1)
i = c

(j,k)
i .

14: k ← k + 1.
15: end for
16: Set c

(j+1)
i = c

(j,k+1)
i .

17: j ← j + 1.
18: end for
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