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A MASS CONSERVING MIXED hp-FEM SCHEME FOR STOKES

FLOW. PART III: IMPLEMENTATION AND PRECONDITIONING ∗

MARK AINSWORTH† AND CHARLES PARKER†

Abstract. This is the third part in a series on a mass conserving, high order, mixed finite
element method for Stokes flow. In this part, we study a block-diagonal preconditioner for the
indefinite Schur complement system arising from the discretization of the Stokes equations using
these elements. The underlying finite element method is uniformly stable in both the mesh size h

and polynomial order p, and we prove bounds on the eigenvalues of the preconditioned system which
are independent of h and grow modestly in p. The analysis relates the Schur complement system
to an appropriate variational setting with subspaces for which exact sequence properties and inf-sup
stability hold. Several numerical examples demonstrate agreement with the theoretical results.
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1. Introduction. This paper is the third part in a series discussing a mass
conserving, high order, mixed finite element method for Stokes flow on a simply
connected polygon Ω with boundary Γ = ∂Ω: Find (u, p) ∈ H1

0 (Ω)×L2
0(Ω) such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1
0 (Ω)(1.1a)

b(u, q) = 0 ∀q ∈ L2
0(Ω),(1.1b)

where u = (u1, u2) is the fluid velocity, p the pressure, f ∈ L2(Ω) the body force,
a(u,v) := ν(∇u,∇v) and b(v, p) := −(div v, p). Without loss of generality, by rescal-
ing, we may reduce (1.1) to the case where the kinematic viscosity ν = 1. Here, Hs(Ω)
and Hs

0(Ω) denote the usual Sobolev spaces [1], Hs(Ω), Hs
0(Ω) the vector valued

Sobolev spaces, i.e. Hs(Ω) := [Hs(Ω)]2, and L2
0(Ω) denotes the (closed) subspace of

square integrable functions with vanishing average value:

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0

}
.

Problem (1.1) is approximated a using mixed, high order, finite element scheme on a
mesh T as follows: Find (uhk, phk) ∈ V0 ×Q0 such that

a(uhk,v) + b(v, phk) = (f ,v) ∀v ∈ V0(1.2a)

b(uhk, q) = 0 ∀q ∈ Q0,(1.2b)

where the finite element spaces are chosen to be [6, 7, 16]:

V := {v ∈ H1(Ω) : v|K ∈ Pk(K) ∀K ∈ T , v is C1 at noncorner vertices},
Q := {q ∈ L2(Ω) : q|K ∈ Pk−1(K) ∀K ∈ T , q is C0 at noncorner vertices},

V0 := V ∩ H1
0 (Ω), V0 = V0 × V0, Q0 = Q ∩ L2

0(Ω), Pk denotes the space of all
polynomials of degree at most k, and a corner vertex is a vertex of the physical
domain Ω. The local degrees of freedom of the spaces V and Q are illustrated in
Figure 1.
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2 M. AINSWORTH AND C. PARKER

(a) (b)

Fig. 1: Local degrees of freedom for the finite element spaces (a) V and (b) Q in the
case k = 5. Dots indicate degrees of freedom corresponding to evaluation at the point
located at the dot while circles indicate gradient evaluation.

In Part I [6], it was shown that that these elements are uniformly inf-sup stable
in the mesh size h and polynomial order k if the mesh T is corner-split which, roughly
speaking, means that every element K ∈ T has at most one edge lying on the domain
boundary Γ; for a precise definition, see [6, p. 12].

Theorem 1.1 (Theorem 3.1 & Corollary 3.2 [6]). If the mesh T is corner-split,
then for every q ∈ Q0, there exists a v ∈ V0 such that div v = q and

‖v‖H1(Ω) ≤ β−1‖q‖L2(Ω),

where 0 < β < 1 is independent of k and h. Thus, the spaces V0 ×Q0 are uniformly
inf-sup stable:

inf
06=q∈Q0

sup
0 6=v∈V0

b(v, q)

‖v‖H1(Ω)‖q‖L2(Ω)
≥ β.(1.3)

Strictly speaking, [6, Corollary 3.2] shows that β depends on the mesh-dependent
quantity Θ(T ) defined in [6, eq. (3.2)], but is nevertheless bounded independently
of the mesh size h and polynomial degree k. Moreover, the finite element solution
uhk will be pointwise divergence free [6, §1 and Theorem 2.6]. In Part II [7], it was
shown that these elements have optimal approximation properties in both the mesh
size h and the polynomial order k. On locally quasi-uniform meshes, the finite element
solution to (1.2) converges at the optimal algebraic rate to the solution to (1.1) [7,
Theorem 2.2]. Moreover, if the data f belongs to a particular countably normed space,
then the finite element method with properly geometrically graded meshes converges
exponentially fast as both the mesh is refined and the polynomial degree is increased
[7, Corollary 2.5]. The spaces V0 ×Q0 are currently the only known triangular finite
element spaces that are uniformly inf-sup stable in h and k, give pointwise divergence
free velocities, and posses optimal approximation properties.

In the current work, we turn to issues relating to the practical application of the
method. In particular, we give explicit bases for the spaces V and Q that result in
an efficient preconditioner for the solution of the resulting linear system for (1.2),
which may be used in conjunction with an iterative solver for indefinite systems,
such as MINRES [30]. The preconditioner consists of a standard static condensation,
or elimination of the interior degrees of freedom, along with an Additive Schwarz
preconditioner (ASM) [35, 37] for the resulting Schur complement system associated
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with the interface degrees of freedom. Thanks to a judicious choice of basis, the
condition number grow at most as log3 k as k is increased, and is uniform in the mesh
size.

The current work finds inspiration in the early works of [12, 19, 34, 38] for h-
version methods, [8, 22] for hp-version finite element methods, and [20, 24, 31, 32]
for spectral element methods, each of which developed block diagonal and/or block
triangular preconditioners in terms of existing preconditioners for second order elliptic
problems. Unfortunately, these types of approaches do not readily extend to the mixed
finite element scheme (1.2) owing to the additional smoothness requirements imposed
at element vertices for both the velocity and pressure spaces. Our treatment of these
degrees of freedom is similar to the treatment of the second order derivative degrees
of freedom in preconditioning the stiffness matrix for H2(Ω)-conforming methods [5]
and the treatment of the vertex degrees of freedom in preconditioning the mass matrix
for H1(Ω) problems [4].

2. General Form of a Block-Diagonal Preconditioner. By fixing bases for
the spaces V0 and Q, we may express u ∈ V0 and p ∈ Q as

u = ~uTE~ΦE + ~uTI ~ΦI and p = ~pTe
~ψe + ~pTι

~ψι,

for suitable ~uE , ~uI , ~pe, ~pι, where ~ΦE is the vector of exterior velocity basis functions
(vertex and edge functions), ~ΦI the vector of interior velocity basis functions, ~ψe

the vector of exterior pressure basis functions, and ~ψι the vector of interior pressure
basis functions. Here, the exterior pressure functions consist of vertex functions and
a function corresponding to the average value over each element. The variational
problem (1.2) in matrix form then reads




AEE BEe AEI BEι

BeE 0 BeI 0

AIE BIe AII BIι

BιE 0 BιI 0







~uE
~pe
~uI
~pι


 =




~fE
~0
~fI
~0


 .(2.1)

The matrix appearing in (2.1) is symmetric but indefinite, owing to the zero subblocks.
The pressure variable in problem (1.2) is unique up to a constant, meaning that the
matrix in (2.1) has a one-dimensional null space. Nevertheless, the system (2.1)
is consistent since the components of the load vector corresponding to pressure basis
functions vanish identically and, a fortiori, are orthogonal to constant pressure modes.
Consequently, the system (2.1) is uniquely solvable up to the addition of a constant in
the pressure thanks to the inf-sup condition (1.3) and the uniform ellipticity of a(·, ·).

The conditioning of the matrix, in common with standard hp-finite elements,
degenerates rapidly with both the mesh size h and the polynomial order k of the
elements. Indeed, almost every practical choice of basis function results in a rapid
deterioration of the condition number k, even for symmetric, positive definite systems
[3, 29]. We seek a preconditioner for the symmetric, indefinite system (2.1) which
controls the growth of the conditioning in both h and k.

The first step towards preconditioning is to eliminate, or statically condense, the
interior degrees of freedom to arrive at the Schur complement system

S

[
~uE
~pe

]
=

[
~f∗
E

~g∗e

]
:=

[
~fE
~0

]
−
[
AEI BEι

BeI 0

] [
AII BIι

BιI 0

]−1 [~fI
~0

]
,(2.2)
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where

S =

[
Ã B̃T

B̃ 0

]
=

[
AEE BEe

BeE 0

]
−
[
AEI BEι

BeI 0

] [
AII BIι

BιI 0

]−1 [
AIE BIe

BιE 0

]
(2.3)

and we have used the fact (see Lemma 5.1) that the (2, 2) block of Schur complement
matrix S reduces to the zero matrix. The inverse of the matrix appearing in (2.2)
and (2.3) is well-defined by Theorem 3.3. After the degrees of freedom on the ele-
ment interfaces are in hand, the interior degrees of freedom can be recovered by back
substitution using the relation

[
~uI
~pι

]
=

[
AII BIι

BιI 0

]−1([~fI
~0

]
−
[
AIE BIe

BιE 0

] [
~uE
~pe

])
.

The element interface degrees of freedom are obtained by solving the Schur comple-
ment system (2.2). The matrix S defined in (2.3) is symmetric and indefinite, and
inherits the one dimensional null space from the full system matrix (2.1), again cor-
responding to the constant pressure mode. Similarly, the right hand side in (2.2)
inherits the consistency of the load vector meaning that (2.2) is uniquely solvable
up to a constant pressure mode. The indefiniteness of the problem coupled with the
presence of a low dimensional null space suggests using a MINRES iterative solver
[30] in conjunction with a suitable preconditioner.

We seek a block diagonal matrix of the form

P =

[
Ā 0

0 M̄

]
(2.4)

to precondition S, where Ā and M̄ are symmetric positive definite matrices. The
convergence of the MINRES algorithm with preconditioner P−1 depends on the loca-
tion of the nonzero eigenvalues of P−1S [14, Remark 4.13 and §4.2.4]. In particular,
let δ, ∆, θ, and Θ be nonnegative constants such that

δ ≤ ~uTEÃ~uE

~uTEĀ~uE
≤ ∆ ∀u ∈ V0 and θ ≤ ~qTe B̃Ã−1B̃T ~qe

~qTe M̄~qe
≤ Θ ∀q ∈ Q0.

Then, by [14, Theorem 4.7 and eq. (4.37)], the eigenvalues of P−1S lie in the set

[
−Θ2,

1

2

(
δ −

√
δ2 + 4δθ2

)]
∪ {0} ∪

[
δ,
1

2

(
∆+

√
∆2 + 4∆Θ2

)]
.(2.5)

In order to use variational techniques like Additive Schwarz Methods to construct
Ā and M̄ , we must first identify the appropriate variational setting of the Schur
complement system (2.2). In particular, the Schur complement is posed over the
subspaces spanned by the external degrees of freedom of V0×Q0, which are rather non-
standard owing to the additional continuity imposed at noncorner vertices. Section 3
gives a precise characterization of these spaces including new results showing that
they form a discrete exact sequence property (Theorem 3.5) and that they, like the
spaces V0 ×Q0, are uniformly inf-sup stable in both h and k (Theorem 3.7).

Section 4 defines the Stokes extension operator and its relation to the subspace
splittings. Section 5 uses the results of the previous two sections to relate the matrix
form of the Schur complement system to a variational problem. In section 6, we
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present an explicit set of basis functions on the reference element for the spaces V

and Q and then detail how these are used in the construction of the global basis
functions. We develop the additive Schwarz theory and construct the matrices Ā and
M̄ in section 7, which is then applied to two numerical examples demonstrating in
section 8. Appendix A contains technical lemmas related to the additive Schwarz
theory.

3. Subspace Splittings, Exact Sequences, and Stability. A key property
of the mixed finite element pair V0 ×Q0 is the exactness of the sequence [6, Theorem
2.6] and [16, §3.2]:

0
⊂−−−−−→ Σ0

curl−−−−−→ V0
div−−−−→ Q0 −−−→ 0,(3.1)

where curl = (∂y,−∂x)T and Σ0 is the space of H2(Ω)-conforming piecewise polyno-
mials (see [6, §2]) given by

Σ0 = {φ ∈ H2
0 (Ω) : φ|K ∈ Pk+1(K) ∀K ∈ T , φ is C2 at noncorner vertices}.

The exact sequence property (3.1) was used in [7, Theorem 2.2] to obtain optimal
error estimates for the velocity that were independent of the pressure error. In the
remainder of this section, we seek exact sequences analogous to (3.1) that respect the
separation of interior and exterior degrees of freedom. Such sequences will be used to
both identify the variational problem associated with the Schur complement system
(2.2) and prove its uniform stability.

Before we begin, we introduce some notation. Let V denote the set of all element
vertices, and partition V into: VC , the set of element vertices located at a vertex of
the polygonal domain Ω; VB, the set of remaining element vertices on the domain
boundary Γ which are not corner vertices; and VI , the set of element vertices in the
interior of domain Ω. Let E be the set of all element edges. Given an element K ∈ T ,
EK denotes the edges of K and VK denotes the vertices of K. Likewise, given a vertex
a ∈ V , Ea denotes the set of edges having a as an endpoint and Ta the set of elements
having a as a vertex. We assume that T is a partition of the domain Ω into triangles
such that the nonempty intersection of any two distinct elements from T is either
a single common vertex or a single common edge of both elements, and there exists
κ > 0 independent of T such that

ρK ≥ κhK ∀K ∈ T ,(3.2)

where hK := diam(K) and ρK is the diameter of the largest inscribed circle of K.
The mesh size h denotes the diameter of the largest element, i.e. h := maxK∈T hK .

3.1. Interior Subspaces. We first examine the subspaces associated with the
interior degrees of freedom given by

ΣI = {φ ∈ Σ0 : φ|∂K = ∂nφ|∂K = 0, ∀K ∈ T }
VI = {v ∈ V0 : v|∂K = 0, ∀K ∈ T }

QI =

{
q ∈ Q0 :

∫

K

q dx = 0, q|K(a) = 0, ∀a ∈ VK , ∀K ∈ T
}
,

which, in turn, may be decomposed into contributions from individual elements:

ΣI =
⊕

K∈T
ΣI(K), VI =

⊕

K∈T
VI(K), and QI =

⊕

K∈T
QI(K),(3.3)
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where

ΣI(K) := Pk+1(K) ∩H2
0 (K), VI(K) := Pk(K) ∩H1

0 (K),

QI(K) :=
{
q ∈ Pk−1(K) ∩ L2

0(K) : q(a) = 0, ∀a ∈ VK

}
.

Both the element-level interior spaces and the corresponding interior spaces on a mesh
form exact sequences:

Theorem 3.1. The following sequences are exact:

0
⊂−−−−−→ ΣI(K)

curl−−−−−→ VI(K)
div−−−−→ QI(K) −−−−→ 0, ∀K ∈ T ,(3.4)

and

0
⊂−−−−−→ ΣI

curl−−−−−→ VI
div−−−−→ QI −−−−→ 0.(3.5)

Proof. In view of curlH2
0 (K) ⊂ H1

0 (K), we have the relations curlΣI(K) ⊂
VI(K), curlΣI(K) ⊆ ker div, and by [6, Theorem 3.4], divVI(K) = QI(K). Here,
we consider div as a linear operator VI(K) → QI(K). Moreover, for φ ∈ ΣI(K),
curlφ ≡ 0 if and only if φ ≡ 0 and so dim curlΣI(K) = dimΣI(K). The dimension

counts dimΣI(K) = k2−7k+12
2 , dimVI(K) = k2 − 3k + 2, and dimQI(K) = k2+k−8

2
reveal that dimΣI(K) + dimQI(K) − dimVI(K) = 0. By the rank-nullity theorem,
we have

dimVI(K) = dim Imdiv+dimker div ≥ dimQI(K) + dimΣI(K) = dimVI(K).

and so ker div = curlΣI(K). Thus, the element-level sequence (3.4) is exact. The ex-
actness of the global spaces (3.5) may be proved along similar lines using the exactness
of the element level sequence (3.4).

Theorem 3.1 gives a useful decomposition of the interior spaces in terms of the curl

operator:

Corollary 3.2. The spaces VI(K) and VI admit the following decompositions:

VI(K) = curlΣI(K)⊕ {v ∈ Pk−1(K) ∩H1
0 (K), a(v, curlφ) = 0, ∀φ ∈ ΣI(K)}

and

VI = curlΣI ⊕ {v ∈ V0 : v|∂K = 0, ∀K ∈ T , a(v, curl φ) = 0, ∀φ ∈ ΣI}.(3.6)

The next result concerns the stability of the interior mixed finite element pair
VI ×QI .

Theorem 3.3. Let K ∈ T and let β be the discrete inf-sup constant appearing in
(1.3). If q ∈ QI(K), then there exists v ∈ VI(K) such that div v = q and

h−1
K ‖v‖L2(K) + |v|H1(K) ≤ β−1‖q‖L2(K).(3.7)

Consequently, (i) the spaces VI ×QI are uniformly inf-sup stable:

inf
06=q∈QI

sup
0 6=v∈VI

b(v, q)

|v|H1(Ω)‖q‖L2(Ω)
≥ β,(3.8)

and (ii) the matrix

[
AII BIι

BιI 0

]
is invertible, and hence the Schur complement S

appearing in (2.2) is well-defined by the formula (2.3).
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Proof. Let q ∈ QI(K). Then, [6, Theorem 3.5] gives the existence of v ∈ VI(K)
with div v = q satisfying the estimate (3.7).

Now let q ∈ QI be decomposed as in (3.3) so that q =
∑

K∈T qK with qK ∈
QI(K). By the first statement in the theorem, there exists vK ∈ VI(K) with div vK =
−qK satisfying (3.7). Hence, v :=

∑
K∈T vK satisfies div v = −q and

|v|2H1(Ω) =
∑

K∈T
|vK |2H1(Ω) ≤ β−2

∑

K∈T
‖qK‖2L2(Ω) = β−2‖q‖2L2(Ω),

from which (3.8) immediately follows. (ii) follows at once thanks to the ellipticity of
a(·, ·) and the inf-sup condition (3.8).

3.2. Boundary Subspaces. The subspaces Σ̃E , ṼE , and Q̃E are defined as
follows

Σ̃E := {φ ∈ Σ0 : a(curlφ, curlψ) = 0, ∀ψ ∈ ΣI}(3.9a)

ṼE := {v ∈ V0 : div v ∈ Q̃E , a(v, curlψ) = 0, ∀ψ ∈ ΣI}(3.9b)

Q̃E := {q ∈ Q0 : (q, r) = 0, ∀r ∈ QI},(3.9c)

and correspond to degrees of freedom on the element boundaries. More precisely, we
have:

Theorem 3.4. The following decompositions hold:

Σ0 = ΣI ⊕ Σ̃E , V0 = VI ⊕ ṼE , and Q0 = QI ⊕ Q̃E .(3.10)

Proof. The decompositions of Σ0 and Q0 follow immediately using the orthogo-
nality conditions in the definition of the spaces (3.9a) and (3.9c). The decomposition
of the velocity space V0 is more involved. We first use the exact sequence (3.1) to
write:

V0 = curlΣ0 ⊕ (curlΣ0)
⊥,(3.11)

where (curlΣ0)
⊥ := {u ∈ V0 : a(u, curlψ) = 0, ∀ψ ∈ Σ0}. Now, let v ∈ V0 be given.

By the decomposition (3.11) and the decomposition of Σ0 in (3.10), there exists φI ∈
ΣI , φ̃E ∈ Σ̃E , and v⊥ ∈ (curlΣ0)

⊥ such that v = curl(φI+ φ̃E)+v⊥. We decompose
the divergence analogously: div v = qI + q̃E with qI ∈ QI and q̃E ∈ Q̃E . Thanks to
the exact sequence (3.5) and the decomposition (3.6), there exists w ∈ VI such that
divw = qI and w ∈ {v ∈ VI : a(v, curlψ) = 0, ∀ψ ∈ ΣI}. Then, vI := curl φI +w

satisfies vI ∈ VI and div vI = qI . Consequently, ṽE := v − vI = curl φ̃E + v⊥ −w

satisfies div ṽE = div(v − vI) = q̃E ∈ Q̃E and

a(ṽE , curlψ) = a(curl φ̃E , curlψ) + a(v⊥, curlψ) + a(w, curlψ) = 0, ∀ψ ∈ ΣI

by construction. Thus, ṽE ∈ ṼE , which completes the proof.

Theorem 3.4 means that the decompositions in the columns of the following com-
plex (3.12) are valid. The next result shows that the rows form exact sequences:



8 M. AINSWORTH AND C. PARKER

Theorem 3.5. Each row the of the following complex is an exact sequence

0
⊂−−−−−→ Σ0

curl−−−−−→ V0
div−−−−→ Q0 −−−−→ 0(3.12a)

q q q

0
⊂−−−−−→ ΣI

curl−−−−−→ VI
div−−−−→ QI −−−−→ 0(3.12b)

⊕ ⊕ ⊕

0
⊂−−−−−→ Σ̃E

curl−−−−−→ ṼE
div−−−−→ Q̃E −−−−→ 0(3.12c)

where the exterior spaces Σ̃E, ṼE, and Q̃E are given by (3.9).

Proof. [6, Theorem 2.6] gives the exactness of (3.12a) while Theorem 3.1 gives
the exactness of (3.12b). Moreover, the decomposition (3.10) and the exactness the
sequences (3.12a) and (3.12b) imply that dim Σ̃E + dim Q̃E − dim ṼE = 0. Since
curl Σ̃E ⊂ ṼE and div ṼE ⊆ Q̃E , we conclude that the sequence (3.12c) is exact
using analogous arguments to those used in Theorem 3.1.

The exactness of the final row in (3.12) gives the following analogue of Corollary 3.2
for the exterior velocity space:

Corollary 3.6. The exterior velocity space ṼE admits the following decomposi-
tion: ṼE = curl Σ̃E ⊕ {v ∈ V0 : div v ∈ Q̃E , a(v, curl φ) = 0, ∀φ ∈ Σ0}.

Theorems 1.1 and 3.3 show that the mixed finite element pairs appearing in the
first two rows of (3.12) are uniformly inf-sup stable. The next result shows that the
boundary spaces are also stable with the same inf-sup constant as for the full velocity
and pressure spaces :

Theorem 3.7. Let β be the discrete inf-sup constant defined in (1.3). If q ∈ Q̃E,
then there exists a v ∈ ṼE such that div v = q and

|v|H1(Ω) ≤ β−1‖q‖L2(Ω).(3.13)

Consequently, the spaces ṼE × Q̃E are uniformly inf-sup stable:

inf
06=q∈Q̃E

sup
0 6=v∈ṼE

b(v, q)

|v|H1(Ω)‖q‖L2(Ω)
≥ β.(3.14)

Proof. Let q ∈ Q̃E be given. By Theorem 1.1, there exists a w ∈ V0 such
that divw = q and ‖w‖H1(Ω) ≤ β−1‖q‖L2(Ω), where β is independent of h and k.

According to Theorem 3.4 and (3.9b), there exists functions wI ∈ VI , w̃E ∈ ṼE such
that w = wI + w̃E . QI ∋ divwI = div(w − w̃E) ∈ Q̃E since divw = q ∈ Q̃E , and
so divwI = 0. By the exact sequence property (3.5), wI = curlφI for some φ ∈ ΣI ,
and thus w = curlφI + w̃E . Note that this decomposition of w is a(·, ·) orthogonal
by definition: a(curlφI , w̃E) = 0 and

|w|2H1(Ω) = a(curlφI , curlφI) + a(w̃E , w̃E) = | curlφI |2H1(Ω) + |w̃E |2H1(Ω).

Define v := w̃E . Then, div v = div w̃E = div(w̃E + curlφI) = divw = q, and
|v|H1(Ω) ≤ |w|H1(Ω) ≤ β−1‖q‖L2(Ω). (3.13) and (3.14) follow at once.

4. Stokes Extension Operator. Let V := V × V denote the discrete velocity
space in the absence of essential boundary conditions and Q⊥

I be the orthogonal
complement of QI in Q with the corresponding projection Π̃ : Q→ Q⊥

I ,

(Π̃q, r) = (q, r), ∀r ∈ Q⊥
I := {q ∈ Q : (q, r) = 0 ∀r ∈ QI}.(4.1)
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It is worthwhile noting that (4.1) means that Q̃E = Q⊥
I ∩ L2

0(Ω), so that the space
Q⊥

I corresponds to boundary degrees of freedom. Let K ∈ T . Then, thanks to
Theorem 3.3, there exist uS,K ∈ Pk(K) and pS,K ∈ Pk−1(K) satisfying

aK(uS,K ,v) + bK(v, pS,K) = 0 ∀v ∈ VI(K)(4.2a)

bK(uS,K , q) = 0 ∀q ∈ QI(K)(4.2b)

uS,K = u on ∂K(4.2c)

pS,K(a) = p|K(a) a ∈ VK(4.2d)
∫

K

pS,K dx =

∫

K

p dx,(4.2e)

where aK(·, ·) and bK(·, ·) denote the restrictions of the bilinear forms to element K.
We define the Stokes extension map V ×Q ∋ (u, p) 7→ E (u, p) =: (uS, pS) by the rule
uS = uS,K and pS = pS,K on each element K ∈ T .

The first result deals with the Stokes extension of a given velocity field paired a
zero pressure:

Theorem 4.1. Let ΠV : V → V , ΠQ : V → Q be defined by the rule

V ∋ u 7→ (ΠV u,ΠQu) := E (u, 0).(4.3)

Then, ΠQu ∈ QI and

‖ΠV u‖H1(K) + ‖ΠQu‖L2(K) ≤ C‖u‖H1/2(∂K), ∀K ∈ T ,(4.4)

where ‖ · ‖H1/2(∂K) is the usual trace norm and C is independent of k and u. In

particular, if u ∈ ṼE, then ΠV u = u. Moreover, the following equivalence of semi-
norms holds:

|u|H1/2(∂K) ≤ |ΠV u|H1(K) ≤ Cβ−1|u|H1/2(∂K), ∀K ∈ T ,(4.5)

where C is independent of k, hK, β, and u.

Proof. Let K ∈ T and u ∈ V be given. Conditions (4.2d) and (4.2e) imply that
ΠQu ∈ QI . Thanks to [9, Theorem 7.4], there exists w ∈ Pk(K) such that

w|∂K = u|∂K and ‖w‖H1(K) ≤ C‖u‖H1/2(∂K),(4.6)

with C independent of k. In particular, ΠV u−w = uI where uI ∈ VI(K) satisfies

aK(uI ,v) + bK(v,ΠQu) = −aK(w,v) ∀v ∈ VI(K)

bK(uI , q) = −bK(w, q) ∀q ∈ QI(K).

Using [18, Corollary 4.1] and Theorem 3.3, we conclude that

‖uI‖H1(K) + ‖ΠQu‖L2(K) ≤ C‖w‖H1(K)

Equation (4.4) now follows from the triangle inequality and (4.6).
Now let u ∈ ṼE . Then, divΠV u ∈ Q̃E by (4.2b) and w := u −ΠV u ∈ VI by

(4.2c). Moreover, divw ∈ QI ∩ Q̃E since divu, divΠV u ∈ Q̃E . Thus, divw = 0 and
w = curlφ with φ ∈ ΣI by the exact sequence property (3.5). For any ψ ∈ ΣI ,

a(curl φ, curlψ) = a(u, curlψ)− a(ΠV u, curlψ) = 0

by the definition of ṼE and choosing v = curlψ for ψ ∈ ΣI in (4.2a). Since
a(curl ·, curl ·) is coercive on ΣI , φ ≡ 0, and u = ΠV u.

The equivalence (4.5) is proved by arguing as in [12, Theorem 4.1].
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The next result complements Theorem 4.1:

Theorem 4.2. For p ∈ Q, E (0, p) = (0, Π̃p) where Π̃ is defined in (4.1), and

‖Π̃p‖L2(K) ≤ ‖p‖L2(K).(4.7)

In particular, if p ∈ Q⊥
I , then E (0, p) = (0, p).

Proof. Let p ∈ Q and consider the Stokes extension (ũ, p̃) := E (0, p). Since
Q = QI ⊕Q⊥

I , the pressure p̃ may be written in the form p̃ = pI + Π̃p. In particular,
pI ∈ QI satisfies

bK(v, pI) = bK(v, p̃)− bK(v, Π̃p) = bK(vK , p̃), ∀v ∈ VI(K), ∀K ∈ T ,

where we used the fact that bK(v, Π̃p) = 0 since divVI(K) = QI(K) ⊥ Q⊥
I . Hence,

aK(ũ,v) + bK(v, pI) = 0 ∀v ∈ VI(K)

bK(ũ, q) = 0 ∀q ∈ QI(K),

Equation (4.4) then gives (ũ, pI) = E (0, 0); or, equally well, ũ = 0 and p̃ = Π̃p.
The estimate (4.8) immediately follows since Π̃ is a projection. If p ∈ Q⊥

I , then
E (0, p) = (0, Π̃p) = (0, p).

Combining Theorems 4.1 and 4.2 leads to the following result:

Corollary 4.3. The Stokes extension operator E (·, ·) is linear and continuous:
For K ∈ T ,

‖E (u, p)‖H1(K)×L2(K) ≤ C‖u‖H1/2(∂K) + ‖Π̃p‖L2(K) ∀(u, p) ∈ V ×Q,(4.8)

where C is independent of k. Moreover, kerE = VI×QI and E (u, p) = (ΠV u,ΠQu+

Π̃p).

Proof. The linearity of E (·, ·) is immediate from the definition (4.2), and (4.8)
then follows from (4.4) and (4.7) using the triangle inequality. A simple consequence
of (4.2c)–(4.2e) is that kerE ⊆ VI ×QI . Moreover, (4.8) gives that VI ×QI ⊆ kerE .
Thus, kerE = VI ×QI .

5. Variational Form of the Schur Complement System. The results of the
previous two sections are used to study the Schur complement system (2.2). The first
result relates the Schur complement matrix S to the discrete Stokes extension map:

Lemma 5.1. For all (u, p), (v, q) ∈ V0 ×Q, the Stokes extension satisfies

a(uS ,vS) + b(vS , pS) + b(uS , qS) =

[
~vE
~qe

]T
S

[
~uE
~pe

]
(5.1)

where S =

[
Ã B̃T

B̃ C̃

]
. Consequently, the following identities hold:

~uTEÃ~vE = a(ΠV u,ΠV v) ∀u,v ∈ V0,(5.2a)

~pTe B̃~uE = b(ΠV u, Π̃p) ∀p ∈ Q, u ∈ V0,(5.2b)

C̃ = 0 and ~g∗e = ~0,(5.2c)

where ΠV is defined in (4.3) and Π̃ is defined in (4.1).
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Proof. Let (u, p) ∈ V0 × Q. The Stokes extension (uS , pS) = E(u, p) may be

written as uS = ~ΦT
E~uE + ~ΦT

I ~u
∗
I and pS = ~ψT

e ~pe +
~ψT
ι ~p

∗
ι so that u = ~ΦT

E~uE + ~ΦT
I ~uI

and p = ~ψT
e ~pe +

~ψT
ι ~pι for suitable ~uE, ~uI , ~pe, and ~pι. Thanks to (4.2a) and (4.2b), ~u∗I

and ~p∗ι are given by

[
~u∗I
~p∗ι

]
= −

[
AII BIι

BιI 0

]−1 [
AIE BIe

BιE 0

] [
~uE
~pe

]
.(5.3)

Analogous relations hold replacing (u, p) by (v, q) ∈ V0 ×Q. Now,

a(uS ,vS) + b(vS , pS) + b(uS, qS)

=




~vE
~qe
~v∗I
~q∗ι




T 


AEE BEe AEI BEι

BeE 0 BeI 0

AIE BIe AII BIι

BιE 0 BιI 0







~uE
~pe
~u∗I
~p∗ι


 .

and then (5.3), we obtain (5.1). Identities (5.2) are then obtained from (5.1) as follows:
(a) Choose p = q = 0. Then, (ΠV u†,ΠQu), (ΠV v,ΠQv) ∈ V × QI by Theo-

rem 4.1, so b(ΠV v,ΠQu) + b(ΠV u,ΠQv) = 0 by (4.2b); (5.2a) follows.

(b) Choose p = 0 and v = 0. By Theorem 4.2, E (0, q) = (0, Π̃q), and (5.2b)
follows.

(c) Choose u = v = 0. By Theorem 4.2, E (0, p) = (0, Π̃p), E (0, q) = (0, Π̃q),

and so ~qTe C̃~pe = 0. Furthermore,

~qTe ~g
∗
e = ~qTe B̃~uE = b(ΠV u, Π̃q) = −b(u−ΠV u, Π̃q), ∀q ∈ Q

by (1.2b). Since div(u − ΠV u) ∈ divVI = QI ⊥ Q⊥
I , b(u − ΠV u, q̃) = 0,

which completes (5.2c).

The main result of this section relates the Schur complement problem (2.2) to a
Stokes problem posed on the boundary spaces ṼE × Q̃E :

Theorem 5.2. The Schur complement system (2.2), is equivalent to the following
variational problem: Find (u, p) ∈ ṼE × Q̃E such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ ṼE(5.4a)

b(u, q) = 0 ∀q ∈ Q̃E .(5.4b)

Moreover, the nonzero eigenvalues of the generalized eigenvalue problem B̃Ã−1B̃T ~qe
= λM̃~qe are contained in the interval [β2, 1], where M̃ is the matrix associated with
the L2(Ω)-inner product on Q⊥

I and β is the inf-sup constant in (1.3). In particular,
the nonzero eigenvalues λ are uniformly bounded away from zero in h and k.

Proof. Let (u, p), (v, q) ∈ ṼE ×Q⊥
I . Substituting the identities in Theorems 4.1

and 4.2 into (5.2) gives

[
~vE
~qe

]T
S

[
~uE
~pe

]
= ~vTEÃ~u

T
E + ~qTe B̃~uE + ~vEB̃

T ~pe

= a(ΠV u,ΠV v) + b(ΠV v, Π̃p) + b(ΠV u, Π̃q)

= a(u,v) + b(v, p) + b(u, q).

(5.4) now follows from (5.2c) on noting that Q̃E = Q⊥
I ∩ L2

0(Ω). Arguing as in [14,
Theorem 3.22], the eigenvalue bound follows from the inf-sup condition (3.14).
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6. Basis Functions. We first define a basis {φi} for the space of scalar-valued
functions V . The basis is constructed so that the exclusion of particular functions gives
a basis for V0 = V ∩ H1

0 (Ω), which simplifies both the enforcement of homogeneous
boundary conditions and the implementation of the preconditioner. A basis {Φi} for
the velocity space V0 = V0×V0 is then obtained using functions of the form φj ê1 and
φj ê2. For the pressure space, we only give a basis for Q since the space Q0 is not
used in the actual implementation.

6.1. Basis Functions on a Reference Triangle. We begin by defining basis
functions for the pressure and velocity spaces on the reference triangle T̂ shown in
Figure 2b.

6.1.1. Pressure Basis Functions. Let {Bk
α}α∈I denote the Bernstein polyno-

mials [21]:

Bk
α =

k!

α1!α2!α3!
λα1

1 λα2

2 λα3

3 ,(6.1)

where I = {α ∈ Z3
+ : |α| = k} and {λi, 1 ≤ i ≤ 3}, are the barycentric coordinates

on the reference triangle T̂ . The set {Bk
α}α∈I forms a basis for Pk(T̂ ) [21]. Each

Bernstein polynomial Bk
α can be identified with the domain point xα = α1

k â1 +
α2

k â2 +
α3

k â3 on the reference triangle. Let I0 = {α ∈ I : αi < k} denote the subset
corresponding to interior (non-vertex) points. Fix any β ∈ I0; since all the Bernstein
polynomials (6.1) share the same average value, the set {Bk

α −Bk
β}α∈I\{β} is a basis

for Pk(T̂ ) ∩ L2
0(T̂ ). This set can be partitioned into:

(i) Vertex functions: ψ̂i := Bk
kei

− Bk
β , 1 ≤ i ≤ 3, satisfying

∫
T̂
ψ̂idx = 0 and

ψ̂i(âj) = δij for 1 ≤ i, j ≤ 3.

(ii) Interior functions: ψ̂ι,α := Bk
α − Bk

β , α ∈ I0 \ {β}, satisfying
∫
T̂
ψ̂ι,αdx = 0

and ψ̂ι,α(âi) = 0, 1 ≤ i ≤ 3.

In order to obtain a basis for Pk(T̂ ), we supplement this set with one additional
function:

(iii) Average value function

ψ̂T̂ := 1−
3∑

i=1

ψ̂i.(6.2)

satisfying |T̂ |−1
∫
T̂
ψ̂T̂ dx = 1 and ψ̂T̂ (ai) = 0, 1 ≤ i ≤ 3.

In summary, there are 3 vertex functions, one average value function and 1
2 (k+1)(k+

2) − 4 interior functions which total 1
2 (k + 1)(k + 2) = dimPk(T̂ ), and form a basis

for the pressure space Q = Pk(T̂ ) on the reference element.

6.1.2. Velocity Basis Functions. The construction of the basis functions for
the velocity space V is more complicated owing to the higher continuity requirement.
In particular, the basis functions {φ̂βk}, |β| = 1, k ∈ {1, 2, 3}, associated with the

derivative degrees of freedom at the vertices should satisfy Dαφ̂βk (âl) = δαβδkl, |α| =
1, l ∈ {1, 2, 3}. In order to construct these functions, we begin by considering the
vector valued function given by

~J1 :=
λ21

P
(3,3)
k−3 (−1)

[
λ2P

(3,3)
k−3 (λ2 − λ1)

λ3P
(3,3)
k−3 (λ3 − λ1)

]
,(6.3)
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a1 a2

a3

γ1

γ2

γ3

t̂1
n̂1

t̂2

n̂2

t̂3

n̂3

K

(a)

â1

(0, 0)
â2

(1, 0)

â3(0, 1)

γ̂1

γ̂2

γ̂3

t̂1 n̂1

t̂2

n̂2

t̂3

n̂3

T̂

(b)

Fig. 2: Notation for (a) general triangle K and (b) reference triangle T̂ .

where P
(3,3)
k is the Jacobi polynomial of degree k [36]. The first component of ~J1

vanishes on edge γ2 and the gradient at â1 is given by
[
1 0

]T
, while the second

component vanishes on edge γ̂3 and has gradient
[
0 1

]T
at â1. The factor λ

2
1 means

that both components of ~J1 and their gradients vanish on the edge γ̂1. In summary,
since x = λ2 and y = λ3, we have

~J1(âk) = ~0 and

[ ∂
∂x
∂
∂y

]
~JT
1 (âk) =

[ ∂
∂λ2

∂
∂λ3

]
~JT
1 (âk) = δkl

[
1 0
0 1

]
.(6.4)

Defining ~J2 and ~J3 by cyclic permutations of the indices, we conclude that ~J2 and ~J3
vanish at the vertices and that, for k ∈ {1, 2, 3},

[ ∂
∂λ3

∂
∂λ1

]
~JT
2 (âk) = δk2

[
1 0
0 1

]
and

[ ∂
∂λ1

∂
∂λ2

]
~JT
3 (âk) = δk3

[
1 0
0 1

]
.(6.5)

Substituting the identities

[ ∂
∂λ3

∂
∂λ1

]
=

[
−1 1
−1 0

] [ ∂
∂x
∂
∂y

]
and

[ ∂
∂λ1

∂
∂λ2

]
=

[
0 −1
1 −1

] [ ∂
∂x
∂
∂y

]

in (6.5) and rearranging gives

[ ∂
∂x
∂
∂y

]([
−1 −1
1 0

]
~J2

)T

(âk) = δk2

[
1 0
0 1

]
(6.6)

[ ∂
∂x
∂
∂y

]([
0 1
−1 −1

]
~J3

)T

(âk) = δk3

[
1 0
0 1

]
.(6.7)

Armed with (6.4), (6.6), and (6.7), we define the basis functions for the velocity space
as follows:

(i) C0 vertex functions: φ̂i = λ2i (3 − 2λi), ≤ i ≤ 3, satisfying φ̂i(âj) = δij ,

Dφ̂i(âj) = 0, and φ̂i|γ̂i = 0 for 1 ≤ i, j ≤ 3.
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(ii) C1 vertex functions
[
φ̂
(1,0)
1

φ̂
(0,1)
1

]
=

[
1 0
0 1

]
~J1;

[
φ̂
(1,0)
2

φ̂
(0,1)
2

]
=

[
−1 −1
1 0

]
~J2;

[
φ̂
(1,0)
3

φ̂
(0,1)
3

]
=

[
0 1
−1 −1

]
~J3

which, thanks to (6.4), (6.6), and (6.7), satisfyDβφ̂αi (âj) = δαβδij and φ̂i|γ̂i =
0 for 1 ≤ i, j ≤ 3, |α| = 1, |β| ≤ 1.

(iii) Edge functions: Let γ̂ be the edge connecting vertices âi and âj; then the

basis functions associated with the edge are defined by φ̂γ̂,l = λ2iλ
2
jrl(λj −λi)

where {rl} is any basis for Pk−4((−1, 1)). These functions satisfy Dαφ̂γ̂,l(âk)

= 0 for |α| ≤ 1, 1 ≤ k ≤ 3 and φ̂γ̂,l|γ̂′ = δγ̂γ̂′ for γ̂′ ∈ ET̂ .
(iv) Interior functions: The basis functions associated with the element interior

are defined by φ̂I,l = λ1λ2λ3sl where {sl} is any basis for Pk−3(T̂ ). These

functions satisfy φ̂I,l|∂T̂ = 0 and Dφ̂I,l(âk) = 0 for 1 ≤ k ≤ 3.
It is easily seen that the above functions are linearly independent. Furthermore,
there are 3 functions per vertex, dimPk−4((−1, 1)) = k − 3 functions per edge, and
dimPk−3(T̂ ) = 1

2 (k − 2)(k − 1) interior functions which total 1
2 (k + 1)(k + 2) =

dimPk(T̂ ). Hence, the above functions also form a basis for Pk(T̂ ).

6.2. Basis Functions on a Mesh. We now define the global basis functions for
the spaces Q and V . The lower continuity requirements imposed at corner vertices
VC means that extra care must be taken when defining the global basis functions
associated with VC .

6.2.1. Pressure Basis Functions. The pressure space Q requires C0 continu-
ity at all vertices except at corner vertices, where the functions are allowed to be
discontinuous. This means that each element has its own degree of freedom at ver-
tices a ∈ VC , whilst at the remaining vertices a ∈ V \ VC , all elements share a single
degree of freedom at the common vertex as shown in Figure 3a. Consequently, any
given vertex a ∈ V is associated with either (a) a single basis function supported on
the patch Ta if a ∈ V \ VC , or (b) a collection of basis functions, each of which is
supported on a single element K ∈ Ta if a ∈ VC . The set of supports of the pressure
functions associated with a vertex a ∈ V is defined by

Ωa =

{
{Ta} a ∈ VC

{K ∈ Ta} a ∈ V \ VC .

That is, the cardinality of these sets is |Ωa| = 1 for noncorner vertices (since there
is only one vertex basis function associated to a) whilst |Ωa| ≥ 2 for corner vertices,
thanks to the assumption that the mesh is corner-split into at least two elements.
The corresponding global vertex functions {ψω

a : a ∈ V , ω ∈ Ωa} are defined to be
pull-backs in the usual way:

ψω
a =

{
ψ̂i ◦ F−1

K on K ⊆ ω,

0 otherwise,
ψK =

{
ψ̂T̂ ◦ F−1

K on K,

0 otherwise,
(6.8)

where âi = F−1
K (a).

The average value functions and interior functions are simpler. Each element
K ∈ T has a single function ψK , corresponding to the average value over K, defined
by (6.8). Similarly, each elementK ∈ T has k

2 (k+1)−4 interior functions also defined
to be pull-backs.
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Corner dof

Noncorner dof

(a)

Functional dof

Derivative dof

(b)

Fig. 3: (a) The global pressure vertex degrees of freedom and (b) the global velocity
vertex degrees of freedom on a mesh of an example domain. Observe that in (a) there
are multiple pressure vertex degrees of freedom at corner vertices but only a single
degree of freedom at interior vertices and in (b) there are three or more derivative
degrees of freedom at corner vertices (red), two derivative degrees of freedom aligned
with the domain boundary at noncorner boundary vertices (green), and two derivative
degrees of freedom aligned with the coordinate axes at interior vertices (blue).

6.2.2. Velocity Basis Functions. The velocity space V imposes C1 continuity
at all vertices except at corner vertices, where only C0-continuity is required to ensure
V ⊂ H1(Ω). This means that at corner vertices a ∈ VC , each element K ∈ Ta has two
degrees of freedom for the gradient corresponding to the two tangential derivatives
corresponding to the two edges ofK that meet at a. To enforce continuity between two
neighboring elements in Ta, the tangential derivative corresponding to the common
edge must be shared between the two elements. In other words, each corner vertex
a ∈ VC has one derivative degree of freedom for each edge γ ∈ Ea. For the remaining
noncorner vertices a ∈ V \ VC , all elements in Ta share two degrees of freedom at the
common vertex, corresponding to any two linearly independent directional derivatives
as in Figure 3b. Consequently, a given vertex a ∈ V is associated with either (a) two
basis functions supported on the patch Ta if a ∈ V \ VC , or (b) a collection of basis
functions, each of which is associated to an edge γ ∈ Ea and supported on the pair of
elements sharing the common edge γ if a ∈ VC .

The set of unit vectors defining the directional derivative degrees of freedom at a
vertex a ∈ V are chosen as follows:

Da =





{ê1, ê2} a ∈ VI

{t̂, n̂} a ∈ VB

{t̂γ : γ ∈ Ea} a ∈ VC

(6.9)

where t̂ and n̂ are the unit tangent and normal vectors at a noncorner boundary
vertex a ∈ VB and t̂γ denotes a unit tangent vector on an edge γ ∈ E as illustrated
in Figure 3b. For a given vertex a ∈ V and unit vector µ̂ ∈ Da, the global basis
function φµa has support

suppφµa =

{
{K ∈ Ta : ∃γ ∈ EK with t̂γ = ±µ̂} a ∈ VC ,

Ta a ∈ V \ VC .

The global C1 vertex functions come in pairs as follows: Given a noncorner vertex
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a ∈ VI ∪ VB, let µ̂1, µ̂2 be unit vectors such that Da = {µ̂1, µ̂2} as in (6.9), and
define the basis functions by

[
φµ1

a

φµ2

a

]
=

[
µ̂1 µ̂2

]−1
DFK

[
φ̂
(1,0)
i ◦ F−1

K

φ̂
(0,1)
i ◦ F−1

K

]
on K ∈ Ta,(6.10)

where âi = F−1
K (a). The above construction ensures that the basis functions are

C1 continuous at the vertex a: i.e. µ̂i · ∇φµj
a (a) = δij . The case of a corner vertex

a ∈ VC is more complicated since, as mentioned above, each edge γ ∈ Ea contributes
one independent basis function at the vertex, also defined by the expression (6.10),
which is supported on the edge patch {K ∈ Ta : γ ∈ EK}. The unit vectors µ̂1, µ̂2

in (6.10) associated with such an element K ∈ Ta are taken to be the pair of unit
tangent vectors on the two edges of K having an endpoint at a. This means that the
basis functions φµ1

a and φµ2

a are the only C1 vertex functions supported on K.
The remaining C0 vertex functions, edge functions, and interior functions are

again defined to be pull-backs of the corresponding functions on the reference element
in the usual way: i.e. φa = φ̂i ◦ F−1

K on K ∈ Ta and φa = 0 otherwise, where
âi = F−1

K (a). Similarly, there are k − 3 edge functions per edge γ ∈ E , supported
on the patch of elements containing that edge {K ∈ T : γ ∈ EK}, and there are
1
2 (k − 1)(k − 2) interior functions per element K ∈ T .

6.2.3. Velocity Basis Functions with Homogeneous Boundary Condi-

tions. The above construction gives a basis for V in the absence of essential bound-
ary conditions. If nonhomogeneous essential boundary conditions are imposed, then
the values of the following basis functions will be constrained by the boundary data:

• the C0 vertex function φa, a ∈ V \VI at each vertex on the domain boundary;
• the C1 vertex function at each noncorner boundary vertex corresponding to
the tangential derivative degree of freedom, i.e. φta for a ∈ VB;

• the pair of C1 vertex functions at each corner boundary vertex corresponding

to the tangential derivatives along the domain boundary edges: φ
tγ
a , φ

tγ′

a for
a ∈ VC where γ, γ′ ∈ Ea ∩ Γ; and

• all k − 3 edge functions for each edge on the domain boundary.
If homogeneous essential boundary conditions are imposed, then a basis for V0 =
V ∩H1

0 (Ω) is obtained by taking the following functions:
• the C0 vertex function at each interior vertex, i.e. φa, a ∈ VI ;
• the following C1 vertex functions: φµa, a ∈ V , µ̂ ∈ D̊a where

D̊a =





{ê1, ê2} a ∈ VI

{n̂} a ∈ VB

{t̂γ : γ ∈ Ea ∩ EI} a ∈ VC

(6.11)

and EI denotes the set of interior edges;
• all k − 3 edge functions on each interior edge; and
• all interior functions on each element.

Condition (6.11) means that we keep both C1 vertex functions for each interior vertex,
the C1 vertex function associated with the the outward normal of Γ for each noncorner
boundary vertex, and each C1 vertex function corresponding to an interior edge unit
tangent vector at corner vertices.

7. Constructing the Preconditioner Using Additive Schwarz Theory.

In section 2, we constructed the stiffness matrix for the Stokes problem (2.1) using
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bases for the spaces V0 and Q and performed static condensation to arrive at the
Schur complement system (2.2). In section 5, it was shown that the algebraic Schur
complement system (2.2) was related to the mixed finite element problem (5.4) posed
on the spaces ṼE × Q̃E . The alert reader will have noticed a slight discrepancy in
the treatment of the average pressure mode over the domain Ω: in subsection 6.2
and section 2, the average pressure modes were included in the discretization (and it
was pointed out that these modes span the kernel of the Schur complement) whereas in
section 5, the pressure space Q̃E = Q⊥

I ∩L2
0(Ω) was used, which factors out the singular

mode. In order to construct a preconditioner in the form (2.4), we formulate an
Additive Schwarz Method (ASM) over the spaces ṼE ×Q⊥

I rather than the seemingly
more natural choice ṼE × Q̃E suggested by Theorem 5.2.

7.1. Pressure ASM. We decompose the pressure space Q⊥
I as follows:

Q⊥
I =

⊕

a∈V
ω∈Ωa

Q̃a,ω ⊕
⊕

K∈T
Q̃K ,(7.1)

where (i) the vertex spaces Q̃a,ω := span{ψ̃ω
a}, a ∈ V , ω ∈ Ωa with ψ̃ω

a := Π̃ψω
a are

equipped with the inner product ma,ω(p, q) := |ω|k−4p(a)q(a), and (ii) the element

average spaces Q̃K := spanψ̃K , K ∈ T , with ψ̃K := Π̃ψK are equipped with the inner
product

mK(p, q) :=
1

|K|

(∫

K

p dx

)(∫

K

q dx

)
, ∀p, q ∈ Q̃K .

Applying the projection Π̃ to the formulae for ψK (6.2) and (6.8) gives

ψ̃K =





1−
∑

a∈VK
ω⊇K

ψ̃ω
a on K

0 otherwise,

where the functions ψ̃ω
a are defined in (i) and we use the fact that Π̃ preserves con-

stants. The direct sum decomposition (7.1) means that any q ∈ Q⊥
I may be uniquely

expressed in the form

q =
∑

a∈V
ω∈Ωa

qa,ω +
∑

K∈T
qK ,

where

qa,ω = q|ω(a)ψ̃ω
a , a ∈ V , ω ∈ Ωa, qK =

(
1

|K|

∫

K

q dx

)
ψ̃K , K ∈ T .

The action of the associated ASM preconditioner on a residual g ∈ L2(Ω) is given by
the solution p ∈ Q⊥

I of the variational problem m̄(p, q) = (g, q) ∀q ∈ Q⊥
I , where

m̄(p, q) :=
∑

a∈V
ω∈Ωa

ma,ω(pa,ω, qa,ω) +
∑

K∈T
mK(pK , qK).(7.2)

The bilinear form m̄(·, ·) gives rise to a matrix preconditioner M̄ for the pressure
space defined by

~pTe M̄~qe = m̄(Π̃p, Π̃q) ∀p, q ∈ Q.(7.3)
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7.2. Velocity ASM. We decompose the velocity space ṼE as follows:

ṼE = Ṽc ⊕
⊕

a∈V
µ̂∈D̊a

Ṽa,µ ⊕
⊕

γ∈EI

Ṽγ ,(7.4)

where (i) the global C0 vertex space Ṽc := span{ΠV (φaê1), ΠV (φaê2) : a ∈ VI},
(ii) the C1 vertex spaces Ṽa,µ := span{ΠV (φµae1), ΠV (φµae2)}, a ∈ V , µ̂ ∈ D̊a, and

(iii) the edge spaces Ṽγ := span{ΠV (φγ,je1),ΠV (φγ,je2) : 1 ≤ j ≤ k − 3}, γ ∈ EI .
Each of the velocity subspaces is equipped with the inner product a(·, ·) restricted
to the appropriate space. The direct sum decomposition (7.4) means that any any
u ∈ ṼE may be uniquely expressed in the form

u = uc +
∑

a∈V
µ̂∈D̊a

ua,µ +
∑

γ∈EI

uγ ,(7.5)

where

uc =
∑

a∈VI

2∑

i=1

(u · êi)(a)ΠV (φaêi),

ua,µ =

2∑

i=1

∂µ(u|Kµ · êi)(a)ΠV (φµaêi), a ∈ V , µ̂ ∈ D̊a, Kµ ⊆ suppφµa,

and for each γ ∈ EI ,

uγ =




u− uc −

∑
a∈V
µ̂∈D̊a

ua,µ on γ

0 on the remaining edges in E .

The action of the associated ASM preconditioner on a residual f ∈ L2(Ω) is given
by the solution u ∈ ṼE of the variational problem ā(u,v) = (f ,v) ∀v ∈ ṼE , where

ā(u,v) = a(uc,vc) +
∑

a∈V
µ̂∈D̊a

a(ua,µ,va,µ) +
∑

γ∈EI

a(uγ ,vγ).(7.6)

The bilinear form ā(·, ·) gives rise to a matrix preconditioner Ā for the velocity space
defined by

~uTEĀ~vE = ā(ΠV u,ΠV v), ∀u,v ∈ V0.(7.7)

7.3. The Preconditioner and Main Result.

Theorem 7.1. Let P be defined as in (2.4) with Ā given by (7.7) and M̄ given
by (7.3). Then, using P−1 as a preconditioner for the MINRES method reduces the

norm of the residual of MINRES by a factor of at least
√
σ−1√
σ+1

every two iterations,

where
√
σ ≤ C(1 + log3 k) with C independent of k and h.

Proof. Thanks to Theorem A.1 and the matrix correspondences (7.3) and (7.7),
there holds

[
C2β

−2(1 + log3 k)
]−1

Ā ≤ Ã ≤ C2Ā and C−1
1 M̄ ≤ M̃ ≤ C1M̄ ,



PRECONDITIONING STOKES FLOW 19

where M̃ is the pressure mass matrix for the space Q⊥
I and A ≤ B means that B−A

is positive semidefinite. Additionally, the inf-sup condition for the spaces ṼE × Q̃E

(3.14) and the boundedness of the bilinear form b(·, ·) can be expressed in matrix form
using (5.2b) and the same arguments in [14, Theorem 3.22] to arrive at

β2 ≤ ~qTe B̃Ã−1B̃T ~qe

~qTe M̃~qe
≤ 1, ∀Q̃E ∋ q = ~qTe

~ψe,

where β is the discrete inf-sup constant in (1.3). Thus, (2.5) holds with δ = β2[C2(1+
log3 k)]−1, ∆ = C2, θ = β2C−1

1 , and ∆ = C1.
Let ~rn denote the residual on the n-th iteration of MINRES with the precondi-

tioner P−1. Applying [14, Theorem 4.14] and using the fact that the inf-sup constant
β is bounded below uniformly in k and h gives

‖~r2n‖P−1 ≤ 2

(√
σ − 1√
σ + 1

)n

‖~r0‖P−1 ,(7.8)

where ‖~r‖2
P−1 := ~rTP−1~r and

√
σ ≤ C(1 + log3 k) with C independent of k and h.

Since all norms on finite dimension vector spaces are equivalent, (7.8) holds for any
choice of norm at the expense of replacing “2” by an appropriate constant depending
on the choice of norm, which completes the proof of Theorem 7.1.

Theorem 7.1 shows that the performance of the preconditioner deteriorates at most
as log3 k as the polynomial order is increased, but remains bounded as the mesh is
refined provided the shape regularity assumption (3.2) is satisfied.

7.4. Implementation and Cost Analysis of the Preconditioner. To aid
in the implementation and cost analysis of computing the actions of Ā−1 and M̄−1,
we assume, for convenience, the interface degrees of freedom are ordered as follows:

(i) velocity C0 vertex degrees of freedom,
(ii) velocity C1 vertex degrees of freedom,
(iii) velocity edge degrees of freedom, grouped according to edge,
(iv) pressure vertex degrees of freedom,
(v) pressure average value degrees of freedom.

This ordering induces a block structure in the matrix Ã in which the diagonal sub-
blocks are: Ãc, corresponding to the global interaction among all the global C0 vertex
functions; Ãa,µ, the block-diagonal entry corresponding to the C1 vertex functions

{φµaê1, φµaê2}; whilst Ãγ corresponds to the interactions among the edge functions
associated to γ. The load vectors can be similarly split into subvectors corresponding
to the same groupings of degrees of freedom. The block diagonal structure of P is
then exploited to compute the action of P−1 on a pair of vectors ~f , ~g efficiently or in
parallel, as described in Algorithm 7.1.

The cost of computing the action of P−1 using Algorithm 7.1 comprises of two
parts: one-time setup costs and recurring costs associated with each application of
Algorithm 7.1. The setup cost is dominated by eliminating the interior degrees of
freedom on each element, which takes O(|T |k6) operations needed for the subassembly
of the Schur complement. The matrices Ac, Aa,µ, a ∈ V , µ̂ ∈ D̊a, and Aγ , γ ∈ E ,
need only be factored once at a cost of O(|V|3 + |E|k3) operations, giving an overall
setup cost of O(|T |k6 + |E|k3 + |V|3).

We now turn to the cost associated with each application of Algorithm 7.1. Line
2 of Algorithm 7.1 entails the solution of the linear system Ac involving all of the
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Algorithm 7.1 Action of Preconditioner

Require: Ã, ~f , ~g
1: function

2: ~uc = Ã−1
c
~fc ⊲ Global velocity C0 vertex function solve

3: for a ∈ V , µ̂ ∈ D̊a, do ⊲ Block diagonal velocity C1 vertex function solve
4: ua,µ = Ã−1

a,µ
~fa,µ

5: end for

6: for γ ∈ EI do ⊲ Block diagonal velocity edge solve
7: ~uγ = Ã−1

γ
~fγ

8: end for

9: for a ∈ V , ω ∈ Ωa do ⊲ Diagonal pressure C0 vertex function solve
10: pa,ω = |ω|−1k4ga,ω
11: end for

12: for K ∈ T do ⊲ Diagonal pressure average value solve
13: pK = |K|−1gK
14: end for

15: return ~uc, (~ua,µ)a,µ, (~uγ)γ , (pa,ω)a,ω, (pK)K ⊲ Return degrees of freedom
16: end function

C0 vertex functions which, thanks to the prefactorisation of Ac, costs O(|V|2) oper-
ations per solve. Lines 3-5 require the solution of a 2x2 matrix on the velocity C1

vertex functions for each vertex a ∈ V and derivative degree of freedom µ̂ ∈ D̊a at
a cost of O(|V|) operations. Lines 6-8 entail a block diagonal solve over each of the
edges which, again thanks to the prefactorisation of Aγ , γ ∈ E , can be applied us-
ing O(|E|k2) operations. Lines 9-11 require O(|V|) operations and lines 12-14 require
O(|T |) operations by analogous arguments. In summary, the overall cost per applica-
tion of Algorithm 7.1 is O(|E|k2 + |V|2+ |T |), which is comparable to nonoverlapping
domain decomposition methods for second order elliptic problems [37].

8. Numerical Examples. We illustrate the performance of the preconditioner
described in section 7 in two numerical examples.

8.1. Moffatt Eddies. In the first example, we revisit the Moffatt problem [27]
considered in [7], in which the domain Ω is the wedge with a prescribed parabolic flow
profile on the top part of the boundary and no flow on the remainder of the boundary:

u(x, 0) =

[
1− x2

0

]
, −1 ≤ x ≤ 1, and u = 0 on Γ \ (−1, 1)× {0}.

The problem is approximated using a pure p-version finite element scheme on the fixed
mesh shown in Figure 4a. The results in [7] show that the k = 13 solution resolves
four to five eddies, equivalent to a 1013 range of scales.

Let λ±min and λ±max denote the extremal eigenvalues of P−1S so that

σ(P−1S) ⊆ [−λ−max,−λ−min] ∪ {0} ∪ [λ+min, λ
+
max].(8.1)

According to Theorem 7.1, λ±max ≤ C and λ±min ≥ C(1 + log3 k)−1 with constant
C independent of k and h. Figure 4b displays the actual values of the extreme
eigenvalues. In agreement with theory, λ±max is uniformly bounded in k and λ+min ≥
C(1 + log3 k)−1. However, λ−min appears to remain uniformly bounded in k, which
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would mean that, in practice, the contraction factor in Theorem 7.1 is pessimistic.
The residual history for k ∈ {4, 7, 10, 13} for the preconditioned MINRES solver are
displayed in Figure 4c. The starting vector is taken to be ~x + ~ǫ, where ~x is the true
solution of the Schur complement system (2.2) and ~ǫ is a random perturbation with
entries uniformly distributed in (−1, 1). Here, and in the remaining examples, the

relative residual is given by
√
(~rTP−1~r)/(~rT0 P

−1~r0), where ~r0 is the initial residual
vector, and MINRES is terminated when the relative residual is smaller than 10−8. It
is observed that, as the polynomial order is raised, the iteration counts grow modestly
consistent with the results in Theorem 7.1.
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Fig. 4: (a) 18 element mesh, (b) extremal eigenvalues of P−1S, and (c) MINRES
convergence history with k ∈ {4, 7, 10, 13}, stopping tolerance 10−8 for a sequence of
random initial iterates for Moffatt eddies problem. 1/λ+min grows as log3 k while the
other extreme eigenvalues remain bounded as the polynomial degree k is increased.

8.2. T-shaped Domain. In the next example, we consider the T-shaped do-
main example [2] where f ≡ 0 and boundary conditions are parabolic flow profile on
the leftmost and rightmost boundaries of the domain and no flow on the remainder
of the boundary:

u

(
±3

2
, y

)
=

[
y(1− y)

0

]
, 0 ≤ y ≤ 1, and u = 0 on Γ \

{
±3

2

}
× (0, 1).

The sequence of meshes is shown in Figure 5, in which the elements are geometrically
graded and which were proved to give exponential convergence of the finite element
solution [7, §7.2]. The mesh in Figure 5a consists of one layer of elements around the
re-entrant corner and the most bottom corners, with a grading factor of σ = 0.08.
We then refine the mesh by successively adding layers of elements such that the
innermost layer of elements has a diameter proportional to σn, where n is the number
of refinements. For example, the mesh corresponding to three levels is shown in
Figures 5b and 5c. Observe that, once a mesh contains two or more layers, the
shape regularity constant κ (3.2) changes from 0.1695 to 0.0829 due to the presence
of “needle” elements near the corners. In particular, several estimates in the analysis
depend on κ, and thus we would expect the performance of the preconditioner to be
worse for n ≥ 2 than for n = 1.
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As with the previous example, the extremal eigenvalues (8.1), displayed in Fig-
ure 6, remain bounded independently of the number of levels of geometric refinement,
whilst 1/λ+min increases by a factor of roughly 10 after one level of refinement due to
the change in shape regularity mentioned above. This value is an order of magnitude
greater than the value of 1/λ+min observed for the Moffatt (κ = 0.1508) example and
accounts for the increase of the resulting iteration counts observed in the residual his-
tories for k ∈ {4, 7, 10, 13} in Figure 7. Thus, as one might expect, the preconditioner
P−1 is less effective on meshes containing high aspect ratio elements owing to the fact
that the inf-sup constants and inequalities employed in Appendix A all depend on the
shape regularity constant appearing in (3.2). Nevertheless, similar to the behavior
observed in the previous example, for each fixed n, the iteration counts grow modestly
in k. For each fixed k, the iteration counts are bounded in n, and remain virtually
unchanged for n ≥ 3.
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Fig. 5: (a) Mesh with n = 1 layer of elements, (b) Mesh with n = 3 layers of elements,
and (c) Zoom on re-entrant corner of mesh with n = 3 layers of elements.
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Fig. 6: Extremal eigenvalues of P−1S for the T-shape problem with (a) n = 1, (b)
n = 2, and (c) n = 3 layers of geometrically graded elements at the corners. All of
the extreme eigenvalues are uniformly bounded in n for each fixed k. In addition, the
introduction of small-angle “needle” elements for n ≥ 2 greatly increases 1/λ+min.
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(a)
(b) (c)

Fig. 7: MINRES convergence history with k ∈ {4, 7, 10, 13}, stopping tolerance 10−8

for a sequence of random initial iterates for the T-shape problem with (a) n = 1, (b)
n = 2, and (c) n = 3 layers of geometrically graded elements at the corners.

Appendix A. Technical Lemmas.

In this section, we establish a spectral equivalence of the ASM preconditioners
given in section 7 to the inner products appearing in the Stokes equations. The main
result is the following theorem, which is an immediate consequence of Lemmas A.4
to A.6 and A.9 proved later in this section:

Theorem A.1. There exists positive constants C1 and C2, independent of k and
h, such that

C−1
1 (p, p) ≤ m̄(p, p) ≤ C1(p, p) ∀p ∈ Q⊥

I ,(A.1)

and

C−1
2 a(u,u) ≤ ā(u,u) ≤ C2β

−2(1 + log3 k)a(u,u) ∀u ∈ ṼE ,(A.2)

where m̄(·, ·) is defined in (7.2), ā(·, ·) is defined in (7.6), and β is the inf-sup constant
defined in (1.3).

A.1. Pressure ASM. We begin with the pressure ASM. The first lemma es-
tablishes a key estimate for the norm of the pressure vertex functions:

Lemma A.2. The pressure vertex functions functions ψ̃ω
a , a ∈ V, ω ∈ Ωa, satisfy

‖ψ̃ω
a‖L2(K) ≤ ChKk

−2 ∀K ∈ T ,(A.3)

with C independent of k, hK , and a.

Proof. Let a ∈ V , ω ∈ Ωa. Define the function χ ∈ Q by the rule χ = χK

on each element K ∈ T where χK is chosen as in [7, Lemma 4.1]. In particular,
χK ∈ Pk−1(K) ∩ L2

0(K) satisfies (i) χK ≡ 0 if K * ω, (ii) χK(b) = δab for b ∈ VK ,
and (iii) ‖χK‖L2(K) ≤ ChKk

−2 with C independent of hK , k, and a. By (4.2d),

(4.2e), and Theorem 4.2, ψ̃a = Π̃χ, and ‖ψ̃ω
a‖L2(K) ≤ ‖χ‖L2(K) ≤ ChKk

−2 ∀K ∈ T .

We now show that the inner products on the subspaces are coercive:
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Lemma A.3. There exists a positive constant C independent of k and h such that

(p, p) ≤ Cma,ω(p, p) ∀p ∈ Q̃a,ω, a ∈ V , ω ∈ Ωa,

(p, p) ≤ CmK(p, p) ∀p ∈ Q̃K , K ∈ T .

Proof. Let p ∈ Q̃a,ω, a ∈ V , ω ∈ Ωa. Then, p = p(a)ψ̃ω
a , and by (A.3) and shape

regularity (3.2), there holds

(p, p) ≤ C
∑

K∈T :K⊆ω

h2Kk
−4|p(a)|2 ≤ C|ω|k−4 = ma,ω(p, p).

Now let p ∈ QK , K ∈ T . Then, p = (|K|−1
∫
K p dx)ψ̃K and since ψ̃ω

a ∈ L2
0(K),

∫

K

ψ̃2
K dx =

∫

K




1 +




∑

a∈VK
ω⊇K

ψ̃ω
a




2


dx ≤ |K|+ Ch2Kk
−4 ≤ C|K|.

Thus, (p, p) ≤ CmK(p, p).

We are now able to establish the left-hand side of the equivalence (A.1):

Lemma A.4. There exists a constant C independent of k and h such that

(p, p) ≤ Cm̄(p, p) ∀p ∈ Q⊥
I .(A.4)

Proof. Let p ∈ Q⊥
I . By Cauchy-Schwarz, there holds

(p, p)K ≤ 4




∑

a∈VK
ω⊇K

(pa,ω, pa,ω)K + (pK , pK)K




where (p, q)K :=
∫
K pq dx. (A.4) now follows from Lemma A.3 and summing over

the elements.

The right-hand side of the equivalence (A.1) is covered by the next result:

Lemma A.5. There exists a positive constant C independent of k and h such that

m̄(p, p) ≤ C(p, p) ∀p ∈ Q⊥
I .(A.5)

Proof. By [4, Lemma 6.1], there holds

|p|K(a)|2k−4 = |(p|K ◦ FK)(â)|2k−4 ≤ C‖p ◦ FK‖2
L2(T̂ )

≤ Ch2K‖p‖2L2(K)

with â = F−1
K (a), and by shape regularity,

ma,ω(pa,ω, pa,ω) = |ω|k−4|p|ω(a)|2 ≤ C
∑

K∈T :K⊆ω

‖p‖2L2(K).

Summing over a ∈ V , ω ∈ Ωa and again using shape regularity to bound the overlap
|{ω : ∃a ∈ V : K ⊆ ω ∈ Ωa}| gives

∑

a∈V
ω∈Ωa

ma,ω(pa,ω, pa,ω) ≤ C
∑

a∈V
ω∈Ωa

∑

K∈T :K⊆ω

‖p‖2L2(K) ≤ C‖p‖2L2(Ω).
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To bound the remaining mK(·, ·) terms, we use Cauchy-Schwarz:

∑

K∈T
mK(pK , pK) =

∑

K∈T

1

|K|

(∫

K

p dx

)2

≤ C
∑

K∈T
‖p‖2L2(K) ≤ C‖p‖2L2(Ω),

which completes the proof of (A.5).

A.2. Velocity ASM. We now turn to the velocity space, and start by extending
the decomposition (7.5) as follows. For u ∈ ṼE , we define uγ ≡ 0 for γ ∈ E \ EI and

ua,µ ≡ 0 for a ∈ V , µ̂ ∈ Da \ D̊a. Since the inner product on each of the subspace
was taken to be a(·, ·), we immediately obtain the left-hand side of the equivalence
(A.2):

Lemma A.6. For all u ∈ ṼE, there holds

a(u,u) ≤ 10ā(u,u).(A.6)

Proof. First recall that there are exactly 2 directional derivative degrees of free-
dom per velocity component per vertex on any given element, i.e. for K ∈ T ,
|{µ̂ : K ⊆ suppφµa}| = 2. By Cauchy-Schwarz, there holds

|u|2H1(K) ≤ 10




|uc|2H1(K) +

∑

a∈VK

µ̂:K∈suppφµ
a

|ua,µ|2H1(K) +
∑

γ∈EK

|uγ |2H1(K)




, ∀K ∈ T .

Equation (A.6) now follows by summing over the elements.

To prove the right-hand side of (A.2), we need to establish some properties of the
velocity vertex functions:

Lemma A.7. The C0 velocity vertex functions satisfy the following: For K ∈ T ,

R2 ∋ c =
∑

a∈VK

2∑

i=1

(c · êi)ΠV (φaêi) on K(A.7)

and

‖ΠV (φaêi) ◦ FK‖
H1(T̂ ) ≤ C ∀a ∈ V , i = 1, 2,(A.8)

where C depends only on the shape regularity parameter.
Moreover, the C1 velocity vertex functions satisfy

‖ΠV (φµaêi) ◦ FK‖H1(T̂ ) ≤ C‖DFK‖L∞(T̂ )k
−2 a ∈ V , µ̂ ∈ Da, i = 1, 2,(A.9)

where C depends only on the shape regularity parameter.

Proof. Let K ∈ T . A simple computation reveals that 1 = (λ1 + λ2 + λ3)
3 =∑

a∈VK
φa + 6λ1λ2λ3 on K, where {λi : 1 ≤ i ≤ 3} are the barycentric coordinates

on K, and hence, for any c ∈ R2,

c =
∑

a∈V

2∑

i=1

(c · êi)(φaêi) + 6c
∑

K∈T
λ1λ2λ3

︸ ︷︷ ︸
∈VI

.
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Applying ΠV to both sides of this identity and noting that Theorem 4.1 gives ΠV :
VI → {0}, we obtain

ΠV c =
∑

a∈V

2∑

i=1

(c · êi)ΠV (φaêi).

Finally, Theorem 4.1 implies that E (c, 0) = (c, 0) and (A.7) follows at once.
Now let K ∈ T and i ∈ {1, 2}. Clearly (A.8) holds if a /∈ VK since φaêi = 0.

Otherwise, if a ∈ VK , we apply a scaling argument in conjunction with (4.4) to arrive
at

1

|K|2 ‖ΠV (φaêi)‖2L2(K) + |ΠV (φaêi)|2H1(K) ≤ C

{
|φa|2H1/2(∂K) +

1

|∂K|‖φa‖
2
L2(∂K)

}
,

where C is a positive constant independent of k and hK . Thus,

‖ΠV (φaêi) ◦ FK‖H1(T̂ ) ≤ C‖φ̂j‖H1/2(∂T̂ ) ≤ C‖φ̂j‖H1(T̂ ) ≤ C,

where âj = F−1
K (a). For K ⊆ suppφµa, we argue similarly and use (6.10) to obtain

‖ΠV (φµaêi) ◦ FK‖H1(T̂ ) ≤ C
∥∥∥
[
µ̂ ξ̂

]−1
∥∥∥ ‖DFK‖L∞(T̂ )

∥∥∥∥∥

[
φ̂
(1,0)
j

φ̂
(0,1)
j

]∥∥∥∥∥
H1/2(∂T̂ )

,

where µ̂ 6= ξ̂ ∈ Da is chosen such that suppφξa ⊇ K, âj = F−1
K (a), and ‖ · ‖ is

any matrix norm. By the definition of Da (6.9) and shape regularity,
∥∥∥
[
µ̂ ξ̂

]−1
∥∥∥

is uniformly bounded by a constant depending only on κ (3.2). Since φ̂
(1,0)
j (â) =

φ̂
(0,1)
j (â) = 0 for â ∈ VT̂ by the construction (6.3), there holds

‖ΠV (φµaêi) ◦ FK‖H1(T̂ ) ≤ C‖DFK‖L∞(T̂ )‖J‖H1/2
00

(I)

where I = (−1, 1), H
1/2
00 (I) is the usual Sobolev space (defined as, e.g. [23]), and

J(t) =
1

P
(3,3)
k−3 (−1)

(
1 + t

2

)(
1− t

2

)2

P
(3,3)
k−3 (t).

Thanks to [5, Lemma B.1], ‖J‖L2(I) ≤ Ck−3 with C independent of k. Using interpo-
lation, and the inverse estimate ‖J ′‖L2(I) ≤ Ck2‖J‖L2(I) [10, Lemma 5.4], we obtain

‖J‖
H

1/2
00

(I)
≤ C‖J‖1/2L2(I)‖J‖

1/2
H1(I) ≤ Ck−2, which completes the proof of (A.9).

We now use the properties of the vertex functions to prove element-wise stability
of the subspace decomposition (7.5):

Lemma A.8. For u ∈ ṼE and K ∈ T , there holds

|uc|2H1(K) +
∑

a∈VK
µ̂:K∈suppφµ

a

|ua,µ|2H1(K) +
∑

γ∈EK

|uγ |2H1(K) ≤ Cβ−2(1 + log3 k)|u|2H1(K),

(A.10)

where C is independent of k, hK and u.
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Proof. Let u ∈ ṼE and K ∈ T . For any c ∈ R2, we have the decomposition

u− c = uc −
∑

a∈VK

2∑

i=1

(c · êi)ΠV (φaêi) +
∑

a∈VK

µ̂:K∈suppφµ
a

ua,µ +
∑

γ∈EK

uγ on K

thanks to (A.7). Thus,

û− c = ûc −
∑

a∈VK

2∑

i=1

(c · êi)ΠV (φaêi) ◦ FK +
∑

a∈VK
µ̂:K∈suppφµ

a

ûa,µ +
∑

γ∈EK

ûγ on T̂ ,

where û = u ◦ FK , ûc = uc ◦ FK , etc. We first bound the energy of ûc. Since

ûc =
∑

a∈VK

2∑

i=1

(u(a) · êi)ΠV (φaêi) ◦ FK

=
∑

â∈VT̂

2∑

i=1

(û(â) · êi)ΠV (φaêi) ◦ FK on T̂ ,

where a = FK(â), we use [9, Corollary 6.3] and (A.8) to obtain

‖ûc − c‖2
H1(T̂ )

≤
∑

â∈VT̂

|û(â)− c|2
2∑

i=1

‖ΠV (φaêi) ◦ FK‖2
H1(T̂ )

≤ C(1 + log k)‖û− c‖2
H1(T̂ )

.(A.11)

We now bound the vertex derivative contribution. For a ∈ VK , we note that
∂µ(u · êi)(a) = µ̂TDF−T

K D(u · êi ◦ FK)(â), i = 1, 2, where â = F−1
K (a). Applying

[4, Lemma 6.1] to D(u ◦ FK), and using (A.9) and shape regularity gives

‖ûa,µ‖2H1(T̂ )
≤ C‖DF−T

K ‖2L∞(K) · ‖DFK‖2
L∞(T̂ )

· |Dû(â)|2k−4 ≤ C|û|2
H1(T̂ )

.(A.12)

Now, we define

u# := (u− c)− (uc − c)−
∑

a∈VK

µ̂:K∈suppφµ
a

ua,µ on K.

Then, Dαu#(a) = 0 for a ∈ VK , |α| ≤ 1, and thanks to (A.11) and (A.12), û# :=
u# ◦ FK may be estimated as follows:

‖û#‖2
H1(T̂ )

≤ C(1 + log k)‖û− c‖2
H1(T̂ )

(A.13)

Let γ ∈ EK . Equation (4.5), shape regularity (3.2), and the trace theorem give

|ûγ |H1(T̂ ) ≤ Cβ−1|uγ |H1/2(∂K) ≤ Cβ−1|ûγ |H1/2(∂T̂ ) ≤ Cβ−1‖û#‖
H

1/2
00

(γ̂)
,(A.14)

where γ̂ = F−1
K (γ). Thanks to [9, Theorem 6.5] and the trace theorem, we have the

estimate

‖û#‖
H

1/2
00

(γ̂)
≤ C(1 + log k)‖û#‖H1/2(γ̂) ≤ C(1 + log k)‖û#‖H1(T̂ ).(A.15)
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Using (A.13)–(A.15) gives

|ûγ |2H1(T̂ )
≤ Cβ−2(1 + log2 k)‖û#‖2

H1(T̂ )
≤ Cβ−2(1 + log3 k)‖û− c‖2

H1(T̂ )
,(A.16)

Combining (A.11), (A.12), and (A.16) leads to

|ûc|2H1(T̂ )
+

∑

a∈VK

µ̂:K∈suppφµ
a

|ûa,µ|2H1(T̂ )
+

∑

γ∈EK

|ûγ |2H1(T̂ )

≤ Cβ−2(1 + log3 k)‖û− c‖2
H1(T̂ )

,

where we used that |ûc|H1(T̂ ) = |ûc − c|H1(T̂ ). Taking the infimum over all c ∈ R2

and applying the quotient norm equivalence [28, Theorem 7.2] gives

|ûc|2H1(T̂ )
+

∑

a∈VK
µ̂:K∈suppφµ

a

|ûa,µ|2H1(T̂ )
+

∑

γ∈EK

|ûγ |2H1(T̂ )
≤ Cβ−2(1 + log3 k)|û|2

H1(T̂ )
.

Equation (A.10) now follows from shape regularity (3.2).

Summing (A.10) over the elements leads to the following:

Lemma A.9. There exists a constant C independent of k and h such that

ā(u,u) ≤ Cβ−2(1 + log3 k)a(u,u) ∀u ∈ ṼE .(A.17)
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