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Abstract

We address the problem of optimal scale-dependent parameter learning in total variation image de-
noising. Such problems are formulated as bilevel optimization instances with total variation denoising
problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity condi-
tions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable
constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lip-
schitz continuity and directional differentiability of the lower-level solution operator. A characterization
of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system,
is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region
algorithm for the numerical solution of the bilevel problem and test it computationally for two particular
experimental settings.
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1 Introduction

In this work we address the bilevel optimal selection of parameters in total variation image denoising mod-
els, from a variational and nonsmooth analysis perspectives. Bilevel techniques were proposed for optimal
parameter selection of variational models in the seminal work [11], provided a training dataset to learn from.
The variational models considered there were based on the total variation (TV) seminorm and different
noise statistics models were taken into account. Thereafter, apart of variational denoising problems, the
bilevel learning framework has been considered for other imaging applications such as image restoration [10,
9], blind image deconvolution [18], image segmentation [24, 26], nonlocal models [7] and kernel parameter
estimation for support vector machines [20]. The bilevel methodology was also extended by Cao et al. [31,
3], Hintermüller et al. [18, 13] and Strong et al. [30] for learning different optimal scale-dependent total vari-
ation (TV) and total generalized variation (TGV) denoising parameters. Either using a training set or noise
statistics of the image, scale-dependent problems face the risk of leading to overfitted optimal parameters
(see, e.g., [12]). To gain generalization, alternative parameter functions may be considered that lie between
a scalar and a fully scale-dependent weight. Examples of those intermediate functions are patch-dependent
parameters, dictionary weights or basis functions coefficients.

One of the most challenging aspects in bilevel imaging learning, either with scalar or scale-dependent
parameters, is the derivation of necessary optimality conditions that characterize the optimal solutions
sharply and that may be used for numerical purposes. The approach pursued in [11, 21, 31] was based
on a local regularization of the nonsmooth terms and an asymptotic analysis thereafter, yielding a C-
stationarity system that does not fully characterize optimal parameters. A related approach, based on a
dual reformulation of the lower level instance, was studied in [16, 17]. Alternatively, a direct nonsmooth
approach was considered in [18] and [12] to learn point spread functions in blind deconvolution models and
the weight in front of the fidelity term in denoising models, respectively. In both such cases, the parameter
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affects the fidelity term and does not alter the structure of the primal-dual reformulation of the lower-level
problem. Based on variational analysis tools, an M-stationarity system was then obtained.

Our aim in this paper consists in deriving sharp optimality conditions of Mordukhovich (M-) and Bouli-
gand (B-) type for total variation bilevel learning problems, when the scale-dependent parameter appears
within the regularizer. In such cases, differently from [18, 12], the nonnegativity constraint of the parameter
alters the structure of the primal-dual characterization of the variational denoising model, leading to the
appearance of not only a biactive, but also a triactive set. This involved nonsmoothness significantly compli-
cates the derivation of the corresponding Fréchet and Mordukhovich normal cones, as well as the nonsmooth
analysis of the lower-level solution mapping.

Firstly, after introducing the bilevel problem, we are able to reformulate it as a generalized mathematical
program with equilibrium constraints (GMPEC). We rigorously characterize the corresponding Mordukhovich
generalized normal cone (Theorem 3.4) and verify a constraint qualification condition. This leads to the
derivation of an M-stationarity system for the characterization of local minima (Theorem 3.5). Thereafter,
we focus on B-stationarity conditions, which require the directional differentiability of the solution mapping.
In that respect, we are able to prove the Lipschitz continuity and directional differentiability of the solution
operator, and characterize the directional derivative by means of a variational inequality (Theorem 4.6). In
case of strict complementarity, the directional derivative becomes the Fréchet one and is characterized by
a linear system. Also the Bouligand subdifferential of the solution operator is characterized by means of a
general linear problem, based on a splitting of the biactive set and a properly defined subspace (Theorem 5.1).

A further challenge is related with the numerical solution of the bilevel learning problems. Based on the
properties of a local regularization technique, a numerical optimization algorithm of second-order type was
considered in [11] and further explored in [2], where dynamic sampling techniques were taken into account
to accelerate the algorithm in the case of large datasets. A new approach handling the bilevel problem
using a non-smooth setting can be found in the work of Ochs et. al. [24], where the authors make use of
algorithmic differentiation to find optimal parameters in variational models. An additional contribution of
this paper is related to the solution of the bilevel instances by means of a nonsmooth trust-region algorithm.
Specifically, based on the results in [6] and the Bouligand subdifferential characterization, we devise a two-
phase trust-region algorithm for the solution of the problems (Algorithm 1). In the first phase, the Bouligand
subdifferential is used in the quadratic trust-region subproblem, while in the second one, when the trust-
region radius becomes small enough, a regularized gradient is utilized. We verify the performance of the
proposed algorithm by means of scalar and scale-dependent experiments.

The paper is organized as follows. We will describe the bilevel learning problem in Section 2 along with the
standing assumptions. In Section 3 we will characterize the Mordhukovich generalized normal cone and verify
an appropriate constraint qualification condition, that will enable us to derive an M-stationary optimality
system for the bilevel learning problem. In Section 4 we study the Lipschitz continuity and directional
differentiability of the solution operator, with a proper characterization of the directional derivative, to obtain
B-stationarity conditions for the bilevel problem. Thereafter, in Section 5 we characterize the Bouligand
subdifferential of the solution mapping by means of a generalized linear system. This characterization of the
Bouligand subdifferential will be of use in Section 6, where we propose a non-smooth trust-region solution
algorithm. Finally, detailed numerical experiments will be provided in Section 7.

2 Problem Formulation

Variational image denoising is a known ill-posed inverse problem. Indeed, by considering an image as a
m1 ×m2 pixel matrix and mapping this matrix into a vector of length m = m1m2, a variational denoising
model can be formulated as follows:

min
u∈Rm

E(u) = φ(u, f) +R(u, α), (1)

where f is the noise contaminated image, α is a parameter that balances a data fidelity term φ and a
regularization term R.

This paper will focus on the case where the regularization term corresponds to the Isotropic Total Vari-
ation Semi-norm (TV). To characterize the TV regularizer, let us introduce the discrete gradient operator
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K : Rm → Rn×2

Ku = (Kxu,Kyu) ∈ Rn × Rn.

The matrix Kx computes the difference in all neighboring pixel intensities in the x-direction and Ky in
the y-direction. Taking u ∈ Rm as a given image, the isotropic discrete total variation is then defined by
‖Ku‖2,1 :=

∑n
j=1 ‖(Ku)j‖, where ‖ · ‖ is the euclidean norm and (Ku)j corresponds to the j-th row of Ku.

This regularizer induces sparsity on the gradients of the image, which favors piecewise constant images with
sparse edges [29].

Now, regarding the balance parameter α, it can be considered as a scalar value in the case we assume
a uniform noise distribution across the entire image. However, such assumption is known to be unrealistic
for most applications. Therefore, we will explore different types of balance parameters, starting with a
scale-dependent parameter α ∈ Rn+ and the following form of the regularization term:

R(u, α) =

n∑
j=1

αj‖(Ku)j‖. (2)

With these considerations in mind, and assuming a C2 and strongly convex data fidelity term φ : Rm → R,
our variational denoising model reads as follows:

min
u∈Rn

E(u) := φ(u, f) +

n∑
j=1

αj‖(Ku)j‖. (3)

In certain circumstances, such scale-dependent parameter may lead to an overfitted solution, which is why an
intermediate approach is often desirable. One of such approaches considers a parameter α ∈ Rp with p << n
as piecewise constant in different patches of the image. Along the paper, we will derive the theoretical results
only for the scale-dependent model, since they easily extend to the patch-based and scalar models.

We will focus on bilevel strategies for finding optimal regularization parameters for the image denoising
model eq. (3). That is, given a training set containing N pairs of damaged and “noise-free” pairs of images,
we will find an optimal regularization parameter α ∈ Rn+ that minimizes a continuously differentiable, proper
and strongly convex loss function J : Rm → R, that measures the quality of the reconstruction with respect
to the ground truth images in the training set.

Using training set pairs (ūi, fi), i = 1, . . . , N , with noisy images fi and ground truth images ūi, our
bilevel parameter learning problem reads as follows:

min
α∈Rn,α≥0

N∑
i=1

J(ui, ūi) (4a)

s.t. ui ∈ arg min
u∈Rm

φ(u, fi) +

n∑
j=1

αj‖(Ku)j‖, i = 1, . . . , N (4b)

Regarding the spatially dependent TV denoising problem eq. (3), we can guarantee the existence of a
unique solution as well as characterize it through a necessary and sufficient optimality condition.

Theorem 2.1. Problem eq. (3) has a unique solution u∗ ∈ Rm. Moreover, a necessary and sufficient
condition is given by the following variational inequality of the second kind

〈φ′(u∗), v − u∗〉+

n∑
j=1

αj‖(Kv)j‖ −
n∑
j=1

αj‖(Ku∗)j‖ ≥ 0, ∀v ∈ Rm. (5)

Proof. The strong convexity of φ, along with the convexity of the total variation semi-norm, yields the strong
convexity of the lower level optimization problem. Consequently this problem has a unique optimizer u∗.
The variational inequality then follows by standard arguments (see, e.g., [8, Theorem 6.1])

3



Using duality techniques [14], the variational inequality of the second kind (5) can be equivalently written
in primal-dual form, yielding the following reformulation of the lower-level problem:

φ′(u) + K>q = 0, (6a)

〈qj , (Ku)j〉 − αj‖(Ku)j‖ = 0, ∀j = 1, . . . , n, (6b)

‖qj‖ − αj ≤ 0, ∀j = 1, . . . , n, (6c)

Consequently, the bilevel parameter learning problem, for a single training pair, can be written as:

min
α∈Rn

J(u, ū) (7a)

s.t. φ′(u) + K>q = 0, (7b)

〈qj , (Ku)j〉 − αj‖(Ku)j‖ = 0, ∀j = 1, . . . , n, (7c)

‖qj‖ − αj ≤ 0, ∀j = 1, . . . , n, (7d)

αj ≥ 0, ∀j = 1, . . . , n. (7e)

For the sake of clarity in the exposition, we restrict hereafter the analysis to the case of a single training
pair. The results are, however, easily extendable to larger training sets.

3 Mordukhovich Stationarity

In this section we address stationarity conditions for the bilevel problem eq. (7) using variational analysis
tools. Specifically, we reformulate the bilevel problem as a generalized mathematical program with equilib-
rium constraints (GMPEC) and verify a constraint qualification condition based on the variational geometry
of the solution set.

A generalized mathematical program with equilibrium constraints may be formulated in the following
general form:

min f(x, y)

s.t. 0 ∈ F1(x, y) +Q(F2(x, y)),

(x, y) ∈ ω,

(8)

where f is locally Lipschitz on Rn × Rm, F1 : Rn × Rm → Rm and F2 : Rn × Rm → Rl are continuously
differentiable, ω ⊂ Rn×Rm is non-empty and closed and Q : Rl ⇒ Rm is a multifunction with closed graph.
A constraint qualification condition for GMPEC that guarantee the existence of KKT multipliers and its
corresponding stationarity system is privede in the next result.

Theorem 3.1 (Outrata [25]). Let (x∗, y∗) be a local solution of eq. (8) and the following constraint quali-
fication[

(∇xF2(x∗, y∗))> −(∇xF1(x∗, y∗))>

(∇yF2(x∗, y∗))> −(∇yF1(x∗, y∗))>

] [
w
z

]
∈ −NM

ω (x∗, y∗),

(w, z) ∈ NM
gphQ(F2(x∗, y∗),−F1(x∗.y∗))

 implies

{
w = 0,

z = 0
(9)

holds true. Then there exist a pair (ξ, η) ∈ ∂f(x∗, y∗), a pair (γ, δ) ∈ NM
ω (x∗, y∗), and a KKT pair

(w∗, z∗) ∈ NM
gphQ(F2(x∗, y∗),−F1(x∗, y∗)) such that

0 = ξ + (∇xF2(x∗, y∗))>w∗ − (∇xF1(x∗, y∗))>z∗ + γ,

0 = η + (∇yF2(x∗, y∗))>w∗ − (∇yF1(x∗, y∗))>z∗ + δ.

where NM
gphQ stands for Mordukhovich generalized normal cone to the graph of Q.

In our case, using the primal-dual formulation eq. (6), the constraints may be written as

0 ∈ φ′(u) +Q(α, u), (10)
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where Q : Rn+×Rm ⇒ Rm is the set-valued operator associated to the subdifferential of the Euclidean norm,
i.e.,

Q(α, u) :=

{
K>q : q ∈ Rn×2,

{
qj = αj

(Ku)j
‖(Ku)j‖ , if ‖(Ku)j‖ 6= 0, αj ≥ 0,

‖qj‖ ≤ αj , if ‖(Ku)j‖ = 0, αj ≥ 0.

}
(11)

Equivalently, by making use of the definition of the graph of the multifunction Q we can rewrite eq. (10) as
follows

φ′(u) + K>q = 0, (12a)

(α, u,K>q) ∈ gph Q, (12b)

(α, u) ∈ ω := Rn+ × Rm, (12c)

where gphQ := {(α, u,K>q) ∈ Rn+ × Rm × Rm : K>q ∈ Q(α, u)}.
The constraint qualification in theorem 3.1 guarantees the existence of multipliers that allow the deriva-

tion of a stationarity system. In [18] such constraint qualification condition was circumvented by using
Robinson strong regularity of the set valued equation. In contrast, the structure of the multifunction eq. (11),
depending both on the regularization parameter α and the image u, prevent us from using the same shortcut.

Using the structure of the set valued operator Q presented in eq. (11), let us introduce the following
notation for the inactive, strongly active, biactive, zero-inactive and triactive sets, respectively:

I(α, u) := {j ∈ {1, . . . , n} : (Ku)j 6= 0, αj > 0},
As(α, u) := {j ∈ {1, . . . , n} : ‖qj‖ < αj},
B(α, u) := {j ∈ {1, . . . , n} : ‖qj‖ = αj , (Ku)j = 0, αj > 0},
I0(α, u) := {j ∈ {1, . . . , n} : (Ku)j 6= 0, αj = 0},
T (α, u) := {j ∈ {1, . . . , n} : ‖qj‖ = αj , (Ku)j = 0, αj = 0}.

We will omit the arguments in the set notation whenever they can be inferred from the context. Let us note
that the condition in the strongly active set As implies a strict positive parameter αj > 0 for this index set.

The constraint qualification condition theorem 3.1 makes use of key fundamental definitions from Mor-
dukhovich’s generalized calculus. In particular, the Mordukhovich normal cone to the graph of the muti-
function Q. For the reader’s convenience we will lay some basic concepts in variational geometry that will
be used through this section. For a more rigorous review refer to, e.g., [27]

Definition 3.1 (Bouligand Tangent Cone). Let C ⊂ Rn and x̄ ∈ clC. The Bouligand Tangent Cone to C
at x is defined as

TC(x̄) := {d ∈ Rn : ∃tk → 0,∃xk ∈ C :
xk − x̄
tk

→ d}. (13)

Definition 3.2 (Fréchet Normal Cone). Let C ⊂ Rn and x̄ ∈ clC. The Fréchet Normal Cone is defined as
the polar to TC(x̄), i.e.,

NF
C (x̄) =

{
d ∈ Rn : lim sup

x
C→x̄

〈d, x− x̄〉
‖x− x̄‖

≤ 0

}
= [TC(x̄)]◦. (14)

Definition 3.3 (Mordukhovich Normal Cone). Let C ⊂ Rn and x̄ ∈ clC. The Mordukhovich Normal Cone
is defined as

NM
C (x̄) := {d ∈ Rn : ∃xk → x̄, dk ∈ NF

C (xk) s.t. dk → d}. (15)

Remark 1. If the set C in definition 3.3 is convex, NM
C (x̄) amounts to the standard normal cone to C at

x̄. Otherwise, this cone is in general non-convex.

In the following lemmata we obtain the Bouligand tangent cone, the Fréchet normal cone and the Mor-
dukhovich normal cone to the graph of the multifunction Q.
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Lemma 3.2. The Bouligand tangent cone to the graph of Q, described in eq. (12), is given by

TgphQ(α, u,K>q) =

(δα, δu,K>δq) :



(δq)j − (δα)j
(Ku)j
‖(Ku)j‖

− αjTj(Kδu)j = 0, if j ∈ I,

(Kδu)j = 0, if j ∈ As,

(Kδu)j = 0, 〈(δq)j , qj〉 ≤ αj(δα)j ∨
(Kδu)j = c̃qj(c̃ ≥ 0), 〈(δq)j , qj〉 = αj(δα)j

}
if j ∈ B,

(δq)j − (δα)j
(Ku)j
‖(Ku)j‖

= 0, (δα)j ≥ 0 if j ∈ I0,

(δα)j ≥ 0, (Kδu)j ∈ R2\{0}, (δq)j − (δα)j
(Kδu)j
‖(Kδu)j‖

= 0 ∨

(δα)j ≥ 0, (Kδu)j = 0, ‖(δq)j‖ − (δα)j ≤ 0

 if j ∈ T ,


where

Tj(Kv)j =
(Kv)j
‖(Ku)j‖

−
(Ku)j(Ku)>j (Kv)j

‖(Ku)j‖3
, for v ∈ Rn.

Proof. The tangent cone to the graph of the multifunction Q is defined as

TgphQ(α, u,K>q) = {(δα, δu,K>δq) ∈ Rn × Rm × Rm : ∃tk → 0, (αk, uk,K>qk) ∈ gphQ :

1

tk
((αk, uk,K>qk)− (α, u,K>q))→ (δα, δu,K>δq)}.

In order to calculate this cone, we split the analysis into different cases, according to the definition of the
multifunction Q.

Case 1: j ∈ I. In this index set the dual variable can be uniquely characterized. According to eq. (11),
the following equation is fulfilled:

hj(α, u,K>q) = qj − αj
(Ku)j
‖(Ku)j‖

= 0. (16)

Using Lyusternik’s theorem [19, Theorem 4.21], the j−th component of the tangent direction then
satisfies

(δq)j − (δα)j
(Ku)j
‖(Ku)j‖

− αjTj(Kδu)j = 0.

Case 2: j ∈ As. In this index set we know ‖qj‖ < αj . Therefore, this point can only be approximated by
taking sequences in the strongly active set. For n sufficiently large we then take sequences such that
(Kuk)j = 0, ‖(qk)j‖ < (αk)j . Taking the limit in (Kuk)j = 0, as k → ∞, yields (Kδu)j = 0. For the
dual variable, let us take the sequence (qk)j = qj + tkd with arbitrary d ∈ R2. It then follows that

(δq)j = lim
tk→0

(qk)j − qj
tk

= d.

Since we took an arbitrary direction d it yields (δq)j ∈ R2. Similarly, we get that (δα)j ∈ R.

Case 3: j ∈ B. There are three possible approximations to a point in this index set, via inactive, strongly
active or biactive sequences. Since αj > 0 in all these three cases, we can approximate it by sequences
(αk)j < αj or (αk)j > αj . Consequently, we get (δα)j ∈ R.

Now, if we approach a biactive point using a sequence in the inactive set, this sequence satisfies
(Kuk)j 6= 0. Taking in particular (Kuk)j = (Ku)j + tk(Kδuk

)j = tk(Kδuk
)j , then the sequence of dual

variables has the following form

(qk)j = (αk)j
(Kuk)j
‖(Kuk)j‖

= (αk)j
(Kδuk

)j
‖(Kδuk

)j‖
. (17)
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Furthermore, considering the following product

〈(qk)j , (Kδuk
)j〉 =

〈
(αk)j

(Kδuk
)j

‖(Kδuk
)j‖

, (Kδuk
)j

〉
= (αk)j‖(Kδuk

)j‖,

and taking the limit as k → ∞ we get 〈qj , (Kδu)j〉 = α‖(Kδu)j‖. Recalling that in this index set
‖qj‖ = αj > 0, we know both vectors are collinear, i.e.,

(Kδu)j = c̃qj , for some c̃ ≥ 0. (18)

Using that ‖qj‖ = αj , the following product holds〈
(qk)j − qj

tk
, qj

〉
=

1

tk
(〈(qk)j , qj〉 − 〈qj , qj〉) =

1

tk
(〈(qk)j , qj〉 − 〈(qk)j , (qk)j〉+ 〈(qk)j , (qk)j〉 − α2

j ),

=

〈
(qk)j ,

qj − (qk)j
tk

〉
+

(αk)2
j − α2

j

tk
.

The last equality holds since from eq. (17), we get the product 〈(qk)j , (qk)j〉 = (αk)2
j . Taking the limit

as tk → 0 we get
〈(δq)j , qj〉 = αj(δα)j . (19)

Now, if the approximation is done through a sequence of strongly active points, we know the sequence
satisfies (Kuk)j = 0 and ‖qk‖ < (αk)j . In this case we know (Kδu)j = 0 and, using the Cauchy-Schwarz
inequality, we get 〈

(qk)j − qj
tk

, qj

〉
≤ αj
tk

(‖(qk)j‖ − ‖qj‖) < αj

(
(αk)j − αj

tk

)
,

which implies that 〈(δq)j , qj〉 ≤ αj(δα)j .

Finally, approximating through a biactive set sequence, we know again (Kδu)j = 0 and, estimating the
product 〈

(qk)j − qj
tk

, qj

〉
≤ αj
tk

(‖(qk)j‖ − ‖qj‖) = αj

(
(αk)j − αj

tk

)
,

we get
〈(δq)j , qj〉 ≤ αj(δα)j . (20)

Case 4: j ∈ I0. We can approximate a point in the zero-inactive set by sequences in the inactive set.
Therefore, considering a sequence (Kuk)j = (Ku)j + tkv with v ∈ R2 arbitrary we have

(Kδu)j = lim
tk→0

(Kuk)j − (Ku)j
tk

= v. (21)

Since we took v ∈ R2 arbitrary, it follows that (Kδu) ∈ R2. Furthermore, since qj = αj((Ku)j/‖(Ku)j‖)
and αj = 0, then qj = 0 in this index set. Considering the sequence (αk)j = αj + tkh we obtain

(δq)j = lim
tk→0

(qk)j
tk

= lim
tk→0

h
(Kuk)j
‖(Kuk)j‖

= (δα)j
(Ku)j
‖(Ku)j‖

. (22)

Since αj = 0, the only valid approximations are the ones coming from positive elements, thus (δα)j ≥ 0.
Another possible approximation can be done through zero-inactive points, meaning (qk)j = 0 and
(αk)j = 0. This case implies (δq)j = 0, (δα)j = 0 and (Kδu)j ∈ R2, which is a particular case of
eq. (22).
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Case 5: j ∈ T . There are four ways to approach a triactive point. As in the zero-inactive case, all valid
approximations come from (αk)j ≥ 0, which again implies (δα)j ≥ 0. Similarly to the zero-inactive
case eq. (21), we also get (Kδu)j ∈ R2.

Approximating through a sequence in the inactive set, we obtain

(δq)j = lim
tk→0

1

tk

(
(αk)j

(Kuk)j
‖(Kuk)j‖

)
= (δα)j

(Kδu)j
‖(Kδu)j‖

. (23)

Likewise, the approximation can be made using zero-inactive points. In this case (Kδu)j 6= 0, (qk)j = 0
and (αk)j = 0. From this sequence we can derive (δq)j = 0, (δα)j = 0 and (Kδu)j ∈ R2, which is
included in eq. (23).

Moving forward, we can also approximate through strongly active points, i.e., (Kuk)j = 0 and ‖(qk)j‖ <
(αk)j . From this sequence we know (Kδu)j = 0 and (δα)j ≥ 0 and the dual variable will have the
following form

‖(δq)j‖ =

∥∥∥∥ lim
tk→0

(qk)j
tk

∥∥∥∥ = lim
tk→0

1

tk
‖(qk)j‖ ≤ lim

tk→0

1

tk
(αk)j = (δα)j , (24)

yielding ‖(δq)j‖ ≤ (δα)j .

Finally, we consider an approximation through biactive points, meaning (Kuk)j = 0 and ‖(qk)j‖ =
(αk)j . We the obtain (Kδu)j = 0, (δα)j ≥ 0 and

‖(δq)j‖ =

∥∥∥∥ lim
tk→0

(qk)j
tk

∥∥∥∥ = lim
tk→0

1

tk
‖(qk)j‖ = lim

tk→0

1

tk
(αk)j = (δα)j ,

which is a particular case of eq. (24). Consequently, ‖(δq)j‖ = (δα)j .

Lemma 3.3. The Fréchet normal cone to the graph of Q, described in eq. (12), is given by

NF
gphQ(α, u,K>q) = 

(ϑ,K>µ, p) :



µj + αjTj(Kp)j = 0, if j ∈ I,

ϑj +
〈(Ku)j , (Kp)j〉
‖(Ku)j‖

= 0, if j ∈ I,

ϑj = 0, (Kp)j = 0 if j ∈ As,
ϑj + cαj = 0, (Kp)j = cqj(c ≥ 0), 〈µj , qj〉 ≤ 0, if j ∈ B,

ϑj +
〈(Ku)j , (Kp)j〉
‖(Ku)j‖

≤ 0, µj = 0, if j ∈ I0,

ϑj ≤ 0, (Kp)j = 0, µj = 0, if j ∈ T .


(25)

Proof. Using the definition of the Fréchet normal cone for this problem

NF
gphQ(α, u,K>q) = {(ϑ,K>µ, p) ∈ Rn × Rm × Rm : 〈(ϑ,K>µ, p), (δα, δu,K>δq)〉 ≤ 0}.

Indeed, we can rewrite this inequality as

n∑
j=1

((δα)jϑj + 〈(Kδu)j , µj〉+ 〈(δq)j , (Kp)j〉) ≤ 0.

Using this representation, along with the tangent cone characterization from theorem 3.2, we analyze the
different cases according to their index set.
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Case 1: j ∈ I. Using the characterization of the elements in the tangent cone, we have

(δα)jϑj + 〈(Kδu)j , µj〉+

〈
(δα)j

(Ku)j
‖(Ku)j‖

, (Kp)j
〉

+ 〈αjTj(Kδu)j , (Kp)j〉 ≤ 0.

Rearranging the terms and using the symmetry of Tj ,

(δα)j

(
ϑj +

〈(Ku)j , (Kp)j〉
‖(Ku)j‖

)
+ 〈(Kδu)j , µj + αjTj(Kp)j〉 ≤ 0.

Since (Kδu)j ∈ R2 and (δα)j ∈ R, it necessarily must hold

ϑj +
〈(Ku)j , (Kp)j〉
‖(Ku)j‖

= 0, µj + αjTj(Kp)j = 0.

Case 2: j ∈ As. In this index set we know that (Kδu)j = 0, (δα)j ∈ R and (δq)j ∈ R2. Consequently the
product reads

(δα)jϑj + 〈(δq)j , (Kp)j〉 ≤ 0,

and we obtain that (Kp)j = 0 and ϑj = 0.

Case 3: j ∈ B. In this index set there are two conditions on the normal directions. For the first one we
take (Kδu)j = 0 and the cone inequality reads

(δα)jϑj + 〈(δq)j , (Kp)j〉 ≤ 0, ∀(δα)j , (δq)j s.t. 〈(δq)j , qj〉 ≤ αj(δα)j . (26)

Taking in particular, (δα)j = 0 we get

〈(δq)j , (Kp)j〉 ≤ 0,∀(δq)j s.t. 〈(δq)j , qj〉 ≤ 0.

Therefore, (Kp)j = cqj with c ≥ 0. Using this result in eq. (26) for the particular case (δα)j =
1
αj
〈(δq)j , qj〉, we obtain

0 ≥ (δα)jϑj + 〈(δq)j , cqj〉 = (δα)j(ϑj + cαj),

from where ϑj + cαj = 0 holds. The resulting cone reads

ϑj + cαj = 0, (Kp)j = cqj , c ≥ 0, µj ∈ R2. (27)

For the second case we take (Kδu) = cqj (c ≥ 0) in eq. (26),

(δα)jϑj + 〈cqj , µj〉+ 〈(Kp)j , (δq)j〉 ≤ 0,∀(δα)j ∈ R, (δq)j s.t. 〈(δq)j , qj〉 = αj(δα)j , (28)

Again, considering (δα)j = 0 and (Kδu)j = 0, we get

〈(δq)j , (Kp)j〉 ≤ 0,∀(δq)j s.t. 〈(δq)j , qj〉 = 0.

Consequently, (Kp)j = cqj with c ∈ R. Using this result in eq. (28), while keeping (δα)j = 0, yields
c̃〈qj , µj〉 ≤ 0. Thanks to the positiveness of c̃ we then get 〈qj , µj〉 ≤ 0. Now, applying all previous
results in eq. (28) we get

0 ≥ (δα)jϑj + 〈cqj , (δq)j〉 = (δα)jϑj + cαj(δα)j ,∀(δα)j ∈ R, c ∈ R,

yielding ϑj ∈ R. Therefore, the resulting cone for the second case reads

ϑj ∈ R, (Kp)j = cqj , c ∈ R. (29)

Finally, considering both cases we obtain

ϑj + cαj = 0 ∧ 〈µj , qj〉 ≤ 0 ∧ (Kp)j = cqj ∧ c ≥ 0.

9



Case 4: j ∈ I0. By using the characterization of the tangent cone in this index set, we have

(δα)j

(
ϑj +

〈(Ku)j , (Kp)j〉
‖(Ku)j‖

)
+ 〈(Kδu)j , µj〉 ≤ 0.

This relationship must hold for all (Kδu)j ∈ R2 and (δα)j ≥ 0, which implies

ϑj +
〈(Ku)j , (Kp)j〉
‖(Ku)j‖

≤ 0, 〈(Kδu)j , µj〉 ≤ 0.

Since (Kδu)j ∈ R2 we get µj = 0.

Case 5: j ∈ T . For the first case in this index set we know the elements of the tangent cone satisfy

(δq)j = (δα)j
(Kδu)j
‖(Kδu)j‖

, (δα)j ≥ 0, (Kδu)j ∈ R2\{0}.

Replacing these terms into the normal cone inequality,

(δα)j

(
ϑj +

〈(Kp)j , (Kδu)j〉
‖(Kδu)j‖

)
+ 〈µj , (Kδu)j〉 ≤ 0, ∀(δα)j ≥ 0, (Kδu)j ∈ R2\{0}.

In particular, for (δα)j = 0, we get that 〈µj , (Kδu)j〉 ≤ 0, for all (Kδu)j ∈ R2\{0}, which implies that
µj = 0. Moreover, thanks to the positiveness of (δα)j ≥ 0, we get

ϑj +
〈(Kp)j , (Kδu)j〉
‖(Kδu)j‖

≤ 0,∀(Kδu)j ∈ R2\{0}. (30)

Testing this inequality with ±(Kδu)j , we get ϑj ≤ 〈(Kp)j , (Kδu)j〉 ≤ −ϑj , which implies that the
product 〈(Kp)j , (Kδu)j〉 = 0 for all (Kδu)j ∈ R2\{0}, consequently (Kp)j = 0. Using this result in
eq. (30) yields also ϑj ≤ 0.

Now, regarding the second condition, we know ‖(δq)j‖ − (δα)j ≤ 0, (Kδu)j = 0 and (δα)j ≥ 0. Since
(Kδu)j = 0, it follows µj ∈ R2. Using the normal cone inequality,

0 ≥ (δα)jϑj + 〈(δq)j , (Kp)j〉 ≥ (δα)jϑj − ‖(δq)j‖‖(Kp)j‖ ≥ (δα)jϑj − (δα)j‖(Kp)j‖,

from where we derive (δα)j(ϑj − ‖(Kp)j‖) ≤ 0. Along with the positivity of (δα)j , this implies ϑj ≤
‖(Kp)j‖. Finally, considering both conditions, the result is obtained.

Lemma 3.4. The Mordukhovich normal cone to the graph of Q, described in eq. (12), is given by

NM
gphQ(α, u,K>q) = 

(ϑ,K>µ, p) :



µj + αjTj(Kp)j = 0, if j ∈ I,

ϑj +
〈(Ku)j , (Kp)j〉
‖(Ku)j‖

= 0, if j ∈ I,

ϑj = 0, (Kp)j = 0, if j ∈ As,
ϑj = 0, (Kp)j = 0, ∨
(Kp)j = cqj(c ∈ R), 〈µj , qj〉 = 0, ∨
ϑj + cαj = 0, (Kp)j = cqj(c ≥ 0), 〈µj , qj〉 ≤ 0.

 if j ∈ B,

ϑj +
〈(Ku)j , (Kp)j〉
‖(Ku)j‖

≤ 0, µj = 0, if j ∈ I0,

ϑj = 0, (Kp)j = 0, ∨
ϑj ≤ ‖(Kp)j‖, µj = 0, ∨
|ϑj | ≤ ‖(Kp)j‖, 〈µj , (Kp)j〉 ≤ 0

 if j ∈ T .


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Proof. Let us recall the definition of the Mordukhovich normal cone for our problem

NM
gphQ(α, u,K>q) = {(ϑ,K>µ, p) : (ϑk,K>µk, pk) ∈ NF

gphQ(αk, uk,K>qk) :

(ϑk,K>µk, pk)→ (ϑ,K>µ, p), (αk, uk,K>qk)→ (α, u,K>q)}.

Considering limiting sequences to the inactive, strongly active and zero-inactive sets, the same directions as
for the Fréchet normal cone are obtained. The differences lie in the biactive and triactive sets, where several
approximations may be considered.

Case 1: j ∈ B. By taking approximation sequences in the inactive set, from theorem 3.3 we know

0 = (µk)j + (αk)j
(Kpk)j
‖(Kuk)j‖

− (αk)j
(Kuk)〈((Kuk)j), (Kpk)j〉

‖(Kuk)j‖3
. (31)

Multiplying eq. (31) with (Kpk)j yields

〈(µk)j , (Kpk)j〉 = (αk)j
〈(Kuk)j , (Kpk)j〉2

‖(Kuk)j‖3
− (αk)j

〈(Kpk)j , (Kpk)j〉
‖(Kuk)j‖

Again, multiplying by (αk)j‖(Kuk)j‖ on both sides and recalling that (qk)j = (αk)j
(Kuk)j
‖(Kuk)j‖ , we get

(αk)j‖(Kuk)j‖〈(µk)j , (Kpk)j〉 = 〈(qk)j , (Kpk)j〉2 − (αk)2
j‖(Kpk)j‖2.

Taking the limit as k →∞ and recalling (αk)j = ‖(qk)j‖ in this index set, we obtain

〈qj , (Kp)j〉2 = ‖qj‖2‖(Kp)j‖2,

which implies that (Kp)j = cqj(c ∈ R). Now, multiplying eq. (31) with (qk)j we get the following
product

〈(µk)j , (qk)j〉 = (αk)j
〈(qk)j , (Kuk)j〉〈(Kuk)j , (Kpk)j〉

‖(Kuk)j‖3
− (αk)j

〈(qk)j , (Kpk)j〉
‖(Kuk)j‖

,

= (αk)2
j

〈(Kuk)j , (Kpk)j〉
‖(Kuk)j‖2

− (αk)2
j

〈(Kuk)j , (Kpk)j〉
‖(Kuk)j‖2

= 0. (32)

Taking the limit we get that 〈µj , qj〉 = 0.

Regarding ϑj we have (αk)j(ϑk)j + 〈(qk)j , (Kp)j〉 = 0. Taking the limit as k →∞ we obtain

0 = αjϑj + 〈qj , (Kp)j〉 = αjϑj + c‖qj‖2, (c ∈ R),

which implies that ϑj = −cαj ∈ R.

Finally, when taking the approximation through the strongly active and biactive sets, the cone direc-
tions coincide with the Fréchet normal ones.

Case 2: j ∈ T . This index set can be approximated by sequences belonging either to the inactive, biactive,
strongly active or zero-inactive sets. Considering strongly active sequences, (Kpk)j = 0 and (ϑk)j = 0.
Taking the limit as k →∞ we get (Kp)j = 0 and ϑj = 0 as well.

Likewise, when taking biactive sequences we get (ϑk)j + c(αk)j = 0, (Kpk)j = c(qk)j(c ≥ 0) and
〈(µk)j , (qk)j〉 ≤ 0. Again, taking the limit as k → ∞ we get, since qj = 0 and αj = 0, that µj ∈ R2,
(Kp)j = 0 and ϑj = 0.

Furthermore, taking sequences in the zero-inactive set we have (µk)j = 0, which implies that µj = 0.
Using the Cauchy-Schwarz inequality we get

0 ≥ (ϑk)j +
〈(Kuk)j , (Kpk)j〉
‖(Kuk)j‖

≥ (ϑk)j − ‖(Kpk)j‖.
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Taking the limit as k →∞ yields ϑj ≤ ‖(Kp)j‖.
When taking inactive sequences, we know that

(µk)j + (αk)j

(
I

‖(Kuk)j‖
−

(Kuk)j(Kuk)>j
‖(Kuk)j‖3

)
(Kpk)j = 0, (33)

(ϑk)j +
〈(Kuk)j , (Kpk)j〉
‖(Kuk)j‖

= 0. (34)

Applying Cauchy-Schwarz in eq. (34), yields |(ϑk)j | ≤ ‖(Kpk)j‖. Now, multiplying eq. (33) with (Kpk)j
we obtain

〈(µk)j , (Kpk)j〉 ≤ (αk)j

(
‖(Kpk)j‖2‖(Kuk)j‖2

‖(Kuk)j‖3
− ‖(Kpk)j‖2

‖(Kuk)j‖

)
= 0. (35)

Taking the limit as k →∞ we get 〈µj , (Kp)j〉 ≤ 0, finishing the proof.

Theorem 3.5 (M-Stationarity). Let J : Rm → R be continuously differentiable, φ : Rm → R twice
continuously differentiable and strongly convex, and (α∗, u∗, q∗) be a local solution to eq. (7). Then there
exist KKT multipliers (ϑ,K>µ, p) such that

φ′(u∗) + K>q∗ = 0, (36a)

〈q∗j , (Ku∗)j〉 − α∗j‖(Ku∗)j‖ = 0, ∀j = 1, . . . , n, (36b)

‖q∗j ‖ ≤ α∗j , ∀j = 1, . . . , n, (36c)

φ′′(u∗)>p−K>µ−∇J(u∗) = 0, (36d)

ϑ+ ρ = 0, (36e)

0 ≤ α∗ ⊥ ρ ≥ 0, (36f)

(ϑ,K>µ, p) ∈ NM
gphQ(α∗, u∗,K>q∗) (36g)

Proof. Referring to theorem 3.1 let us take F1(α, u) = φ′(u) ∈ Rm and F2(α, u) = (α, u) ∈ Rn+ × Rm.
Existence of the KKT multipliers is guaranteed if the following constraint qualification condition holds for
(ϑ,K>µ, p) ∈ NM

gphQ(α∗, u∗,K>q∗)

[
I 0 0
0 I −φ′′(u∗)>

] ϑ
K>µ
p

 ∈ −NM
Rn

+
(α∗)× {0} implies ϑ = 0, K>µ = 0, p = 0. (37)

Recalling remark 1 and using the expression of the Mordukhovich normal cone NM
Rn

+
(α∗) = NRn

+
(α∗) = {v ∈

R2 : 〈v, α∗〉 = 0, v ≤ 0}, condition eq. (37) can also be written as

K>µ− φ′′(u∗)>p = 0, (38)

〈α∗, ϑ〉 = 0, (39)

ϑ ≥ 0. (40)

Let us take (ϑ,K>µ, p) ∈ NM
gphQ(α∗, u∗,K>q∗) and let us multiply eq. (38) by p on the left. Recalling

(Kp)j = 0 in As and µj = 0 in I0, we have for each remaining index set

〈p, φ′′(u∗)>p〉 = 〈p,K>µ〉 =
∑
j∈I
〈µj , (Kp)j〉+

∑
j∈B
〈µj , (Kp)j〉+

∑
j∈B0

〈µj , (Kp)j〉,

=
∑
j∈I
−αj〈(Kp)j , Tj(Kp)j〉+

∑
j∈B

c 〈µj , qj〉︸ ︷︷ ︸
≤0

+
∑
j∈B0

〈µj , (Kp)j〉︸ ︷︷ ︸
≤0

≤ 0,

where we used the characterization of the Mordukhovich normal cone. Furthermore, using the strong con-
vexity of the function φ we have 〈p, φ′′(u∗)>p〉 ≥ 0. Both inequalities imply p = 0 and, according to eq. (38),
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it also yields K>µ = 0. Moreover, if we consider the index set I ∪ As ∪ B, we know in all these sets α∗j > 0,
and therefore, to satisfy equation eq. (39) it must hold ϑj = 0. Since p = 0 in T we know ϑj = 0 or

ϑj ≤ ‖(Kp)j‖ for this index set, in both cases it leads to ϑj = 0. In I0, we have ϑj ≤ − 〈(Ku)j ,(Kp)j〉
‖(Ku)j‖ = 0 and

eq. (40) yields ϑj = 0. Therefore, ϑj = 0 for all j. Consequently, the existence of multipliers is guaranteed
and there exists a vector ρ ∈ NM

Rn
+

(α∗) and KKT multipliers (ϑ,K>µ, p) ∈ NM
gphQ(α∗, u∗,K>q∗) such that

0 = ∇uJ(u∗) + (∇uF2(α, u))>
[
ϑ

K>µ

]
− (∇uF1(α, u))>p, (41)

0 = (∇αF2(α, u))>
[
ϑ

K>µ

]
− (∇αF1(α, u))>p+ ρ. (42)

4 Bouligand Stationarity

In this section we will study the Bouligand stationarity condition for eq. (4). With this goal in mind, let us
introduce the solution operator for the lower-level problem S : Rn+ 3 α→ u ∈ Rm that maps each parameter
α ∈ Rn+ to the corresponding reconstruction u ∈ Rn. If this mapping is bijective, we can make use of it to
formulate eq. (4) as a reduced optimization problem

min
α ∈ Rn+

j(α) := J(S(α)). (43)

Furthermore, if the solution operator is Bouligand (B)-differentiable, we can make use of the chain rule for
B-differentiable functions to conclude that the composite mapping J , as a function of α, is B-differentiable
as well. In this case, its directional derivative in a direction h is given by

j′(α;h) = 〈∇J(u), S′(α;h)〉, (44)

where S′(α;h) is the directional derivative of the solution operator in direction h. Moreover, if α∗ is a local
optimal solution and u∗ = S(α∗) its corresponding reconstruction, then it satisfies the following necessary
condition

j′(α∗;α− α∗) = 〈∇J(u∗), S′(α∗;α− α∗)〉 ≥ 0, ∀α ∈ Rn+. (45)

A point α∗ satisfying the necessary condition eq. (45) is called Bouligand (B)-stationary. This type of
stationarity condition is based on the tangent cone to our feasible parameter set and can be interpreted as
the counterpart of the implicit programming approach in the discussion of finite-dimensional MPECs, see
[23, Lemma 4.2.5].

To obtain such B-stationarity condition for our problem, a sensitivity analysis of the solution mapping
must be carried out, to prove that it is indeed Bouligand differentiable, i.e., locally Lipschitz continuous and
directionally differentiable. Let us recall that in Section 2 we already argued the existence and uniqueness
of the solution to the lower-level problem eq. (4b), implying that S : Rn+ → Rm is singled valued.

Theorem 4.1. The solution operator for the lower-level problem eq. (4b) S : Rn+ 3 α→ u ∈ Rm is Lipschitz
continuous.

Proof. Thanks to Theorem 2.1, we know the lower-level problem has a unique solution. Moreover, α1, α2 ∈
Rn+ and its corresponding solutions u1, u2 satisfy

〈φ′(u1), v − u1〉+

n∑
j=1

(α1)j‖(Kv)j‖ −
n∑
j=1

(α1)j‖(Ku1)j‖ ≥ 0, ∀v ∈ Rm

〈φ′(u2), w − u2〉+

n∑
j=1

(α2)j‖(Kw)j‖ −
n∑
j=1

(α2)j‖(Ku2)j‖ ≥ 0, ∀w ∈ Rm.
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Taking in particular v = u2 and w = u1 and adding the inequalities, it yields

〈φ′(u2)− φ′(u1), u2 − u1〉 ≤
n∑
j=1

((α1)j − (α2)j)(‖(Ku2)j‖ − ‖(Ku1)j‖),

Moreover, given that φ is strongly convex and using the Cauchy-Schwarz inequality, it yields

c‖u2 − u1‖2 ≤
n∑
j=1

(α2,j − α1,j)‖(K(u2 − u1))j‖ ≤ ‖α2 − α1‖
n∑
j=1

‖(K(u2 − u1))j‖,

≤ ‖α2 − α1‖‖K‖‖u2 − u1‖,

where ‖K‖ is the operator norm of the linear operator K.

4.1 Directional Differentiability

Now, we are interested in the differentiability properties of the solution operator for the lower-level problem
eq. (4b). This will require a sensitivity analysis of the solution operator with respect to the regularization
parameter. By taking a perturbed regularization parameter αt in the primal-dual formulation for the lower-
level problem eq. (6) such that αtj = αj + thj ≥ 0 we get the following perturbed lower-level problem

φ′(ut) + K>qt = 0, (46a)

〈qtj , (Kut)j〉 − (αj + thj)‖(Kut)j‖ = 0, ∀j = 1, . . . , n, (46b)

‖qtj‖ − (αj + thj) ≤ 0, ∀j = 1, . . . , n. (46c)

Thanks to the local Lipschitz continuity of the solution operator proved in theorem 4.1 and the boundedness
of qt, see eq. (46), there exist a subsequence, denoted the same, so that qt → q̃ ∈ Rn×2, to some q̃.
Additionally, we can guarantee the existence of a subsequence of ut, denoted w.l.o.g. with the same symbol,
satisfying the following limit

lim
t→0

ut − u
t
→ η ∈ Rm. (47)

Theorem 4.2. The limit described in eq. (47) satisfies η ∈ C = C(α, u) where

C(α, u) :=

{
v ∈ Rn :

{
(Kv)j = 0, ∀j ∈ As,
〈qj , (Kv)j〉 = αj‖(Kv)j‖, ∀j ∈ B.

}
(48)

Proof. By adding the complementarity relationships in eqs. (6) and (46), and dividing by t, we get〈
qtj − qj
t

, (Ku)j

〉
+

〈
qtj ,

(Kut)j − (Ku)j
t

〉
− αj

(
‖(Kut)j‖ − ‖(Ku)j‖

t

)
− hj‖(Kut)j‖ = 0.

For j ∈ As ∪ B, taking the limit as t → 0 and using the boundedness of the sequence qt along with the
Bouligand differentiability of the Euclidean norm, it yields

〈q̃j , (Kη)j〉 − αj‖(Kη)j‖ − hj‖(Ku)j‖ = 0.

Since (Ku)j = 0 for j ∈ As ∪ B, we get that

〈q̃j , (Kη)j〉 − αj‖(Kη)j‖ = 0.

Moreover, for j ∈ As, recalling αj > 0 in this index set, we get

αj‖(Kη)j‖ = 〈q̃j , (Kη)j〉 ≤ ‖q̃j‖‖(Kη)j‖ < αj‖(Kη)j‖,

which only holds if (Kη)j = 0 in this index set, finishing the proof.
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Remark 2. If q1 and q2 are two different slack variables associated with the solution u in eq. (6), then the
two sets

Ci :=

{
v ∈ Rn :

{
(Kv)j = 0, if ‖qij‖ < αj ,

〈qij , (Kv)j〉 = αj‖(Kv)j‖, if (Ku)j = 0, αj > 0, ‖qij‖ = αj .

}
,

coincide, since K>q1 = −φ′(u) = K>q2. As a consequence, the set C(α, u) does not depend on the slack
variable, only on the solution u and the parameter α.

Lemma 4.3. The cone C(α, u) can alternatively be written as

C(α, u) =

v ∈ Rn : 〈K>q, v〉 ≥
∑
j∈I

〈
αj

(Ku)j
‖(Ku)j‖

, (Kv)j

〉
+
∑
j∈B

αj‖(Kv)j‖

 (49)

Proof. Let us denote the set in eq. (49) as M. Taking v ∈ C, as in eq. (48), and using its definition, we
obtain

〈K>q, v〉 =
∑
j∈I
〈qj , (Kv)j〉+

∑
j∈As

〈qj , (Kv)j〉+
∑
j∈B
〈qj , (Kv)j〉,

=
∑
j∈I

〈
αj

(Ku)j
‖(Ku)j‖

, (Kv)j

〉
+
∑
j∈As

〈qj , (Kv)j︸ ︷︷ ︸
=0

〉+
∑
j∈B

αj‖(Kv)j‖,

and, consequently, C ⊂ M.
To prove the reverse inclusion, let us take v ∈M. For j ∈ As ∪ B the following relation holds true∑

j∈B
αj‖(Kv)j‖ ≤

∑
j∈As∪B

〈qj , (Kv)j〉 ≤
∑

j∈As∪B
αj‖(Kv)j‖. (50)

where we used the Cauchy-Schwarz inequality and ‖qj‖ ≤ αj . Regarding the left inequality in eq. (50) we
know ∑

j∈As∪B
〈qj , (Kv)j〉 −

∑
j∈B

αj‖(Kv)j‖ ≥ 0, (51)

using the Cauchy-Schwarz inequality we also know∑
j∈As∪B

〈qj , (Kv)j〉 −
∑

j∈As∪B
αj‖(Kv)j‖ ≤ 0. (52)

Multiplying eq. (51) by −1 and adding it to eq. (52) we get
∑
j∈As

αj‖(Kv)j‖ = 0, which implies (Kv)j = 0,
for all j ∈ As. Now, using this result in eq. (50) we get∑

j∈B
(αj‖(Kv)j‖ − 〈qj , (Kv)j〉) = 0

and, consequently, it holds 〈qj , (Kv)j〉 = αj‖(Kv)j‖.

Now, to prove the directional differentiability of the solution operator for the lower-level problem eq. (4b)
we will first demonstrate the following lemmata.

Lemma 4.4. Let Rn+ 3 α ≥ 0 and Rn+ 3 α+ th ≥ 0. Then for every v ∈ C it holds〈
K>

(
qt − q
t

)
, v

〉
≤
∑
j∈I

αj
t

〈
(Kut)j
‖(Kut)j‖

− (Ku)j
‖(Ku)j‖

, (Kv)j

〉

+
∑
j∈I

hj

〈
(Kut)
‖(Kut)j‖

, (Kv)j

〉
+
∑
j∈B

hj‖(Kv)j‖+
∑

j∈T ∪I0

hj‖(Kv)j‖. (53)
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Proof. Given that v ∈ C, let us first bound the following product

〈K>qt, v〉 =
∑
j∈I
〈qtj , (Kv)j〉+

∑
j∈As

〈qtj , (Kv)j︸ ︷︷ ︸
=0

〉+
∑
j∈B
〈qtj , (Kv)j〉+

∑
j∈T ∪I0

〈qtj , (Kv)j〉,

≤
∑
j∈I

〈
(αj + thj)

(Kut)j
‖(Kut)j‖

, (Kv)j

〉
+
∑
j∈B

(αj + thj)‖(Kv)j‖+
∑

j∈T ∪I0

thj‖(Kv)j‖,

for t sufficiently small, since ut → u implies I(α, u) ⊂ I(α + th, ut), where we used the property (Kv)j = 0
for j ∈ As and αj = 0 for j ∈ T ∪ I0, along with Cauchy-Schwarz inequality and ‖qtj‖ ≤ αj + thj . Now, as
v ∈ C we know the bound in eq. (49) holds, i.e.,

〈K>q, v〉 ≥
∑
j∈I

〈
αj

(Ku)j
‖(Ku)j‖

, (Kv)j

〉
+
∑
j∈B

αj‖(Kv)j‖.

Therefore,

〈K>(qt − q), v〉 ≤
∑
j∈I

αj

〈
(Kut)j
‖(Kut)j‖

− (Ku)j
‖(Ku)j‖

, (Kv)j

〉

+
∑
j∈I

thj

〈
(Kut)j
‖(Kut)j‖

, (Kv)j

〉
+
∑
j∈B

thj‖(Kv)j‖+
∑

j∈T ∪I0

thj‖(Kv)j‖.

Finally, dividing both sides by t yields the result.

Lemma 4.5. Let Rn 3 α ≥ 0 and Rn 3 α+ th ≥ 0. Then, it holds〈
K>

(
qt − q
t

)
,
ut − u
t

〉
≥
∑
j∈I

αj
t

〈
(Kut)j
‖(Kut)j‖

− (Ku)j
‖(Ku)j‖

,
(Kut)j − (Ku)j

t

〉

+
∑
j∈I

hj

〈
(Kut)
‖(Kut)j‖

,
(Kut)j − (Ku)j

t

〉
+

1

t

∑
j∈A∪I0

hj(‖(Kut)j‖ − ‖(Ku)j‖),

where A = As ∪ B ∪ T .

Proof. For t small enough, we can split the product by their index set〈
K>

(
qt − q
t

)
,
ut − u
t

〉
=

∑
j∈I

αj
t

〈
(Kut)j
‖(Kut)j‖

− (Ku)j
‖(Ku)j‖

,
(Kut)j − (Ku)j

t

〉
+
∑
j∈I

hj

〈
(Kut)j
‖(Kut)j‖

,
(Kut)j − (Ku)j

t

〉

+
1

t

∑
j∈As∪B

〈
qtj − qj ,

(Kut)j − (Ku)j
t

〉
+

1

t

∑
j∈I0∪T

〈
qtj − qj ,

(Kut)j − (Ku)j
t

〉
.

Focusing, on the index set As ∪ B, the complementarity relations in eqs. (6) and (46) yield

1

t2

∑
j∈As∪B

〈qtj − qj , (Kut)j − (Ku)j〉

=
1

t2

∑
j∈As∪B

〈qtj , (Kut)j〉 − 〈qtj , (Ku)j〉 − 〈qj , (Kut)j〉+ 〈qj , (Ku)j〉,

≥ 1

t2

∑
j∈As∪B

(αj + thj)‖(Kut)j‖ − ‖qtj‖︸︷︷︸
≤αj+thj

‖(Ku)j‖ − ‖qj‖︸︷︷︸
≤αj

‖(Kut)j‖+ αj‖(Ku)j‖,

≥ 1

t

∑
j∈As∪B

hj(‖(Kut)j‖ − ‖(Ku)j‖).
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Using the same analysis over the set I0 ∪ T we get

1

t2

∑
j∈I0∪T

〈qtj − qj , (Kut)j − (Ku)j〉 =
1

t2

∑
j∈I0∪T

〈qtj , (Kut)j〉 − 〈qtj , (Ku)j〉,

≥ 1

t2

∑
j∈I0∪T

thj‖(Kut)j‖ − ‖qtj‖︸︷︷︸
≤thj

‖(Ku)j‖ ≥
1

t

∑
j∈I0∪T

hj(‖(Kut)j‖ − ‖(Ku)j‖).

Theorem 4.6. Let α ∈ Rn+ and h ∈ Rn be a direction such that α+ th ≥ 0 for t small enough. The solution
operator S : α → S(α) = u ∈ Rm is directionally differentiable and its directional derivative η ∈ C(α, u) at
u, in direction h, is given by the solution of the following variational inequality

〈φ′′(u)η, v − η〉+
∑
j∈I

αj〈Tj(Kη)j , (Kv)j − (Kη)j〉+ hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j − (Kη)j

〉
+
∑
j∈B

hj
αj
〈qj , (Kv)j − (Kη)j〉+

∑
j∈I0∪T

hj(‖(Kv)j‖ − ‖(Kη)j‖) ≥ 0, ∀v ∈ C, (54)

where Tj(Kv)j =
(Kv)j
‖(Ku)j‖ −

(Ku)j(Ku)>j (Kv)j
‖(Ku)j‖3 for v ∈ Rm.

Proof. To verify the variational inequality, let us take eq. (46), eq. (6) and test them with v − ut−u
t , with

v ∈ C(α, u)

0 =

〈
φ′(ut)− φ′(u)

t
, v − ut − u

t

〉
+

〈
K>

(
qt − q
t

)
, v − ut − u

t

〉
,

=

〈
φ′(ut)− φ′(u)

t
, v − ut − u

t

〉
+

〈
K>

(
qt − q
t

)
, v

〉
−
〈
K>

(
qt − q
t

)
,
ut − u
t

〉
Now, applying the bounds in theorems 4.4 and 4.5 we have

0 ≤
〈
φ′(ut)− φ′(u)

t
, v − ut − u

t

〉
+
∑
j∈I

αj
t

〈
(Kut)j
‖(Kut)j‖

− (Ku)j
‖(Ku)j‖

, (Kv)j −
(Kut)j − (Ku)j

t

〉

+ hj

〈
(Kut)
‖(Kut)j‖

, (Kv)j −
(Kut)j − (Ku)j

t

〉
+
∑
j∈B

hj‖(Kv)j‖

+
∑

j∈I0∪T
hj‖(Kv)j‖ −

1

t

∑
j∈As∪B∪I0∪T

hj(‖(Kut)j‖ − ‖(Ku)j‖).

Taking the limit t→ 0, as well as, the differentiability of the term x/‖x‖ in the inactive set, and given that
(Kη)j = 0 in the strongly active set As, it yields

0 ≤ 〈φ′′(u)η, v − η〉+
∑
j∈I

αj

〈(
I

‖(Ku)j‖
−

(Ku)j(Ku)>j
‖(Ku)j‖3

)
(Kη)j , (Kv)j − (Kη)j

〉

+ hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j − (Kη)j

〉
+
∑
j∈B

hj(‖(Kv)j‖ − ‖(Kη)j‖) +
∑

j∈I0∪T
hj(‖(Kv)j‖ − ‖(Kη)j‖).

Using the definition for Tj and recalling v, η ∈ C, the inequality takes the form in eq. (54).
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Now it is required to verify the uniqueness of the limit. For this purpose, let us note that eq. (54) is a
variational inequality

〈φ′′(u)η, v − η〉+
∑
j∈I

αj〈Tj(Kη)j , (Kv)j − (Kη)j〉+
∑
j∈B

hj
αj
〈qj , (Kv)j − (Kη)j〉

+
∑

j∈I0∪T
hj(‖(Kv)j‖ − ‖(Kη)j‖) ≥ −

∑
j∈I

hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j − (Kη)j

〉
,∀v ∈ C

Now, given that the function f(z) :=
∑n
j=1 ‖(Kz)j‖ is indeed convex, lower semicontinuous and proper, the

right hand side is continuous and linear, and finally, the bilinear form in the left hand side is V-elliptic, we
know by [15], that there exists a unique solution for this variational inequality.

Using the demonstrated Bouligand differentiability of the solution operator, and the cooresponding char-
acterization of the directional derivative described in this section, we have proven the following result.

Theorem 4.7. Let α∗ ∈ Rn+ be a local optimal solution of eq. (43) and u∗ = S(α∗). Then α∗ is a B-
stationary point, i.e., it satisfies the following inequality

〈∇J(u∗), S′(α∗;α− α∗)〉 ≥ 0, ∀α ∈ Rn+, (55)

where S′(α∗;α− α∗) =: η is the unique solution to Equation (54).

4.2 Strict Complementarity

The characterization of the directional differentiability can take different formulations if any of the active
sets becomes empty. For instance, assuming the zero-inactive and triactive sets empty, i.e., I0 ∪T = ∅, then
the directional derivative of the solution operator can be written as the following variational inequality of
the first kind

〈φ′′(u)η, v − η〉+
∑
j∈I

αj〈Tj(Kη)j , (Kv)j − (Kη)j〉

+ hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j − (Kη)j

〉
+
∑
j∈B

hj
αj

(〈qj , (Kv)j − (Kη)j〉) ≥ 0, ∀v ∈ C. (56)

Furthermore, assuming an empty biactive set and αj = 0, for all j, we obtain that the solution operator is
Fréchet differentiable as stated in the following theorem.

Theorem 4.8. Let us assume the index set B ∪ I0 ∪ T is empty. Then, the solution operator is Fréchet
differentiable and the derivative can be computed as the solution of the following system of equations

φ′′(u)η + K>λ = 0, (57a)

λj − αjTj(Kη)j −
hj
αj
qj = 0, ∀j ∈ I, (57b)

(Kη)j = 0, ∀j ∈ As. (57c)

Proof. Using the empty biactive set assumption, we get that the cone C becomes the following linear subspace
C(α, u) = {v ∈ Rm : (Kv)j = 0 if (Ku)j = 0}. Thus, the variational inequality in eq. (56) becomes the
following variational equation

〈φ′′(u)η, v − η〉+
∑
j∈I

αj〈Tj(Kη)j , (Kv)j − (Kη)j〉+ hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j − (Kη)j

〉
= 0, ∀v ∈ C. (58)

Equation (58) guarantees that the directional derivative of the solution operator is a linear mapping w.r.t.
the direction h. Since S is Bouligand differentiable, it implies the Fréchet differentiability [28, Proposition
3.1.2]. Furthermore, eq. (58) is equivalent to the following optimization problem
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min
η ∈ C

1

2
〈η, φ′′(u)η〉+

∑
j∈I

αj

(
‖(Kη)j‖2

‖(Ku)j‖
− 〈(Ku)j , (Kη)j〉2

‖(Ku)j‖3

)
+ hj

〈
(Kη)j ,

(Ku)j
‖(Ku)j‖

〉
(59)

Then the KKT-optimality conditions for this problem look as follows

〈φ′′(u)η, v〉+
∑
j∈I

αj〈Tj(Kη)j , (Kv)j〉+ hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j

〉
+
∑
j∈As

〈νj , (Kv)j〉 = 0,

(Kη)j = 0,∀j ∈ As,

with Lagrange multipliers νj ∈ R2. Since all the constraints are linear, the Abadie constraint qualification
condition is satisfied. By introducing λ ∈ Rn×2 as

λj :=

{
νj , ∀j ∈ As
αjTj(Kη)j +

hj

αj
qj , ∀j ∈ I

the result is obtained.

5 Bouligand Subdifferential

Even though the Bouligand stationarity condition presented in Section 4 holds for any local optimal solution
without requiring any constraint qualification, its purely primal form is in general not amenable for algo-
rithmic purposes; this limitation is related to the non-linearity of the directional derivative. As a remedy,
in this section we will focus on the study of the Bouligand subdifferential of the solution operator S. The
characterization of the linear elements of this subdifferential turns out to be useful when devising a numerical
algorithm to solve the bilevel problem.

Thanks to the local Lipschitz continuity of S, showed in section 4, and Rademacher’s theorem, we know
the solution operator is differentiable almost everywhere. Denoting the set of points where this function is
differentiable as DS , the Bouligand subdifferential ∂BS(α) is defined as follows.

Definition 5.1 (Bouligand subdifferential). Let S : Rn → Rm be a locally Lipschitz function, and α ∈ Rn
arbitrary but fixed. The set

∂BS(α) := {G ∈ Rm×n : ∃{αk} ⊂ DS , αk → α ∧ S′(αk)→ G}, (60)

is called Bouligand subdifferential of S at α.

In the next result a characterization of the elements of the Bouligand subdifferential is provided. We
assume along this section that αj > 0, i.e., T ∪ I0 = ∅.

Theorem 5.1. Let G ∈ ∂BS(α). There exists a partition of the biactive set B = B1 ∪B2 such that, for any
h such that α+ th ≥ 0, η̃ := Gh is the unique solution of the system

〈φ′′(u)η̃, v〉+
∑

j∈I∪B2

〈λ̃j , (Kv)j〉 = 0, ∀v ∈ V (61a)

λ̃j − αjTj(Kη̃)j −
hj
αj
qj = 0, ∀j ∈ I, (61b)

λ̃j −
hj
αj
qj = 0, ∀j ∈ B2 (61c)

where V := {v ∈ Rm : (Kv)j = 0, ∀j ∈ As ∪ B1; (Kv)j ∈ span(qj),∀j ∈ B2}.

Proof. We know the solution operator is locally Lipschitz continuous (see theorem 4.1), which implies it is
differentiable almost everywhere. Let us consider a sequence {αk} ⊂ DS such that αk → α and S′(αk)→ G.
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Due to the differentiability in the elements of this sequence, the parameter sequence fulfills (αk)j > 0, for
all j = 1, . . . , n. Moreover, thanks to the Lipschitz continuity of S we know that

uk = S(αk)→ S(α) = u,

K>qk = −φ′(uk)→ −φ′(u) = K>q.

This last statement follows from the fact that {qk} is also bounded and, therefore, has a converging subse-
quence. Now, each of this subsequence elements (uk, qk) define their respective inactive Ik := I(αk, uk) and
strongly active Aks := As(αk, uk) sets.
By continuity, we know that I ⊂ Ik and As ⊂ Aks , for k sufficiently large. Since {αk} ⊂ DS , it then follows
that ηk := S′(αk)h satisfies the system

φ′′(uk)ηk + K>λk = 0, (62a)

(λk)j − (αk)j(Tk)j(Kηk)j =
hj

(αk)j
K>j (qk)j , ∀j ∈ Ik, (62b)

(Kηk)j = 0, ∀j ∈ Aks , (62c)

or equivalently,

〈φ′′(uk)ηk, v〉+
∑
j∈Ik

〈(αk)j(Tk)j(Kηk)j , (Kv)j〉+
hj

(αk)j
〈(qk)j , (Kv)j〉 = 0,∀v ∈ V k, (63)

with V k := {v ∈ Rm : (Kv)j = 0,∀j ∈ Aks}. From the definition of the Bouligand subdifferential it follows
that η̃ = limk→∞ ηk. Moreover, since for j ∈ I the sequence {(λk)j} is bounded, then there exists a

subsequence that converges to a limit point λ̃j . Therefore, up to a subsequence, by passing to the limit we
get

λ̃j − αjTj(Kη̃)j −
hj
αj
qj = 0, ∀j ∈ I,

(Kη̃)j = 0, ∀j ∈ As.

Let us now consider a partition of the biactive set B = B1 ∪ B2, with

B1(α, u) := {j ∈ B(α, u) : ∃{ukl} : (Kukl)j = 0,∀l} and B2(α, u) := B(α, u)\B1(α, u).

For the index set B1 we know the subsequence (Kηkl)j = 0, for all k. Since ηk → η̃, we get

(Kη̃)j = 0, ∀j ∈ As ∪ B1.

Considering the partition B2, we approach a biactive point by a sequence of points such that (Kuk)j 6= 0,
i.e., j ∈ Ik. Let us first notice that the term on the right hand side of Equation (62b) is uniformly bounded
and, therefore, as k →∞,∑

j∈Ik

hj
(αk)j

〈(qk)j , (Kv)j〉 →
∑

j∈I∪B2

hj
αj
〈qj , (Kv)j〉, ∀v ∈ V.

In addition, defining (ζk)j = (αk)j(Tk)j(Kηk)j , for j ∈ Ik, we get that

〈(ζk)j , (Kηk)j〉 =
(αk)j
‖(Kuk)j‖

(
‖(Kηk)j‖2 −

1

‖(Kuk)j‖2
〈(Kηk)j , (Kuk)j〉2

)
≥ 0, ∀j ∈ Ik.

Thanks to Equation (63), we also get that

0 ≤ 〈(ζk)j , (Kηk)j〉 ≤ 〈φ′′(uk)ηk, ηk〉+
∑
j∈Ik
〈(ζk)j , (Kηk)j〉 ≤

∑
j∈Ik

|hj |‖(Kηk)j‖,
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which, since ηk → η̃, as k →∞, implies that 〈(ζk)j , (Kηk)j〉 is uniformly bounded. Since for j ∈ B2 we know
that (Kuk)j → 0, it follows from the previous relations that

α2
j‖(Kη̃)j‖2 − 〈qj , (Kη̃)j〉2 = lim

k→∞
(αk)2

j‖(Kηk)j‖2 − 〈(qk)j , (Kηk)j〉2 = 0,

which implies that (Kη̃)j ∈ span(qj),∀j ∈ B2.
Finally, for any v ∈ V , we obtain that

lim
k→∞

〈(ζk)j , (Kv)j〉 = lim
k→∞

〈(ζk)j , c(qk)j〉 = lim
k→∞

〈
(ζk)j , c(αk)j

(Kuk)j
‖(Kuk)j‖

〉
,

= c lim
k→∞

〈
(αk)j

(Kηk)j
‖(Kuk)j‖

, (αk)j
(Kuk)j
‖(Kuk)j‖

〉
−
〈

(αk)j
〈(Kηk)j , (Kuk)j〉(Kuk)j

‖(Kuk)j‖3
, (αk)j

(Kuk)j
‖(Kuk)j‖

〉
,

= c lim
k→∞

(αk)2
j

‖(Kuk)j‖2
〈(Kηk)j , (Kuk)j〉

−
(αk)2

j

‖(Kuk)j‖4
〈(Kηk)j , (Kuk)j〉〈(Kuk)j , (Kuk)j〉 = 0.

By passing to the limit in eq. (63) the result is obtained.

Corollary 1. Let G ∈ ∂BS(α). There exists a partition of the biactive set B = B1 ∪ B2 and a multiplier
θ ∈ Rm such that, for any h such that α+ th ≥ 0, η̃ := Gh is the unique solution of the system

φ′′(u)η̃ + KT θ = 0 (65a)

θj − αjTj(Kη̃)j −
hj
αj
qj = 0, ∀j ∈ I, (65b)

〈θj , qj〉 − αjhj = 0, ∀j ∈ B2. (65c)

Proof. Let us consider the functional F ∈ Rn defined by

(F , v) := (φ′′(u)η̃, v) +
∑
j∈I
〈αjTj(Kη̃)j , (Kv)j〉+

∑
j∈I∪B2

hj
αj
〈qj , (Kv)j〉, ∀v ∈ V.

Equation (61a) can then be written as F ∈ V ⊥. Thanks to the structure of the linear subspace V , it can be

represented in a separated way as V =
(⋂

j∈AS∪B1
V 1
j

)
∩
(⋂

j∈B2
V 2
j

)
, where

V 1
j := {v ∈ Rn : (Kv)j = 0}, j ∈ AS ∪ B1,

V 2
j := {v ∈ Rn : (Kv)j ∈ span(qj)}, j ∈ B2.

Consequently, V ⊥ =
∑
j∈AS∪B1

(V 1
j )⊥ +

∑
j∈B2

(V 2
j )⊥.

For j ∈ AS ∪ B1, we get that (V 1
j )⊥ = ker(Kj)⊥. Thanks to the orthogonality relations, it follows that

ker(Kj)⊥ = range(KTj ). Hence, for any ξj ∈ (V 1
j )⊥, there exist πj such that ξj = KTj πj . Consequently,∑

j∈AS∪B1

(V 1
j )⊥ =

∑
j∈AS∪B1

KTj πj , πj ∈ R2.

For j ∈ B2, any v ∈ V 2
j can be represented as

v = φ+ ϕ, with (Kjϕ) = 0 and φ ∈ range(KTj ).

Since (Kv)j ∈ span(qj) and (Kjϕ) = 0, it follows that (Kv)j ∈ span(qj) as well. Let us now consider wj ∈
(V 2
j )⊥, which can be represented as wj = w̃j + ŵj , where w̃j ∈ range(KTj ) and ŵj ∈ range(KTj )⊥ = ker(Kj).

Consequently, there exists ψj such that

wj = KTj ψj + ŵj , with Kjŵj = 0.
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Taking the scalar product with vj ∈ V 2
j we get

(wj , vj) = (KTj ψj + ŵj , φ+ ϕ) = 〈ψj ,Kjφ〉+ (ŵj ,KTj ψ) + (ŵj , ϕ) = c〈ψj , qj〉+ (ŵj , ϕ),

since Kjϕ = Kjŵj = 0. For the product to be zero, it is then required that (ŵj , ϕ) = 0,∀ϕ ∈ ker(Kj) and
〈ψj , qj〉 = 0. Since ŵj belongs to ker(Kj) as well, it follows that ŵj = 0. Consequently,∑

j∈B2

(V 2
j )⊥ =

∑
j∈B2

KTj ψj , ψj ∈ R2 : 〈ψj , qj〉 = 0.

Altogether, we then obtain that there exist multipliers πj and ψj such that

F +
∑

j∈AS∪B1

KTj πj +
∑
j∈B2

KTj ψj = 0,

with 〈ψj , qj〉 = 0. Defining

θj :=


αjTj(Kη̃)j +

hj

αj
qj , j ∈ I,

πj , j ∈ AS ∪ B1,

ψj +
hj

αj
qj , j ∈ B2,

the result is obtained.

Next we verify that, along a given direction, there exists a solution of system eq. (61) which coincides
with the directional derivative. When properly characterized, this enables us to use of a linear representative
of the (otherwise nonlinear) directional derivative within a solution algorithm.

Theorem 5.2. For any α ∈ Rn+ and h ∈ Rn such that α+ th ≥ 0, there exists a linearized element η̃ = Gh
such that S′(α)h = Gh.

Proof. Let us recall that, since by assumption T ∪I0 = ∅, the directional derivative of the solution mapping,
in direction h, is given by the unique η ∈ C(α, u) solution of

〈φ′′(u)η, v − η〉+
∑
j∈I
〈αjTj(Kη)j , (Kv)j − (Kη)j〉 ≥

−
∑
j∈I

hj

〈
(Ku)j
‖(Ku)j‖

, (Kv)j − (Kη)j

〉
−
∑
j∈B

hj
αj
〈qj , (Kv)j − (Kη)j〉, (66)

for all v ∈ C(u). Considering the sets B1 := {j ∈ B : (Kη)j = 0} and B2 := B\B1, and since η ∈ C(u), it also
follows that (Kη) = cjqj , for all j ∈ B2, for some cj > 0. Consequently η belongs to the subspace

V := {v ∈ Rn : (Kv)j = 0, ∀j ∈ As ∪ B1; (Kv)j ∈ span(qj), ∀j ∈ B2}.

Moreover, for any w ∈ V it follows that, for t sufficiently small, η ± tw ∈ C(u). Testing (66) with these
vectors we then get that

〈φ′′(u)η, w〉+
∑
j∈I
〈αjTj(Kη)j , (Kw)j〉 = −

∑
j∈I∪B2

hj
αj
〈qj , (Kw)j〉, ∀w ∈ V,

and, consequently, the directional derivative takes the form η = Gh, solution of eq. (61), with B2 as defined
above.

6 Trust Region Algorithm

In this section we will describe the numerical algorithm used for finding optimal parameters of eq. (4). Thanks
to the Bouligand subdifferential characterization given in section 5, it is possible to compute a linearized
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representative of the directional derivative via the linear system eq. (61). Using this information we can
make use of a descent-like algorithm for its numerical solution. Indeed, by using the uniqueness properties
of the solution operator, we can write a reduced optimization problem

min
α≥0

j(u(α)) (67)

where u(α) is the image reconstruction corresponding to a particular value of α. With this reduced problem,
we can make use of the stationarity condition for the bilevel problem described in eq. (44) and the directional
derivative characterization eq. (57). By using the definition of the directional derivative for the reduced
optimization problem, we get

〈j′(α), h〉 = 〈∇J(u), S′(α;h)〉 = 〈∇J(u), η̃〉. (68)

where η̃ is a solution of system eq. (61) for a particular partition of the biactive set B = B1 ∪B2. Let us now
define a generalized adjoint p ∈ Rm as the solution of the following system

〈φ′′(u)>p, v〉+
∑
j∈I
〈µj , (Kv)j〉 − 〈∇J(u), v〉 = 0, ∀v ∈ V,

µj − αjTj(Kp)j = 0, ∀j ∈ I,

where V is defined as in Theorem 5.1. Moreover, using the results in Theorem 5.2, we know that η̃ ∈ V is a
linear representative of the directional derivative. Consequently, eq. (68) reads

〈j′(α), h〉 = 〈∇J(u), η̃〉 = 〈φ′′(u)>p, η̃〉+
∑
j∈I
〈αjTj(Kp)j , (Kη̃)j〉,

Rearranging the terms we get

〈j′(α), h〉 = 〈p, φ′′(u)η̃〉+
∑
j∈I
〈(Kp)j , αjTj(Kη̃)j〉 = 〈p, φ′′(u)η̃〉+

∑
j∈I
〈(Kp)j , λ̃j〉,

Finally, using eq. (57) we get

〈j′(α), h〉 = −
∑

j∈I∪B2

hj
αj
〈qj , (Kp)j〉 (69)

In this work, we will rely on a nonsmooth trust region method in the spirit of [6]. In general, a trust-
region algorithm works by defining for an iteration k a radius ∆k and replaces the function with a model
function mk(αk) within a trust-region. This region in this paper will be represented by a l∞ ball, and the
radius ∆k is updated according to a quality measure based on the predicted decrease of the model function
pred and the actual cost function reduction ared.

The model function we will be using has the following form

mk(αk) = j(αk) + g>k dk +
1

2
d>k Bkdk,

where Bk is a second order matrix built using BFGS updates, and gk is obtained either by using the Bouligand
subdifferential element obtained using eq. (69) or a gradient obtained from the regularized model, gγ,k, if the
radius falls below a threshold value, see Section 6.2. The idea of differentiating two phases for the trust region
subproblem approximation was taken from [6], where this strategy is presented for optimizing nonsmooth,
non-convex and locally-Lipschitz functions. By defining an appropriate model function, dependent on the
radius value, convergence to a Clarke (C)-stationary points may be verified [6, Proposition 2.10]. The
complete steps are provided in algorithm 1.

6.1 Trust Region Subproblem

Regarding step 10 in algorithm 1, we need to approximate the solution of the following trust region sub-
problem

min
s∈Rn

j(α) + g>s+
1

2
s>Bs

s.t. ‖s‖∞ ≤ ∆,

s+ α ≥ 0,

(70)
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Algorithm 1 Non-smooth Trust-Region Algorithm

1: Choose initial parameter α0, radius ∆0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 and tol > 0
2: Choose initial second order matrix B0 and a threshold radius ∆t

3: k = 0
4: while ∆k > tol do
5: if ∆k >= ∆t then
6: mk(αk) = j(αk) + g>k dk + 1

2d
>
k Bkdk

7: else
8: mk(αk) = j(αk) + g>γ,kdk + 1

2d
>
k Bkdk

9: end if
10: Compute a step sk that “sufficiently” reduces the model mk such that αk + sk ∈ B∆k

11: Update second order matrix Bk using limited memory BFGS.
12: Compute the quality measure ρk

13: αk+1 =

{
αk if ρk ≤ η1,

αk + sk otherwise.

14: ∆k+1 =


[∆k,∞) if ρk ≥ η2,

[γ2∆k,∆k] if ρk ∈ (η1, η2),

[γ1∆k, γ2∆k] if ρk < η1.
15: k ← k + 1
16: end while
17: return αk

which corresponds to a classical trust-region sub-problem with additional positivity constraints (see, e.g.,
[32, 33]). The main idea is to reformulate the problem taking advantage of the l∞ norm used for the ball at
the point xk

min
s∈Rn

j(α) + g>s+
1

2
s>Bs

s.t. max(−αj ,−∆) ≤ sj ≤ ∆, ∀j = 1, . . . , n.

(71)

For performance purposes it is desirable to solve this problem approximately in such a way that we can
guarantee a descent on the cost function. With that goal in mind we will make use of a dogleg strategy that
takes into account a Newton step sN and a Cauchy step sC . In the context of this constrained problem, let
us take B̃∆ = B∆ ∩ Rn+ and distinguish the following three cases

1. sN ∈ B̃∆,

2. sC ∈ B̃∆ and sN /∈ B̃∆,

3. sC /∈ B̃∆ and sN /∈ B̃∆.

For case 1 we take the Newton step; for case 2 a dogleg strategy for box constraints is used; for case 3 we
make use of a scaled Cauchy direction as described in algorithm 2.

6.2 Local Regularization

As a safeguard, for the cases where the trust-region radius fall below a threshold value ∆t we will rely on a
switching strategy between the nonsmooth model presented earlier and a regularized model. Let us consider
the following optimization problem

min
α∈Rn

+

J(ū(α), utrain)

s.t. ū(α) = arg min
u

φ(u) +

n∑
j=1

αj‖(Ku)j‖γ
(72)
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sN

(a) sN ∈ B̃∆

sC

sN

sDL

(b) sC ∈ B̃∆, sN /∈ B̃∆

sC

sN

(c) sC /∈ B̃∆, sN /∈ B̃∆

Figure 1: Projected Cauchy Step: The figure depicts a two dimensional example for the three different possible cases when

approximating the trust region subproblem using a dogleg strategy with l∞ norm and positivity constraints.

Algorithm 2 Dogleg Step for Box Constraints

1: Calculate Newton step by solving the linear system BksN = −gk.
2: if sN ∈ B̃∆ then
3: return sN
4: end if
5: Calculate sC = − ‖gk‖2

g>k ∗Bk∗gk
gk

6: if sC ∈ B̃∆ then
7: Calculate the intersection of sN − sC with B̃∆ and obtain sDL
8: return sDL
9: end if

10: Find t such that t ∗ sC/‖sC‖ remains in B̃∆.
11: return t ∗ sC

‖sC‖

where ‖ · ‖γ is a local regularization of the euclidean norm given by

‖z‖γ =

{
‖z‖ − 1

2γ if ‖z‖ ≥ 1
γ ,

γ
2 ‖z‖

2 if ‖z‖ < 1
γ .

Since the problem is now differentiable, we can define the following optimality condition for the lower level
problem is obtained

〈φ′(u), v〉+

n∑
j=1

αj〈hγ((Ku)j), (Kv)j〉 = 0, ∀v ∈ Rm.

Here, hγ correspond to the first derivative of the regularized euclidean norm. Moreover, regarding the
bilevel problem, it is possible to formulate the KKT conditions for this problem. Let (α∗, u∗) ∈ Rn+ × Rm
be a stationary point for the regularized bilevel problem eq. (72). Then there exist Lagrange multipliers
(p, σ) ∈ Rm × Rn such that the following optimality system holds true

〈φ′(u), v〉+

n∑
j=1

α∗j 〈hγ((Ku∗)j), (Kv)j〉 = 0, ∀v ∈ Rm, (73)

〈φ′′(u∗)>p, v〉+

n∑
j=1

αj〈h′∗γ ((Ku∗)j)(Kp)j , (Kv)j〉 = −〈J ′(u), v〉, ∀v ∈ Rm, (74)

〈hγ((Ku∗)j), (Kp)j〉 = σj , ∀j = 1, . . . , n, (75)

0 ≤ σ ⊥ α∗ ≥ 0. (76)

Moreover, with help of the adjoint equation eq. (74) it is possible to derive a gradient formula for the reduced
cost function j(α) = J(uγ(α)) as

(j′(α))j = 〈hγ((Ku)j), (Kp)j〉.
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Original
.

Noisy
SSIM=0.6091

α∗ = 0.0155
SSIM=0.7711

α1

α2

α∗ = [0.0233; 0.0126]
SSIM=0.8007

Figure 2: Cameraman Dataset
Optimal reconstructions using a scalar regularization parameter and a 2 dimensional regularization parameter.
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Figure 3: Cost Function - Cameraman Dataset
Values for the l2 squared cost function using a scalar regularization parameter and a two dimensional regularization parameter using
the Cameraman single image dataset.

According to algorithm 1, if the value for the radius runs below a predetermined threshold, the algorithm
will make use of this gradient for its calculations.

7 Experiments

In this section we report on the performance of algorithm 1 presented in Section 6 to find optimal parameters.
With this goal in mind we prepared two training image datasets.

7.1 Single Training Pair

The first dataset we will explore is a single 128 by 128 pixel image pair dataset based on the cameraman
image and a corrupted version, obtained by adding gaussian noise with zero mean and standard deviation
σ = 0.05. Figure 2 shows this training image pair along with the optimal parameter obtained using the
trust-region algorithm for both a scalar and a two-dimensional patch parameter. The improvement when
using a two-dimensional patch parameter, according to the SSIM value of the image reconstructions, in
Figure 3. Moreover, the cost function when using a scalar and a two dimensional parameter is shown,
respectively. These plots show the non-convexity of the cost function, and the cost corresponding to the
optimal parameter.

In order to explore the behavior of the algorithm with more degrees of freedom we will make use of a so
called patch-based parameter. This parameter will be a piecewise constant parameter. We split the image
size into a grid of different size according to the number of patches, i.e., the patch size will be smaller as we
require more patches within the image domain. For instance a 4x4 patch will calculate an optimal parameter
of size 16.

Regarding the behavior of the algorithm, Table 1 shows the performance on the cameraman training
dataset when using different number of patches, along with the number of iterations, cost, quality measures
and residue. Indeed, the improvement on the reconstructed images when using more patches can be verified
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Item Reconstruction

Patch Iterations ‖αk+1 − αk‖ COST SSIM PSNR

Scalar 19 7.629e-7 34.1206 0.7712 26.3794
2x1 20 4.883e-5 33.6915 0.8007 25.6222
2x2 19 4.639e-5 33.6625 0.8034 25.8982
4x4 22 1.461e-4 33.0175 0.8189 25.8303
8x8 28 5.614e-5 32.2040 0.8283 24.4066
16x16 36 9.119e-4 31.6976 0.8455 25.8264

Table 1: Trust Region Algorithm behavior on the Cameraman dataset.

2x2 4x4 8x8 16x16

SSIM=0.8034 SSIM=0.8189 SSIM=0.8283 SSIM=0.8455

Figure 4: Optimal Patch Parameter - Cameraman Dataset
Values for the l2 squared cost function using a scalar regularization parameter and a two dimensional regularization parameter using
the Cameraman dataset.

from the data. Furthermore, Figure 4 shows the optimal reconstructions along with the optimal parameter
for different number of patches. In this experiment it can be seen how the regularization parameter can
adjust different regularization levels according to the training pair.

7.2 Multiple Training Pairs

For the second experiment, we used ten image pairs containing images of faces to generate a training dataset
and ten different image pairs to generate a testing dataset; both datasets were based on the CelebA dataset
[22]. These images are of size 128 by 128 pixels and in both datasets, the degenerated pairs were generated
by adding gaussian noise with zero-mean and standard deviation σ = 0.1. A subset of the training dataset
is depicted in Figure 5.

In fig. 6 we plot the cost function corresponding to a scalar parameter and two-dimensional patch pa-
rameter along with the cost function corresponding to the optimal value calculated by the algorithm. It is
worth mentioning that when considering a patch-dependent parameter, as it was the case with the single
image dataset, a scale dependent structure appears (see fig. 7).

For the training dataset proposed, the quality reconstruction results for different number of patches
is shown in Table 2. This table shows the mean values for the SSIM and PSNR quality metric for the
reconstructed images from the training dataset. Again, an improvement on the reconstruction quality can
be seen as the degrees of freedom for the regularization parameter increases.

Finally, we can estimate the denoiser performance in images from the testing dataset. This experiment
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Figure 5: Faces Dataset
A subset of the CelebA dataset corrupted with gaussian noise.
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Figure 6: Cost Function - Faces Dataset
Values for the l2 squared cost function using a scalar regularization parameter and a two dimensional regularization parameter using
the Faces dataset.

2x2 4x4 8x8 16x16

Figure 7: Optimal Patch Parameter - Faces Dataset
Values for the optimal parameters calculated for different parameter patch sizes.

Item Reconstruction

Patch Iterations ‖αk+1 − αk‖ COST MSSIM MPSNR

Scalar 14 1.562e-3 152.3726 0.8141 27.0689
2x1 17 1.049e-3 152.3209 0.8142 27.0589
2x2 21 1.762e-4 152.3120 0.8146 27.0739
4x4 21 7.421e-4 152.0911 0.8154 27.0766
8x8 24 7.050e-4 151.2011 0.8173 27.0787
16x16 25 1.410e-3 149.9673 0.8193 27.1047
32x32 35 3.285e-4 147.6573 0.8223 27.2141

Table 2: Trust Region Algorithm behavior on the Faces dataset.
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img num noisy scalar 2x2 4x4 8x8 16x16 32x32

1 0.5247 0.7951 0.7948 0.7937 0.7956 0.7940 0.7930
2 0.4588 0.6614 0.6618 0.6616 0.6625 0.6625 0.6592
3 0.4267 0.7719 0.7721 0.7723 0.7747 0.7743 0.7710
4 0.3836 0.7237 0.7229 0.7214 0.7235 0.7233 0.7202
5 0.4580 0.7812 0.7799 0.7783 0.7798 0.7799 0.7768
6 0.4263 0.7400 0.7403 0.7403 0.7420 0.7428 0.7423
7 0.4547 0.6321 0.6322 0.6308 0.6305 0.6298 0.6262
8 0.4117 0.7381 0.7386 0.7405 0.7416 0.7413 0.7398
9 0.4655 0.7430 0.7409 0.7399 0.7405 0.7388 0.7354
10 0.5081 0.8210 0.8210 0.8204 0.8211 0.8197 0.8181

MSSIM 0.7408 0.7405 0.7400 0.7412 0.7406 0.7382

Table 3: Faces Dataset SSIM Quality Measures in the validation dataset.

will show the overfitting phenomena that may occur when dealing with large number of patches, including
the case of scale-dependent parameters (α ∈ Rn). Indeed, it can be seen in the testing dataset an increment
on the mean SSIM (MSSIM) for the reconstructed images from the testing dataset up to a 8x8 patch size.
Any higher number of patches results in quality degradation. This is indeed the expected behavior when
dealing with overfitting problems.

7.3 Learning Optimal Total Variation Discretization

The selection of an adequate discretization of the total variation seminorm in the context of image reconstruc-
tion problems is still an open problem [4, 1]. In [5], the authors propose a methodology for finding optimal
discretization where instead of using hand-crafted discretization schemes for the total variation seminorm, a
learning strategy is proposed.

The bilevel framework presented in this work, can also be used to learn optimal gradient discretization,
by using different discretization schemes and their corresponding regularization parameters. We will make
use of a training dataset to estimate the optimal regularization parameters for the contributions of each
discretization scheme into the final solution. Let us define the following variational denoising model

min
u∈Rn

E(u) :=
1

2
‖u− f‖2 +

n∑
j=1

(α1)j‖(K1u)j‖+

n∑
j=1

(α2)j‖(K2u)j‖+

n∑
j=1

(α3)j‖(K3u)j‖, (77)

where K1,K2 and K3 are the forward, backward and centered finite differences discretization of the gradient
operator respectively. The goal is to determine optimal parameters (α1, α2, α3)> ∈ R3×n

+ that lead to an
optimal discretization of the total variation operator. Indeed, we consider the following bilevel learning
strategy

min
(α1, α2, α3)> ∈ Rn+ × Rn+ × Rn+

1

2
‖ū(α)− utrain‖2

s.t. ū = arg min
u∈Rm

E(u),

(78)

By extending the model presented previously, we can make use of a similar analysis using the Bouligand
candidate presented in theorem 5.1 by defining the following adjoint state

〈p, v〉+

3∑
i=1

∑
j∈Ii
〈µij , (Kiv)j〉 − 〈∇J(u), v〉 = 0,∀v ∈ V

µij − αijT ij (Kip)j = 0, ∀j ∈ Ii, i = 1, 2, 3,
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Figure 8: Optimal Patch Parameters - Cameraman Dataset
Values for the optimal parameter calculated for the Cameraman dataset for different patch sizes.

where V := {v ∈ Rm : (Kiv)j = 0, ∀Ais ∪ Bi1, (Kiv)j ∈ span(qij), ∀j ∈ Bi2, i = 1, 2, 3}, and the following
gradient form

〈j′(αi), hi〉 = −
∑

j∈Ii∪Bi
2

hij
αij
〈qij , (Kip)j〉 for i = 1, 2, 3.

The same procedure applies for the regularized problem. Using the KKT conditions for the differentiable
problem we obtain

〈p, v〉+

3∑
i=1

n∑
j=1

αij〈h′∗γ ((Kiu)j)(Kip)j , (Kiv)j〉 = −〈∇J(u), v〉, ∀v ∈ Rm,

and its corresponding gradient characterization

(j′(αi))j = 〈hγ((Kiu)j), (Kip)j〉, ∀i = 1, 2, 3.

The optimal regularization parameters for 4x4 and 8x8 patch-parameters for each of the three regularizers
considered is presented in fig. 8 for the cameraman dataset and fig. 9 for the faces dataset. Again, we can
see an improvement on the image quality by using more patches in the training datasets. Finally, in table 4
we can see a comparison between different patch sizes when using these three regularizers. Again, it is worth
noticing that in the validation dataset the best reconstruction quality corresponds to an 8x8 patch-parameter
size, and any further enlargement of the patch dimension drives a lower reconstruction quality.
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