
The strong fractional choice number and the strong

fractional paint number of graphs

Rongxing Xu ∗1,2 and Xuding Zhu †1

1Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321000, China.
2School of Mathematical Sciences, University of Science and Technology of China, Hefei,

Anhui, 230026, China

October 5, 2021

Abstract

This paper studies the strong fractional choice number chsf(G) and the strong
fractional paint number χsf,P (G) of a graph G. We prove that these parameters of
any finite graph are rational numbers. On the other hand, for any positive integers
p, q satisfying 2 ≤ 2p

2q+1 ≤ ⌊pq ⌋, there exists a graph G with chsf(G) = χsf,P (G) = p
q .

The relationship between χsf,P (G) and chsf(G) is explored. We prove that the gap
χsf,P (G) − chsf(G) can be arbitrarily large. The strong fractional choice number
of a family G of graphs is the supremum of the strong fractional choice number of
graphs in G. Let P denote the class of planar graphs and Pk1,...,kq denote the class of
planar graphs without ki-cycles for i = 1, . . . , q. We prove that 3+ 1

2 ≤ ch
s
f(P4) ≤ 4,

chsf(Pk) = 4 for k ∈ {5,6}, 3+ 1
12 ≤ ch

s
f(P4,5) ≤ 4 and chsf(P) ≥ 4+ 1

3 . The last result

improves the lower bound 4 + 2
9 in [Zhu, multiple list colouring of planar graphs,

Journal of Combin. Th. Ser. B,122(2017),794-799].

1 Introduction

Suppose G is a graph, f and g are two functions from V (G) to N, with f(v) ≥ g(v) for
every v ∈ V (G). An f -assignment of G is a mapping L which assigns to each vertex
v of G a set L(v) of f(v) integers as permissible colours. A g-fold colouring of G is a
mapping S which assigns to each vertex v of G a set S(v) of g(v) colours such that for
any two adjacent vertices u and v, S(u) ∩ S(v) = ∅.

∗E-mail: xurongxing@zjnu.edu.cn. Grant Numbers: NSFC 11871439. Supported also by Fujian
Provincial Department of Science and Technology(2020J01268).
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Given a list assignment L of G, an (L, g)-colouring of G is a g-fold colouring S of
G such that for each v, S(v) ⊆ L(v). We say G is (L, g)-colourable if there exists an
(L, g)-colouring of G. For a positive integer a, we write f ≡ a if f is the constant
function with f(v) = a for every vertex v. If g ≡ b, then (L, g)-colourable is denoted
by (L, b)-colourable. If L(v) = {1,2, . . . , a} for each v ∈ V (G), then (L, b)-colourable is
called (a, b)-colourable. The b-fold chromatic number χb(G) of G is the least k such that
G is (k, b)-colourable. The 1-fold chromatic number of G is also called the chromatic
number of G and denoted by χ(G). The fractional chromatic number of G is defined as
χf(G) = inf{ab ∶ G is (a, b)-colourable}.

Similarly, we say G is (f, g)-choosable if for every f -list assignment L, G is (L, g)-
colourable.

• If f ≡ a and g ≡ b, then (f, g)-choosable is called (a, b)-choosable.

• If b = 1, then (f,1)-choosable is called f -choosable.

• (a,1)-choosable is also called a-choosable.

The choice number ch(G) of G is the minimum k such that G is k-choosable. The b-
fold choice number chb(G) of G is the minimum k such that G is (k, b)-choosable. The
fractional choice number of G is defined as chf(G) = inf{ab ∶ G is (a, b)-choosable}.

List colouring of graphs was introduced in the 1970s by Vizing [23] and independently
by Erdős, Rubin and Taylor [8]. The subject offers a large number of challenging prob-
lems and has attracted an increasing attention since 1990. Readers are referred to [21]
for a comprehensive survey on results and open problems.

The paint number of a graph is a variation of the choice number of a graph. Given two
functions f and g from V (G) to N , with f(v) ≥ g(v) for all v ∈ V (G), the (f, g)-painting
game on G is played by two players: Lister and Painter. Initially, each vertex v is given
f(v) tokens and is uncolourred. On each round, Lister selects a set U of vertices and
removes one token from each chosen vertex. Painter chooses an independent subset I of
U and colours each vertex of I with a new colour. If at the end of some round, there is
a vertex v with no tokens left and coloured with less than g(v) colours, then Lister wins
the game. If at the end of some round, each vertex v is coloured with g(v) colours, then
Painter wins the game. We say G is (f, g)-paintable if Painter has a winning strategy
for the (f, g)-painting game.

• If f ≡ a and g ≡ b,, then (f, g)-paintable is called (a, b)-paintable.

• If b = 1, then (f, b)-paintable is called f -paintable.

• (a,1)-paintable is also called a-paintable.

The b-fold paint number χb,P (G) is the minimum k such that G is (k, b)-paintable,
and χ1,P (G) is called the paint number (or the online choice number) of G, and de-
noted by χP (G). The fractional paint number of G is defined as χf,P (G) = inf{ab ∶

G is (a, b)-paintable}.
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It follows from the definition that for any graph G, χf(G) ≤ chf(G) ≤ χf,P (G). It
was proved in [1] that χf(G) = chf(G) for every graph G, and proved in [10] that
χf(G) = χf,P (G) for every graph G. So the fractional chromatic number, the fractional
choice number and the fractional paint number of a graph are a same invariant. As a
variation of the fractional choice number, the concept of strong fractional choice number
of a graph was introduced in [28].

Definition 1.1 Assume G is a graph and r is a real number. We say G is strongly
fractional r-choosable (respectively, strongly fractional r-paintable or strongly fractional
r-colourable ) if G is (a, b)-choosable (respectively, (a, b)-paintable, or (a, b)-colourable)
for any (a, b) for which a

b ≥ r. The strong fractional choice number of G is defined as

chsf(G) = inf{r ∈ R ∶ G is strongly fractional r-choosable}.

The strong fractional paint number of G is defined as

χsf,P (G) = inf{r ∈ R ∶ G is strongly fractional r-paintable}.

We also define the strong fractional chromatic number of G as

χsf(G) = inf{r ∈ R ∶ G is strongly fractional r-colourable}.

The strong fractional choice number, the strong fractional paint number and the strong
fractional chromatic number of a class G of graphs is defined as

chsf(G) = sup{chsf(G) ∶ G ∈ G}, χsf,P (G) = sup{χsf,P (G) ∶ G ∈ G}, χsf(G) = sup{χsf(G) ∶ G ∈ G}.

The paper studies basic properties of these parameters, and upper and lower bounds
for these parameters for special families of graphs. In Section 2, we show that both
chsf(G) and χsf,P (G) are rational numbers. In Section 3, we study the problem as which
rational numbers are the strong fractional choice number and strong fractional paint
number of graphs. We conjecture that for every rational r ≥ 2, there exists a graph G
with chsf(G) = r and a graph G with χsf,P (G) = r, and prove that for any positive integers

p, q, where p ≥ 2q satisfying 2p
2q+1 ≤ ⌊

p
q ⌋, there exists a graph G with chsf(G) = χsf,P (G) =

p
q .

In Section 4, we show that the gap χsf,P (G)−chsf(G) can be arbitrarily large. In Section
5, we study upper and lower bounds for the strong fractional choice number of planar
graphs. Let P denote the family of planar graphs and for positive integers k1, k2, . . . , kq,
let Pk1,...,kq be the family of planar graphs without cycles of lengths ki for i = 1, . . . , q.
It was proved in [28] that chsf(P) ≥ 4 + 2

9 . We improve this result and prove that

chsf(P) ≥ 4 + 1
3 . It is also shown that 3 + 1

2 ≤ ch
s
f(P4) ≤ 4, chsf(Pk) = 4 for k ∈ {5,6}, and

3 + 1
12 ≤ ch

s
f(P4,5) ≤ 4. Some open problems are posed in Section 6.
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2 Basic Properties

Lemma 2.1 gives an alternative definitions of chsf(G) and χsf,P (G).

Lemma 2.1 For any graph G,

chsf(G) = sup{
chk(G) − 1

k
∶ k ∈ N}, χsf,P (G) = sup{

χk,P (G) − 1

k
∶ k ∈ N}.

Proof. Let r = sup{ chk(G)−1
k ∶ k ∈ N}. Then for any ε > 0, there is an integer k such that

(r − ε)k < chk(G) − 1. Thus ⌈(r − ε)k⌉ < chk(G) and G is not ⌈(r − ε)k⌉, k)-choosable.
Therefore, chsf(G) ≥ r − ε for any ε > 0, which implies that chsf(G) ≥ r. On the other
hand, for any ε > 0, for any integer k, ⌈(r + ε)k⌉ ≥ chk(G). Hence G is (⌈(r + ε)k⌉, k)-
choosable. So chsf(G) ≤ r + ε for any ε > 0, which implies that chsf(G) ≤ r. Therefore
chsf(G) = r. The other part of Lemma 2.1 is proved similarly.

The following lemma was proved in [10]. For the completeness of this paper, we
present a short proof.

Lemma 2.2 Assume G is a finite graph. Then for any ε > 0, there is a constant k0
such that for any k ≥ k0,

chk(G)

k ≤
χk,P (G)

k ≤ χf(G) + ε.

Proof. Assume χf(G) = a/b and φ is a b-fold colouring of G using colours {1,2, . . . , a}

(a, b need not be coprime). Assume k >
a2∣V (G)∣

ε and let m = k(ab + ε) (for simplicity,
we may choose ε so that k(ab + ε) is an integer). It suffices to show that Painter has a
winning strategy for the (m,k)-painting game on G.

For i = 1,2, . . ., assume the set chosen by Lister at the ith round is Ui. Let

ti = ∣{j ≤ i ∶ Uj = Ui}∣,

and let τi ∈ {1,2, . . . , a} be the unique integer for which τi ≅ ti mod a. Painter’s strategy
is to colour all the vertices in the set Ii = φ−1(τi) ∩Ui in the ith round. As φ−1(τi) is an
independent set, Ii is an independent set.

We shall show that this is a winning strategy for Painter, i.e., when the game ends,
every vertex will be coloured by at least k colours.

Assume to the contrary that at the end of some round, say at the end of the ith round,
a vertex v has no token left (hence v has been chosen m = k(ab + ε)) times by Lister) and
is coloured in k(v) < k rounds.

For each subset U of V (G) and for each t ∈ {1,2, . . . , a}, let

(U, t) = {j ≤ i ∶ Uj = U, τj = t}.

By the strategy, for each j ≤ i, if j ∈ (U, t), v ∈ U and t ∈ φ(v), then v is coloured in
round j. Therefore,

k(v) = ∑
v∈U,t∈φ(v)

∣(U, t)∣.
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For each subset U of V (G), let tU = ∣{j ≤ i ∶ Uj = U}∣. It follows from the choice of
colour τj that for any colour t, either ∣(U, t)∣ = ⌊

tU
a ⌋ or ∣(U, t)∣ = ⌈

tU
a ⌉. Therefore

∣(U, t)∣ ≥
tU
a
− 1.

Note that ∑v∈U tU =m is the total number of times vertex v is chosen by Lister. Since
φ(v) is a b-subset of {1,2, . . . , a}, we conclude that

k(v) = ∑
v∈U,t∈φ(v)

∣(U, t)∣ ≥ b∑
v∈U

(
tU
a
− 1) ≥

bm

a
− b2∣V (G)∣ =

k(a/b + ε)b

a
− b2∣V (G)∣ ≥ k,

a contradiction.

Theorem 2.3 For any finite graph G, chsf(G) and χsf,P (G) are rational numbers.

Proof. If
χk,P (G)−1

k ≤ χf(G) for every positive integer k, then it follows from Lemma
2.1 that χsf,P (G) ≤ χf(G). Since χf(G) ≤ χsf,P (G), we conclude that χsf,P (G) = χf(G),
which is a rational number.

Assume there is an integer k0 such that
χk0,P

(G)−1

k0
> χf(G). Let ε =

χk0,P
(G)−1

k0
−χf(G) >

0. By Lemma 2.2, there is a constant k1 ≥ k0 such that for k ≥ k1,
χk,P (G)

k ≤ χf(G) + ε.
Hence

sup{
χk,p(G) − 1

k
∶ k ∈ N, k ≥ k1} ≤

χk0,P (G) − 1

k0
.

Therefore

χsf,P (G) = sup{
χk,P (G) − 1

k
∶ k ∈ N} = max{

χk,P (G) − 1

k
∶ 1 ≤ k ≤ k1}

is a rational number. Moreover, the supremum in Lemma 2.1 is attained.
The part of the lemma concerning chsf(G) is proved similarly.

Lemma 2.1 gives an alternate definition of chsf(G) and χsf,P (G). It follows from
the proof of Theorem 2.3 that either chsf(G) = χf(G) or the supremum in the defi-

nition chsf(G) = sup{ chk(G)−1
k ∶ k ∈ N} is attained. However, the infimum in the defi-

nition chsf(G) = inf{r ∶ G is strongly fractional r-choosable} may be not attained even
if chsf(G) ≠ χf(G). Similarly, either χsf,P (G) = χf(G) or the sumpremum in the def-

inition χsf,P (G) = sup{
χk,P (G)−1

k ∶ k ∈ N} is attained. But the infimum in the defini-
tion χsf,P (G) = inf{r ∶ G is strongly fractional r-paintable} may be not attained even if
χsf,P (G) ≠ χf(G).
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3 Constructing graphs with given chsf(G) and χsf,P(G)

By Theorem 2.3, for any finite graph G, chsf(G) and χsf,P (G) are rational numbers. A
natural question is whether every rational number r ≥ 2 is the strong fractional choice
(paint) numbers of a graph. We conjecture that the answer is yes. In this section, for
some rational numbers p/q, we construct graphs G with χsf,P (G) = chsf(G) = p/q.

Given a graph G, a subset S of G and two graphs H1 and H2, let G[S ∶ H1,H2] be
the graph with

V (G[S ∶H1,H2]) = {(u, v) ∶ u ∈ S and v ∈ V (H1), or u ∈ V (G) ∖ S and v ∈ V (H2)},

E(G[S ∶H1,H2]) = {(u, v)(u′, v′) ∶ uu′ ∈ E(G), or u = u′ ∈ S, vv′ ∈ E(H1)

or u = u′ ∈ V (G) ∖ S, vv′ ∈ E(H2)}.

Note that if S = V (G) or H1 = H2, then G[S ∶ H1,H2] = G[H1] is the lexicographic
product of G and H1. In the rest of this section, we let Gn,m,k denote the graph C2k+1[I ∶
Kn,Km], where I is a maximum independent set of C2k+1, see Fig.1 for the example of
G6,4,3.

Fig. 1. G6,4,3

Theorem 3.1 For any positive integer n,m, k with n ≥m,

chsf(Gn,m,k) = χ
s
f,P (Gn,m,k) = χf(Gn,m,k) = n +m +

m

k
.

Proof. Assume the vertices of C2k+1 are (v0, v1, . . . v2k) in this cyclic order, and assume
that I = {v1, v3, . . . , v2k−1} and Gn,m,k = C2k+1[I ∶Kn,Km].

For s ∈ {0,1, . . . ,2k}, let

Vs = {(x, y) ∈ V (Gn,m,k) ∶ x = vs}.

For any vertex set S ⊆ V (Gn,m,k), let

∂(S) = {s ∶ S ∩ Vs ≠ ∅}.
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It is clear that α(Gn,m,k) = α(C2k+1) = k. It is well known that χf(G) ≥
∣V (G)∣

α(G)
for any

graph G, so we have

χf(Gn,m,k) ≥
nk +m(k + 1)

k
= n +m +

m

k
.

Since χf(G) ≤ chsf(G) ≤ χsf,p(G) for any graphG, it suffices to show that χsf,P (Gn,m,k) ≤

n +m + m
k . For this purpose, we will show that for any a

b ≥ n +m + m
k , Gn,m,k is (a, b)-

paintable. In the following, we present a winning strategy for Painter in the (a, b)-
painting game on Gn,m,k.

For simplicity, we assume that if a vertex v has been coloured with b colours, then
Lister will not choose v in later moves.

For i = 1,2,⋯, we denote by Ui the set of vertices chosen by Lister, and by Xi the
independent set contained in Ui, coloured by Painter at the ith round.

Assume Lister has chosen Ui. We describe a strategy for Painter to choose the inde-
pendent set Xi.

We consider two cases.

Case 1 ∂(Ui) = {0,1,2,⋯,2k}.
Let ti = ∣{j ∶ j ≤ i and ∂(Uj) = {0,1,⋯,2k}}∣. Let τi be the unique integer in

{0,1,⋯,2k} which is congruent to ti modulo 2k + 1. Then Xi is any independent set
contained in Ui with ∂(Xi) = {τi, τi + 2,⋯, τi + 2k − 2} (the summation in the indices are
modulo 2k + 1).

Case 2 ∂(Ui) ≠ {0,1,⋯,2k}.
Painter traverse the sets V0, V1, . . . , V2k of Gn,m,k one by one in cyclic order along the

clockwise direction, starting at an arbitrary set Vs for which s ∉ ∂(Ui), and choose an
independent set Xi as follows: Initially, Xi = ∅ and vertices will be added to Xi in the
process. When we traverse to Vj, if Ui∩Vj ≠ ∅ and Xi∩Vj−1 = ∅, then add a vertex from
Vj ∩Ui to Xi. Otherwise, do not add any vertex from Vj into Xi (again the calculation
in the indices are modulo 2k + 1).

It follows from the definition that in both cases, the set Xi is an independent set of
G contained in Ui. We shall show that this is a winning strategy for Painter. First we
have the following claim.

Claim 3.1 Case 1 happens at most mb(2k+1)
k times.

Proof. Every 2k+1 times Case 1 happens, k vertices (not necessarily distinct) in V0 will
be coloured. However, all the vertices from V0 need to be coloured mb times in total.
Thus the claim holds.

Assume to the contrary that at the end of some round, say at the end of the rth
round, a vertex v ∈ Vj has no token left and is coloured at most b − 1 times.

Let Br(v) = {i ≤ r ∶ v ∈ Ur − Xr}, which is the collection of rounds of the game
that v is chosen by Lister but not coloured by Painter at the end of rth round. Then
∣Br(v)∣ ≥ a−b+1. It follows from the strategy that for each i ∈ Br(v), one of the following
holds:

7



• Vj−1 ∩Xi ≠ ∅, i.e., some vertex in Vj−1 is coloured in this round.

• ∂(Ui) = {0,1,⋯,2k} and τi = j + 1.

• Vj ∩Xi ≠ ∅ and v ∉Xi, i.e., some another vertex from Vj is cloured at this round.

Since ∣Vj−1 ∪ (Vj ∖ v)∣ ≤m+n− 1 and each vertex in Vj−1 ∪ (Vj ∖ v) is coloured at most
b times, we conclude that

∣{i ≤ r ∶ ∂(Ui) = {0,1,⋯,2k}, τi = j + 1∣

≥ a − b + 1 − (m + n − 1)b

= a − (m + n)b + 1. (3.1)

It follows from the definition of τi that

∣{i ≤ r ∶ ∂(Ui) = {0,1,⋯,2k}, τi = j + 1∣ ≤ ⌈
ti

2k + 1
⌉. (3.2)

By Claim 3.1, ti ≤
(2k+1)mb

k . Hence

⌈
ti

2k + 1
⌉ ≤ ⌈

(2k + 1)mb

k(2k + 1)
⌉ = ⌈

mb

k
⌉,

Combining the inequality above with Inequalities (3.1) and (3.2), we have

mb

k
> a − (m + n)b,

that is
a

b
<m + n +

m

k
,

contrary to our assumption.

By setting m = n = 1 in Theorem 3.1, we have

Corollary 3.2 χf(C2q+1) = chsf(C2q+1) = χsf,P (C2q+1) = 2 + 1
q .

Proposition 3.3 For any positive integers p, q with p ≥ 2q and 2p
2q+1 ≤ ⌊

p
q ⌋, there exists

a graph G such that

chsf(G) = χsf,p(G) = χf(G) =
p

q
.

Proof. Let a = ⌊
p
q ⌋(q + 1) − p and b = p − q⌊pq ⌋. As p ≥ 2q, we first have that a, b > 0. On

the other hand, note that by the condition 2p
2q+1 ≤ ⌊

p
q ⌋, we have that

a − b = (2q + 1)⌊
p

q
⌋ − 2p ≥ 0.
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So by setting a = n and b =m in Theorem 3.1, we have that

chsf(Ga,b,q) = χ
s
f,P (Ga,b,q) = a + b +

b

q
=
p

q
.

This completes the proof.

According to Proposition 3.3, if q ≤ 2, then for any p ≥ 2q, there exists a graph G with
chsf(G) = chsf,P (G) = p/q. If q = 3, the only cases p ≥ 2q unknown are p = 8 and p = 11.

4 Relation among χsf(G), chsf(G) and χf,P(G)

It follows from the definitions that for any graph G,

χsf(G) ≤ chsf(G) ≤ χsf,P (G).

The gap chsf(G) − χsf(G) can be arbitrarily large, as for complete bipartite graphs, we
have χsf(Kn,n) = 2 and chsf(Kn,n) ≥ ch(Kn,n) − 1 ≥ log2 n − (2 + o(1)) log2 log2 n.

In the following we show that the difference χsf,P (Kn,n)−chsf(Kn,n) also goes to infinity
with n. It was proved in [4] that for n ≥ 2k+3, the graph Kn,n is not k-paintable, so
χP (Kn,n) ≥ log2 n − 4. Therefore, χsf,P (Kn,n) ≥ χP (Kn,n) − 1 ≥ log2 n − 5. So it suffices to
show that log2 n − χ

s
f(Kn,n) goes to infinity with n.

A k-uniform hypergraph H = (V,E) consists of a vertex set V and an edge set E,
where each edge e ∈ E is a k-subset of V . A proper c-colouring of H is a mapping
φ ∶ V ↦ {1,2,⋯, c} such that no edge is monochromatic. Hypergraph 2-colourability,
which is an alternate formulation of list colouring of complete bipartite graphs, is a
central problem in combinatorics that has been studied in many papers (see [2, 7, 17],
etc.) Corresponding to b-fold list colouring of complete bipartite graphs, we define a
b-proper 2-colouring of a hypergraph H as a mapping φ ∶ V (H) → {1,2} such that for
each edge e of H, for each i ∈ {1,2}, ∣φ−1(i) ∩ e∣ ≥ b, i.e., each edge contains at least
b vertices of each colour. We say that H is b-proper 2-colourable if H has a b-proper
2-colouring. Let m(k, b) denote the minimum possible number of edges of a kb-uniform
hypergraph which is not b-proper 2-colourable.

Lemma 4.1 Every p-uniform hypergraph with m edges satisfying m∑
b−1
i=0 (

p
i
) 1
2p−1 < 1 has

a b-proper 2-colouring. As a result,

m(k, b) ≥ (
b−1

∑
i=0

(
ks

i
))

−1

2kb−1.

Proof. Let H = (V,E) be a p-uniform hypergraph satisfying the condition.
Colour the vertices of H randomly by two colours with equal probability. We say an

edge e is bad if one colour is used on less than b vertices in e. For each edge e, let Ae be
the event that e is bad. Then

Pr(Ae) = 2
b−1

∑
i=0

(
p

i
)

1

2p
=
b−1

∑
i=0

(
p

i
)

1

2p−1
.

9



Therefore,
Pr(⋁

e∈E

Ae) ≤ ∑
e∈E

Pr(Ae) =mPr(Ae) < 1.

So there exists a colouring such that there is no bad edges.

Lemma 4.2 Let G be a bipartite graph with n vertices. When n is big enough, the b-fold
choice number chb(G) satisfies the following,

chb(G)

b
<

1

b
log2 n + (1 −

1

b
) log2 log2 n +O(1).

Proof. Let k = 1
b log2 n+(1− 1

b) log2 log2 n+C, for some constant C, we shall prove that
G is (kb, b)-choosable for any b ≥ 2.

Assume G = (X ∪ Y,E) be a bipartite graph with X and Y being the two parts,
and L is a list assignment of G with ∣L(v)∣ = kb for each v ∈ V (G). We construct a
kb-uniform hypergraph H with V (H) = ⋃v∈V (G)L(v), and E(H) = {L(v) ∶ v ∈ V (G)}.
So ∣E(H)∣ = ∣V (G)∣ = n.

Observe that if H has a b-proper 2-colouring, then G is (L,m)-colourable. Indeed,
each vertex is either labeled with red or blue in the b-proper 2-colouring of H. Then for
each vertex v ∈ V (G), we can choose b colours with label red for v if v ∈ X, and choose
b colours with label blue for it if v ∈ Y .

Now, it suffices to prove that H satisfies the condition in Lemma 4.1, so we only need
to verify that

n
b−1

∑
i=0

(
kb

i
)

1

2kb−1
< 1.

The case that b = 1 was proved in [7]. If b = 2, then we have kb = log2 n+ log2 log2 n+2C,
so,

n
b−1

∑
i=0

(
kb

i
)

1

2kb−1
= n(log2 n + log2 log2 n + 2C + 1)

1

2log2 n+log2 log2 n+2C−1

= (log2 n + log2 log2 n + 2C + 1)
1

2log2 log2 n+2C−1

=
2t + t + 2C + 1

2t+2C−1
,

where t = log2 log2 n. When n is large enough and hence t is large enough, and C ≥ 1,
we have n∑

b−1
i=0 (

kb
i
) 1
2kb−1

< 1. Similarly, we can verify the case for b = 3.
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Assume b ≥ 4. Using the inequality (
n
k
) < ( enk )k, we have

n
b−1

∑
i=0

(
kb

i
)

1

2kb−1
≤ nb(

e(log2 n + (b − 1) log2 log2 n + bC)

b − 1
)

b−1
1

2log2 n+(b−1) log2 log2 n+bC−1

= b(
e(log2 n + (b − 1) log2 log2 n + bC)

b − 1
)

b−1
1

2(b−1) log2 log2 n+bC−1

=
b

2bC−1
(
e(log2 n + (b − 1) log2 log2 n + bC)

(b − 1) log2 n
)

b−1

.

Again when n is large enough, we have n∑
b−1
i=0 (

kb
i
) 1
2kb−1

< 1. This finishes the proof of the
lemma.

In 2000, Radhakrishnan and Srinivasan [17] actually gave a better lower bound for

m(k,1), who showed that m(k,1) = Ω(2k
√

k
lnk). This implies that ch1(G)

1 = ch(G) ≤

log2 n−(1
2 −o(1)) log2 log2 n if G is a complete bipartite graph with n vertices. Combing

this fact and Lemma 4.2 and Lemma 2.1, we have the following proposition.

Corollary 4.3 Let G be a bipartite graph with n vertices. When n is big enough,

chsf(G) ≤ log2 n − (
1

2
− o(1)) log2 log2 n.

Consequently, χsf,P (Kn,n) − chsf(Kn,n) can be arbitrarily large.

Although the gaps chsf(G)−χsf(G) and χf,P (G)−chsf(G) can be arbitrarily large, there
are also many graphs G for which the equality chsf(G) = χsf(G) and/or χf,P (G) = chsf(G)

hold. Recall that a graph G is called chromatic-choosable if χ(G) = ch(G). The study of
chromatic choosable graphs attracted a lot of attention. The well-known list colouring
conjecture asserts that line graphs are chromatic-choosable. This conjecture remains
largely open, however, it was shown by Galvin [9] the the line graphs of bipartite graphs
are chromatic-choosable. This result extends to strong fractional choice number and
strong fractional paint number.

Theorem 4.4 If G = L(H) is the line graph of a bipartite graph H, then

χsf(G) = chsf(G) = χsf,P (G) = ∆(H).

Proof. It is well-known that χ(G) = ω(G) = ∆(H). Hence χsf(G) ≥ ∆(H). It remains
to show that χf,P (G) ≤ ∆(H).

An orientation D of G is kernel perfect if any subset X of V (D) contains an inde-
pendent set I such that for any v ∈ X − I, N+

D(v) ∩ I ≠ ∅. Here N+

D(v) is the set of
out-neighbours of v. We set N+

D[v] = N+

D(v) ∪ {v}. It was proved in [9] that G has a
kernel perfect orientation D with ∆+(D) = ∆(H). On the other hand, for any kernel
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perfect orientation D of G, for any f, g ∶ V (D) → N, if f(v) ≥ ∑u∈N+D[v] g(u) for every

vertex v, then it is easy to show by induction on ∑v∈V (D)
f(v) that Painter has a winning

strategy in the (f, g)-painting game.
Indeed, if Lister choose a subset X of V (G) in a round, then Painter chooses an

independent set I of X for which N+

D(v) ∩ I ≠ ∅ for all v ∈X − I. Let

f ′(v) =

⎧⎪⎪
⎨
⎪⎪⎩

f(v) − 1, if v ∈X − I,

f(v), otherwise.,

and

g′(v) =

⎧⎪⎪
⎨
⎪⎪⎩

g(v) − 1, if v ∈ I,

g(v), otherwise.

It follows from the definition that for any vertex v, we still have f ′(v) ≥ ∑
′

u∈N+D[v](u).

By induction hypothesis, Painter has a winning strategy in the (f ′, g′)-painting game
on G. Therefore Painter has a winning strategy for the (f, g)-painting game on G.

For any positive integer m, by letting f(v) = m(d+D(v) + 1) ≤ ∆(H)m and g(v) = m
for each vertex v, we have that G is (∆(H)m,m)-paintable. Hence χsf,P (G) ≤ ∆(H).

5 chsf(G) for planar graphs

In this section, we study the strong fractional choice number of planar graphs. Let
P denote the class of planar graphs and for integers k1, . . . , kq ≥ 3, let Pk1,...,kq denote
the class of planar graphs without ki-cycles for i = 1, . . . , q. For example, P3,4,5 denotes
planar graphs with girth 6.

It was shown in [28] that 4 + 2
9 ≤ ch

s
f(P) ≤ 5. The following result improves the lower

bound.

Proposition 5.1 For each positive integer m, there is a planar graph G which is not
(4m + ⌊m−13 ⌋,m)-choosable. Consequently, chsf(P) ≥ 4 + 1

3 .

Proof. Let T be the graph as shown in Fig. 2, ε be a real number such that εm = ⌊m−13 ⌋.
Assume A,B,C,D,E,F are pairwise disjoint sets of colours with ∣A∣ = ∣B∣ = ∣C ∣ = ∣D∣ =m,
∣E∣ = εm and ∣F ∣ = 2m.

• L(u) = A and L(v) = B.

• L(x) = L(y) = A ∪B ∪ F ∪E.

• L(u1) = A ∪C ∪ F ∪E and L(v1) = B ∪C ∪ F ∪E.

• L(u2) = A ∪D ∪ F ∪E. and L(v2) = B ∪D ∪ F ∪E.

12



• L(z) = A ∪B ∪C ∪D ∪E.

u

v

v1 v2

u1 u2
zx y

Fig. 2. The target graph T

Now we show that there is no m-fold L-colouring of G. Suppose to the contrary, φ is
an m-fold L-colouring of G. Then φ(u) = A and φ(v) = B. Note that u1v1x is a clique,
so each colour in E ∪F can be used at most once in u1, v1 and x. As altogether, we use
3m distinct colours in these three vertices, at least (1 − ε)m colours in C are used on
vertex u1 and v1, which implies that at most εm colours in C can be used at vertex z.
By symmetric, at most εm colours in D can be used at vertex z. Recall that ∣E∣ = εm,
so for the vertex z,

m = ∣φ(z)∣ = ∣φ(z) ∩C ∣ + ∣φ(z) ∩D∣ + ∣φ(z) ∩E∣ ≤ 3εm <m,

a contradiction.
Let p = (

(3+ε)m
m

)
2
. Let G be obtained from the disjoint union of p copies of T , by

identifying all the copies of u into a single vertex, also named u, and identifying all the
copies of v into a single vertex named v. Let L be the (3 + ε)m-list assignment of G
defined as follows: Let L(u) = X and L(v) = Y , where X,Y are two disjoint set of size
(3 + ε)m. For each pair of m-sets (A,B), where A ⊆ X and B ⊆ Y , we associate a copy
of TA,B of T so that the lists of the vertices of this copy of TA,B is as given above. Then
G is not m-fold L-colourable, for otherwise, u is coloured with an m-subset A of X, v
is coloured with an m-subset B of Y . However, by the argument above, TA,B has no
m-fold L-colouring.

Next we consider the family P4.

Proposition 5.2 For each positive integer m, there is a planar graph G without 4-cycle,
which is not (3m + ⌊m−12 ⌋,m)-choosable. Consequently, 3 + 1

2 ≤ ch
s
f(P4) ≤ 4.

Proof. Let T be labeled as shown in Fig.3, ε be a real number such that εm = ⌊m−12 ⌋.
For any disjoint sets A and B, we define a list assignment LA,B (when A,B are clear,
and there is no confusion, we write L in short) of T as follows: Assume A,B,C,D,E
are pairwise disjoint sets of colours with ∣A∣ = ∣B∣ = ∣D∣ =m, ∣C ∣ = 2m and ∣E∣ = εm.
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• L(u) = A and L(v) = B.

• L(u1) = L(u2) = A ∪C ∪E.

• L(v1) = L(v2) = B ∪C ∪E.

• L(x) = L(y) = C ∪D ∪E.

u

v

v1 v2

u1 u2
x y

Fig. 3. For P4

By the same argument as in the proof of Theorem 2, it suffices to show that there
is no m-fold L-colouring of G. Suppose to the contrary, φ is an m-fold L-colouring of
G. Then φ(u) = A and φ(v) = B. Note that u1v1x is a clique, and we use 2m colours
in C ∪ E on u1 and v1. Therefore, only εm colours in C ∪ E can be used at u1. By
symmetric, only εm colours in C ∪E can be used at y. Note that ∣D∣ =m, so we have

2m = ∣φ(x)∣ + ∣φ(y)∣ ≤ 2εm + ∣D∣ = 2εm +m < 2m,

a contradiction.
It was proved in [12] that planar graphs without 4-cycles are (4m,m)-choosable for

any positive integer m. So chsf(P4) ≤ 4.

Observe that K4 is a planar graph without k-cycle for any k ≥ 5, and chsf(K4) = 4.
On the other hand, it was shown in [12] that every graph without k-cycle is (4m,m)-
choosable, where k ∈ {4,5,6}. We have the following.

Observation 5.3 For any k ≥ 5, chsf(Pk) ≥ 4. In particular, chsf(Pk) = 4 when k ∈

{5,6}.

The construction in Proposition 5.1 does not contain k-cycle for k ≥ 17, which means
that chsf(Pk) > 4 + 1

3 for k ≥ 17. It remains an open question as what is the smallest k
such that chsf(Pk) > 4 ?

The family of planar graphs without 4-, 5-cycles has been studied extensively in the
literature, because of the well-known Steinberg’s Conjecture, see [18]. The conjecture
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asserts that every planar graph contains neither 4-cycle nor 5-cycle is 3-colourable. This
conjecture was disproved [3]. The list version of this conjecture was disproved earlier
by Voigt [25], who first constructed a non-3-choosable planar graph without 4-, 5-cycle
with 344 vertices. A smaller one was given by Montassier [15] with 209 vertices.

However, the counterexample graph to Steinberg’s Conjecture given in [3] is (6,2)-
colourable, see Appendix A, hence it has fractional chromatic number exactly 3 (The
graph contains a triangle, so the lower bound is 3). Therefore, it is (3m,m)-choosable
for some m by the main result in [1]. On the other hand, it is easily to check that
all the non-3-choosable examples constructed in [15, 16, 25, 26] mentioned above are 3-
colourable, hence they are also (3m,m)-choosable for some m. So before the present
paper, it was unknown whether or not for every positive integer m, there is a planar
graph without 4- and 5-cycles which is not (3m,m)-choosable. In the following, for each
positive integer m, we construct a planar graph without cycles of length 4 and 5 which
is not (3m + ⌊m−112 ⌋,m)-choosable. When m = 1, the graph has 164 vertices, which is
smaller than the counterexample graph found by Montassier in [15].

Proposition 5.4 For each positive integer m, there is a planar graph G without 4-cycle
and 5-cycle, which is not (3m + ⌊m−112 ⌋,m)-choosable. Consequently, chsf(P4,5) ≥ 3 + 1

12 .

Proof. Let T be labeled as shown in Fig.4, ε be a real number such that εm = ⌊m−112 ⌋.
Assume A,B,C,D,E are pairwise disjoint sets of colours with ∣A∣ = ∣B∣ = ∣C ∣ = m,
∣D∣ = 2m and ∣E∣ = εm.

• L(u) = A, L(v) = B and L(w) = C ∪D ∪E.

• L(u1) = L(u2) = L(w1) = L(x3) = L(y1) = L(y3) = L(z1) = L(z2) = A ∪D ∪E.

• L(v1) = L(v2) = L(w2) = L(x1) = L(x2) = L(y2) = L(y3) = B ∪D ∪E.

• L(x) = L(y) = L(z) = A ∪B ∪C ∪E.

By the same argument as in the proof of Theorem 2, it suffices to show that there is
no m-fold L-colouring of G. Suppose to the contrary, φ is an m-fold L-colouring of G.
Then φ(u) = A and φ(v) = B. Note that u1v1z1 is a clique, so each colour in D ∪E can
be used only once in these vertices, which means that

∣φ(z1) ∩A∣ ≥ 3m − ∣D ∪E∣ =m − εm.

Similarly, ∣φ(z2) ∩B∣ ≥m− εm. So ∣φ(z) ∩A∣ ≤ εm and ∣φ(z) ∩B∣ ≤ εm. We assume that
∣φ(z) ∩ A∣ = αm, ∣φ(z) ∩ B∣ = βm and ∣φ(z) ∩ E∣ = γm, it is clear that α,β, γ ≤ ε, and
∣φ(z) ∩C ∣ = (1 − (α + β + γ))m.

As zz1x is a clique, each colour in A can be used once in these three vertices, so

∣φ(x) ∩A∣ ≤ ∣A∣ − ∣φ(z1) ∩A∣ − ∣φ(z) ∩A∣ ≤ (ε − α)m.
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u

v

z

x

x1

x2
x3

y

y1

y2
y3

w

w1 w2

v1 v2

u1 u2

z1 z2

Fig. 4. Target graph for P4,5

Similarly, by considering the edge xz, we have that ∣φ(x) ∩ C ∣ ≤ (α + β + γ)m and
∣φ(x)∩E∣ ≤ (ε−γ)m. Note that φ(z1)∩E might be empty. So we only have ∣φ(x)∩E∣ ≤

∣E∣ − ∣E ∩ φ(z)∣. Therefore, we have

∣φ(x) ∩B∣ ≥m − ∣φ(x) ∩A∣ − ∣φ(x) ∩C ∣ − ∣φ(x) ∩E∣ ≥m − (2ε + β)m.

This implies that ∣φ(x1) ∩B∣ ≤ (2ε + β)m.
Since x1x2x3 is a clique, each colour in D∪E can be used at most once on these three

vertices, but we need 3m colours for these vertices, so

∣φ(x3) ∩A∣ ≥ 3m − ∣φ(x1) ∩B∣ − ∣(φ(x1) ∪ φ(x2) ∪ φ(x3)) ∩ (D ∪E)∣ ≥m − (3ε + β)m.

Hence, ∣φ(w1) ∩A∣ ≤ (3ε + β)m.
By symmetry, ∣φ(w2)∩A∣ ≤ (3ε+α)m. On the other hand, ∣φ(w)∩C ∣ ≤m−∣φ(z)∩C ∣ ≤

(α + β + γ)m, so we have

3m = ∣φ(w)∣ + ∣φ(w1)∣ + ∣φ(w2)∣

≤ ∣φ(w1) ∩A∣ + ∣φ(w2) ∩A∣ + ∣φ(w) ∩C ∣ + ∣(φ(w) ∪ φ(w1) ∪ φ(w2)) ∩ (D ∪E)∣

≤ 2m + 7εm + 2(α + β)m + γm

≤ 2m + 12εm < 3m,

a contradiction.

It was proved in [13] that the strong fractional choice number of K4-minor-free graphs
with girth at least g is 2 + 1

⌊(g+1)/4⌋ . Thus the strong fractional choice number of the

family of planar graphs of girth 5 or 6 is at least 3, i.e., chsf(P3,4) ≥ 3. On the other
hand, extending the proofs in [19, 20], Voigt [24] proved that every planar graphs with
girth 5 is (3m,m)-choosable, so the family of planar graphs of girth 5 or 6 has strong
fractional choice number at most 3.
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Proposition 5.5 chsf(P3,4) = ch
s
f(P3,4,5) = 3.

For the case of P3, the best known upper and lower bounds for their strong fractional
chromatic number was obtained [11]: 3 + 1

17 ≤ ch
s
f(P3) ≤ 4.

6 Open problems

One basic unsolved problem concerning the strong fractional choice number is whether
every rational r ≥ 2 is the strong fractional choice number of a graph. We conjecture an
affirmative answer.

Conjecture 6.1 For any rational number r ≥ 2, there exists a graph G such that
chsf(G) = r and a graph G′ with χsf,P (G

′) = r.

Erdős, Rubin and Taylor [8] characterized all the 2-choosable graphs. However, it
seems to be a difficult problem to characterize all graphs G with chsf(G) = 2. In a
companion paper [27], we proved that every 3-choice critical bipartite graph G (i.e., G
is not 2-choosable, but every proper subgraph of G is 2-choosable) has strong fractioal
choice number 2.

Question 6.2 Given a characterization of the class of graphs whose strong fractional
choice number are 2.

It was asked by Erdős, Rubin and Taylor [8] that whether every (a, b)-choosable
graph is also (am, bm)-choosable for any positive integer m. The case (a, b) = (2,1) was
affirmed by Tuza and Voigt [22], but the case a ≥ 4 and b = 1 was negatived by Dvořák,
Hu and Sereni [6] recently. For a relax and possibly correct version, we ask the following
question.

Question 6.3 Is it true that chsf(G) ≤ ch(G) for any graph G?

Similarly, it was conjectured by Mahoney, Meng and Zhu [14] that every (a, b)-
paintable graph is also (am, bm)-paintable for any positive integer m. We also ask
the following weaker problem.

Question 6.4 Is it true that χsf,P (G) ≤ χP (G) for any graph G?

Planar graph colouring is a central problem with respect to many colouring concepts.
This is also the case for the strong fractional choice number of graphs.

Question 6.5 What is the exact value of chsf(P)? Is it true that chsf(P) < 5?

Question 6.6 What is the exact value of chsf(P3)? Is it true that chsf(P3) < 4?

Question 6.7 What is the exact value of chsf(P4,5)? Is it true that chsf(P4,5) < 4?

Although Steinberg’s conjecture is false, the fractional chromatic number and the
strong fractional chromatic number of graphs in P4,5 is open. It was proved in [5] that
for any G ∈ P4,5, χf(G) ≤ 11/3. The following question remains open.

Question 6.8 Is it true that every graph G ∈ P4,5 has χf(G) ≤ 3, or even has χsf(G) ≤ 3?
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Appendix A

In this part, we give a (6,2)-colouring φ of the counterexample to Steinberg’s conjecture
presented in [3]. The counterexample constructed in [3] is the graph depicted in Figure
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5, where Figure 6 depicts two copies of G2. We first pre-colour part of the graph in
Fig.3. as follows: φ(a) = {1,3}, φ(b) = {5,6}, φ(c) = {1,2}, φ(d) = {2,3}, φ(e) = {4,5},
φ(f) = {1,6}, φ(c′) = {3,4}, φ(d′) = {1,4}, φ(e′) = {2,5} and φ(f ′) = {3,6}.
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45 25

16 36
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c
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d G2 d′G2

e e′

f f ′

G2G2

Fig. 5. The counterexample to Steinberg’s Conjecture in [3]

We shall show that this partial colouring can be extended to a 2-fold 6-colouring of
the whole graph. By symmetry, it suffices to extend the partial colouring to the left two
copies of G2, which is given in Figure 6.
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Fig. 6. (6,2)-colourings of the left two copies of G2
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