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Sparsity-promoting terms are incorporated into the objective functions of
optimal control problems in order to ensure that optimal controls vanish on
large parts of the underlying domain. Typical candidates for those terms
are integral functions on Lebesgue spaces based on the ℓp-metric for p ∈
[0, 1) which are nonconvex as well as non-Lipschitz and, thus, variationally
challenging. In this paper, we derive exact formulas for the Fréchet, limiting,
and singular subdifferential of these functionals. These generalized derivatives
can be used for the derivation of necessary optimality conditions for optimal
control problems comprising such sparsity-promoting terms.
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1 Introduction

For a measurable and bounded set Ω ⊂ R
d as well as real numbers s ∈ [1,∞) and

p ∈ [0, 1), we investigate the functional qs,p : L
s(Ω) → R given by

∀u ∈ Ls(Ω): qs,p(u) :=

∫

Ω
|u(x)|p dx (1.1)

∗Brandenburgische Technische Universität Cottbus–Senftenberg, Insti-

tute of Mathematics, 03046 Cottbus, Germany, mehlitz@b-tu.de,

https://www.b-tu.de/fg-optimale-steuerung/team/dr-patrick-mehlitz, ORCID: 0000-0002-

9355-850X
†Brandenburgische Technische Universität Cottbus–Senftenberg, Insti-

tute of Mathematics, 03046 Cottbus, Germany, wachsmuth@b-tu.de,

https://www.b-tu.de/fg-optimale-steuerung/team/prof-gerd-wachsmuth, ORCID: 0000-

0002-3098-1503

1

http://arxiv.org/abs/2107.09340v1
http://www.ams.org/mathscinet/msc/msc2010.html?t=28B05
http://www.ams.org/mathscinet/msc/msc2010.html?t=49J52
http://www.ams.org/mathscinet/msc/msc2010.html?t=49J53
http://www.ams.org/mathscinet/msc/msc2010.html?t=49K27
mailto:mehlitz@b-tu.de
https://www.b-tu.de/fg-optimale-steuerung/team/dr-patrick-mehlitz
mailto:wachsmuth@b-tu.de
https://www.b-tu.de/fg-optimale-steuerung/team/prof-gerd-wachsmuth


for p ∈ (0, 1) and by

∀u ∈ Ls(Ω): qs,0(u) :=

∫

Ω
|u(x)|0 dx (1.2)

for p = 0 where we used the mapping |·|0 : R → R defined as follows:

∀y ∈ R : |y|0 :=

{
0 if y = 0,

1 otherwise.

We note that qs,0(u) = λ({u 6= 0}) holds for all u ∈ Ls(Ω), i.e., qs,0 measures the
size of the support of its argument. In optimal control, the functional qs,p is popu-
lar due to its property to be sparsity-promoting, see e.g. Casas and Wachsmuth (2020);
Ito and Kunisch (2014); Merino (2019); Natemeyer and Wachsmuth (2020); Wachsmuth
(2019), i.e., to enforce control functions to be zero on large parts of their domain. This
property of qs,p is induced by the fact that the mappings y 7→ |y|p, p ∈ (0, 1), and
y 7→ |y|0 possess a uniquely determined global minimizer as well as infinite growth
at zero. Let us underline that the case p = 1, in which the associated mapping qs,1
given as in (1.1) reduces to the (convex) norm of the space L1(Ω), is well-studied in
the literature, see e.g. Cases et al. (2012); Stadler (2009); Vossen and Maurer (2006);
Wachsmuth and Wachsmuth (2011). Clearly, qs,p is not convex for p ∈ [0, 1).

This paper is devoted to the computation of generalized derivatives of the mapping
qs,p. More precisely, we aim for the derivation of exact formulas for its so-called Fréchet,
limiting, and singular subdifferential, see Mordukhovich (2006), which can be used in or-
der to characterize local minimizers of optimal control problems involving qs,p within the
objective function. The investigation of calculus rules for subdifferentials of nonconvex
integral functions on Lebesgue spaces has been an active topic of research throughout
the last decades. Exemplary, we would like to mention Clarke (1983); Giner (2017);
Giner and Penot (2018); Mordukhovich and Sagara (2018) where calculus rules were es-
tablished in situations where the integrand satisfies Lipschitzianity assumptions. We
note, however, that these assumptions typically do not hold for the integrands of our
interest. In Correa et al. (2020), some upper estimates for the subdifferentials of integral
functions with potentially non-Lipschitzian integrand have been obtained. Finally, we
would like to mention the papers Chieu (2009); Penot (2011) where some emphasis is
laid on nonconvex integral functions on L1(Ω) without assuming any Lipschitzianity of
the integrand. However, as far as we can see, the available results from the literature
are of limited practical use for the actual computation of the subdifferentials associated
with qs,p. That is why we directly compute the subdifferentials of interest from their
respective definition. Therefore, we distinguish the cases p = 0 and p ∈ (0, 1) where
slightly different arguments are necessary in order to proceed.

The remainder of the paper is organized as follows: In Section 2, we comment on the
basic notation used in this paper and put some special emphasis on Lebesgue spaces
and the underlying tools of variational analysis. Furthermore, we briefly investigate
the continuity properties of qs,p. Finally, we introduce and study the concept of slowly
decreasing functions on Lebesgue spaces which will be used to characterize the points
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where the Fréchet subdifferential of qs,0 is nonempty. In Section 3, we first compute the
Fréchet subdifferential of qs,0 and then turn our attention to the characterization of the
limiting and singular subdifferential of this functional. In a similar way, we proceed in
Section 4 in order to address the functional qs,p for p ∈ (0, 1). Some concluding remarks
close the paper in Section 5.

2 Preliminaries

2.1 Basic notation

For a sequence {zk}k∈N ⊂ Z in a real Banach space Z and some point z ∈ Z, we exploit
zk → z (zk ⇀ z) in order to denote that {zk}k∈N converges strongly (weakly) to z.
Furthermore, for a sequence {tk}k∈N ⊂ R and α ∈ R, tk ց α means {tk}k∈N ⊂ (α,∞)
and tk → α. Similarly, we interpret tk ր α.

Whenever a function f : Z → R is Fréchet differentiable at z ∈ Z, its Fréchet derivative
will be denoted by f ′(z) ∈ Z∗ where Z∗ is the (topological) dual of Z.

2.2 Lebesgue spaces

Throughout this paper, we assume that Ω ⊂ R
d is Lebesgue-measurable with positive

and finite Lebesgue measure. We equip Ω with the σ-algebra of all Lebesgue-measurable
subsets of Ω as well as Lebesgue’s measure λ. For brevity, we will suppress the prefix
Lebesgue in the course of the manuscript. The characteristic function of a measurable
set A ⊂ Ω, being 1 on A while vanishing on Ω \ A, will be denoted by χA : Ω → {0, 1}.
Whenever u : Ω → R is measurable, the associated function sgnu : Ω → {−1, 0, 1}, which
assigns to each x ∈ Ω the sign of u(x), is measurable as well. For s ∈ [1,∞), we use the
classical Lebesgue spaces Ls(Ω) of all (equivalence classes of) real-valued, measurable,
s-integrable functions which are equipped with the classical norm

∀u ∈ Ls(Ω): ‖u‖s :=

(∫

Ω
|u(x)|s dx

)1/s

.

For the purpose of completeness, let us recall that L∞(Ω) comprises all (equivalence
classes of) real-valued, measurable functions which are essentially bounded, and that
this set becomes a Banach space when equipped with the norm

∀u ∈ L∞(Ω): ‖u‖∞ := ess sup
x∈Ω

|u(x)|.

Fixing s ∈ [1,∞], for each function u ∈ Ls(Ω), we use

{u 6= 0} := {x ∈ Ω |u(x) 6= 0} and {u = 0} := {x ∈ Ω |u(x) = 0}

for brevity of notation and note that these sets are measurable and well-defined up to
sets of measure zero. Similarly, we define the measurable sets {u ≥ 0}, {u > 0}, {u ≤ 0},
and {u < 0} as well as sets with non-zero or bilateral bounds. Throughout the paper,
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r ∈ (1,∞] given by 1
s +

1
r = 1 is the conjugate coefficient associated with s ∈ [1,∞). It

is well known that Lr(Ω) can be identified with the (topological) dual space of Ls(Ω).
Finally, if Ω′ ⊂ Ω is measurable, we exploit the notation

∀u ∈ Ls(Ω), ∀ν ∈ (0, s] : ‖u‖ν,Ω′ :=

(∫

Ω′

|u(x)|ν dx

)1/ν

and note that ‖u‖ν,Ω′ is a finite number for each u ∈ Ls(Ω) and each ν ∈ (0, s].
We briefly mention that Ω ⊂ R

d can be replaced by an arbitrary measure space
(Ω,Σ, µ) such that µ is finite, separable, and non-atomic. Indeed, such a measure space
is isomorphic to the Lebesgue measure on some interval, see, e.g., (Bogachev, 2007, The-
orem 9.3.4).

2.3 Tools from variational analysis

In this paper, we are concerned with the computation of subdifferentials associated with
the functional qs,p with s ∈ [1,∞) and p ∈ [0, 1). Recall that, for a given point ū ∈ Ls(Ω),
the so-called Fréchet (or regular) subdifferential of qs,p at ū is defined by means of

∂̂qs,p(ū) :=

{
η ∈ Lr(Ω)

∣∣∣∣ lim inf
‖h‖sց0

qs,p(ū+ h)− qs,p(ū)−
∫
Ω η(x)h(x) dx

‖h‖s
≥ 0

}
.

Furthermore, in case s > 1, the limiting (or Mordukhovich) and the singular subdiffer-
ential of qs,p at ū are defined as stated below:

∂qs,p(ū) :=




η ∈ Lr(Ω)

∣∣∣∣∣∣∣

∃{uk}k∈N ⊂ Ls(Ω), ∃{ηk}k∈N ⊂ Lr(Ω):

uk → ū in Ls(Ω), qs,p(uk) → qs,p(ū),

ηk ⇀ η in Lr(Ω), ηk ∈ ∂̂qs,p(uk)∀k ∈ N





,

∂∞qs,p(ū) :=




η ∈ Lr(Ω)

∣∣∣∣∣∣∣∣∣∣

∃{uk}k∈N ⊂ Ls(Ω), ∃{tk}k∈N ⊂ (0,∞),

∃{ηk}k∈N ⊂ Lr(Ω):

uk → ū in Ls(Ω), qs,p(uk) → qs,p(ū), tk ց 0,

tkηk ⇀ η in Lr(Ω), ηk ∈ ∂̂qs,p(uk)∀k ∈ N





.

Noting that L1(Ω) is not a so-called Asplund space, i.e., a Banach space where every con-
vex, continuous functional is generically Fréchet differentiable, one cannot simply define
the limiting and singular subdifferential of q1,p as a set-limit of the associated Fréchet
subdifferential while preserving its variational properties. Instead, the larger so-called
ε-subdifferential of q1,p would be needed within the limiting procedure. We would like
to point out that working with the limiting variational tools in spaces which do not
possess the Asplund property has been shown to be problematic. A detailed discussion
can be found in (Mordukhovich, 2006, Section 2.2). Nevertheless, due to (Chieu, 2009,
Theorem 3.2), we have ∂q1,p(ū) = ∂̂q1,p(ū) for all ū ∈ L1(Ω) and all p ∈ [0, 1) (with
respect to the correct definition of the limiting subdifferential in non-Asplund spaces),
and, thus, our results from Theorems 3.3 and 4.3 yield explicit formulas for the limiting
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subdifferential of q1,p as well. In variational analysis, the limiting subdifferential has
turned out to be a valuable tool for the derivation of necessary optimality conditions for
constrained optimization problems, see (Mordukhovich, 2006, Section 5). On the other
hand, the singular subdifferential provides a measure of Lipschitzianity of nonsmooth
functionals. Applied in the context of this paper, thanks to (Mordukhovich, 2006, Corol-
lary 2.39, Theorem 3.52) and the continuity properties of qs,p, see Section 2.4, we have
the following result.

Lemma 2.1. Fix s ∈ (1,∞) and p ∈ [0, 1). Then qs,p is Lipschitz continuous at some
point ū ∈ Ls(Ω) if and only if the following conditions hold:

(a) we have ∂∞qs,p(ū) = {0} and

(b) for sequences {uk}k∈N ⊂ Ls(Ω), {tk}k∈N ⊂ (0,∞), and {ηk}k∈N ⊂ Lr(Ω) satisfying
uk → ū in Ls(Ω), qs,p(uk) → qs,p(ū), tk ց 0, tkηk ⇀ 0 in Lr(Ω), and ηk ∈ ∂̂qs,p(uk)
for each k ∈ N, we already have tkηk → 0 in Lr(Ω).

Let us note that the property from Lemma 2.1 (b) is referred to as sequential normal
epi-compactness of qs,p at ū in variational analysis. The latter is related to the so-called
sequential normal compactness property of sets which has been shown to be problematic
in Lebesgue spaces, see (Mehlitz, 2019, Section 4).

2.4 Continuity properties of sparsity-promoting functionals

In this section, we briefly comment on the continuity properties of the sparsity-promoting
functional qs,p for s ∈ [1,∞) and p ∈ [0, 1). We split our investigation into two lemmas.

Lemma 2.2. For each s ∈ [1,∞), qs,0 is lower semicontinuous.

Proof. Fix a sequence {uk}k∈N ⊂ Ls(Ω) converging to some ū ∈ Ls(Ω). For subsequent
use, we set α := lim infk→∞ qs,0(uk). We pick a subsequence (without relabeling) with
qs,0(uk) → α and assume without loss of generality (w.l.o.g.) that {uk}k∈N converges
pointwise almost everywhere to ū along this subsequence. Noting that y 7→ |y|0 is lower
semicontinuous, we find

α = lim
k→∞

qs,0(uk) = lim
k→∞

∫

Ω
|uk(x)|0 dx

≥

∫

Ω

(
lim inf
k→∞

|uk(x)|0

)
dx ≥

∫

Ω
|ū(x)|0 dx = qs,0(ū)

from Fatou’s lemma, and this shows the claim.

It is also clear that qs,0 is not continuous at points ū ∈ Ls(Ω) with λ({ū = 0}) > 0.

Lemma 2.3. For each s ∈ [1,∞) and p ∈ (0, 1), qs,p is uniformly continuous.
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Proof. Noting that ϕ : R → R given by ϕ(y) := |y|p for all y ∈ R is continuous and
that the associated Nemytskii operator maps Ls(Ω) into L1(Ω), the latter is continuous
due to (Goldberg et al., 1992, Theorem 4). Furthermore, integration of functions is a
linear, continuous operation on L1(Ω). Thus, qs,p is the composition of two continuous
mappings and, thus, continuous.

We note that ϕ is subadditive, i.e., |y1 + y2|
p ≤ |y1|

p + |y2|
p holds for all y1, y2 ∈ R.

Applying this inequality first to y1 := z1−z2 as well as y2 := z2 and second to y1 := z2−z1
as well as y2 := z1 for z1, z2 ∈ R yields the estimate

∀z1, z2 ∈ R :
∣∣|z1|p − |z2|

p
∣∣ ≤ |z1 − z2|

p.

Fix an arbitrary ε > 0. By continuity of qs,p at 0, we find δ > 0 such that qs,p(u) < ε
holds for all u ∈ Ls(Ω) such that ‖u‖s < δ. Thus, for any two functions u, v ∈ Ls(Ω)
satisfying ‖u− v‖s < δ, we find

|qs,p(u)− qs,p(v)| =

∣∣∣∣
∫

Ω

(
|u(x)|p − |v(x)|p

)
dx

∣∣∣∣ ≤
∫

Ω

∣∣|u(x)|p − |v(x)|p
∣∣dx

≤

∫

Ω
|u(x)− v(x)|p dx = qs,p(u− v) < ε,

and this yields uniform continuity of qs,p.

The inherent nonconvexity of the functional qs,p indicates that it is not weakly lower
semicontinuous. Thus, one has to face essential issues regarding the existence of solutions
whenever qs,p is used as an additional sparsity-promoting term in the objective function
of an optimal control problem where the controls are chosen from a Lebesgue space, see
Ito and Kunisch (2014); Wachsmuth (2019) where this is discussed in detail.

2.5 Slowly decreasing functions

Fix s ∈ (1,∞). In the course of the paper, it will become clear that the Fréchet sub-
differential of qs,0 at some point ū ∈ Ls(Ω) such that {ū 6= 0} is of positive measure is
likely to be empty if ū approaches zero on {ū 6= 0} too fast. In this regard, the following
definition aims to characterize functions tending to zero slowly enough on their support.

Definition 2.4. Fix s ∈ (1,∞) as well as a function ū ∈ Ls(Ω). We call ū order s
slowly decreasing (an s-SD function for short) whenever for each sequence {Ωk}k∈N of
measurable subsets of {ū 6= 0}, we have

λ(Ωk) ց 0 =⇒
λ(Ωk)

‖ū‖s,Ωk

ց 0.

Note that whenever ū ∈ Ls(Ω) vanishes almost everywhere on Ω, then it is trivially
s-SD since there are no measurable subsets Ωk of {ū 6= 0} with positive measure.

In the subsequently stated lemma, we present a sufficient condition implying that a
given function ū ∈ Ls(Ω) is an s-SD function. Its proof follows straight from the definition
and is, therefore, omitted.
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Lemma 2.5. Fix s ∈ (1,∞) and ū ∈ Ls(Ω). Assume that ū is bounded away from zero
on {ū 6= 0}, i.e., that one can find ε > 0 such that λ({0 < |ū| < ε}) = 0 is valid. Then
ū is an s-SD function.

The following example shows that the condition from Lemma 2.5 is only sufficient but
not necessary for the property of ū ∈ Ls(Ω) to be an s-SD function.

Example 2.6. Consider Ω := (0, 1) and the function ū ∈ Ls(Ω), s > 1, given by
ū(x) := xα for each x ∈ Ω and some α > 0. We want to check for which choices of s
and α, ū actually is an s-SD function. Considering sets Ωk ⊂ Ω of positive measure such
that λ(Ωk) is fixed, the quotient λ(Ωk)/‖ū‖s,Ωk

gets maximal whenever ū is as small as
possible on Ωk. Thus, by strict monotonicity of ū, it suffices to consider sequences of sets
{Ωk}k∈N of the form Ωk := (0, tk) where {tk}k∈N satisfies tk ց 0. In this case, we obtain

λ(Ωk)

‖ū‖s,Ωk

= (αs+ 1)1/s t
1−α−1/s
k ,

and this shows that ū is an s-SD function if and only if α + 1/s < 1 holds true. Par-
ticularly, α < 1 is necessary, and, in this case, ū tends to 0 quite slowly. Observe that
α < 1 − 1/s is equivalent to |ū|−1 ∈ Lr(Ω). Recall that r ∈ (1,∞) is the conjugate
coefficient associated with s.

In the remainder of the section, we aim to find a more tractable characterization of
s-SD functions. The above example motivates the subsequently stated lemma.

Lemma 2.7. Let s ∈ (1,∞) be given. Furthermore, fix a function ū ∈ Ls(Ω) with
|ū|−1 χ{ū 6=0} ∈ Lr(Ω). Then ū is an s-SD function.

Proof. Pick an arbitrary sequence {Ωk}k∈N of measurable subsets of {ū 6= 0} satisfying
λ(Ωk) ց 0. For each k ∈ N, we find

λ(Ωk) =

∫

Ωk

|ū(x)| |ū(x)|−1 dx ≤ ‖ū‖s,Ωk
‖ |ū|−1 ‖r,Ωk

by applying Hölder’s inequality on Ωk. From |ū|−1 χ{ū 6=0} ∈ Lr(Ω) we find the conver-

gence ‖ |ū|−1 ‖r,Ωk
ց 0 since λ(Ωk) ց 0. Hence, ū is an s-SD function.

Note that the requirements of Lemma 2.5 are sufficient for the ones of Lemma 2.7. The
next example shows the existence of s-SD functions ū for which |ū|−1 χ{ū 6=0} 6∈ Lr(Ω)
holds.

Example 2.8. Again we consider Ω := (0, 1). Let s ∈ (1,∞) be arbitrary. For each k ∈
N, we define tk := 2−k. For some monotonically decreasing sequence {γk}k∈N ⊂ (0,∞)
satisfying

∑∞
j=1 γ

s
j2

−j < ∞, we consider the (monotonically increasing) function

ū :=

∞∑

j=1

γjχ(tj+1,tj ] ∈ Ls(Ω).
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Furthermore, we make use of Ωk := (0, tk) for each k ∈ N and note that λ(Ωk) = tk is
valid. We obtain the estimates

γsktk ≥ ‖ū‖ss,Ωk
=

∞∑

j=k

γsj (tj − tj+1) ≥ γsk (tk − tk+1) = 2−1γsktk,

γ−1
k t

1−1/s
k ≤

λ(Ωk)

‖ū‖s,Ωk

≤ 21/sγ−1
k t

1−1/s
k .

This shows that ū is s-SD only if γ−r
k tk → 0. Actually, this is already sufficient for the

s-SD property. Indeed, by monotonicity of ū, is suffices to consider sequences {Ω′
k}k∈N of

type Ω′
k := (0, t′k) for sequences {t′k}k∈N ⊂ (0, 1) satisfying t′k ց 0. Then, for each k ∈ N,

we find ℓk ∈ N such that tℓk+1 ≤ t′k < tℓk leading to ℓk → ∞, λ(Ω′
k) < tℓk = 2tℓk+1, and

‖ū‖ss,Ω′

k
=

∞∑

j=ℓk+1

γsj (tj − tj+1) + γsℓk(t
′
k − tℓk+1) ≥ 2−1γsℓk+1tℓk+1.

This yields

λ(Ω′
k)

‖ū‖s,Ω′

k

≤
2tℓk+1

2−1/sγℓk+1t
1/s
ℓk+1

= 21+1/sγ−1
ℓk+1t

1−1/s
ℓk+1 → 0

which shows validity of the s-SD property if γ−r
k tk → 0 is valid.

In particular, choosing γk := (k2−k)1/r for each k ∈ N, the function ū is s-SD, but

‖ |ū|−1 ‖rr =

∞∑

j=1

γ−r
j (tj − tj+1) =

∞∑

j=1

j−12j2−j−1 = ∞,

i.e., the sufficient condition from Lemma 2.7 does not hold.

In Example 2.8, the coupling between tk and γk is decisive for the s-SD property. This
will be made more precise in Theorem 2.10. For the proof of it, we need an auxiliary
lemma, which provides an intermediate value theorem for monotonic functions.

Lemma 2.9. Let g : [0,∞) → [0,∞) be monotonically increasing and not identically 0.
Moreover, let α > 0 be fixed. Then, for each C > 0, there exists a unique γC > 0 such
that

lim
γրγC

g(γ) ≤
C

γαC
≤ lim

γցγC
g(γ).

If C ց 0 we have γC ց 0.

Proof. Observing that γ 7→ γαg(γ) is monotonically increasing on [0,∞), one can check
that

γC := inf{γ ∈ (0,∞) | g(γ) ≥ Cγ−α} = sup{γ ∈ (0,∞) | g(γ) < Cγ−α}

satisfies the desired inequalities. The uniqueness follows since γ 7→ Cγ−α is strictly
monotonically decreasing. Moreover, if ε > 0 is arbitrary and C ≤ εαg(ε) holds then ε
belongs to the set under the infimum and, therefore, γC ≤ ε follows.
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Theorem 2.10. Let s ∈ (1,∞) be given. Then ū ∈ Ls(Ω) is an s-SD function if and
only if

lim
γց0

λ({0 < |ū| ≤ γ})γ−r = 0.

Proof. “=⇒”: For an arbitrary sequence {γk}k∈N ⊂ (0,∞) with γk ց 0, we set Ωk :=
{0 < |ū| ≤ γk} for each k ∈ N. Exploiting

⋂
k∈NΩk = ∅, one can easily check that

λ(Ωk) → 0 is valid. In case where {λ(Ωk)}k∈N vanishes along the tail of the sequence,
we have nothing to show. Thus, let us assume λ(Ωk) ց 0. Then we have

0 ≤ lim
k→∞

λ(Ωk)
1/rγ−1

k = lim
k→∞

λ(Ωk)
1−1/sγ−1

k ≤ lim
k→∞

λ(Ωk)

‖ū‖s,Ωk

= 0

by definition of an s-SD function.
“⇐=”: Let {Ωk}k∈N be a sequence of measurable subsets of {ū 6= 0} with λ(Ωk) ց 0.

For an arbitrary γ > 0 and k ∈ N, we have

Ωk = {x ∈ Ωk | |ū| ≥ γ} ∪ {x ∈ Ωk | |ū| < γ}.

Using Chebyshev’s inequality, we get

λ(Ωk) ≤
‖ū‖ss,Ωk

γs
+ λ({0 < |ū| < γ}). (2.1)

In order to equilibrate the addends on the right-hand side, we apply Lemma 2.9 with
g(t) := λ({0 < |ū| < t}) and α := s in order to obtain γk > 0 such that

λ({0 < |ū| < γk}) ≤
‖ū‖ss,Ωk

γsk
≤ λ({0 < |ū| ≤ γk}).

Due to ‖ū‖s,Ωk
ց 0, Lemma 2.9 guarantees γk ց 0. From (2.1), we infer

λ(Ωk) ≤ 2‖ū‖ss,Ωk
γ−s
k and λ(Ωk) ≤ 2λ({0 < |ū| ≤ γk}).

We raise these two inequalities to the powers r/(r + s) and s/(r + s), respectively, and
multiply them to obtain

λ(Ωk) ≤ 2λ({0 < |ū| ≤ γk})
s/(r+s)γ

−rs/(r+s)
k ‖ū‖

rs/(r+s)
s,Ωk

.

Using rs/(r + s) = 1 and γk ց 0, we get

λ(Ωk)

‖ū‖s,Ωk

≤ 2
(
λ({0 < |ū| ≤ γk})γ

−r
k

)s/(r+s)
→ 0

which completes the proof.

Note that the condition from Theorem 2.10 is a little bit stronger than |ū|−1 χ{ū 6=0} ∈
Lr,∞(Ω), where Lr,∞(Ω) is a weak Lebesgue space (or Lorentz space), which would require
that λ({0 < |ū| ≤ γ})γ−r is bounded with respect to γ ∈ (0,∞). Moreover, Chebyshev’s
inequality can be used to see that |ū|−1 χ{ū 6=0} ∈ Lr(Ω) implies the condition from
Theorem 2.10. Indeed,

λ({0 < |ū| ≤ γ})γ−r ≤ ‖ |ū|−1 ‖r
r,{|ū|−1≥γ−1}

→ 0 as γ ց 0

holds if |ū|−1 χ{ū 6=0} ∈ Lr(Ω) is valid.
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3 The case p = 0

We start our analysis by investigating the variational properties of the discontinuous
functional qs,0.

3.1 Fréchet subdifferential

The aim of this subsection is to provide a full characterization of the Fréchet subdiffer-
ential associated with the functional qs,0 for each s ∈ [1,∞). We start our investigations
by providing a simple upper bound of the Fréchet subdifferential of qs,0.

Lemma 3.1. For given s ∈ [1,∞) and ū ∈ Ls(Ω), we have

∂̂qs,0(ū) ⊂ {η ∈ Lr(Ω) | {η 6= 0} ⊂ {ū = 0}}.

Proof. Let η ∈ Lr(Ω) be given such that there exists a measurable set Ω′ ⊂ {ū 6= 0} of
non-zero measure where η is non-vanishing. We assume w.l.o.g. that |η(x)| ≥ ρ holds for
some ρ > 0 and almost all x ∈ Ω′. Define a sequences {hk}k∈N ⊂ Ls(Ω) by means of
hk := 1

2k |ū|χΩ′ sgn η for each k ∈ N. Clearly, we have ‖hk‖s ց 0. Furthermore, we find

qs,0(ū+ hk)− qs,0(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖s
=

− 1
2k

∫
Ω′ |η(x)||ū(x)|dx
1
2k ‖ū‖s,Ω′

≤ −ρ
‖ū‖1,Ω′

‖ū‖s,Ω′

< 0.

Hence, η /∈ ∂̂qs,0(ū) and this finishes the proof.

In the subsequently stated result, we characterize all points in Ls(Ω) where the Fréchet
subdifferential of qs,0 is nonempty. Therefore, the concept of slowly decreasing functions
discussed in Section 2.5 turns out to be essential.

Lemma 3.2. Fix s ∈ [1,∞) and ū ∈ Ls(Ω). Then ∂̂qs,0(ū) is nonempty if and only if
one of the following conditions is valid:

(a) ū = 0 holds almost everywhere on Ω,

(b) it holds s > 1 and ū is an s-SD function.

Proof. We start the proof by showing that 0 ∈ ∂̂qs,0(ū) holds in the presence of each of
the given conditions, i.e., we need to show that for all sequences {hk}k∈N ⊂ Ls(Ω) with
‖hk‖s ց 0, we have

lim inf
k→∞

qs,0(ū+ hk)− qs,0(ū)

‖hk‖s
≥ 0.

This obviously holds true whenever qs,0(ū) = 0 holds, i.e., if {ū 6= 0} is of measure zero
which is the case in (a). Thus, let us assume that (b) holds. For each k ∈ N, we define
Ωk := {ū 6= 0} ∩ {ū+ hk = 0} and obtain

qs,0(ū+ hk)− qs,0(ū)

‖hk‖s
≥

∫
{ū 6=0}

(
|ū(x) + hk(x)|0 − 1

)
dx

‖hk‖s
= −

λ(Ωk)

‖hk‖s
. (3.1)
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By ‖hk‖s ց 0, we get λ(Ωk) → 0. In the case where λ(Ωk) = 0 holds along the tail of
the sequence, we get λ(Ωk)/‖hk‖s → 0. Otherwise, we may assume w.l.o.g. λ(Ωk) > 0
for all k ∈ N. Thus, we have ‖hk‖s,Ωk

= ‖ū‖s,Ωk
> 0 for all k ∈ N and, consequently,

−
λ(Ωk)

‖hk‖s
≥ −

λ(Ωk)

‖hk‖s,Ωk

= −
λ(Ωk)

‖ū‖s,Ωk

.

The latter term, however, tends to zero since ū is an s-SD function. Thus, taking the
limit inferior in (3.1) yields 0 ∈ ∂̂qs,0(ū) in the presence of (b).

In order to show the converse statement, we assume that there exists some η ∈ ∂̂qs,0(ū).
Lemma 3.1 shows {η 6= 0} ⊂ {ū = 0}. Suppose that ū is not identically zero almost
everywhere on Ω.

For s = 1, choose ρ > 0 such that Ω′ := {0 < |ū| ≤ ρ} is of positive measure. Next, we
pick a sequence {Ω′

k}k∈N of measurable subsets of Ω′ which satisfy λ(Ω′
k) ց 0. For each

k ∈ N, we set hk := −ūχΩ′

k
. By construction, we have ‖hk‖1 ց 0. Furthermore, we find

q1,0(ū+ hk)− q1,0(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖1
= −

λ(Ω′
k)∫

Ω′

k
|ū(x)|dx

≤ −
λ(Ω′

k)

ρλ(Ω′
k)

= −
1

ρ
,

contradicting η ∈ ∂̂q1,0(ū). Consequently, s > 1 holds.
Finally, suppose that ū is not an s-SD function. Then there is a sequence {Ωk}k∈N of

measurable subsets of {ū 6= 0} such that λ(Ωk) ց 0 while the quotients λ(Ωk)/‖ū‖s,Ωk

do not converge to zero. For simplicity, we assume that there is β > 0 such that
λ(Ωk)/‖ū‖s,Ωk

≥ β holds for all k ∈ N (otherwise, consider a suitable subsequence).
Once more, we make use of the sequence {hk}k∈N given by hk := −ūχΩk

for each k ∈ N.
As above, we exploit {η 6= 0} ⊂ {ū = 0} and {hk 6= 0} ⊂ {ū 6= 0} in order to find

qs,0(ū+ hk)− qs,0(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖s
= −

λ(Ωk)

‖ū‖s,Ωk

≤ −β,

yielding a contradiction to η ∈ ∂̂qs,0(ū) since ‖hk‖s ց 0.

Now, we are in position to fully characterize the Fréchet subdifferential of qs,0. First,
we investigate the case s = 1 which needs to be treated separately.

Theorem 3.3. We have

∀ū ∈ L1(Ω): ∂̂q1,0(ū) =

{
{0} if ū = 0 a.e. on Ω,

∅ otherwise.

Proof. Due to Lemma 3.2, we already know that ∂̂q1,0(ū) is empty for each ū ∈ L1(Ω) \
{0}. Thus, assume that ū vanishes almost everywhere on Ω. In the proof of Lemma 3.2,
we verified 0 ∈ ∂̂q1,0(ū). Consequently, we only need to show the converse inclusion.

Thus, fix η ∈ ∂̂q1,0(ū) and assume that η is not identically zero almost everywhere on Ω.
Then we find a measurable set Ω′ ⊂ Ω of positive measure as well as some ρ > 0 such

11



that |η(x)| ≥ ρ holds for almost all x ∈ Ω′. Consider a sequence {Ωk}k∈N of measurable
subsets of Ω′ which satisfy λ(Ωk) ց 0. For each k ∈ N, we define hk := 2

ρχΩk
sgn η.

Clearly, ‖hk‖1 ց 0 holds. Furthermore, we find

q1,0(hk)−
∫
Ω η(x)hk(x) dx

‖hk‖1
=

λ(Ωk)−
2
ρ

∫
Ωk

|η(x)|dx
2
ρλ(Ωk)

≤ −
λ(Ωk)
2
ρλ(Ωk)

= −
ρ

2
< 0,

contradicting η ∈ ∂̂q1,0(ū).

Remark 3.4. Let us consider the unconstrained minimization of the function f + q1,0
on L1(Ω) where f : L1(Ω) → R is Fréchet differentiable. Exploiting the sum rule from
(Mordukhovich, 2006, Proposition 1.107) and Fermat’s rule from (Mordukhovich, 2006,
Proposition 1.114), a necessary condition for ū ∈ L1(Ω) to be a local minimizer of f+q1,0
is −f ′(ū) ∈ ∂̂q1,0(ū). Due to Theorem 3.3, this amounts to ū = 0 and f ′(ū) = 0
almost everywhere on Ω. A similar result can be obtained when applying Pontryagin’s
maximum principle to the problem of interest, see (Ito and Kunisch, 2014, Theorem 2.2)
or (Natemeyer and Wachsmuth, 2020, Section 2.1).

Next, we characterize the Fréchet subdifferential of qs,0 for s ∈ (1,∞).

Theorem 3.5. Fix s ∈ (1,∞). Then we have

∀ū ∈ Ls(Ω): ∂̂qs,0(ū) =

{
{η ∈ Lr(Ω) | {η 6= 0} ⊂ {ū = 0}} if ū is s-SD,

∅ otherwise.

Proof. Due to s ∈ (1,∞), ∂̂qs,0(ū) is nonempty if and only if ū ∈ Ls(Ω) is an s-SD
function, see Lemma 3.2. Thus, fix an s-SD function ū ∈ Ls(Ω). The inclusion “⊂”
follows from Lemma 3.1. For the reverse inclusion, let η ∈ Lr(Ω) with {η 6= 0} ⊂ {ū = 0}
be given. We have to show

lim inf
k→∞

qs,0(ū+ hk)− qs,0(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖s
≥ 0

for all sequences {hk}k∈N ⊂ Ls(Ω) with ‖hk‖s ց 0. For such a sequence, we set

Dk :=
qs,0(ū+ hk)− qs,0(ū)−

∫
Ω η(x)hk(x) dx

‖hk‖s

=

∫
{ū=0}(|hk(x)|0 − η(x)hk(x)) dx

‖hk‖s
+

∫
{ū 6=0}(|ū(x) + hk(x)|0 − 1) dx

‖hk‖s
=: D1

k +D2
k.

Let us validate lim infk→∞D1
k ≥ 0. Using Hölder’s inequality on {ū = 0}∩{hk 6= 0} and

‖hk‖s,{ū=0}∩{hk 6=0} = ‖hk‖s,{ū=0}, we have

D1
k ≥

∫
{ū=0} |hk(x)|0 dx

‖hk‖s
−

∫
{ū=0} |η(x)hk(x)|dx

‖hk‖s,{ū=0}
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≥
λ({ū = 0} ∩ {hk 6= 0})

‖hk‖s
− ‖η‖r,{ū=0}∩{hk 6=0}.

In case that λ({ū = 0} ∩ {hk 6= 0}) 6→ 0, this yields D1
k → ∞. On the other hand,

if we have λ({ū = 0} ∩ {hk 6= 0}) → 0, we get ‖η‖r,{ū=0}∩{hk 6=0} → 0. In any case,
lim infk→∞D1

k ≥ 0.
It remains to check lim infk→∞D2

k ≥ 0. This, however, can be distilled from the first
part of the proof of Lemma 3.2 since ū is an s-SD function.

Combining these estimates, we have shown lim infk→∞Dk ≥ 0 which yields the claim.

Remark 3.6. Similar to Remark 3.4, we consider the unconstrained minimization of the
function f + qs,0 on Ls(Ω) where f : Ls(Ω) → R is Fréchet differentiable and s ∈ (1,∞)

Then −f ′(ū) ∈ ∂̂qs,0(ū) is a necessary condition for ū ∈ Ls(Ω) to be a local minimizer of
f+qs,0. Theorem 3.5 now yields that f ′(ū) ∈ Lr(Ω) has to vanish on {ū 6= 0}. Moreover,

the implicitly demanded nonemptiness of ∂̂qs,0(ū) requires that either ū is equal to zero
almost everywhere on Ω or that ū tends to zero if at all slowly enough if {ū 6= 0} is of
positive measure since ū must be an s-SD function, see Section 2.5. In this regard, the
obtained necessary optimality conditions clearly promote sparse controls ū.

3.2 Limiting subdifferential

We now exploit Theorem 3.5 in order to characterize the limiting and singular subdif-
ferential of qs,0 for each s ∈ (1,∞). As already pointed out in Section 2.3, the limiting
subdifferential of q1,0 coincides with its Fréchet subdifferential due to (Chieu, 2009, The-
orem 3.2). Anyway, the fact that L1(Ω) is not an Asplund space underlines that the case
s = 1 might be of limited importance here.

Theorem 3.7. Fix s ∈ (1,∞). Then we have

∀ū ∈ Ls(Ω): ∂qs,0(ū) = {η ∈ Lr(Ω) | {η 6= 0} ⊂ {ū = 0}}.

Proof. Fix ū ∈ Ls(Ω). In case where ū = 0 holds almost everywhere on Ω, Theorem 3.5
already gives us ∂̂qs,0(ū) = Lr(Ω) which implies ∂qs,0(ū) = Lr(Ω). Thus, we assume
that {ū 6= 0} possesses positive measure for the remainder of the proof and verify both
inclusions separately.

In order to show the inclusion “⊃”, we fix η ∈ Lr(Ω) satisfying {η 6= 0} ⊂ {ū = 0}. For
each k ∈ N, we define Ωk := {|ū| ≥ 1/k}. Clearly, these sets are measurable and provide
a nested exhaustion of {ū 6= 0}. Now, set uk := ūχΩk

for each k ∈ N and observe that
{uk = 0} ⊃ {ū = 0} holds. Invoking Lemma 2.5, uk is an s-SD function for each k ∈ N,
so that Theorem 3.5 yields η ∈ ∂̂qs,0(uk) for each k ∈ N. Due to

‖uk − ū‖ss =

∫

Ω
|ū(x)|s(1− χΩk

(x)) dx ≤
λ(Ω)

ks
→ 0,
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we find uk → ū in Ls(Ω). Exploiting Ωk ⊂ {ū 6= 0} for each k ∈ N and lower semiconti-
nuity of qs,0, see Lemma 2.2, we find

λ({ū 6= 0}) = qs,0(ū) ≤ lim inf
k→∞

qs,0(uk)

≤ lim sup
k→∞

qs,0(uk) = lim sup
k→∞

λ(Ωk) ≤ λ({ū 6= 0}),

i.e., qs,0(uk) → qs,0(ū). Thus, by definition of the limiting subdifferential, we have shown
η ∈ ∂qs,0(ū).

In order to prove “⊂”, we fix η ∈ ∂qs,0(ū). Thus, we find sequences {uk}k∈N ⊂ Ls(Ω)
and {ηk}k∈N ⊂ Lr(Ω) which satisfy uk → ū in Ls(Ω), qs,0(uk) → qs,0(ū), ηk ⇀ η in

Lr(Ω), and ηk ∈ ∂̂qs,0(uk) for all k ∈ N. Along a subsequence (without relabeling), we
may assume that {uk}k∈N converges pointwise almost everywhere to ū. Thus, for almost
every x ∈ {ū 6= 0}, we have uk(x) → ū(x) 6= 0, i.e., x ∈ {uk 6= 0} and, thus, x ∈ {ηk = 0}
for sufficiently large k ∈ N. Thus, almost everywhere on {ū 6= 0}, {ηk}k∈N converges
pointwise to 0. From ηk ⇀ η in Lr(Ω), we infer that the weak limit needs to vanish on
{ū 6= 0}, i.e., {ū 6= 0} ⊂ {η = 0}. This, however, also means {η 6= 0} ⊂ {ū = 0}.

Reprising the above proof while incorporating some nearby minor adjustments, one
can show the following result regarding the singular subdifferential of qs,0.

Theorem 3.8. Fix s ∈ (1,∞). Then we have

∀ū ∈ Ls(Ω): ∂∞qs,0(ū) = {η ∈ Lr(Ω) | {η 6= 0} ⊂ {ū = 0}}.

As a corollary of Theorems 3.5 and 3.8, we can fully characterize the Lipschitzian
properties of qs,0.

Corollary 3.9. For s ∈ (1,∞), qs,0 is nowhere Lipschitz continuous.

Proof. Using Lemma 2.1, Theorem 3.8 shows that qs,0 cannot be Lipschitz continuous at
all points ū ∈ Ls(Ω) which satisfy λ({ū = 0}) > 0 since ∂∞qs,0(ū) does not reduce to
{0} in this situation.

Thus, let us consider ū ∈ Ls(Ω) such that ū 6= 0 holds almost everywhere on Ω. In
the reminder of this proof, we show that qs,0 violates the condition from Lemma 2.1 (b)
at ū which implies that qs,p cannot be Lipschitz at ū. Thus, pick a scalar α > 0 such
that {|ū| ≥ α} possesses positive measure and set Ωk := {|ū| ≥ α/k} for each k ∈ N.
By construction, {Ωk}k∈N is an exhaustion of {ū 6= 0}, and each of the sets Ωk, k ∈ N,
possesses positive measure. Thus, we can pick a sequence {Ω′

k}k∈N of measurable subsets
of Ω such that λ(Ω′

k) ց 0 and, for each k ∈ N, Ω′
k ⊂ Ωk. For each k ∈ N, we define

uk := ūχΩk\Ω
′

k
and ηk := λ(Ω′

k)
−1/rχΩ′

k
. Similar as in the proof of Theorem 3.7, we can

show uk → ū in Ls(Ω) and qs,0(uk) → qs,0(ū). Furthermore, for each h ∈ Ls(Ω), we find

∣∣∣∣
∫

Ω
ηk(x)h(x) dx

∣∣∣∣ ≤ ‖h‖s,Ω′

k
‖ηk‖r,Ω′

k
= ‖h‖s,Ω′

k
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by applying Hölder’s inequality on Ω′
k, and due to ‖h‖s,Ω′

k
→ 0, the above estimate

yields ηk ⇀ 0 in Lr(Ω). Furthermore, ‖ηk‖r = 1 for each k ∈ N guarantees that this
convergence is not strong. Finally, observe that due to Lemma 2.5 and Theorem 3.5,
we find ηk ∈ 1

k ∂̂qs,0(uk) for each k ∈ N. Thus, Lemma 2.1 shows that qs,0 cannot be
Lipschitz continuous at ū.

4 The case p ∈ (0, 1)

Throughout the section, we assume that p ∈ (0, 1) holds. Here, we study the variational
properties of the functional qs,p. Basically, although some proofs seem to be a little tech-
nical, we proceed in similar way as in Section 3 in order to compute the subdifferentials
of interest.

4.1 Fréchet subdifferential

Again, we start to prove validity of a natural upper bound for the Fréchet subdifferential
of qs,p.

Lemma 4.1. For given s ∈ [1,∞) and ū ∈ Ls(Ω), we have

∂̂qs,p(ū) ⊂ {η ∈ Lr(Ω) | η = p |ū|p−2 ū a.e. on {ū 6= 0}}.

Proof. Let η ∈ ∂̂qs,0(ū) be given. For ε > 0, we set Aε := {|ū| > ε}. For an arbitrary
measurable subset B ⊂ Aε of positive measure, we define a sequence {hk}k∈N ⊂ Ls(Ω)
by means of hk := k−1χB for each k ∈ N. Clearly, we have ‖hk‖s ց 0, so the definition
of the Fréchet subdifferential yields

0 ≤ λ(B)1/s lim inf
k→∞

qs,p(ū+ hk)− qs,p(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖s

= lim inf
k→∞

∫

B

(
k(|ū(x) + 1/k|p − |ū(x)|p)− η(x)

)
dx =

∫

B

(
p |ū(x)|p−2 ū(x)− η(x)

)
dx.

Note that we used the dominated convergence theorem with the integrable, dominat-
ing function (pεp−1 + |η|)χB for the last equality. Similarly, we can use the sequence
{h̃k}k∈N ⊂ Ls(Ω) given by h̃k := −k−1χB for each k ∈ N to obtain the reverse inequal-
ity. Since B ⊂ Aε was arbitrary, this shows η = p |ū|p−2 ū almost everywhere on Aε.
Since {ū 6= 0} =

⋃
ε>0Aε holds, the claim has been shown.

We note that, technically, the above proof also applies to the setting p = 0 and, thus,
provides another possible validation of Lemma 3.1. However, let us emphasize that the
proof we provided for Lemma 3.1 is much simpler and does not exploit deeper results
from integration theory like the dominated convergence theorem.

Similar to Lemma 3.2, we aim to characterize all points in Ls(Ω) where the associated
Fréchet subdifferential of qs,p is nonempty.

15



Lemma 4.2. Fix s ∈ [1,∞) and ū ∈ Ls(Ω). Then ∂̂qs,p(ū) is nonempty if and only if
one of the following conditions is valid:

(a) ū = 0 holds almost everywhere on Ω,

(b) it holds s > 1 and |ū|p−1 χ{ū 6=0} ∈ Lr(Ω) is valid.

Proof. In the first part of this proof, we show that, in the presence of (a) or (b), η̄ : Ω → R

given by η̄ := p |ū|p−2 ūχ{ū 6=0} belongs to ∂̂qs,p(ū). This is clearly obvious in case where
ū vanishes almost everywhere on Ω, i.e., when (a) holds, so let us focus on the situation
given in (b). First, we observe that η̄ defined above is a function from Lr(Ω) due to the
requirements in (b). Next, we show that for each sequence {hk}k∈N ⊂ Ls(Ω) satisfying
‖hk‖s ց 0, we have

lim inf
k→∞

∫
{ū 6=0}

(
|ū(x) + hk(x)|

p − |ū(x)|p − p|ū(x)|p−2ū(x)hk(x)
)
dx

‖hk‖s
≥ 0. (4.1)

One can easily check that by definition of the Fréchet subdifferential and η̄, this is
sufficient for η̄ ∈ ∂̂qs,p(ū).

It will be beneficial to write hk = ckū+hkχ{ū=0} for each k ∈ N where the measurable
function ck : Ω → R is given by ck := hkū

−1χ{ū 6=0}. Furthermore, we will make use of
the set Ωk := {hk 6= 0} ∩ {ū 6= 0} for each k ∈ N. With the aid of these definitions, we
can rewrite the quotient of interest by means of

∫
Ωk

(
|1 + ck(x)|

p − 1− pck(x)
)
|ū(x)|p dx

(∫
Ωk

|ck(x)|s|ū(x)|s dx+
∫
{ū=0} |hk(x)|

s dx
)1/s

. (4.2)

Next, for each k ∈ N, we decompose Ωk into the four disjoint subsets

Ω1
k := {ck < −1/p}, Ω2

k := {−1/p ≤ ck ≤ −1/2},

Ω3
k := {−1/2 < ck < 1/2}, Ω4

k := {ck ≥ 1/2}.

This allows us to rewrite the quotient in (4.2) as Q1
k +Q2

k +Q3
k +Q4

k with

Qi
k :=

∫
Ωi

k

(
|1 + ck(x)|

p − 1− pck(x)
)
|ū(x)|p dx

(∫
Ωk

|ck(x)|s|ū(x)|s dx+
∫
{ū=0} |hk(x)|

s dx
)1/s

for each i = 1, 2, 3, 4. By construction, Q1
k is nonnegative which yields lim infk→∞Q1

k ≥ 0.
Furthermore, in case where Ω2

k is of positive measure, we find

Q2
k ≥ (p − 2)

‖ū‖p
p,Ω2

k

‖ū‖s,Ω2
k

≥ (p− 2)
‖ū‖s,Ω2

k
‖ |ū|p−1 ‖r,Ω2

k

‖ū‖s,Ω2
k

= (p− 2)‖ |ū|p−1 ‖r,Ω2
k

from |ū|p−1 χ{ū 6=0} ∈ Lr(Ω) and Hölder’s inequality on Ω2
k. Since we have λ(Ω2

k) ց 0

from ‖hk‖s ց 0, ‖ |ū|p−1 ‖r,Ω2
k
ց 0 holds which is why lim infk→∞Q2

k ≥ 0 follows. Next,
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let us investigate the setting where Ω3
k is of positive measure. A second-order Taylor

expansion of the mapping y 7→ (1 + y)p − 1 at the origin yields (1 + y)p − 1− py ≥ −y2

for all y ∈ (−1/2, 1/2). Thus, we obtain

Q3
k ≥ −

∫
Ω3

k
|ck(x)|

2|ū(x)|p dx

‖ckū‖s,Ω3
k

≥ −
‖ckū‖s,Ω3

k
‖ck |ū|

p−1 ‖r,Ω3
k

‖ckū‖s,Ω3
k

= −‖ck |ū|
p−1 ‖r,Ω3

k

where we used Hölder’s inequality on Ω3
k and |ū|p−1 χ{ū 6=0} ∈ Lr(Ω) which, by bounded-

ness of ck on Ω3
k, guarantees ck |ū|

p−1 χΩ3
k
∈ Lr(Ω). Observing that ū does not vanish

on Ω3
k, that hk = ckū holds on Ω3

k, and that ‖hk‖s ց 0 is valid, we obtain the pointwise
convergence of {ck}k∈N to 0 almost everywhere on Ω3

k. Thus, ck(x)|ū(x)|
p−1 → 0 holds

for almost every x ∈ Ω3
k. Noting that {ck |ū|

p−1 χΩ3
k
}k∈N is dominated by |ū|p−1 χΩ3

k
∈

Lr(Ω), we find ‖ck |ū|
p−1 ‖r,Ω3

k
→ 0 from Lebesgue’s dominated convergence theorem, i.e.,

lim infk→∞Q3
k ≥ 0. Finally, we address the situation where Ω4

k is of positive measure.
Recalling that hk = ckū, ū 6= 0, and ck ≥ 1/2 hold on Ω4

k, ‖hk‖s ց 0 implies λ(Ω4
k) ց 0.

Exploiting |ū|p−1 χΩ4
k
∈ Lr(Ω), we find

Q4
k ≥ −p

∫
Ω4

k
ck(x)|ū(x)|

p dx

‖ckū‖s,Ω4
k

≥ −p
‖ckū‖s,Ω4

k
‖ |ū|p−1 ‖r,Ω4

k

‖ckū‖s,Ω4
k

= −p‖ |ū|p−1 ‖r,Ω4
k

by applying Hölder’s inequality on Ω4
k. Due to λ(Ω4

k) ց 0, we have ‖ |ū|p−1 ‖r,Ω4
k
ց 0

which yields lim infk→∞Q4
k ≥ 0. Combining all these estimates, (4.1) has been shown,

i.e., η̄ ∈ ∂̂qs,p(ū) is valid.
Let us show the converse statement. Therefore, we assume that there is some η ∈

∂̂qs,p(ū). Due to Lemma 4.1, we know that η = p |ū|p−2 ū holds almost everywhere on
{ū 6= 0}. Thus, from η ∈ Lr(Ω), the condition |ū|p−1 χ{ū 6=0} ∈ Lr(Ω) follows. We assume
that ū is not identically zero almost everywhere on Ω.

Suppose that s = 1 holds. We fix a set Ω′ ⊂ {ū 6= 0} of positive measure and some
ρ > 0 such that |ū(x)| ≥ ρ holds almost everywhere on Ω′. Set Aℓ := {x ∈ Ω′ | 0 <
|ū(x)| ≤ ℓ} for each ℓ ∈ N. Then we have

⋃
ℓ∈NAℓ = Ω′, and due to λ(Ω′) > 0, there

exists some ℓ0 ∈ N such that Aℓ0 is of positive measure. Let us now fix a sequence
{Ω′

k}k∈N of measurable subsets of Aℓ0 which satisfy λ(Ω′
k) ց 0. For brevity of notation,

set mk := λ(Ω′
k) for each k ∈ N and define hk := m

−1/2
k ūχΩ′

k
. By construction, we have

‖hk‖1 = m
−1/2
k

∫

Ω′

k

|ū(x)|dx ≤ ℓ0m
1/2
k ց 0.
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Furthermore, we find

q1,p(ū+ hk)− q1,p(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖1

=

∫
Ω′

k

((
1 +m

−1/2
k

)p
|ū(x)|p − |ū(x)|p − pm

−1/2
k |ū(x)|p

)
dx

m
−1/2
k

∫
Ω′

k
|ū(x)|dx

=

(
1 +m

−1/2
k

)p
− 1− pm

−1/2
k

m
−1/2
k

‖ū‖p
p,Ω′

k

‖ū‖1,Ω′

k

.

(4.3)

Due to p ∈ (0, 1), it holds

(
1 +m

−1/2
k

)p
− 1− pm

−1/2
k

m
−1/2
k

=
(
m

1/(2p)
k +m

1/(2p)−1/2
k

)p
−m

1/2
k − p → −p.

On the other hand, we have

‖ū‖p
p,Ω′

k

‖ū‖1,Ω′

k

≥
ρp

ℓ0

by choice of Ω′
k ⊂ Aℓ0 . Hence, for sufficiently large k ∈ N, (4.3) yields

q1,p(ū+ hk)− q1,p(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖1
≤ −

p

2

ρp

ℓ0
< 0,

but this contradicts η ∈ ∂̂q1,p(ū).

For s > 1, fix a function ū ∈ Ls(Ω) such that {ū 6= 0} possesses positive measure and
some sequence {Ωk}k∈N of measurable subsets of {ū 6= 0} possessing positive measure.
Supposing that |ū|p−1 χ{ū 6=0} ∈ Lr(Ω) is valid, Hölder’s inequality on Ωk yields

‖ū‖pp,Ωk
≤ ‖ū‖s,Ωk

‖ |ū|p−1 ‖r,Ωk

for each k ∈ N. Thus, we find

λ(Ωk) ց 0 =⇒
‖ū‖pp,Ωk

‖ū‖s,Ωk

ց 0, (4.4)

which can be interpreted as a reasonable adaptation of the s-SD property from Definition 2.4
to the setting p ∈ (0, 1). Note that (4.4) can be used in the proof of Lemma 4.2 in or-
der to show lim infk→∞Q2

k ≥ 0. However, as demonstrated above, (4.4) is implied by
|ū|p−1 χ{ū 6=0} ∈ Lr(Ω) which, either way, needs to be postulated in order to show the

assertion of Lemma 4.2. We can interpret Lr-regularity of |ū|p−1 χ{ū 6=0} again as a con-
dition which ensures that whenever ū approaches zero on {ū 6= 0}, then this has to
happen slowly enough. Recall that in case p = 0, see Lemma 3.2, |ū|−1 χ{ū 6=0} ∈ Lr(Ω)
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is only sufficient but not necessary for the nonemptiness of ∂̂qs,0(ū), see Lemma 2.7 and
Example 2.8 as well.

Now, we are in position to fully characterize the Fréchet subdifferential of qs,p. Again,
we distinguish the cases s = 1 and s ∈ (1,∞).

Theorem 4.3. We have

∀ū ∈ L1(Ω): ∂̂q1,p(ū) =

{
{0} if ū = 0 a.e. on Ω,

∅ otherwise.

Proof. Due to Lemma 4.2, we know that ∂̂q1,p(ū) is empty for each ū ∈ L1(Ω) \ {0}.
Thus, let us assume that ū = 0 holds almost everywhere on Ω. It is obvious by definition
of the Fréchet subdifferential that 0 ∈ ∂̂q1,p(ū) is valid. In order to show the converse

inclusion, fix η ∈ ∂̂q1,p(ū) and assume that η does not vanish almost everywhere on Ω.
Then we find a measurable set Ω′ ⊂ Ω of positive measure as well as some ρ > 0 such
that |η(x)| ≥ ρ holds for almost every x ∈ Ω′. We fix a sequence {Ωk}k∈N of measurable
subsets of Ω′ such that λ(Ωk) ց 0 is valid. Furthermore, we choose some constant
α > ρ1/(p−1). Due to p ∈ (0, 1), this yields αp−1 < ρ. Now, we set hk := αχΩk

sgn η for
each k ∈ N and observe that ‖hk‖1 ց 0 is valid. Additionally, we find

q1,p(hk)−
∫
Ω η(x)hk(x) dx

‖hk‖1
=

αp
λ(Ωk)− α

∫
Ωk

|η(x)|dx

αλ(Ωk)

≤
αp−1

λ(Ωk)− ρλ(Ωk)

λ(Ωk)
= αp−1 − ρ < 0,

contradicting our assumption η ∈ ∂̂q1,p(ū).

Theorem 4.4. Fix s ∈ (1,∞). Then we have

∀ū ∈ Ls(Ω): ∂̂qs,p(ū) = {η ∈ Lr(Ω) | η = p |ū|p−2 ū a.e. on {ū 6= 0}}.

In particular, the set on the right-hand side is empty if |ū|p−1 χ{ū 6=0} 6∈ Lr(Ω).

Proof. The inclusion “⊂” follows from Lemma 4.1. For the reverse inclusion, let η ∈
Lr(Ω) with η = p |ū|p−2 ū almost everywhere on {ū 6= 0} be given. We have to show

lim inf
k→∞

qs,p(ū+ hk)− qs,p(ū)−
∫
Ω η(x)hk(x) dx

‖hk‖s
≥ 0

for all sequences {hk}k∈N ⊂ Ls(Ω) with ‖hk‖s ց 0. For such a sequence, we set

Dk :=
qs,p(ū+ hk)− qs,p(ū)−

∫
Ω η(x)hk(x) dx

‖hk‖s

=

∫
{ū=0}

(
|hk(x)|

p − η(x)hk(x)
)
dx

‖hk‖s
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+

∫
{ū 6=0}

(
|ū(x) + hk(x)|

p − |ū(x)|p − p |ū(x)|p−2 ū(x)hk(x)
)
dx

‖hk‖s

=: D1
k +D2

k.

First, let us validate lim infk→∞D1
k ≥ 0. In case where η equals zero almost everywhere

on {ū = 0}, this is obvious. Otherwise, for some arbitrarily chosen ε > 0, choose
t > 0 large enough such that ‖ηχ{|η|>t}‖r,{ū=0} ≤ ε. Next, for each k ∈ N, we define
h1k, h

2
k ∈ Ls(Ω) by means of h1k := hkχ{|hk|≤t1/(p−1)} and h2k := hkχ{|hk|>t1/(p−1)}. By

construction, we find

D1
k =

∫
{ū=0}

(
|h1k(x)|

p − η(x)h1k(x)
)
dx

‖hk‖s
+

∫
{ū=0}

(
|h2k(x)|

p − η(x)h2k(x)
)
dx

‖hk‖s
. (4.5)

Observing that for all x ∈ {ū = 0} ∩ {|hk| ≤ t1/(p−1)} ∩ {|η| ≤ t}, we have the estimate
|hk(x)|

p−1 ≥ t ≥ |η(x)|, i.e., |hk(x)|
p ≥ |η(x)hk(x)| ≥ η(x)hk(x), it holds

∫
{ū=0}

(
|h1k(x)|

p − η(x)h1k(x)
)
dx

‖hk‖s
≥ −

∫
{ū=0} |η(x)χ{|η|>t}(x)h

1
k(x)|dx

‖h1k‖s,{ū=0}

≥ −‖ηχ{|η|>t}‖r,{ū=0} ≥ −ε

where Hölder’s inequality on {ū = 0} was used to obtain the last but one estimate. On
the other hand, we find
∫
{ū=0}

(
|h2k(x)|

p − η(x)h2k(x)
)
dx

‖hk‖s
≥ −

∫
{ū=0} |η(x)h

2
k(x)|dx

‖h2k‖s,{ū=0}
≥ −‖ηχ{|hk|>t1/(p−1)}‖r,{ū=0}

again from Hölder’s inequality on {ū = 0}. As a consequence, (4.5) yields the estimate
D1

k ≥ −ε − ‖ηχ{|hk|>t1/(p−1)}‖r,{ū=0} for all k ∈ N. Since we have ‖hk‖s ց 0, the

convergence λ({|hk| > t1/(p−1)}) → 0 holds which guarantees ‖ηχ{|hk|>t1/(p−1)}‖r,{ū=0} →
0. Observing that ε > 0 is independent of k and can be made arbitrarily small, we have
shown lim infk→∞D1

k ≥ 0.
Noting that we can distill lim infk→∞D2

k ≥ 0 from the proof of Lemma 4.2, this already
yields lim infk→∞Dk ≥ 0 and the statement of the theorem has been shown.

In the subsequent remark, which parallels Remarks 3.4 and 3.6, we comment on neces-
sary optimality conditions for unconstrained optimization problems involving the func-
tional qs,p as a sparsity-promoting term.

Remark 4.5. Fix s ∈ [1,∞), a Fréchet differentiable function f : Ls(Ω) → R, and
consider the unconstrained minimization of f + qs,p. A necessary condition for some

ū ∈ Ls(Ω) to be a local minimizer of f + qs,p is given by −f ′(ū) ∈ ∂̂qs,p(ū).

(a) In case s = 1, Theorem 4.3 shows that this amounts to ū = 0 and f ′(ū) = 0 almost
everywhere on Ω. A similar result can be obtained applying Pontryagin’s maximum
principle, see (Ito and Kunisch, 2014, Theorem 2.2) or (Natemeyer and Wachsmuth,
2020, Section 2.1).
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(b) In case s > 1, Theorem 4.4 implies that f ′(ū) ∈ Lr(Ω) has to equal p |ū|p−2 ū
almost everywhere on {ū 6= 0}. This implicitly demands |ū|p−1 χ{ū 6=0} ∈ Lr(Ω)
which promotes sparse controls since ū has to approach zero from {ū 6= 0} if at all
slowly enough.

4.2 Limiting subdifferential

Let us now turn our attention to the limiting subdifferential constructions in the Aspund
space setting s ∈ (1,∞). Thanks to Theorem 4.4, we can adapt most of the proof
strategies directly from Section 3.2.

Theorem 4.6. Fix s ∈ (1,∞). Then we have

∀ū ∈ Ls(Ω): ∂qs,p(ū) = ∂̂qs,p(ū) = {η ∈ Lr(Ω) | η = p |ū|p−2 ū a.e. on {ū 6= 0}}.

Proof. The second “=” follows from Theorem 4.4 and it remain to verify the first equality.
The inclusion “⊃” follows from the definition of the limiting subdifferential.

The proof of the converse inclusion “⊂” can be directly transferred from the one of
Theorem 3.7 exploiting the different pointwise characterization of the Fréchet subdiffer-
ential from Theorem 4.4.

Next, we characterize the singular subdifferential of qs,p.

Theorem 4.7. Fix s ∈ (1,∞). Then we have

∀ū ∈ Ls(Ω): ∂∞qs,p(ū) = {η ∈ Lr(Ω) | {η 6= 0} ⊂ {ū = 0}}.

Proof. Fix ū ∈ Ls(Ω). Observe that in case where ū vanishes almost everywhere on
Ω, we have ∂̂qs,p(ū) = Lr(Ω) from Theorem 4.4 which, by definition of the singular
subdifferential, already yields ∂∞qs,p(ū) = Lr(Ω). Thus, we may assume throughout the
remainder of the proof that {ū 6= 0} possesses positive measure.

In order to prove the inclusion “⊃”, we fix η ∈ Lr(Ω) which satisfies {η 6= 0} ⊂ {ū = 0}.
We set Ωk := {|ū| ≥ 1/k} as well as uk := ūχΩk

for each k ∈ N leading to uk → ū in
Ls(Ω) and qs,p(uk) → qs,p(ū), see Lemma 2.3. For each k ∈ N, let us define a measurable
function ηk : Ω → R by means of

∀x ∈ Ω: ηk(x) :=

{
p|ū(x)|p−2ū(x) if x ∈ Ωk,

k η(x) otherwise.

For each k ∈ N, we find

‖ηk‖
r
r =

∫

{|ū|≥1/k}
pr|ū(x)|(p−1)r dx+

∫

{|ū|<1/k}
kr|η(x)|r dx

≤ prk(1−p)r
λ({ū 6= 0}) + kr‖η‖rr < ∞,
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i.e., {ηk}k∈N ⊂ Lr(Ω). Furthermore, ηk ∈ ∂̂qs,p(uk) follows from Theorem 4.4 since
{uk 6= 0} = Ωk is valid for each k ∈ N. Noting that η vanishes on Ωk, we obtain

‖ 1
kηk − η‖rr =

pr

kr

∫

Ωk

|ū(x)|(p−1)r dx ≤
pr

kr

∫

Ωk

k(1−p)r dx ≤
pr λ({ū 6= 0})

kpr

for each k ∈ N, and this shows 1
kηk → η in Lr(Ω). Particularly, we find η ∈ ∂∞qs,p(ū)

by definition of the singular subdifferential.
In order to prove the inclusion “⊂”, let us fix η ∈ ∂∞qs,p(ū). By definition of the

singular subdifferential, we find sequences {uk}k∈N ⊂ Ls(Ω), {ηk}k∈N ⊂ Lr(Ω), and
{tk}k∈N ⊂ (0,∞) such that uk → ū in Ls(Ω), tk ց 0, and tkηk ⇀ η in Lr(Ω) hold while
ηk ∈ ∂̂qs,p(uk) is valid for each k ∈ N. Along a subsequence (without relabeling), {uk}k∈N
converges pointwise almost everywhere to ū. Thus, for almost all x ∈ {ū 6= 0}, we find
uk(x) → ū(x) 6= 0, i.e., x ∈ {uk 6= 0} and, due to Theorem 4.4, ηk(x) = p|uk(x)|

p−2uk(x)
for sufficiently large k ∈ N. Thus, for almost every x ∈ {ū 6= 0}, we have tk ηk(x) → 0.
Thus, the weak convergence tkηk ⇀ η in Lr(Ω) ensures that η needs to vanish almost
everywhere on {ū 6= 0}, i.e., {η 6= 0} ⊂ {ū = 0}.

We would like to focus the reader’s attention to the fact that the limiting subdiffer-
ential ∂qs,p(ū) might be empty for some ū ∈ Ls(Ω) where {ū 6= 0} possesses positive
measure while |ū|p−1 χ{ū 6=0} lacks of Lr-regularity. In contrast, the singular subdifferen-
tial ∂∞qs,p(ū) has been shown to be never empty.

We close the section by showing that qs,p is nowhere Lipschitz continuous.

Corollary 4.8. For s ∈ (1,∞), qs,p is nowhere Lipschitz continuous.

Proof. For large parts, the proof parallels the one of Corollary 3.9. Again, the situation
is easy whenever ū ∈ Ls(Ω) satisfies λ({ū = 0}) > 0 due to Lemma 2.1 and Theorem 4.7.
Thus, we assume that {ū = 0} is of measure zero and show that qs,p fails to satisfy the
condition from Lemma 2.1 (b) at ū. Therefore, we first choose α > 0 such that {|ū| ≥ α}
is of positive measure, define Ωk := {|ū| ≥ α/k} for each k ∈ N, and pick a subset
Ω′
k ⊂ Ωk of positive measure for each k ∈ N such that λ(Ω′

k) ց 0 holds. For each
k ∈ N, we define uk := ūχΩk\Ω

′

k
. We find uk → ū in Ls(Ω), and Lemma 2.3 guarantees

qs,p(uk) → qs,p(ū). For each k ∈ N, we define ηk ∈ Lr(Ω) by means of

∀x ∈ Ω: ηk(x) :=





p
k |ū(x)|

p−2ū(x) if x ∈ Ωk \Ω
′
k,

λ(Ω′
k)

−1/r if x ∈ Ω′
k,

0 otherwise.

By construction, we have ‖ηk‖r ≥ 1 for each k ∈ N. On the other hand, for each
h ∈ Ls(Ω) and k ∈ N, we find

∣∣∣∣
∫

Ω
ηk(x)h(x) dx

∣∣∣∣ ≤
p

k

∫

Ωk\Ω
′

k

|ū(x)|(p−2)ū(x)h(x) dx + ‖h‖s,Ω′

k

≤
p

α1−pkp
λ({ū 6= 0})1/r‖h‖s,{ū 6=0} + ‖h‖s,Ω′

k
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from Hölder’s inequality on Ωk\Ω
′
k and Ω′

k, respectively, and this yields ηk ⇀ 0 in Lr(Ω).

Due to ηk ∈ 1
k ∂̂qs,p(uk) for each k ∈ N, see Theorem 4.4, this shows that qs,p cannot be

Lipschitz continuous at ū, see Lemma 2.1.

5 Concluding remarks

In this paper, we derived exact formulas for the Fréchet, limiting, and singular subdif-
ferential of the functional qs,p defined in (1.1) and (1.2). As Remarks 3.4, 3.6 and 4.5
underline, the formulas for the Fréchet subdifferential can be used in order to derive
necessary optimality conditions for the unconstrained minimization of functions f + qs,p
where f : Ls(Ω) → R is Fréchet differentiable. Let us now assume that f + qs,p has to be
minimized with respect to some constraint set Uad ⊂ Ls(Ω). Then Fermat’s rule yields
validity of 0 ∈ ∂̂(f + qs,q + δUad

)(ū) for each associated local minimizer ū ∈ Ls(Ω) of the
problem where the so-called indicator function δUad

: Ls(Ω) → R ∪ {∞} of Uad equals 0
on Uad and is set to ∞, otherwise. Note that the Fréchet subdifferential does not obey
a sum rule as soon as not all but one addends are smooth. In the present situation, the
simultaneous non-Lipschitzness of qs,p and δUad

does not even allow to apply the fuzzy
sum rule of Fréchet subdifferential calculus, see (Mordukhovich, 2006, Theorem 2.33),
and take the limit afterwards. Thus, one may try to evaluate the slightly weaker nec-
essary optimality condition 0 ∈ ∂(f + qs,q + δUad

)(ū) since the sum rule for the limiting
subdifferential applies to non-Lipschitz functions as well, see (Mordukhovich, 2006, The-
orem 3.36). Unluckily, this will not be a straight task since both of the functionals qs,p
and δUad

are not so-called sequentially normally epi-compact on their respective domains,
see comments at the end of Section 2.3 and the proofs of Corollaries 3.9 and 4.8. Never-
theless, for particular choices of Uad like box-constrained sets, there might be a chance to
show validity of the sum rule by inherent problem structure and, thus, obtain necessary
optimality conditions in terms of the limiting subdifferential.

Acknowledgments

This work is supported by the DFG Grant Bilevel Optimal Control: Theory, Algorithms,
and Applications (Grant No. WA 3636/4-2) within the Priority Program SPP 1962 (Non-
smooth and Complementarity-based Distributed Parameter Systems: Simulation and
Hierarchical Optimization).

References

V. I. Bogachev. Measure Theory. Springer, Berlin, 2007. doi: 10.1007/978-3-540-34514-5.

E. Casas and D. Wachsmuth. First and second order conditions for optimal control
problems with an L0 term in the cost functional. SIAM Journal on Control and
Optimization, 58(6):3486–3507, 2020. doi: 10.1137/20M1318377.

23

https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1137/20M1318377


E. Cases, R. Herzog, and G. Wachsmuth. Optimality conditions and error analysis
of semilinear elliptic control problems with L1 cost functional. SIAM Journal on
Optimization, 22(3):795–820, 2012. doi: 10.1137/110834366.

N. H. Chieu. The Fréchet and limiting subdifferentials of integral functionals on the
spaces L1(Ω, E). Journal of Mathematical Analysis and Applications, 360(2):704–710,
2009. doi: 10.1016/j.jmaa.2009.07.017.

F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, New York, 1983. doi:
10.1137/1.9781611971309.

R. Correa, A. Hantoute, and P. Pérez-Aros. Subdifferential calculus rules for possibly
nonconvex integral functions. SIAM Journal on Control and Optimization, 58(1):462–
484, 2020. doi: 10.1137/18M1176476.

E. Giner. Clarke and limiting subdifferentials of integral function-
als. Journal of Convex Analysis, 24(2):661–678, 2017. URL
https://www.heldermann.de/JCA/JCA24/JCA242/jca24041.htm.

E. Giner and J.-P. Penot. Subdifferentiation of integral functionals. Mathematical Pro-
gramming, 168:401–431, 2018. doi: 10.1007/s10107-017-1204-x.

H. Goldberg, W. Kampowsky, and F. Tröltzsch. On Nemytskij operators in Lp-
spaces of abstract functions. Mathematische Nachrichten, 155(1):127–140, 1992. doi:
10.1002/mana.19921550110.

K. Ito and K. Kunisch. Optimal control with Lp(Ω), p ∈ [0, 1), control cost. SIAM Journal
on Control and Optimization, 52(2):1251–1275, 2014. doi: 10.1137/120896529.

P. Mehlitz. On the sequential normal compactness condition and its restrictiveness in
selected function spaces. Set-Valued and Variational Analysis, 27(3):763–782, 2019.
doi: 10.1007/s11228-018-0475-6.

P. Merino. A difference-of-convex functions approach for sparse PDE optimal control
problems with nonconvex cost. Computational Optimization and Applications, 74:225–
258, 2019. doi: 10.1007/s10589-019-00101-0.

B. S. Mordukhovich. Variational Analysis and Generalized Differentiation, Part I: Basic
Theory, Part II: Applications. Springer, Berlin, 2006. doi: 10.1007/3-540-31247-1.

B. S. Mordukhovich and N. Sagara. Subdifferentials of nonconvex inte-
gral functions in Banach spaces with applications to stochastic dynamic
programming. Journal of Convex Analysis, 25(2):643–673, 2018. URL
https://www.heldermann.de/JCA/JCA25/JCA252/jca25039.htm.

C. Natemeyer and D. Wachsmuth. A proximal gradient method for control problems
with nonsmooth and nonconvex control cost. Technical report, preprint arXiv, 2020.
URL https://arxiv.org/abs/2007.11426.

24

https://doi.org/10.1137/110834366
https://doi.org/10.1016/j.jmaa.2009.07.017
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1137/18M1176476
https://www.heldermann.de/JCA/JCA24/JCA242/jca24041.htm
https://doi.org/10.1007/s10107-017-1204-x
https://doi.org/10.1002/mana.19921550110
https://doi.org/10.1137/120896529
https://doi.org/10.1007/s11228-018-0475-6
https://doi.org/10.1007/s10589-019-00101-0
https://doi.org/10.1007/3-540-31247-1
https://www.heldermann.de/JCA/JCA25/JCA252/jca25039.htm
https://arxiv.org/abs/2007.11426


J.-P. Penot. Image space approach and subdifferentials of integral functionals. Optimiza-
tion, 60(1-2):69–87, 2011. doi: 10.1080/02331934.2010.505651.

G. Stadler. Elliptic optimal control problems with L1-cost and applications for the
placement of control devices. Computational Optimization and Applications, 44:159,
2009. doi: 10.1007/s10589-007-9150-9.

G. Vossen and H. Maurer. On L1-minimization in optimal control and applications
to robotics. Optimal Control Applications and Methods, 27(6):301–321, 2006. doi:
10.1002/oca.781.

D. Wachsmuth. Iterative hard-thresholding applied to optimal control problems with
L0(Ω) control cost. SIAM Journal on Control and Optimization, 57(2):854–879, 2019.
doi: 10.1137/18M1194602.

G. Wachsmuth and D. Wachsmuth. Convergence and regularization results for optimal
control problems with sparsity functional. ESAIM: Control, Optimisation and Calculus
of Variations, 17(3):858–886, 2011. doi: 10.1051/cocv/2010027.

25

https://doi.org/10.1080/02331934.2010.505651
https://doi.org/10.1007/s10589-007-9150-9
https://doi.org/10.1002/oca.781
https://doi.org/10.1137/18M1194602
https://doi.org/10.1051/cocv/2010027

	1 Introduction
	2 Preliminaries
	2.1 Basic notation
	2.2 Lebesgue spaces
	2.3 Tools from variational analysis
	2.4 Continuity properties of sparsity-promoting functionals
	2.5 Slowly decreasing functions

	3 The case p=0
	3.1 Fréchet subdifferential
	3.2 Limiting subdifferential

	4 The case p(0,1)
	4.1 Fréchet subdifferential
	4.2 Limiting subdifferential

	5 Concluding remarks

