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ANTI-CONCENTRATION AND

THE EXACT GAP-HAMMING PROBLEM

ANUP RAO AND AMIR YEHUDAYOFF

Abstract. We prove anti-concentration bounds for the inner product of two indepen-
dent random vectors, and use these bounds to prove lower bounds in communication
complexity. We show that if A,B are subsets of the cube {±1}n with |A|·|B| ≥ 21.01n,
and X ∈ A and Y ∈ B are sampled independently and uniformly, then the inner prod-
uct 〈X,Y 〉 takes on any fixed value with probability at most O(1/

√
n). In fact, we

prove the following stronger “smoothness” statement:

max
k

∣

∣Pr[〈X,Y 〉 = k]− Pr[〈X,Y 〉 = k + 4]
∣

∣ ≤ O(1/n).

We use these results to prove that the exact gap-hamming problem requires linear
communication, resolving an open problem in communication complexity. We also
conclude anti-concentration for structured distributions with low entropy. If x ∈ Z

n

has no zero coordinates, and B ⊆ {±1}n corresponds to a subspace of Fn
2 of dimension

0.51n, then maxk Pr[〈x, Y 〉 = k] ≤ O(
√

ln(n)/n).

1. Introduction

Anti-concentration bounds establish that the distribution of outcomes of a random
process is not concentrated in any small region. No single outcome is obtained too often.
Anti-concentration plays an important role in mathematics and computer science. It
is used in the study of roots of random polynomials [19], random matrix theory [15,
27], communication complexity [6, 29, 22], quantum computation [1], and more. In
particular, as we discuss below, anti-concentration bounds are very useful to understand
the communication complexity of the gap-hamming function.

A well-known context in which anti-concentration has been studied extensively is
the sum of independent identically distributed random variables. If Y ∈ {±1}n is
uniformly distributed, then the probability that

∑n
j=1 Yj takes any specific value is

at most
(

n
⌈n/2⌉

)

/2n = O( 1√
n
). This was studied and generalized by Littlewood and

Offord [19], Erdős [7], and many others. The classical Littlewood-Offord problem is
about understanding the anti-concentration of the inner product 〈x, Y 〉 = ∑n

j=1 xjYj,

for arbitrary x ∈ R
n and Y ∈ {±1}n chosen uniformly. For example, Erdős proved

that if x has no non-zero coordinates, then maxk Pr[〈x, Y 〉 = k] ≤
(

n
⌈n/2⌉

)

/2n = O( 1√
n
).

It is interesting to understand the most general conditions under which such anti-
concentration holds. Various generalizations were studied by Frankl and Füredi [10],
Halász [11] and others (see [25] and references within). These results show that stronger
bounds can be proved when the vector x satisfies stronger conditions. In this past work,
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the vector Y is typically assumed to be uniformly distributed; indeed anti-concentration
fails when the entries of Y are not independent. For example, if Y is sampled uniformly
from the set of strings with exactly ⌈n/2⌉ entries that are 1, then for x = 1n, we have
that 〈x, Y 〉 is always the same. Can we somehow recover anti-concentration when Y is
not uniform?

We show that if extra structure holds then anti-concentration is still recovered al-
though the entropy is small. For example, if we identify {±1}n with the vector space
F
n
2 , by associating −1 with 1 and 1 with 0, then our results imply:

Theorem 1. There exists a constant C > 0 so that the following holds. If x ∈ Z
n has

no zero coordinates, B ⊆ {±1}n corresponds to a subspace of Fn
2 of dimension 0.51n,

and Y ∈ B is uniformly distributed, then

max
k∈Z

Pr[〈x, Y 〉 = k] ≤ C
√

lnn
n
.

Theorem 1 is a direct consequence of Theorem 4 below. It shows that anti-concentration
holds even when Y is far from being uniform, but when the direction x is random as
well.

Remark. Theorem 1 and similar results can be used as a black box to prove the same
bounds when x is a real-valued vector. To see this, think of the relevant real numbers
as vectors in a finite dimensional vector space over the rationals. We omit the details
here.

Another natural setting is to consider the inner-product 〈X, Y 〉 of two independent
variables, neither of which may be uniform. Recent work has proved some interesting
results under the assumption thatX, Y have nice structure [28, 13], but what if the only
assumption is that X, Y a uniformly distributed on large sets? The following theorem,
proved by Chakrabarti and Regev [6] along the way to proving new lower bounds in
communication complexity, shows that this does recover some anti-concentration:

Theorem (Chakrabarti and Regev [6]). There is a constant c > 0 such that if A,B ⊆
{±1}n are each of size at least 2(1−c)n and X ∈ A, Y ∈ B are sampled uniformly and
independently, then

Pr[| 〈X, Y 〉 | ≤ c
√
n] ≤ 1− c.

Alternate proofs of the same bound were subsequently given in [29, 22]. The theorem
shows that 〈X, Y 〉 does not land in an interval of length much smaller than

√
n with

high probability. The strongest anti-concentration bounds give point-wise estimates.
We would like to control the concentration probability

max
k∈Z

Pr[〈X, Y 〉 = k];

see [27] and references within.
In our work we prove a sharp bound on the point-wise concentration probability that

holds for an overwhelming majority of directions x.
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Theorem 2. For every β > 0 and δ > 0, there exists C > 0 such that the following
holds. If B ⊆ {±1}n is of size 2βn, and Y ∈ B is uniformly distributed, then for all
but 2n(1−β+δ) directions x ∈ {±1}n,

max
k∈Z

Pr
Y
[〈x, Y 〉 = k] ≤ C√

n
.

In particular, if X is independent of Y and uniformly distributed in a set A of size
2n(1−β+2δ), then

max
k∈Z

Pr
Y
[〈X, Y 〉 = k] ≤ C√

n
+ 2−δn.

Our bound implies the result of Chakrabarti and Regev, but it is strictly stronger.
It is also tight in the following senses. As mentioned above, the O( 1√

n
) bound is tight

even when A and B are {±1}n. To see that the bound on the number of bad directions
is sharp1, observe that if B ⊂ {±1}n is the set of y’s with

∑n
j=1 yj = 0, and A ⊂ {±1}n

is the set of x’s with
∑n

j=1 xj = (1− 2ǫ)n for some small ǫ > 0, then

|B| ≈ 1√
n
2n & |A| ≈ 2h(ǫ)n,

where h(ǫ) is the binary entropy function. Yet for every x ∈ A,

Pr[| 〈x, Y 〉 | ≤ 1] ≥ Ω( 1√
ǫn
).

The sets A,B do not satisfy the conclusions of Theorem 2, even though |A| · |B| ≈
2(1+h(ǫ))n.

Our methods lead to even stronger conclusions about the distribution of 〈x, Y 〉. We
prove the following smoothness result:

Theorem 3. For every β, ǫ > 0, there is C > 0 so that the following holds. Suppose
B ⊆ {±1}n is a set with |B| = 2βn, and Y ∈ B is uniformly distributed. Then for all
but 2(1−β+ǫ)n choices of x ∈ {±1}n, we have:

max
k∈Z

∣

∣Pr[〈x, Y 〉 = k]− Pr[〈x, Y 〉 = k + 4
∣

∣ ≤ C

n
.

In particular, if X is independent of Y and uniformly distributed in a set A of size
2(1−β+2ǫ)n, then

max
k∈Z

∣

∣Pr[〈X, Y 〉 = k]− Pr[〈X, Y 〉 = k + 4
∣

∣ ≤ C

n
+ 2−ǫn.

Theorem 2 is implied by Theorem 3. Indeed, if x is such that

max
k∈Z

∣

∣Pr[〈x, Y 〉 = k]− Pr[〈x, Y 〉 = k + 4
∣

∣ ≤ C

n
,

then for all k and j ≤ m,

Pr[〈x, Y 〉 = k] ≤ Pr[〈x, Y 〉 = k + 4j] +
Cm

n
.

1This example is due to an anonymous reviewer.
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But then we must have (for m ≈ √
n):

Pr[〈x, Y 〉 = k] ≤ Cm

n
+

1

m
·

m
∑

j=1

Pr[〈x, Y 〉 = k + 4j] ≤ Cm

n
+

1

m
.

1√
n
.

Theorem 3 is proved in Section 4. It is sharp in the following two senses. First, even
for the case A = B = {±1}n, there is a k so that2

|Pr[〈X, Y 〉 = k]− Pr[〈X, Y 〉 = k + 4| ≥ Ω( 1
n
).

So, O( 1
n
) is the best upper bound possible. Secondly, if A = {x ∈ {±1}n : n−

∑n
j=1 xj =

0mod 4} and B = {y ∈ {±1}n : n−
∑n

j=1 yj = 0mod 4}, then because n = 〈x, y〉mod 2

for all x, y ∈ {±1}n, 〈x, y〉mod 4 is the same for every pair x ∈ A, y ∈ B. Thus, there
are sets A,B with |A| = |B| = 2n−1 so that for all j ∈ {1, 2, 3},

|Pr[〈X, Y 〉 = 0]− Pr[〈X, Y 〉 = j]| = Pr[〈X, Y 〉 = 0] = Ω( 1√
n
)

So, 4 is the minimum gap for which an O( 1
n
) upper bound holds.

Our proof builds a flexible framework for proving anti-concentration results in dis-
crete domains. We use this framework to show that anti-concentration holds in a wide
variety of settings. As we explain below, we show that bounds similar to those proved
in [8, 21, 23, 11] apply even when the underlying distribution is not uniform. When
Y is uniformly distributed, the additive structure of the entries in the direction vector
x controls anti-concentration [10]. If x is unstructured, we get even stronger anti-
concentration bounds for 〈x, Y 〉. This idea is instrumental when analyzing random
matrices [15, 27].

We choose the direction x from sets of the following form. We call a set A ⊂ Z
n a

two-cube if A = A1 ×A2 × · · · ×An, where each Aj = {uj, vj} consists of two distinct
integers. The differences of A are the numbers dj = uj − vj for j ∈ [n].

The following theorem describes three cases that yield different anti-concentration
bounds. It shows that the additive structure of A is deeply related to the bounds
we obtain. The less structured A is, the stronger the bounds are. The first bound
in the theorem holds for arbitrary two-cubes. The second bound holds when all the
differences d1, . . . , dn are distinct. The third bound applies in more general settings
where the set of differences is unstructured. This is captured by the following definition.
A set S ⊂ N of size n is called a Sidon set, or a Golomb ruler, if the number of solutions
to the equation s1+s2 = s3+s4 for s1, s2, s3, s4 ∈ S is 4 ·

(

n
2

)

+n. In other words, every
pair of integers has a distinct sum. Sidon sets were defined by Erdős and Turán [9]
and have been studied by many others since. We say that S ⊂ Z is a weak Sidon set if
the number of solutions to the equation ǫ1s1 + ǫ2s2 = ǫ3s3 + ǫ4s4 for ǫ1, . . . , ǫ4 ∈ {±1}
and s1, . . . , s4 ∈ S is at most 100n2. The number 100 can be replaced by any other
constant, we use it here just to be concrete.

Theorem 4. For every β > 0 and δ > 0, there exists C > 0 such that the following
holds. Let A ⊂ Z

n be a two-cube with differences d1, . . . , dn. Let B ⊆ {±1}n be of size
2βn and Y be uniformly distributed in B.

2For an integer k = n

2
−√

n, we have
(

n

k+1

)

−
(

n

k

)

=
(

n

k+1

)

n−2k−1

n−k
& 2

n

n
.
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(1) For all but 2n(1−β+δ) directions x ∈ A,

max
k∈Z

Pr
Y
[〈x, Y 〉 = k] ≤ C

√

ln(n)
n

.

(2) If d1, . . . , dn are distinct, then for all but 2n(1−β+δ) directions x ∈ A,

max
k∈Z

Pr
Y
[〈x, Y 〉 = k] ≤ C

√

ln(n)
n3 .

(3) If {d1, . . . , dn} is a weak Sidon set of size n, then for all but 2n(1−β+δ) directions
x ∈ A,

max
k∈Z

Pr
Y
[〈x, Y 〉 = k] ≤ C

√

ln(n)
n5 .

To see why this is a generalization of past work, observe that if Y ∈ {±1}n is
uniformly distributed, then for any x ∈ Z

n, the distribution of 〈x, Y 〉 is identical to the
distribution of 〈X, Y 〉, where X is obtained by picking uniformly random signs for the
coordinates of x. The number of directions in the support of X is 2n, and the theorem
above can be applied.

A similar idea proves Theorem 1. The key point is the assumption thatB corresponds
to a subspace of Fn

2 . Every element of B corresponds to a signing of x that gives the
same distribution for 〈x, Y 〉. We thus obtained a set A of distinct directions of size
|A| = |B|. Because |A| · |B| ≥ 21.02n, we can apply Theorem 4 to prove Theorem 1.

The proof of Theorem 4 is given in Section 5. The first bound in Theorem 4 nearly
implies Theorem 2. It is weaker by a factor of

√

ln(n). However, it holds for all two-
cubes, not just the hypercube {±1}n. The second bound almost matches the sharp
O(1/n1.5) bound that holds when (uj, vj) = (j,−j) for each j and Y is uniform in the

hypercube [21, 23]. We believe that the
√

ln(n) factor is not needed, but were not
able to eliminate it. The theorem is, in fact, part of a more general phenomenon. We
postpone the full technical description to Section 5.

An application to Communication Complexity. These kinds of anti-concentration
bounds are intimately connected to understanding the communication complexity of
the gap-hamming function. The gap-hamming function GH = GHn,k : {±1}n →
{0, 1, ⋆} is defined by

GH(x, y) =











1 〈x, y〉 ≥ k,

0 〈x, y〉 ≤ −k,

⋆ otherwise.

Note that the Hamming distance between x and y is n−〈x,y〉
2

. This problem is well-
studied in communication complexity; for background and definitions, see the books [18,
20]. Alice gets x, Bob gets y, and their goal is to compute GH(x, y). It is a promise
problem; the protocol is allowed to compute any value when the input corresponds to
a ⋆, and it needs to be correct only on the remaining inputs. The standard choice for
k is ⌈√n⌉, so we write GHn to denote GHn,⌈√n⌉.

The gap-hamming problem was introduced by Indyk and Woodruff in the context
of streaming algorithms [12], and was subsequently studied and used in many works
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and in various contexts (see [14, 30, 3, 4, 5] and references within). Proving a sharp
Ω(n) lower bound on its randomized communication complexity was a central open
problem for almost ten years, until Chakrabarti and Regev [6] solved it using the
anti-concentration bound mentioned above. Later, Vidick [29] and Sherstov [22] found
simpler proofs. The difficulties in proving this lower bound are explained in [6, 22].

The exact gap-hamming function is defined by

EGHn,k(x, y) =











1 〈x, y〉 = k,

0 〈x, y〉 = −k,

⋆ otherwise.

As before, we write EGHn to denote EGHn,⌈√n⌉. The exact gap-hamming function is
easier to compute than gap-hamming; the protocol only needs to worry about inputs
whose inner product has magnitude exactly k. Proving a sharp lower bound on the
randomized communication complexity of EGH was left as an open problem.

One of the difficulties in proving a lower bound for EGH is the following somewhat
surprising property: for infinitely many values of n, the deterministic communication
complexity of EGHn is 2. The reason is that there is a simple deterministic protocol
of length 2 that computes 〈x, y〉mod 4 for all n. This protocol corresponds to the sets
A,B discussed with regards to Theorem 3 above. The players announce the parities

of their inputs
n−∑n

j=1
xj

2
mod 2 and

n−∑n
j=1

yj

2
mod 2. These bits determine 〈x, y〉mod 4.

Indeed, flipping a bit in x changes
n−

∑n
j=1

xj

2
mod 2, and changes 〈x, y〉 by +2mod 4.

For example, this deterministic protocol computes EGHn when
√
n is an odd integer,

because then we have −√
n 6= √

nmod 4.
We overcome this difficulty and show that EGH is extraordinary in that although it

is a natural problem with communication complexity O(1) for infinitely many values
of n, the randomized communication complexity of EGHn is at least Ω(n) for infinitely
many values of n. Denote by Un,k the uniform distribution over the set of pairs (x, y) ∈
{±1}n × {±1}n so that 〈x, y〉 ∈ {±k}.
Theorem 5. There is universal constant α > 0 such that for infinitely many values
of n, any protocol that computes EGHn over inputs from Un,⌈√n⌉ with success probability
2/3 must have communication complexity at least αn.

There is a natural reduction between different parameters n, k, and from random-
ized protocols to distributional protocols. It turns out that the following theorem is
stronger:

Theorem 6. For every β > 0, there are constants n0 > 0 and α > 0 so that the
following holds. Let n, k be positive even integers so that n > n0 and k < α

√
n. Any

protocol that computes EGHn,k over inputs from Un,k with success probability 2/3 must
have communication complexity at least (1− β)n.

Theorems 5 and 6 are proved in Section 6. The results are sharp in the following two
senses. First, if k 6= nmod 2 then EGHn,k is trivial, and if k is odd then the deterministic
communication complexity of EGHn,k is 2. Secondly, for every α > 0, there is β > 0 so
that if k > α

√
n then the randomized communication complexity of EGHn,k is at most
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(1− β)n. We sketch a randomized protocol for this here. In the randomized protocol,
Alice gets x, Bob gets y and the public randomness is a sequence I1, I2, . . . , Im of i.i.d.
uniform elements in [n] for m ≤ O( n

α2 ). Although m is a constant factor larger than
n, a standard coupon collector argument shows that the number of (distinct) elements
in the set S = {I1, . . . , Im} is at most (1 − β)n − 1 with probability at least 5

6
. If

|S| > (1− β)n− 1, the parties “abort”, and otherwise Alice sends to Bob the value of
xs for all s ∈ S. Bob uses this data to compute z = 1+sign

(
∑m

j=1 xIjyIj
)

/2. Bob sends

the output of the protocol z to Alice. Chernoff’s bound says that if EGHn,k(x, y) 6= ⋆
then Pr[z = EGHn,k(x, y)] ≥ 5

6
. The union bound implies that the overall success

probability is at least 2
3
.

An application to Additive Combinatorics. Additive combinatorics studies the
behavior of sets under algebraic operations [26]. It has many deep results, and connec-
tions to other areas of mathematics, as well as many applications in computer science.
Our main result can be interpreted as showing that Hamming spheres are far from
being sum-sets. Our results give quantitative bounds on the size of the intersection of
any Hamming sphere with a sum-set.

Replace {±1} by the field F2 with two elements. The sum-set of A ⊆ F
n
2 and B ⊆ F

n
2

is
A+B = {x+ y : x ∈ A, y ∈ B}.

If X and Y are sampled uniformly at random from A and B, then X + Y is supported
on A +B.

The cube Fn
2 is endowed with a natural metric—the Hamming distance ∆(x, y). The

sphere around 0 is the collection of all vectors with a fixed number of ones in them
(a.k.a. a slice). The inner product I =

∑

j(−1)Xj(−1)Yj is similar to the inner product

studied above (here Xj, Yj ∈ {0, 1}). The inner product is related to the Hamming
distance by I(X, Y ) = n− 2∆(X, Y ). We saw that if |A| · |B| > 21.01n, then I is anti-
concentrated. We can conclude that the distribution of the Hamming distance ofX+Y
is anti-concentrated. The set A + B is far from any slice. In particular, our results
imply that for almost all choices of a ∈ A, we have that |(a + B) ∩ S| ≤ O(|B|/√n)
for any slice S.

Techniques. Chakrabarti and Regev’s proof uses the deep connection between the
discrete cube and Gaussian space. They proved a geometric correlation inequality in
Gaussian space, and then translated it to the cube. Vidick [29] later simplified part of
their argument, but stayed in the geometric setting. Sherstov [22] found a third proof
that uses Talagrand’s inequality from convex geometry [24] and ideas of Babai, Frankl
and Simon from communication complexity [2].

There are several differences between our argument and the ones in [6, 29, 22]. The
main difference is that the arguments from [6, 29, 22] are based, in one way or another,
on the geometry of Euclidean space. The arguments in [6, 29] prove a correlation
inequality in Gaussian space and translate it to the discrete world. It seems that such an
argument can not yield point-wise bounds on the concentration probability. A common
ingredient in [6, 22] is a step showing that every set of large enough measure contains
many almost orthogonal vectors (this is called ‘identifying the hard core’ in [22]). In [29]
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this part of the argument is replaced by a statement about a relevant matrix. Our
argument does not contain such steps.

Let us briefly discuss our proof at a high level. The proof is based on harmonic
analysis (Section 2). The argument consists of two parts. In the first part, we analyze
the Fourier behavior of 〈x, Y 〉 for x fixed and Y random. We are able to identify
a collection of good x’s for which the Fourier spectrum of the distribution of 〈x, Y 〉
decays rapidly. In the second part, we show that the number of bad x’s is small by
giving an explicit encoding of all of them.

Although the proofs of Theorem 3 and Theorem 4 follow similar strategies, we were
not able to completely merge them.

2. Harmonic Analysis

We are interested in proving anti-concentration for integer-valued random variables.
Harmonic analysis is a natural framework for studying such random variables [11]. Let
Y be distributed in {±1}n. Let x ∈ Z

n be a direction. Let θ be uniformly distributed
in [0, 1], independently of Y . The idea is to use

Pr
Y
[〈x, Y 〉 = k] = E

Y

[

E
θ
[exp(2πiθ · (〈x, Y 〉 − k))]

]

to bound

max
k∈Z

Pr
Y
[〈x, Y 〉 = k] ≤ E

θ

[

∣

∣

∣E
Y
[exp(2πiθ · 〈x, Y 〉)]

∣

∣

∣

]

.(⋆)

This inequality is useful for two reasons. First, the left hand side is a maximum
over k, while the right hand side is not. So, there is one less quantifier to worry about.
Secondly, the right hand side lives in the Fourier world, where it is easier to argue about
the underlying operators. For example, when the coordinates of Y are independent,
the expectation over Y breaks into a product of n simple terms.

3. The main technical Theorem

Our main technical bound is proved in this section. The following theorem controls
the Fourier coefficients in most directions.

Theorem 7. For every β > 0 and δ > 0, there is c > 0 so that the following holds.
Let B ⊆ {±1}n be of size 2βn. For each θ ∈ [0, 1], for all but 2n(1−β+δ) directions
x ∈ {±1}n,

∣

∣

∣

∣

E
Y
[exp(2πiθ · 〈x, Y 〉)]

∣

∣

∣

∣

< 2 exp(−cn sin2(4πθ))

The rest of this section is devoted to proving the theorem.



ANTI-CONCENTRATION AND THE EXACT GAP-HAMMING PROBLEM 9

3.1. A Single Direction. In this section we analyze the behavior of 〈x, Y 〉 for a single
direction x ∈ Z

n. We also focus on a single Fourier coefficient EY [exp(iη 〈x, Y 〉)] for a
fixed angle η ∈ [0, 2π].

We reveal the entropy of Y coordinate by coordinate. To keep track of this entropy,
define the following functions γ1, . . . , γn from B = supp(Y ) to R. For each j ∈ [n], let

γj(y) = γj(y<j) = min
ǫ∈{±1}

Pr[Yj = ǫ|Y<j = y<j].

To understand the interaction between x and y, we use the following nmeasurements.
For j ∈ [n− 1], define φj(x, y) to be half of the phase of the complex number

E
Y>j |Yj=1,Y<j=y<j

[exp(iη 〈x>j , Y>j〉)] · E
Y>j |Yj=−1,Y<j=y<j

[exp(iη 〈x>j , Y>j〉)].

This quantity is not defined when γj(y) = 0. In this case, set φj(x, y) to be zero. Define
φn(x, y) to be zero. The number φj(x, y) is determined by y<j and x>j .

In the following we think of x as fixed, and of γj and φj as random variables that
are determined by the random variable Y .

Lemma 8. For each x ∈ R
n, every random variable Y over {±1}n, and every angle

η ∈ R,

∣

∣

∣

∣

E
Y
[exp(iη 〈x, Y 〉)]

∣

∣

∣

∣

2

≤ E
Y





∏

j∈[n]
(1− γj sin

2(φj + xjη))



 .

Proof. The proof is by induction on n. We prove the base case of the induction and
the inductive step simultaneously. Express

∣

∣

∣

∣

E
Y
[exp(iη 〈x, Y 〉)]

∣

∣

∣

∣

2

=

∣

∣

∣

∣

E
Y1

[

exp(iηx1Y1) · E
Y>1|Y1

[exp(iη 〈x>1, Y>1〉)]
]
∣

∣

∣

∣

2

= |p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1|2 ,
where for ǫ ∈ {±1},

pǫ = Pr[Y1 = ǫ] & Zǫ = E
Y |Y1=ǫ

[exp(iη 〈x>1, Y>1〉)] .

When n = 1, we have Z1 = Z−1 = 1. Rearranging,

|p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1|2

= p21|Z1|2 + p2−1|Z−1|2 + p1p−1(Z1Z−1 exp(i2ηx1) + Z1Z−1 exp(−i2ηx1))

= p21|Z1|2 + p2−1|Z−1|2 + 2p1p−1|Z1||Z−1| cos(2φ1 + 2x1η).

The last equality holds by the definition of φ1.
There are two cases to consider. When cos(2φ1 + 2x1η) < 0, we continue to bound

< p21|Z1|2 + p2−1|Z−1|2

≤ (p1|Z1|2 + p−1|Z−1|2)(1− γ1)

≤ (p1|Z1|2 + p−1|Z−1|2)(1− γ1 sin
2(φ1 + x1η)).
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Recall that γ1 and φ1 do not depend on Y . When cos(2φ1 + 2x1η) ≥ 0, using the
inequality a2 + b2 ≥ 2ab, we bound

≤ p21|Z1|2 + p2−1|Z−1|2 + p1p−1(|Z1|2 + |Z−1|2) cos(2φ1 + 2x1η)

= p1|Z1|2(p1 + p−1 cos(2φ+ 2x1η)) + p−1|Z−1|2(p−1 + p1 cos(2φ1 + 2x1η))

≤ (p1|Z1|2 + p−1|Z−1|2)(1− γ1 + γ1 cos(2φ1 + 2x1η))

= E
Y1

[

|ZY1
|2
]

(1− 2γ1 sin
2(φ1 + x1η)).

When n = 1, we have proved the base case of the induction. When n > 1, apply
induction on |Zǫ|2. �

3.2. A Few Bad Directions. Lemma 8 suggests proving that the expression
∑

j

γj sin
2(φj + xjη)

is typically large. Namely, we aim to show that there are usually many coordinates j
for which both γj and sin2(φj + xjη) are bounded away from zero. Our approach is to
explicitly encode the cases where this fails to hold.

Recall that Y is uniformly distributed in a set B of size |B| = 2βn. Let 1 ≥ λ > 1/n
be a parameter. Set 0 < κ < 1

2
and 1 ≥ τ > 0 to be parameters satisfying the

conditions

H
(

1
log(1/κ)

)

= τ +H (τ) = λ,(1)

where H is the binary entropy function:

H(ξ) = ξ log(1/ξ) + (1− ξ) log(1/(1− ξ)).

The encoding is based on the following two sets:

J(y) = JB,κ(y) = {j ∈ [n] : γj(y) ≥ κ}
and

G(x, y) = GB,κ,θ(x, y) =
{

j ∈ J(y) : sin2(φj(x, y) + xjη) ≥ sin2(2η)
4

}

.

We start by showing that there are few y’s for which |J(y)| is small.

Lemma 9. The number of y ∈ B with |J(y)| ≤ n(β − 3λ) is at most 2n(β−2λ).

Proof. If 3λ > β, the statement is trivially true. So, in the rest of the proof, assume
that 3λ ≤ β. Each y ∈ B with |J(y)| ≤ n(β − 3λ) can be uniquely encoded by the
following data:

– A vector q ∈ {±1}t with t = ⌊n(β − 3λ)⌋.
– A subset S ⊆ [n] of size |S| ≤ n

log(1/κ)
.

Let us describe the encoding. The vector q encodes the values taken by y in the
coordinates J(y). We do not encode J(y) itself, only the values of y in the coordinates
corresponding to J(y). The set S includes j ∈ [n] if and only if

Pr[Yj = yj|Y<j = y<j] < κ.

Each string y ∈ B has probability at least 2−n. This implies that κ|S| ≥ 2−n.
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We can reconstruct y from q and S by iteratively computing y1, then y2, and so on,
until we get to yn. Whether or not 1 ∈ J(y) is determined even before we know y. If
1 ∈ J(y) then q tells us what y1 is. If 1 6∈ J(y) and 1 ∈ S then y1 is the least likely
value between ±1. If 1 6∈ J(y) and 1 6∈ S then y1 is the more likely value. Given the
value of y1, we can continue in the same way to compute the rest of y.

The number of choices for q is at most 2n(β−3λ). The number of choices for S is at
most 2nH(1/ log(1/κ)) = 2λn. �

Next, we argue that there are few x’s for which there are many y’s with small G(x, y).

Lemma 10. The number of x ∈ A for which

Pr
Y
[|G(x, Y )| ≤ τn] ≥ 2−λn

is at most 2n(1−β+6λ).

Proof. The lemma is proved by double-counting the edges in a bipartite graph. Let X
be the set we are interested in:

X =
{

x : Pr
Y
[|G(x, Y )| ≤ τn] ≥ 2−λn

}

.

The left side of the bipartite graph is X and the right side is B. Connect x ∈ X to
y ∈ B by an edge if and only if G(x, y) ≤ τn. Let E denote the set of edges in this
graph.

First, we bound the number of edges from below. The number of edges that touch
each x ∈ X is at least 2−λn|B|. It follows that

|E| ≥ 2−λn · |X | · |B|.
Next, we bound the number of edges from above. By Lemma 9, the number of y ∈ B

so that |J(y)| ≤ n(β − 3λ) is at most 2−2λn|B|. We shall prove that the number of
edges that touch each y with |J(y)| > n(β − 3λ) is at most 2n(1−β+4λ). It follows that

|E| ≤ 2−2λn · |X | · |B|+ |B| · 2n(1−β+4λ).

We can conclude that

2−λn · |X | · |B| ≤ 2−2λn · |X | · |B|+ |B| · 2n(1−β+4λ)

⇒ |X | ≤ 2n(1−β+6λ),

since λn > 1.
It remains to fix y so that |J(y)| > n(β−3λ) and bound its degree from above. This

too is achieved by an encoding argument. Encode each x that is connected to y by an
edge using the following data:

– A vector q ∈ {±1}t with t = ⌊n(1− β + 3λ)⌋.
– The set G(x, y).
– A vector r ∈ {±1}s with s = ⌊τn⌋.

Let us describe the encoding. The vector q specifies the values of x on coordinates not
in J(y). There are at most n− n(β − 3λ) = n(1− β + 3λ) such coordinates. The size
of G(x, y) is at most τn. The vector r specifies the values of x in the coordinates of
G(x, y), written in descending order.
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The decoding of x from q, S and r is done as follows. Decode the coordinates of x
in descending order from n to 1. If n 6∈ J(y) then we read the value of xn from q. If
n ∈ J(y) and n ∈ G(x, y), we decode xn by reading its value from r. If n ∈ J(y) and
n /∈ G(x, y), then

sin2(φn(x, y) + xnη) ≤ sin2(2η)
4

.

The number φn(x, y) does not depend on x. The following claim implies that there is
at most one value of xn that satisfies this property.

Claim 11. For all ϕ ∈ R and u, v ∈ Z,

max{| sin(ϕ+ ηu)|, | sin(ϕ+ ηv)|} ≥ | sin(η(u−v))|
2

.

Proof. We wish to show that the two points on the unit circle of phase ϕ + ηu and
ϕ+ ηv cannot both be very close to the real line in general. Consider the map

ϕ 7→ g(ϕ) = max{| sin(ϕ+ ηu)|, | sin(ϕ+ ηv)|}.
Observe that the minimum of this map is attained when

| sin(ϕ+ ηu)| = | sin(ϕ+ ηv)|,
since if this is not the case, we can change ϕ by a little to reduce the larger of the two
magnitudes. Now, | sin(α)| = | sin(β)| when α+ β is an integer multiple of π/2. Thus,

the two magnitudes are equal exactly when ϕ = −η(u+v)
2

+ tπ/2, for some integer t. By
symmetry, it is enough to consider t ∈ {0, 1}, so we obtain that

g(ϕ) ≥ min{g(−η(u+ v)/2), g(−η(u+ v)/2 + π/2)}
≥ |g(−η(u+ v)/2) · g(−η(u+ v)/2 + π/2)|
≥ | sin(η(u− v)/2) · cos(η(u− v)/2)|

=
| sin(η(u− v))|

2
. �

The claim implies that we can indeed reconstruct xn. Given xn, we can similarly
reconstruct xn−1, since φn−1 depends only on y and xn. Continuing in this way,
we can reconstruct xn−2, . . . , x1. The total number of choices for q, S, r is at most
2n(1−β+3λ)+nH(τ)+τn = 2n(1−β+4λ). �

Proof of Theorem 7. Set λ = δ
6
. By Lemma 8,

∣

∣

∣

∣

E
Y
[exp(2πiθ 〈x, Y 〉)]

∣

∣

∣

∣

≤

√

√

√

√

E
Y

[

exp

(

−
n
∑

j=1

γj sin
2(φj + 2πθxj)

)]

.

Whenever x is such that

Pr
Y
[G(x, Y ) ≤ τn] < 2−λn,(2)

we can bound

E
Y

[

exp

(

−
n
∑

j=1

γj sin
2(φj + 2πθxj)

)]

≤ exp(−κ
4
nτ sin2(4πθ)) + 2−λn.
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Since
√
a+ b ≤ √

a +
√
b for a, b ≥ 0, for such an x we can bound

∣

∣

∣

∣

E
Y
[exp(2πiθ 〈x, Y 〉)]

∣

∣

∣

∣

≤ exp(−κ
8
nτ sin2(4πθ)) + 2−λn/2

≤ 2 exp(−cn sin2(4πθ)).

Lemma 10 promises that there are at most 2n(1−β+δ) choices for x that does not sat-
isfy (2).

�

4. Smoothness

To prove smoothness, we use Theorem 7. The constant 4π on the r.h.s. of the bound
in the theorem corresponds to a step size of 4.

Proof of Theorem 3. Theorem 7 with δ = ǫ
2
promises that for each θ ∈ [0, 1], the size

of

Aθ =
{

x ∈ {±1}n :
∣

∣

∣E
Y
[exp(2πiθ 〈x, Y 〉)]

∣

∣

∣
> 2 exp(−cn sin2(4πθ))

}

is at most 2n(1−β+δ). For each x, define Sx = {θ ∈ [0, 1] : x ∈ Aθ}.
Fix x such that |Sx| ≤ 2−δn. Bound

∣

∣Pr
Y
[〈x, Y 〉 = k]− Pr

Y
[〈x, Y 〉 = k + 4]

∣

∣

=
∣

∣

∣E
Y

[

∫ 1

0

exp(2πiθ(〈x, Y 〉 − k))− exp(2πiθ(〈x, Y 〉 − k − 4)) dθ
]
∣

∣

∣

≤
∫ 1

0

| exp(4πiθ)− exp(−4πiθ)| ·
∣

∣

∣E
Y
[exp(2πiθ 〈x, Y 〉)]

∣

∣

∣
dθ

≤ 2

∫ 1

0

| sin(4πθ)| ·
∣

∣

∣E
Y
[exp(2πiθ 〈x, Y 〉)]

∣

∣

∣
dθ.

Continue to bound

∫ 1

0

| sin(4πθ)| ·
∣

∣

∣E
Y
[exp(2πiθ 〈x, Y 〉)]

∣

∣

∣
dθ

≤ 2−δn + 2

∫ 1

0

| sin(4πθ)| · exp(−cn sin2(4πθ)) dθ.
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The integral goes around the circle twice, and it is identical in each quadrant. So,
∫ 1

0

| sin(4πθ)| · exp(−cn sin2(4πθ)) dθ

= 8

∫ 1/8

0

sin(4πθ) · exp(−cn sin2(4πθ)) dθ

≤ 32π

∫ ∞

0

θ · exp(−16cnθ2) dθ

≤ c1
n

∫ ∞

0

φ · exp(−φ2) dφ ≤ C
n
,

where c1, C > 0 depend on ǫ, and we used η
π
≤ sin(η) ≤ η for 0 ≤ η ≤ π

2
.

Finally, because

E
x
|Sx| = E

θ

|Aθ|
2n

≤ 2n(−β+δ),

by Markov’s inequality, the number of x ∈ {±1}n for which |Sx| > 2−δn is at most
2(1−β+2δ)n = 2(1−β+ǫ)n. �

5. Anti-concentration in General Two-Cubes

Now we move to the setting where the direction x is chosen from an arbitrary two-
cube A ⊂ Z

n with differences d1, . . . , dn; our goal is to prove Theorem 4. The way we
measure the structure of A follows ideas of Halász [11]. For an integer ℓ > 0, define
rℓ(A) to be the number of elements (ǫ, j) ∈ {±1}2ℓ × [n]2ℓ that satisfy

ǫ1 · dj1 + · · ·+ ǫ2ℓ · dj2ℓ = 0.

The smaller rℓ(A) is, the less structured A is.
The theorem below shows that rℓ(A) allows us to control the concentration proba-

bility. More concretely, for C > 0 and ℓ > 0, define

RC,ℓ(A) =
Cℓrℓ(A)

n2ℓ+1/2
+ exp(− n

C
).

Define
RC(A) = inf{RC,ℓ(A) : ℓ ∈ N}.

This is essentially the bound on the concentration probability that Halász obtained
in [11] when Y is uniform in {±1}n. Our upper bounds are slightly weaker. Let

µC(A) = inf
{

µ ∈ [0, 1] : ∃ν ∈ (0, 1] µ(1+ν)2 ≥ 3 exp(−νn
C
) + RC(A)

50
√
ν

}

,

where we adopt the convention that the infimum of the empty set is 1. Before stating
the theorem, let us go over the three examples from Theorem 4:

(1) For arbitrary A, since r1(A) ≤ O(n2), we get3 µC(A) ≤ O(
√
lnn√
n
) with ν =

1
ln(1/RC,1(A))

.

(2) When all the differences are distinct, since r1(A) ≤ O(n), we get µC(A) ≤
O(n−1.5

√
lnn) with ν = 1

ln(1/RC,1(A))
.

3Here and below the big O notation hides a constant that may depend on C.
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(3) When {±d1, . . . ,±dn} is a Sidon set, since r2(A) ≤ O(n2), we get µC(A) ≤
O(n−2.5

√
lnn) with ν = 1

ln(1/RC,2(A))
.

More generally, when RC(A) is bound from below by some polynomial in 1
n
then µC(A)

is at most O(RC(A)
√

log(4/RC(A))).

Theorem 12. For every β > 0 and δ > 0, there is C > 0 so that the following holds.
Let B ⊆ {±1}n be of size 2βn. Let Y be uniformly distributed in B. Let A ⊂ Z

n be a
two-cube. Then, for all but 2n(1−β+δ) directions x ∈ A,

E
θ

[
∣

∣

∣

∣

E
Y
[exp(2πiθ · 〈x, Y 〉)]

∣

∣

∣

∣

]

≤ µC(A).

Before moving on, we discuss a fourth extreme example. When Aj = {2j ,−2j} for
each j ∈ [n], we have rℓ(A) ≤ (2ℓn)ℓ. In this case, setting ℓ = Ω(n) gives exponentially
small anti-concentration with ν = 1. This result is trivial, but it illustrates that the
mechanism underlying the proof yields strong bounds in many settings.

By (⋆) from Section 2 and the explanation above, we see that Theorem 12 implies
Theorem 4. The rest of this section is devoted to the proof of Theorem 12. The high-
level structure of the proof is similar to that of Theorem 7. However, there are several
new technical challenges that we need to overcome.

The main technical challenge that needs to be overcome has to do with the definition
of the set G. The G defined in the previous section depends on the angle θ. This is
problematic for the proof in the generality we are working with now. So, we need
to find a different set of good coordinates, one that depends only on x and y. Our
solution is based on the following claim, which quantifies the strict convexity of the
map ζ 7→ ζ1+ν for ν > 0. We defer the proof to Appendix 7.

Claim 13. For every κ > 0, there is a constant c1 > 0 so that the following holds. For
every random variable W ∈ {±1} such that

min
{

Pr[W = 1],Pr[W = −1]
}

≥ κ,

every α1 ≥ 2α−1 ≥ 0 and every 0 < ν ≤ 1,

E [αW ]1+ν ≤ (1− c1ν)E
[

α1+ν
W

]

.

5.1. A Single Direction. The following lemma generalizes Lemma 8. Recall the
definition of γj, φj and J(y) from Sections 3.1 and 3.2.

Lemma 14. For every κ > 0, there is a constant c0 > 0 so that the following holds.
For every 0 < ν ≤ 1, every angle η ∈ R, every direction x ∈ Z

n, and every random
variable Y over {±1}n,

∣

∣

∣

∣

E
Y
[exp(iη 〈x, Y 〉)]

∣

∣

∣

∣

1+ν

≤ E
Y

[

∏

j∈J
(1− c0ν sin

2(φj + xjη)

]

.

Proof. The proof is by induction on n. If 1 /∈ J , the proof holds by induction. The
base case of n = 1 is trivial. So assume that 1 ∈ J . Express

E
Y
[exp(iη 〈x, Y 〉)] = p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1,
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where for ǫ ∈ {±1},
pǫ = Pr[Y1 = ǫ] & Zǫ = E

Y |Y1=ǫ
[exp(iη 〈x>1, Y>1〉)] .

When n = 1, we have Z1 = Z−1 = 1. Using the definition of φ1,

|p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1|2

= p21|Z1|2 + p2−1|Z−1|2 + p1p−1(Z1Z−1 exp(i2ηx1) + Z1Z−1 exp(−i2ηx1))

= p21|Z1|2 + p2−1|Z−1|2 + 2p1p−1|Z1||Z−1| cos(2φ1 + 2x1η)

= p21|Z1|2 + p2−1|Z−1|2 + 2p1p−1|Z1||Z−1|
− 2p1p−1|Z1||Z−1|(1− cos(2φ1 + 2x1η))

= E [|ZY1
|]2 − 4p1p−1|Z1||Z−1| sin2(φ1 + x1η),

Without loss of generality, assume that |Z1| ≥ |Z−1|. There are two cases to consider.
The first case is that Z1 and Z−1 are comparable in magnitude: |Z1| ≤ 2|Z−1|. In this
case, we can continue the bound by

≤ E [|ZY1
|]2 − 2p1p−1|Z1|2 sin2(φ1 + x1η)

≤ E [|ZY1
|]2 (1− 2κ(1− κ) sin2(φ1 + x1η)),

since 1 ∈ J . This gives

|p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1|1+ν

≤ E [|ZY1
|]1+ν (1− 2κ(1− κ) sin2(φ1 + x1η))

(1+ν)/2

≤ E

[

|ZY1
|1+ν

]

(1− κ(1− κ) sin2(φ1 + x1η)),

since the map ζ 7→ ζ1+ν is convex.
The second case is when |Z1| > 2|Z−1|. Recall that we have already shown

|p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1|2

= E [|ZY1
|]2 − 4p1p−1|Z1||Z−1| sin2(φ1 + x1η)

≤ E [|ZY1
|]2 .

Claim 13 implies that

|p1 exp(iηx1)Z1 + p−1 exp(−iηx1)Z−1|1+ν

≤ E [|ZY1
|]1+ν

≤ (1− c1ν) · E
[

|ZY1
|1+ν

]

≤ (1− c1ν sin
2(φj + xjη)) · E

[

|ZY1
|1+ν

]

.

Finally, setting c0 = min{c1, κ(1− κ)}, we get a bound that applies in both cases:
∣

∣

∣

∣

E
Y
[exp(iη 〈x, Y 〉)]

∣

∣

∣

∣

1+ν

≤ (1− c0ν sin
2(φj + xjη)) · E

[

|ZY1
|1+ν

]

.

This proves the base case of the induction and also allows to perform the inductive
step.
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�

5.2. An Average Direction. In this section we analyze the bound from the previous
section for an average direction X in a two-cube A ⊂ Z

n. This step has no analogy
in the proof of Theorem 7. To compute the expectation over an average direction,
we reveal the entropy of X coordinate by coordinate in reverse order (from the n’th
coordinate to the first one).

In analogy with γ1, . . . , γn, define the following functions µ1, . . . , µn. For each j ∈ [n],
let

µj(x) = µj(x>j) = min
ǫ∈Aj

Pr[Xj = ǫ|X>j = x>j ];

this is well-defined for x in A = supp(X). In analogy with the definition of J(y), let

J ′(x) = {j ∈ [n] : µj(x) ≥ κ}.
In this section, we define the set G differently, but use the same notation. Let

G(x, y) = GA,B,κ(x, y) = J ′(x) ∩ J(y).

Recall that γj, φj and J(·) depend on the set B, on y ∈ B and on x ∈ Z
n. In the

following lemma, we fix an arbitrary y ∈ B, and take the expectation over a random
X ∈ A. We allow G to be a random set that depends on X , and φj to be a random
variable that depends on X>j .

Lemma 15. For every κ > 0 and 0 < c0 ≤ 1, there is a constant c > 0 so that the
following holds. For every 0 < ν ≤ 1, every angle η ∈ R, every B ⊆ {±1}n, every
y ∈ B, every random variable X taking values in a two-cube A ⊆ Z

n with differences
dj = uj − vj,

E
X

[

∏

j∈J
(1− c0ν sin

2(φj +Xjη))

]1+ν

≤ E
X

[

exp
(

− cν
∑

j∈G
sin2(djη)

)

]

.

Proof. The proof is by induction on n. Recall that φj and µj is determined by x>j . In
particular, whether or not n ∈ G(x, y) does not depend on x. If n /∈ G(x, y), the proof
holds by induction, or is trivially true for n = 1. So assume that n ∈ G(x). Start with

E
X

[

∏

j∈J
(1− c0ζ sin

2(φj +Xjη))

]

= E
Xn

[

(1− c0ζ sin
2(φn +Xnη))ZXn

]

,

where for a ∈ An := {un, vn},

Za = E
X|Xn=a

[

∏

j∈J :j<n

(1− c0 sin
2(φj +Xjη))

]

.

If n = 1, then Zu = Zv = 1. Assume without loss of generality that Zu ≥ Zv. There
are two cases to consider. The first case is that Zu > 2Zv. In this case, Claim 13
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implies

E
X

[

∏

j∈J
(1− c0ν sin

2(φj +Xjη))

]1+ν

≤ E [ZXn
]1+ν

≤ (1− c1ν)E
[

Z1+ν
Xn

]

≤ exp(−c1ν)E
[

Z1+ν
Xn

]

.

The second case is when Zu ≤ 2Zv. By Claim 11,

max
{

| sin(φn + uη)|, | sin(φn + vη)|
}

≥ sin(dnη)
2

.

Since µn(x) ≥ κ,

E
Xn

[

(1− c0ν sin
2(φn +Xnη))ZXn

]1+ν

≤ (E
Xn

[ZXn
]− κc0ν

sin2(dnη)
4

Zu

2
)1+ν

≤ (E
Xn

[ZXn
] (1− κc0ν

8
sin2(dnη)))

1+ν

≤ E
Xn

[

Z1+ν
Xn

]

exp(− c0κν
8

sin2(dnη)).

In both cases,

E
X

[

∏

j∈J
(1− c0 sin

2(φj +Xjη))

]1+ν

≤ exp(−cν sin2(dnη)) E
Xn

[

Z1+ν
Xn

]

,

for some constant c(κ, c0) > 0. This proves the base case of the induction and also
allows to perform the inductive step.

�

5.3. Putting It Together.

Proof of Theorem 12. Let µ > 0 and 0 < ν ≤ 1 be so that

µ(1+ν)2 ≥ 3 exp(−νn
C
) + RC(A)

50
√
ν
;

if no such µ, ν exist then the theorem is trivially true. Let

A0 =
{

x ∈ A : E
θ

[

∣

∣

∣E
Y
[exp(2πiθ · 〈x, Y 〉)]

∣

∣

∣

]

≥ µ
}

.

Denote the size of A0 by 2αn. Assume towards a contradiction that α+ β ≥ 1+ δ. Let
X be uniformly distributed in A0, independently of Y and θ. Let λ = δ

7
, and let κ be
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as in (1). By Lemma 14,

E
X,θ

[

∣

∣

∣E
Y
[exp(i2πθ 〈x, Y 〉)]

∣

∣

∣

](1+ν)2

≤ E
X,θ

[

∣

∣

∣E
Y
[exp(i2πθ 〈x, Y 〉)]

∣

∣

∣

1+ν
]1+ν

≤ E
X,θ

[

E
Y

[

∏

j∈J
(1− c0ν sin

2(φj + xj2πθ)

]]1+ν

.

By Lemma 15, we can continue

= E
Y,θ

[

E
X

[

∏

j∈J
(1− c0ν sin

2(φj + xj2πθ)

]]1+ν

≤ E
Y,θ



E
X

[

∏

j∈J
(1− c0ν sin

2(φj + xj2πθ)

]1+ν




≤ E
X,Y,θ

[exp(−cνD(θ))] ,

where

D(θ) = Dx,y(θ) =
∑

j∈G(x,y)

sin2(2πθdj).

By Lemma 9, |J(y)| > n(β − 3λ) for all but 2n(β−2λ) choices for y. Similarly, |J ′(x)| >
n(α− 3λ) for all but 2n(α−2λ) choices of x. By assumption, β− 3λ+α− 3λ ≥ λ. Since
|G(x, y)| ≥ |J(y)|+ |J ′(x)| − n,

Pr[|G(X, Y )| ≤ λn]

≤ Pr[|J(Y )| ≤ n(β − 3λ)] + Pr[|J ′(X)| ≤ n(α− 3λ)]

≤ 2−2λn + 2−2λn.

Next, we need a claim that is essentially identical to one used in the standard proof
of Halász inequality [26]:

Claim. Let x, y be so that G(x, y) ≥ λn. For every 0 ≤ ρ ≤ λn
4

and integer ℓ > 0,

Pr
θ
[D(θ) < ρ] ≤ 4rℓ(A)

(λn)2ℓ+1/2

√
ρ.
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Given the claim, for every x, y so that G(x, y) ≥ λn and ℓ > 0,

E
θ
[exp(−cνD(θ))]

=

∫ 1

0

Pr
θ
[exp(−cνD(θ)) > t] dt

≤ exp(− cνλn
4

) +

∫ 1

exp(−cνλn/4)

Pr
θ
[D(θ) < − ln t

cν
] dt

≤ exp(− cνλn
4

) +
4rℓ(A)

(λn)2ℓ+1/2

∫ 1

0

√

− ln t
cν

dt.

The integral
∫ 1

0

√
− ln t dt ≤ 1 converges to a constant. For an appropriate C =

C(β, δ) > 0 and ℓ > 0, we get the desired contradiction.

µ(1+ν)2 ≤ 2 · 2−2λn + exp(− cνλn
4

) +
4rℓ(A)√

cν(λn)2ℓ+1/2

< 3 exp(−νn
C
) + RC(A)

50
√
ν
.

Proof of Claim. Let G = G(x, y). Observe that

E
θ

[

(|G| − 2D(θ))2ℓ
]

= E
θ

[

(

∑

j∈G
cos(4πdjθ)

)2ℓ
]

= 2−2ℓ
E
θ

[

(

∑

j∈G
exp(4πidjθ) + exp(−4πidjθ)

)2ℓ
]

≤ 2−2ℓrℓ(A);

the last equality follows from the fact that of the ≤ (2|G|)2ℓ terms in the expansion,
the only ones that survive are the ones with phase 0. There are at most rℓ(A) such
terms, and each contributes 1.

By Markov’s inequality, since |G| ≥ λn,

Pr
θ
[D(θ) ≤ λn

4
] ≤ Pr

θ

[

(|G| − 2D(θ))2ℓ ≥ (λn
2
)2ℓ
]

≤ 2−2ℓrℓ(A)

(λn/2)2ℓ
=

rℓ(A)

(λn)2ℓ
.

This proves the claim for ρ = λn
4
.

It remains to prove the claim for ρ < λn
4
. This part uses Kemperman’s theorem [16]

from group theory (in fact Kneser’s theorem [17] for abelian groups suffices). Kem-
perman’s theorem says that if a group is endowed with Haar measure µ, then for any
compact subsets A,B of the group, µ(AB) ≥ min{µ(A) + µ(B), 1}.

Think of [0, 1) as the group R/Z. Let

Sρ = {θ ∈ R/Z : D(θ) ≤ ρ}.



ANTI-CONCENTRATION AND THE EXACT GAP-HAMMING PROBLEM 21

We claim that the m-fold sum Sρ+Sρ+ · · ·+Sρ ⊆ R/Z is contained in Sρm2 . Indeed,

| sin(η1 + η2)| = | sin(η1) cos(η2) + sin(η2) cos(η1)|
≤ | sin(η1)|+ | sin(η2)|,

and so

sin2(η1 + · · ·+ ηm) ≤ (| sin(η1)|+ · · ·+ | sin(ηm)|)2

≤ m(sin2(η1) + · · ·+ sin2(ηm)).

It follows that

D(θ1 + θ2 + · · ·+ θm) ≤ m(D(θ1) +D(θ2) + · · ·+D(θm))

≤ m2 max{D(θ1), D(θ2), . . . , D(θm)}.
Kemperman’s theorem thus implies that

|Sρm2 | ≥ |Sρ + · · ·+ Sρ| ≥ m|Sρ|,
as long as Sρm2 is not all of R/Z. Since

E
θ
[D(θ)] =

∑

j∈G
E
θ

[

sin2(2πθdj)
]

=
|G|
2

,

we can deduce that |Sλn/4| = Prθ[D(θ) ≤ λn
4
] is strictly less than one. Hence, Sλn/4 is

not the full group R/Z. Setting m to be the largest integer so that m2ρ ≤ λn
4
, we can

conclude

Pr
θ
[D(θ) ≤ ρ] ≤ 1

m
Pr
θ
[D(θ) ≤ ρm2] ≤ 1

m
Pr
θ
[D(θ) ≤ λn

4
]. �

�

6. The lower bound for EGH

First, we show how to use Theorem 6 to prove Theorem 5.

Proof of Theorem 5. The main observation is that for every integer t, from a protocol
that solves EGHtn,tk over the distribution Utn,tk, we get a randomized protocol that
solves EGHn,k. The reduction is constructed as follows. Given inputs x, y ∈ {±1}n,
first they repeat each input bit t times to obtain x′, y′ ∈ {±1}tn. Then they sample a
uniformly random z ∈ {±1}tn using shared randomness, and compute x′′, y′′ ∈ {±1}tn
by setting x′′

j = x′
jzj and y′′j = y′jzj for all j ∈ [n]. Finally, they randomly permute

the coordinates of x′′, y′′ to obtain x′′′, y′′′. The result is that x′′′, y′′′ are uniformly
distributed among all inputs with inner product that is equal to t times the inner
product of x, y. The pair (x′′′, y′′′) was generated with no communication. Finally,
they run the protocol for EGHtn,tk on x′′′, y′′′.

Now, let α, n0 be the constants from Theorem 6. Let t > 0 and n > n0 be integers
so that both n/t and k =

√
n/t are even and k ≤ α

√

n/t. By Theorem 6, any protocol
for EGHn/t,k over Un/t,k requires Ω(n/t) communication. By the reduction above, any
protocol for EGHn = EGHn,

√
n yields a protocol for EGHn/t,k. �



22 ANUP RAO AND AMIR YEHUDAYOFF

Proof of Theorem 6. Suppose the assertion of the theorem is false. By a standard
argument in communication complexity, the space of inputs can be partitioned into
rectangles R1, . . . , RL with L ≤ 2(1−β)n, where the output of the protocol on each Rℓ

is fixed.
Let X, Y be i.i.d. uniformly at random in {±1}n. Let E denote the event that

| 〈X, Y 〉 | = k. Define the collection of “typical” rectangles as

T =
{

ℓ ∈ [L] : Pr
X,Y

[E|Rℓ] ≥ PrX,Y [E]

10
& Pr

X,Y
[Rℓ] ≥ 2−

(

1−β
2

)

n
}

.

For α ≤ 2, because k = nmod 2, we have PrX,Y [E] ≥ p√
n
for some universal constant

p > 0. The contribution of non-typical rectangles is small:
∑

ℓ 6∈T
Pr
X,Y

[Rℓ|E] = 1
PrX,Y [E]

∑

ℓ 6∈T
Pr
X,Y

[Rℓ] Pr
X,Y

[E|Rℓ]

< 1
PrX,Y [E]

(

L2−
(

1−β
2

)

n +
PrX,Y [E]

10

)

< 1
5
,

for n large enough. Because k = −kmod 4 and |k| < α
√
n, for each ℓ ∈ T, Theorem 3

with ǫ ≥ β
2
implies that

| Pr
X,Y

[〈X, Y 〉 = k|Rℓ ∧ E]− Pr
X,Y

[〈X, Y 〉 = −k|Rℓ ∧ E]|

= | Pr
X,Y

[〈X, Y 〉 = k|Rj]− Pr
X,Y

[〈X, Y 〉 = −k|Rj ]| · 1
PrX,Y [E|Rj]

≤ α
√
n c0

n
· 10

√
n

p
< 1

6
,

for α small enough. So, the probability of error conditioned on Rℓ for ℓ ∈ T is at least
5
12
. The total probability of error is at least

∑

ℓ∈T
Pr
X,Y

[Rℓ|E] · 5
12

> 4
5
· 5
12

= 1
3
.

This contradicts the correctness of the protocol. �
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7. Strict Convexity

Proof of Claim 13. If α1 = 0, then the claim is trivially true. So, assume that α1 > 0.
Without loss of generality, we may also assume that κ > 0 is small enough so that
4κ > exp(κ + κ2).
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Let p = Pr[W = 1] ∈ [κ, 1− κ] and ξ = α
−1

α1
∈ [0, 1

2
]. So,

E [αW ]1+ν

E

[

α1+ν
W

] =
(p+ (1− p)ξ)1+ν

p+ (1− p)ξ1+ν
.

We need to upper bound this ratio by 1− c1ν, for some constant c1 that depends only
on κ. Let

Φ(ξ, p, ν) = (p+ (1− p)ξ1+ν)− (p+ (1− p)ξ)1+ν.

We shall argue that there is a constant c1 = c1(κ) > 0 such that Φ(ξ, p, ν) ≥ c1ν. This
completes the proof, since

(p+ (1− p)ξ)1+ν

(p+ (1− p)ξ1+ν)
= 1− Φ(ξ, p, ν)

(p+ (1− p)ξ1+ν)
< 1− c1ν.

First, we show that for every ν and ξ, the function Φ(ξ, p, ν) is minimized when
p = κ. Consider

∂Φ

∂p
= 1− ξ1+ν − (1 + ν)(p+ (1− p)ξ)ν(1− ξ)

≥ 1− ξ1+ν − (1 + ν)(1 − ξ)

≥ ξ(1 + ν − ξν) > 0,

since ξν < 1. So, the minimum is achieved when p = κ.
Second, we claim that for every ν and p, the function Φ(ξ, p, ν) is minimized when

ξ = 1
2
. Consider

∂Φ

∂ξ
= (1− p)(1 + ν)ξν − (1 + ν)(p+ (1− p)ξ)ν(1− p)

= (1− p)(1 + ν)(ξν − (p+ (1− p)ξ)ν) < 0,

since p+ (1− p)ξ > ξ. So, the minimum is achieved when ξ = 1/2.
Third, we control the derivative with respect to ν for ξ = 1

2
and p = κ. Consider

∂Φ

∂ν
(1
2
, κ, ν) = (1− κ) ln(1

2
)(1

2
)1+ν − ln(1+κ

2
)(1+κ

2
)1+ν

≥ (1
2
)2((1− κ) ln(1

2
)− ln(1+κ

2
)(1 + κ)1+ν),

since ν ≤ 1. The expression

(1− κ) ln(1
2
)− ln(1+κ

2
)(1 + κ)1+ν

only increases with ν. When ν = 0, this expression is

ln( 22κ

(1+κ)1+κ ) ≥ ln( 4κ

exp(κ(1+κ))
) > 0,

since 4κ > exp(κ+ κ2). This proves that ∂Φ
∂ν
(1
2
, κ, ν) > c1 for some constant c1(κ) > 0.

Finally,

Φ(ξ, p, ν) ≥ Φ(1
2
, κ, ν) =

∫ ν

0

∂Φ

∂ν
(1
2
, κ, ζ) dζ ≥

∫ ν

0

c1 dζ = c1ν. �
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