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DISPERSION ANALYSIS OF CIP-FEM FOR HELMHOLTZ EQUATION

YU ZHOU AND HAIJUN WU

Abstract. When solving the Helmholtz equation numerically, the accuracy of numerical
solution deteriorates as the wave number k increases, known as ‘pollution effect’ which is
directly related to the phase difference between the exact and numerical solutions, caused
by the numerical dispersion. In this paper, we propose a dispersion analysis for the contin-
uous interior penalty finite element method (CIP-FEM) and derive an explicit formula of
the penalty parameter for the pth order CIP-FEM on tensor product (Cartesian) meshes,
with which the phase difference is reduced from O

(

k(kh)2p
)

to O
(

k(kh)2p+2
)

. Extensive
numerical tests show that the pollution error of the CIP-FE solution is also reduced by
two orders in kh with the same penalty parameter.

Keywords: dispersion analysis, tensor product meshes, CIP-FEM, penalty parameter

1. Introduction

In many physical applications, such as electromagnetic wave and acoustic scattering
problems, are often governed by the Helmholtz equation

−∆u− k2u = f, in Ω,(1.1)

∂u

∂n
+ iku = g, on ∂Ω,(1.2)

where Ω ⊂ Rd(d = 1, 2, 3) is a bounded polygonal/polyhedral domain, f is a given function
representing a bounded source of energy, k > 0 is a constant called the wave number,
i =

√
−1 denotes the imaginary unit and n represents the unit outward normal to ∂Ω. The

Robin boundary condition (1.2) is known as the first-order approximation of the following
Sommerfeld radiation condition [16].

lim
r→∞

r
d−1
2

(

∂u

∂r
+ iku

)

= 0, where r = |x|.

Here, it is assumed that the time-harmonic field is eiωt, if the time-harmonic field is instead
e−iωt, one should replace i with −i in the Sommerfeld radiation condition. We remark that
the Helmholtz problem (1.1)–(1.2) also arises in applications as a consequence of frequency
domain treatment of attenuated scalar waves [14].

When solving the Helmoholtz equation numerically with classical finite element method,
the accuracy of numerical solution deteriorates as the wave number k increases, this effect is
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what we call ‘pollution effect’ [12, 26, 25]. It arises since the discrete solution fails to prop-
agate waves at the correct speed, resulting in a phase lead/lag in numerical approximation,
known as ‘dispersion’[24].

Numerical dispersion refers to the difference between exact wave number k and discrete
wave number kh, it is widely used in assessing the quality of a numerical scheme. Plenty
numerical experiments have shown that the pollution effect is directly related to dispersion,
to be more specific, they are of the same convergence order. Though the theoretical proof
of association between numerical accuracy and phase difference has been obtained only
in limited circumstances, measuring and controlling the numerical dispersion is still of
practical significance.

A method to measure the dispersion on any numerical method is presented in [12] where
the discrete wave number kh is defined as the solution to a nonlinear equation obtained
by some local Fourier analysis. Another definition of kh is introduced in [28] where k2h
an eigenvalue of a Hermitian and positive definite matrix related to the stiffness matrix
of FEM. The explicit form of discrete dispersion relationships for classical finite element
mothod (FEM), discontinuous Galerkin finite element discretisation (DGFEM), spectral
element method and high-Order Nédélec/edge element approximation are proposed in [4,
2, 1, 3].

Many attempts have been presented in the literature to eliminate/reduce ‘pollution error’
(dispersion error). [19, 20] proposed the ‘residual free’ bubble approach (RF-bubble). [31,
23] applied the Galerkin least-squares technology (GLS-FEM) to the Helmholtz equation,
by introducing a local mesh parameter into the variational equation, accurate solutions
with relatively coarse meshes was produced. In [11], softFEM method was newly coined to
reduce the stiffness of the discrete spectral problem. [5, 6] introduced a generalization of the
FEM (GFEM), this method covers practically all modifications of the FEM which lead to a
sparse system matrix. In one-dimensional case, there exists a pollution-free GFEM solution
which is coincide with the best approximation, however, in high dimensional cases, there
always exists an equation whose discrete solution contains a pollution term. The paper also
derived an effective method for 2D problem (QSFEM), it improves the solution significantly
but is also very complicated in general settings.

Our research is based on the continuous interior penalty finite element method (CIP-
FEM), which was first proposed by Douglas and Dupont [13] in 1970s to solve elliptic
and parabolic problems. The CIP-FEM uses the same approximation space as that of the
FEM but modifies its bilinear form by adding a least squares term penalizing the jump
of the gradient of the discrete solution at mesh interfaces, which was also recognized as a
stabilization technique [7, 8]. Recently, the CIP-FEM has shown great potential in solving
wave scattering problems in high frequency [9, 32, 36, 15, 27, 33], due to its good stability
property and its capability to greatly reduce the pollution errors by tuning the penalty
parameters.

For one-dimensional problems with linear CIP-FEM, it is proved that the relative H1

error of discrete solution uh could be bounded by best approximation and phase difference
[9], i.e.,

‖u− uh‖H1 . kh+ |k − kh|, if kh ≤ 1.
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In other words, the pollution error could be bounded only by the phase difference |k− kh|.
However, the rigorous mathematical proofs of this estimation for high order methods and
multi-dimensional cases still remain vague.

In two and three dimensions, the pre-asymptotic error analysis of CIP-FEM is given in
[32, 36, 15].

(1.3) ‖u− uh‖H1 . (kh)p + k(kh)2p, if k(kh)2p is sufficiently small

where p is the order of approximation space. The first term in (1.3) is the local error and
the second term is the pollution error which is of the same order as the phase difference.
By selecting appropriate penalty parameter the ‘pollution effect’ could be eliminated in 1D
and largely reduced in 2D [32, 15]. However, searching for appropriate penalty parameters
involves massive calculations, especially for multidimentional cases and high order finite
element schemes.

The dispersion analysis for classical FEM (hp-version) has been done by Mark Ainsworth
[1], where the following explicit characterization of the phase difference for elements of
arbitrary order is derived:

|k − kh| =
1

2

[

p!

(2p)!

]2 k2p+1h2p

(2p + 1)
+O(k2p+3h2p+2).

In this research, the dispersion relation is first obtained by decoupling the nodal and interior
degrees of freedom through Gaussian elimination or static condensation [24, 25] and then
expressed explicitly in terms of Padé approximants. However, this approach fails in CIP-
FEM since the penalty terms cause the nodal and interior degrees of freedom can not be
decoupled.

The purpose of this paper is to conduct the dispersion analysis for the CIP-FEM on
tensor product (Cartesian) meshes with the interior penalty term involving only the jumps
of pth normal derivative. We use the method developed in [12] to measure the dispersion
and use the same idea of static condensation used in [1] to do some simplification. While
the result dispersion relation for the CIP-FEM is still more complicated than that of FEM
[1], due to the difficulty caused by non-decoupling. Some subtle and tedious manipulation
yields the following characterization of the phase difference for the pth order CIP-FEM in
Rd(d = 1, 2, 3).

|k − kh| =
1

2

(

1

(2p + 1)

[

p!

(2p)!

]2

+ γ

)

k2p+1h2p +O(k2p+3h2p+2),

where γ is the penalty parameter. Therefore by taking

γ = γ0 := − 1

(2p+ 1)

[

p!

(2p)!

]2

,

the phase difference may be reduced from O
(

k(kh)2p
)

to O
(

k(kh)2p+2
)

. Note that adding
penalty terms on jumps of derivatives lower than p (for p ≥ 2) may reduce further the
phase error [15], while explicit formulas for the penalty parameters are not easy to find for
general p. We will investigate this in a future work.
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The rest of the paper is organized as follows. In §2, we address the model problem
and the definition of discrete wave number. §3 is devoted to the dispersion analysis for
CIP-FEM in one-dimensional case. The dispersion analysis is then extended to two- and
three-dimensional cases in §4. Some numerical results are given in §5 to verify the theo-
retical findings. Throughout this paper, let C denote a generic positive constant which is
independent of k, h, f, g, which may have different values in different occasions.

2. CIP-FEM and discrete wave number

In this section, we introduce the formulation of the CIP-FEM and the definition of the
discrete wave number.

2.1. CIP-FEM. We start from the Helmholtz equation in Rd

(2.1) −∆u− k2u = f in Rd,

where k = 2π
λ

is the wave number describing how many oscillations a wave completes per
unit of space, f is a source function. Since the goal of this analysis is to derive the dispersion
relations, we make several assumptions [28]. We assume that the medium occupies an
unbounded region which is isotropic (i.e., looking the same in all directions), homogeneous
(i.e., the same at each place) and source free (i.e., f ≡ 0). Moreover, it follows logically to
assume u → 0 for all |x| → ∞. Under these assumptions, by taking a dot product of (2.1)
with a sufficient smooth test function v of compact support, integrating over Rd on both
sides and applying Green’s formula, we come to the variational form

A(u, v) := (∇u,∇v)− k2(u, v) = 0,

where (·, ·) denotes the L2 inner product on L2(Rd).
To obtain the CIP-FEM scheme of (2.1), we introduce the following notations [32, 36, 15].
Suppose Rd is decomposed into non-overlapping d-cube (a d-dimensional cube degen-

erates to a line segment in 1D and a square in 2D) elements {Ki}i∈I with equal size h,
denoted by Mh. Let

Eh := the set of all (d− 1)-faces of d−cube elements inMh,

Qp := the set of all polynomials with degree ≤ p in each variable,

Vh :=
{

vh ∈ H1
loc(R

d) : vh|K ∈ Qp, ∀K ∈ Mh

}

,

Nh := the set of all global nodes of the finite element space Vh,

Φ :=
{

φx ∈ Qp : φx(x) = 1, φx(x
′) = 0, ∀x 6= x′ ∈ Nh

}

.

Set the penalty term as

J(u, v) :=
∑

e∈Eh
γh2p−1

∫

e

[

∂pu

∂np

] [

∂pv

∂np

]

,
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where γ is the penalty parameter, the jump [v] of v on an interior face e = ∂K1∩∂K2 ∈ Eh
is defined by

[v]|e := v|K1 · nK1 + v|K2 · nK2,

nKi
is the unit outward normal towards ∂Ki.

Note that J(u, v) = 0 if u ∈ Hp+1(Rd) is a solution to (2.1), thus there still holds

(2.2) Aγ(u, v) := A(u, v) + J(u, v) = (∇u,∇v)− k2(u, v) + J(u, v) = 0,

By analogy with the continuous problem, the CIP-FE solution uh ∈ Vh satisfies (see e.g.
[15])

(2.3) Aγ(uh, vh) := (∇uh,∇vh)− k2(uh, vh) + J(uh, vh) = 0, ∀vh ∈ Vh.

Remark 2.1. (a) The CIP-FEM was first proposed by Douglas and Dupont [13] for elliptic
and parabolic problems in the 1970s and then successfully applied to con-vection-dominated
problems as a stabilization technique [7, 8].

(b) By choosing appropriate penalty parameter, the pollution error could be eliminated
in one dimension and largely reduced in two or more dimensions [36, 15]. Moreover, the
scheme is absolutely stable if the penalty parameter is a complex number with positive imag-
inary part [32]. While in the dispersion analysis of this paper, for simplicity, we assume
that γ is real. If γ = 0, the CIP-FEM scheme becomes the classical FEM discretization.

(c) Compared to the discontinuous Galerkin methods [18, 17] and hybridizable discontin-
uous Galerkin method [10], the CIP-FEM involves fewer degrees of freedom (DOF), and
thus reduce the computational cost.

(d) Compared to the pth order CIP-FEM proposed in [15], we take only the penalty term
on the jumps of highest order normal derivative and omit the penalty terms on jumps of
lower order normal derivatives. Although more penalty terms can help to reduce further
the phase error and the pollution effect, explicit formulas for the penalty parameters are
not easy to find. We leave this to the future investigation.

2.2. Discrete wave number. It is clear that the homogeneous Helmholtz equation

(2.4) −∆u− k2u = 0,

admits a plane wave solution in the form of

u(x) = Aeik·x,

if k = (k1, · · · , kd) satisfies the following dispersion relationship

k = |k|,
furthermore, the exact solution u(x) is a Bloch wave [30] satisfying

u(x+mh) = eim·khu(x), ∀m ∈ Zd.(2.5)

In order to define the discrete wave number and carry out the dispersion analysis of
CIP-FEM, we first introduce the definition of the generating set of global nodes of a finite
element space on a tensor product mesh as follows.
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Figure 2.1. Illustration of generating sets on the 2D tensor product mesh.
Both Xg = {x0,0,x0,1, · · · ,xp−1,p−1} and X̃g = {x̃0,0,x0,1, · · · ,xp−1,p−1}
are generating sets of Nh.

Definition 2.1 (Generating Set). Let Nh defined as above, we say that two nodes x,y ∈ Nh

are equivalent and denoted by x ∼ y if x−y ∈ hZd. We call a subset Xg ⊂ Nh a generating
set of Nh if (i) any node in Nh is equivalent to a certain node in Xg; (ii) any two nodes in
Xg are not equivalent.

Remark 2.2. (a) It is clear that Xg contains pd nodes.
(b) The generating set is not unique. For example, if Xg is a generating set of Nh, the

set obtained by replacing any node in Xg by one of its equivalent nodes is still a generating
set of Nh (see Figure 2.1).

(c) The definition of generating set may be extended to other translation-invariant meshes
(e.g. equilateral triangulations in 2D [35] and tetrahedral meshes in 3D[34]).

We apply the method developed in [12] to measure the dispersion. Since the mesh
is translation-invariant, we consider only the equations associated to the generating set.
Denote by ng := #Xg = pd. Write

Nh = {x1,x2, · · · } and Xg = {x1
g,x

2
g, · · · ,x

ng
g }.(2.6)

clearly, the CIP-FE solution may be expressed as

uh =
∑

xj∈Nh

Ujφxj
, Uj = uh(xj).

For any xs
g ∈ Xg and xj ∈ Nh, denote that

Ds
j = Aγ(φxj

, φxs
g
) = (∇φxj

,∇φxs
g
)− k2(φxj

, φxs
g
) + J(φxj

, φxs
g
).
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by taking vh = φxs
g
in (2.3), we obtain the CIP-FE equation associated to xs

g, which can
be written as follows:

∑

xj∈Λs

Ds
jUj =

ng
∑

q=1

∑

xj∈Λs
q

Ds
jUj = 0, s = 1, · · · , ng,(2.7)

where

Λs =
{

xj ∈ Nh : Ds
j 6= 0

}

and Λs
q = {xj ∈ Λs : xj ∼ xq

g}.
By analogy with the continuous solution (see (2.5)), the invariance of grid prompts us

to seek solutions satisfying the Bloch wave condition

uh(x+mh) = eim·khhuh(x).(2.8)

under this assumption, {Uj}xj∈Λs could be reperesented by

Ug =
(

uh(x
1
g), uh(x

2
g), · · · , uh(x

ng
g )
)

,

hence (2.7) leads to a system of ng equations.

DUg = 0,(2.9)

which admits nontrivial solution only if

Det(D) = 0,(2.10)

The explicit expression of D will be given later in the next two sections. Since Ds
j are

functions of k and h, the forementioned equation derives a relationship between k and kh.
Let kh = |kh|, by using spherical co-ordinates in Rd,















kh1 = kh cos θ1
kh2 = kh sin θ1 cos θ2

· · ·
khd = kh sin θ1 sin θ2 · · · sin θd−1

,

the difference |k−kh| is a function of θ1, · · · , θd−1 which measures the dispersion in various
directions. Note that in multi-dimensional problems, we define the phase difference as the
upper bound of |k − kh| with respect to θ1, · · · , θd−1.

We remark that the non-uniqueness of the generating set does not effect the definition
of the discrete wave number. For example, for the two generating sets in Figure 2.1, the
equation at x̃0,0 in (2.9) corresponding to X̃g could be obtained by multiplying a non-zero
factor by the equation at x0,0 in (2.9) corresponding to Xg.

3. Dispersion analysis in one dimension

In this section we carry out dispersion analysis for the CIP-FEM for the one-dimensional
problem. For simplicity, we suppose the mesh Mh = {[(j− 1)h, jh] : j ∈ Z}. Then the set
of global nodes of the pth order FE space Vh is Nh = {xm := mh/p : m ∈ Z}. According
to Definition 2.1, a generating set of Nh is Xg = {x0, · · · , xp−1} as shown in Figure 3.1
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Figure 3.1. Generating set on R.

The coefficient matrix D in (2.9) is a p × p matrix whose explicit form is given by the
following lemma.

Lemma 3.1. Suppose γ ∈ R. When solving the one-dimensional Helmholtz equation with
pth order CIP-FEM, the coefficient matrix D =

(

Dt,th
i,j

)

p×p
associated to the generating set

Xg = {x0, · · · , xp−1} takes the following form: for 1 ≤ i, j ≤ p− 1,

Dt,th
1,1 =



















2Bt(λ0, λ0) + 2 cos thBt(λp, λ0)

+ 2p2p
(

1− cos(2th)
)

γ,
p even,

2Bt(λ0, λ0) + 2 cos thBt(λp, λ0)

+ 2p2p
(

3− 4 cos th + cos(2th)
)

γ,
p odd,

Dt,th
1,j+1 =























Bt(λj , λ0) + e−ithBt(λj , λp)

+ (−1)j
(

p
j

)

p2p(1 + e−ith − eith − e−2ith)γ,
p even,

Bt(λj , λ0) + e−ithBt(λj , λp)

+ (−1)j
(

p
j

)

p2p(3− 3e−ith − eith + e−2ith)γ,
p odd,

Dt,th
i+1,1 = conj(Dt,th

1,i+1),

Dt,th
i+1,j+1 = Bt(λi, λj) + 2(−1)i+j

(

p
i

)(

p
j

)

p2p(1− cos th)γ,

where t = kh, th = khh, Bt(u, v) =
∫ 1
0 (u

′v′−t2uv) dx, and {λi}0≤i≤p is the nodal basis of the

pth order Lagrange finite element on [0, 1], i.e., λi ∈ Qp satisfies λi(
j
p
) = δij(0 ≤ i, j ≤ p).

Proof. For simplicity, denote by φi = φxi
the nodal basis function at xi. It is clear that

φi(x) = λi(
x
h
) for x ∈ [0, h] and 0 ≤ i ≤ p. By change of variable, we have

∫ h

0
(φ′

iφ
′
j − k2φiφj) dx =

1

h
Bt(λi, λj), 0 ≤ i, j ≤ p.(3.1)

On the other hand, from the Lagrange interpolation formula,

λi(x) =

p
∏

j=0
j 6=i

(

x− j

p

)

/

p
∏

j=0
j 6=i

( i

p
− j

p

)

,
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and hence

φ
(p)
i = h−pλ

(p)
i = h−p(−1)p−i

(

p
i

)

pp, x ∈ [0, h], 0 ≤ i ≤ p.(3.2)

Next we consider the CIP-FE equation associated to x0 = 0. From the FE scheme
(2.2), Bloch wave condition (2.8), the identites (3.1)–(3.2), and the fact that φi+mp(x) =
φi(x−mh),∀m ∈ Z, we derive that

0 =Aγ(φ0, φ0)U0 +Aγ(φp, φ0)(Up + U−p) +Aγ(φ2p, φ0)(U2p + U−2p)

+

p−1
∑

j=1

(

Aγ(φj , φ0)Uj +Aγ(φj−p, φ0)Uj−p

+Aγ(φj+p, φ0)Uj+p +Aγ(φj−2p, φ0)Uj−2p

)

=
(

A(φ0, φ0) + J(φ0, φ0) + 2 cos th
(

A(φp, φ0) + J(φp, φ0)
)

+ 2cos(2th)J(φ2p, φ0)
)

U0

+

p−1
∑

j=1

(

A(φj, φ0) + J(φj , φ0) + e−ith
(

A(φj−p, φ0) + J(φj−p, φ0)
)

+ eithJ(φj+p, φ0) + e−2ithJ(φj−2p, φ0)
)

Uj

=
1

h

(

2Bt(λ0, λ0) +
(

2 +
(

1− (−1)p
)2
)

p2pγ

+ 2cos th

(

Bt(λp, λ0)−
(

1− (−1)p
)2
p2pγ

)

− 2 cos(2th)(−1)pp2pγ

)

U0

+
1

h

p−1
∑

j=1

(

Bt(λj , λ0) + (−1)p−j
(

p
j

)(

2(−1)p − 1
)

p2pγ

+ e−ith
(

Bt(λj , λp) + (−1)p−j
(

p
j

)(

2− (−1)p
)

p2pγ
)

− eith(−1)2p−j
(

p
j

)

p2pγ − e−2ith(−1)p−j
(

p
j

)

p2pγ

)

Uj

=
1

h

(

2Bt(λ0, λ0) + 2 cos thBt(λp, λ0)

+
(

2 +
(

1− (−1)p
)2 − 2

(

1− (−1)p
)2

cos th − 2(−1)p cos(2th)
)

p2pγ

)

U0

+
1

h

p−1
∑

j=1

{

Bt(λj , λ0) + e−ithBt(λj, λp)

+
(

(

2− (−1)p
)

+
(

2(−1)p − 1
)

e−ith − eith − (−1)pe−2ith
)

(−1)j
(

p
j

)

p2pγ
}

Uj,
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which implies that the first two formulas hold. To prove the last two formulas, we consider
the equations associated to xi for 1 ≤ i ≤ p− 1. Similar as above, we have

0 =Aγ(φ0, φi)U0 +Aγ(φp, φi)Up + J(φ−p, φi)U−p + J(φ2p, φi)U2p

+

p−1
∑

j=1

(

Aγ(φj , φi)Uj + J(φj−p, φi)Uj−p + J(φj+p, φi)Uj+p

)

=
1

h

(

Bt(λ0, λi) + eithBt(λp, λi)

+
(

(

2− (−1)p
)

+
(

2(−1)p − 1
)

eith − e−ith − (−1)pe2ith
)

(−1)i
(

p
i

)

p2pγ

)

U0

+
1

h

p−1
∑

j=1

(

Bt(λj , λi) + (−1)i+j
(

p
i

)(

p
j

)

(2− 2 cos th)p
2pγ

)

Uj ,

which implies the last two formulas. This completes the proof of Lemma 3.1. �

Next we turn to analyze Det(Dt,th) but it is hard to do so by using the explicit form
given in the above lemma. We have to do some simplifications. Notice that, for FEM
(i.e. γ = 0), since the nodal degrees of freedom at xmp(m ∈ Z) and the interior ones at

xmp+j(1 ≤ j ≤ p − 1) can be decoupled, the (1, i)th, (i, 1)th(2 ≤ i ≤ p) entries in Dt,th

(with γ = 0) can be eliminated by Gaussian elimination or static condensation [1, 24, 25].
Although such a procedure for FEM can not eliminate those entries for CIP-FEM (with
γ 6= 0), it does transform the matrix to another simpler and more operable form. This
procedure is equivalent to modified the basis functions at mesh points x0 and xp as follows
(cf. [1]). Let

ξ0 := λ0 +

p−1
∑

i=1

ciλi,

ξ1 := λp +

p−1
∑

i=1

diλi,

ci, di are functions of t, such that
{

Bt(ξ0, λi) = 0
Bt(ξ1, λi) = 0

, 1 ≤ i ≤ p− 1.(3.3)

The existence and uniqueness of ci and di hold if t is not a discrete eigenvalue, in particular,
if t is sufficiently small as a consequence of Lemma 3.2 below.

Lemma 3.2. Let D0 :=
(

B0(λi, λj)
)

1≤i,j≤p−1
=
( ∫ 1

0 λ′
iλ

′
j dx

)

1≤i,j≤p−1
. Then

α0 := Det(D0) > 0.
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Proof. Although the proof is trivial, the result is of major importance. For any v =
(v1, · · · , vp−1)

T ∈ Rp−1, let v =
∑p−1

i=1 viλi, according to Poincaré inequality on H1
0 (0, 1),

vTD0v = ‖v′‖2L2(0,1)
≥ π2‖v‖2L2(0,1)

& |v|2,
thus D0 is positive definite. which completes the proof of Lemma 3.2. �

In order to make the structure of the article clear, we put the proofs of the following
three lemmas in Appendices A.1 to A.3, repectively.

By using [1, Theorem 3.1, Theorem 4.1 and Theorem 4.2], we may prove the following
two lemmas which give explicit forms of the basis functions ξ0, ξ1, and the coefficients ci
and di. The proofs are given in Appendices A.1 and A.2, respectively.

Lemma 3.3. The explicit form of ξ0 and ξ1 reads:

ξ0 =
1

2
(Φe −Φo), ξ1 =

1

2
(Φe +Φo),

where

Φe(x) :=
∑Ne+1

j=1

{

(−1)jt−2j 2(2Ne+1)!
(2Ne+2−2j)!

∑2Ne+2−2j
m=0

(

2Ne+2j
m−1+2j

)(

2Ne+2−2j
m

)

x2Ne+2−2j−m(x− 1)m
}

/

∑Ne+1
j=1

{

(−1)jt−2j 2(2Ne+2j)!
(2Ne+2−2j)!(2j−1)!

}

,

Φo(x) :=
∑No

j=1

{

(−1)jt−2j 2(2No)!
(2No+1−2j)!

∑2No+1−2j
m=0

(2No−1+2j
m−1+2j

)(2No+1−2j
m

)

x2No+1−2j−m(x− 1)m
}

/

∑No

j=1

{

(−1)jt−2j 2(2No−1+2j)!
(2No+1−2j)!(2j−1)!

}

,

Ne :=
⌊

p
2

⌋

, No :=
⌊

p+1
2

⌋

.

(3.4)

we also have the following estimates:

Bt(Φe,Φe) = −2t tan t
2 +

[

(2Ne+1)!
(4Ne+2)!

]2
t4Ne+4

4Ne+3 +O(t4Ne+6), t 6= mπ,m ∈ Z,

Bt(Φo,Φo) = 2t cot t
2 + 4

[

(2No)!
(4No)!

]2
t4No

4No+1 +O(t4No+2), t 6= mπ,m ∈ Z,
(3.5)

Lemma 3.4.

ci = ξ0(
i
p
) = 1

2

(

Φe(
i
p
)− Φo(

i
p
)
)

, 1 ≤ i ≤ p− 1,

di = ξ1(
i
p
) = 1

2

(

Φe(
i
p
) + Φo(

i
p
)
)

, 1 ≤ i ≤ p− 1,

A1 : =
∑p−1

i=1 (−1)ici
(

p
i

)

= (−1)p

∑⌊
p
2 ⌋+1

j=1 (−1)jt−2j 4(p+2j)!
(p+2−2j)!(2j−1)!

∑⌊ p

2
⌋+1

j=1

{

(−1)jt−2j 2(p+1)!
(p+2−2j)!pp+2−2j

∑p−1
i=1 (−1)i

(

p
i

)
∑p+2−2j

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

ip+2−2j−m(i− p)m
}

,

A2 : =
∑p−1

i=1 (−1)idi
(

p
i

)

= (−1)pA1.

The following lemma is used to simplify A1 and A2 in the above lemma, which can
be derived in virtue of the combination formulas stated in [21]. The proof is given in
Appendix A.3.
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Lemma 3.5.

N :=

p−1
∑

i=1

(−1)i
(

p
i

)

p+2−2j
∑

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

ip+2−2j−m(i− p)m,

=











2(−1)p
(

(2p+1)!
(p+1)! − (p+ 2)pp

)

, j = 1,

2(−1)p+1(p+2j
2j−1

)

pp+2−2j, 2 ≤ j ≤ ⌊p2⌋+ 1.

With the help of the preceding three lemmas, we are now in the position to construct
the transformation matrix Q to simplify the matrix Dt,th . Given β ∈ R, let

Qβ :=











1 c1 + e−iβd1 · · · cp−1 + e−iβdp−1

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











.(3.6)

The following lemma implies that the congruent transform of the matrix Dt,th by (Qth)H

(the conjugate transpose of Qth) changes the (1, i)th, (i, 1)th(2 ≤ i ≤ p) entries in Dt,th to
higher order terms in t and th.

Lemma 3.6. The matrix
D̃t,th := QthDt,th(Qth)H,

satisfies the following estimates: for 1 ≤ i, j ≤ p− 1,

D̃t,t
1,1 =

(

1

2p + 1

( p!

(2p)!

)2
+ γ

)

t2p+2 +O(t2p+4),(3.7a)

D̃t,t
1,j+1 = O(tp+2), D̃t,t

i+1,1 = O(tp+2),(3.7b)

D̃t,t
i+1,j+1 =

∫ 1

0
λ′
iλ

′
j +O(t2),(3.7c)

∂D̃t,th
1,1

∂th

∣

∣

∣

∣

th=t

= 2t+O(t2p+1),(3.7d)

∂D̃t,th
1,j+1

∂th

∣

∣

∣

∣

th=t

= O(tp+1),
∂D̃t,th

i+1,1

∂th

∣

∣

∣

∣

th=t

= O(tp+1),(3.7e)

∂D̃t,th
i+1,j+1

∂th

∣

∣

∣

∣

th=t

= O(t),(3.7f)

Proof. We divide our proof in five steps.
Step 1. We first verify the following identity which is essential to our proof. From
Lemmas 3.4 and 3.5, we have

1 +A1 =

∑⌊ p

2
⌋+1

j=1

{

(−1)jt−2j
[

4(p+2j)!
(p+2−2j)!(2j−1)! + (−1)p 2(p+1)!

(p+2−2j)!pp+2−2jN
]}

∑⌊ p

2
⌋+1

j=1 (−1)jt−2j 4(p+2j)!
(p+2−2j)!(2j−1)!
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=
−t−2 4(2p+1)!

p!pp

∑⌊ p

2
⌋+1

j=1 (−1)jt−2j 4(p+2j)!
(p+2−2j)!(2j−1)!

=(−1)Ne
(2p + 1)!(2Ne + 1)!(p − 2Ne)!

p!(p + 2 + 2Ne)!
p−pt2Ne +O(t2Ne+2)

=

{

i
p

2 p
−ptp +O(tp+2), p even,

ip−1p−ptp−1 +O(tp+1), p odd.
(3.8)

Step 2. Next, we derive the expressions for D̃t,th
1,j+1 and D̃t,th

1,1 provided that p is even.

Noting that Bt is symmetric, and ξi(i = 0, 1) is orthogonal to λi(1 ≤ i ≤ p− 1) (see (3.3)),
from (3.6), Lemmas 3.1 and 3.4, we conclude that

D̃t,th
1,j+1 =Dt,th

1,j+1 +

p−1
∑

i=1

(

(ci + e−ithdi)Dt,th
i+1,j+1

)

=

(

Bt(λj, λ0) +

p−1
∑

i=1

ciBt(λj , λi)

)

+ e−ith

(

Bt(λj , λp) +

p−1
∑

i=1

diBt(λj , λi)

)

+ (−1)j
(

p
j

)

p2p

(

(1 + e−ith − eith − e−2ith)

+ 2(1 − cos th)

( p−1
∑

i=1

(−1)ici
(

p
i

)

+ e−ith

p−1
∑

i=1

(−1)idi
(

p
i

)

)

)

γ

=Bt(λj, ξ0) + e−ithBt(λj , ξ1)

+ 2(−1)j
(

p
j

)

(1− cos th)

(

1 + e−ith − eith − e−2ith

2− 2 cos th
+ (1 + e−ith)A1

)

p2pγ

=2(−1)j
(

p
j

)

(1− cos th)(1 + e−ith) (1 +A1) p
2pγ.(3.9)

According to Lemma 3.1 and the definition of D̃t,th , we could easily derive that

D̃t,th
i+1,1 = 2(−1)i

(

p
i

)

(1− cos th)(1 + eith) (1 +A1) p
2pγ,(3.10)

D̃t,th
i+1,j+1 = Bt(λi, λj) + 2(−1)i+j

(

p
i

)(

p
j

)

(1− cos th)p
2pγ.(3.11)

From (3.6), (3.12), Lemmas 3.1,3.3 and 3.4, and the fact Bt(λ0, λ0) = Bt(λp, λp), we
have

D̃t,th
1,1 =Dt,th

1,1 +

p−1
∑

i=1

(ci + e−ithdi)Dt,th
i+1,1 +

p−1
∑

i=1

(ci + eithdi)D̃t,th
1,i+1

=Bt(λ0, λ0) +

p−1
∑

i=1

ciBt(λi, λ0) +Bt(λp, λp) +

p−1
∑

i=1

diBt(λi, λp)
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+ eith
(

Bt(λ0, λp) +

p−1
∑

i=1

ciBt(λi, λp)
)

+ e−ith
(

Bt(λp, λ0) +

p−1
∑

i=1

diBt(λi, λ0)
)

+ p2p
(

2(1− cos 2th) + (1 + eith − e−ith − e2ith)

p−1
∑

j=1

(−1)j
(

p
j

)

(cj + e−ithdj)

+ (2− 2 cos th)(1 + e−ith)(1 +A1)

p−1
∑

j=1

(−1)j
(

p
j

)

(cj + eithdj)

)

γ

=Bt(ξ0, λ0) +Bt(ξ1, λp) + eithBt(ξ0, λp) + e−ithBt(ξ1, λ0) + p2p2(1− cos 2th)γ

×
(

1 +
1 + eith − e−ith − e2ith

2− 2 cos 2th
(1 + e−ith)A1

+
1− cos th
1− cos 2th

(1 + e−ith)(1 + eith)(1 +A1)A1

)

=Bt(ξ0, ξ0) +Bt(ξ1, ξ1) + 2 cos thBt(ξ0, ξ1) + p2p2(1− cos 2th)(1 +A1)
2γ

=
1 + cos th

2
Bt(Φe,Φe) +

1− cos th
2

Bt(Φo,Φo) + 2p2p(1− cos 2th)(1 +A1)
2γ.(3.12)

Step 3. Notice that Bt(Φe,Φe), Bt(Φo,Φo), A1 are independent of th, thus it follows that

∂D̃t,th
1,1

∂th

∣

∣

∣

∣

th=t

=
1

2
sin tBt(Φo,Φo)−

1

2
sin tBt(Φe,Φe) + 4p2p sin 2t(1 +A1)

2γ

∂D̃t,th
1,j+1

∂th

∣

∣

∣

∣

th=t

= 2(−1)j
(

p
j

)

i(e−2it − cos t)(1 +A1)p
2pγ,

∂D̃t,th
i+1,1

∂th

∣

∣

∣

∣

th=t

= 2(−1)i
(

p
i

)

i(cos t− e2it)(1 +A1)p
2pγ,

∂D̃t,th
i+1,j+1

∂th

∣

∣

∣

∣

th=t

= 2(−1)i+j
(

p
i

)(

p
j

)

sin tp2pγ.

Step 4. Next we complete the proofs of (3.7a)–(3.7f) for even p. Using the identities
(1− cos t) cot t

2 − (1+ cos t) tan t
2 = 0 and cot t

2 + tan t
2 = 2csc t, (3.5) in Lemma 3.3, (3.8)

in Step 1, along with the Taylor expansions of some elementary functions (e.g. cos t =
1− 1

2t
2 +O(t4)), it follows from Step 2 with th = t and Step 3 that

D̃t,t
1,1 =− 1

2
(1 + cos t)

(

2t tan
t

2
−
[

(p+ 1)!

(2p + 2)!

]2 t2p+4

2p + 3
+O(t2p+6)

)

+
1

2
(1− cos t)

(

2t cot
t

2
+ 4

[

p!

(2p)!

]2 t2p

2p + 1
+O(t2p+2)

)

+ 2p2p(1− cos 2t)(1 +A1)
2γ
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=

(

1

2p + 1

[

p!

(2p)!

]2

+ γ

)

t2p+2 +O(t2p+4).

D̃t,t
1,j+1 =(−1)jip

(

p
j

)

ppγtp+2 +O(tp+4) = O(tp+2),

D̃t,t
i+1,1 =(−1)iip

(

p
i

)

ppγtp+2 +O(tp+4) = O(tp+2),

D̃t,t
i+1,j+1 =

∫ 1

0
λ′
iλ

′
j +O(t2),

∂D̃t,th
1,1

∂th

∣

∣

∣

∣

th=t =
1

2
sin t

(

2t cot
t

2
+O(t2p)

)

− 1

2
sin t

(

−2t tan
t

2
+O(t2p+4)

)

+O(t2p+1)

= 2t+O(t2p+1),

∂D̃t,th
1,j+1

∂th

∣

∣

∣

∣

th=t = 2(−1)j
(

p
j

)

(ip)pγtp+1 +O(tp+2) = O(tp+1),

∂D̃t,th
i+1,1

∂th

∣

∣

∣

∣

th=t = 2(−1)i
(

p
i

)

(ip)pγtp+1 +O(tp+2) = O(tp+1),

∂D̃t,th
i+1,j+1

∂th

∣

∣

∣

∣

th=t = 2(−1)i+j
(

p
i

)(

p
j

)

p2pγt+O(t3) = O(t).

Step 5. The cases for odd p can be proved by following similar lines in Steps 2–4 and are
omitted. This completes the proof of the theorem. �

The following lemma gives some results of implicit function theorem, which will used to
prove the existence of a discrete wave number near the exact wave number and to estimate
the phase error.

Lemma 3.7. Let F be a binary continuous function on the rectangle [0, b1] × [0, b2] for
some positive b1 and b2 with the following properties:

F (s, s) = δ0s
σ1 + o(sσ1),(3.13)

F ′
1(s, s) = δ1s

σ2 + o(sσ2), as s → 0+,(3.14)

F ′′
1 is continuous at (0, 0),(3.15)

where σ1 > 2σ2 > 0, δ0, and δ1 6= 0 are some constants independent of s. Then there exists
a constant s0 > 0 such that for any s ∈ (0, s0], there exists a sh > 0 such that

F (sh, s) = 0 and |s − sh| =
(∣

∣

∣

δ0
δ1

∣

∣

∣
+ o(1)

)

sσ1−σ2 .

Proof. Without loss of generality, we assume that δ1 > 0. For s > 0 sufficiently small, the
Taylor series expansion of F̃s at s gives

F
(

s+ s
σ1
2 , s

)

= F (s, s) + F ′
1(s, s)s

σ1
2 +

1

2
F ′′
1

(

s+ θ1s
σ1
2 , s

)

sσ1
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=
(

δ1 + o(1)
)

s
σ1
2
+σ2 > 0,

F
(

s− s
σ1
2 , s

)

= F (s, s)− F ′
1(s, s)s

σ1
2 +

1

2
F ′′
1

(

s− θ1s
σ1
2 , s

)

sσ1

= −
(

δ1 + o(1)
)

s
σ1
2
+σ2 < 0.

where θ1, θ2 ∈ (0, 1). Since F is continuous, there exists sh ∈
(

s− s
σ1
2 , s+ s

σ1
2

)

such that

F (sh, s) = 0 and |s− sh| = o(s).(3.16)

Furthermore, (3.16) reveals that

0 = F (sh, s) = F (s, s) + F ′
1(s, s)(sh − s) +

1

2
F ′′
1

(

s+ θ(sh − s), s
)

(sh − s)2,

for some θ ∈ (0, 1). If F ′′
1

(

s+ θ(sh − s), s
)

= 0, we could directly derive that

|sh − s| =
∣

∣

∣

∣

F (s, s)

F ′
1(s, s)

∣

∣

∣

∣

=
∣

∣

∣

δ0
δ1

∣

∣

∣
sσ1−σ2 + o(sσ1−σ2).

If F ′′
1

(

s+ θ(sh − s), s
)

6= 0, denote by δ2 := F ′′
1 (0, 0) and by G := F (s, s)F ′′

1

(

s+ θ(sh −
s), s

)

/
(

F ′
1(s, s)

)2
. Noting that G = δ0δ2

δ21
sσ1−2σ2 + o(sσ1−2σ2) < 1

2 for s > 0 sufficiently

small, from the quadratic formula, we come to

s±h − s =
−F ′

1(s, s)±
√

(

F ′
1(s, s)

)2 − 2F (s, s)F ′′
1

(

s+ θ(sh − s), s
)

F ′′
1

(

s+ θ(sh − s), s
) ,

s+h − s =
−2F (s, s)

F ′
1(s, s) +

√

(

F ′
1(s, s)

)2 − 2F (s, s)F ′′
1

(

s+ θ(sh − s), s
)

=
−2F (s, s)

F ′
1(s, s)

(

1 +
√
1− 2G

) = −δ0
δ1
sσ1−σ2 + o(sσ1−σ2).

thus for s > 0 sufficiently small, there exists a sh > 0, such that |sh − s| =
∣

∣

δ0
δ1

∣

∣sσ1−σ2 +

o(sσ1−σ2), the proof is then completed. �

We are now in the position to introduce the main result of this paper.

Theorem 3.1. When solving the one-dimensional Helmholtz equation (2.3) with pth order
CIP-FEM, there exists a constant C0 > 0 such that if kh

p
≤ C0, we have the following

estimate for phase difference.

|k − kh| =
1

2

(

1

(2p + 1)

[

p!

(2p)!

]2

+ γ

)

k2p+1h2p +O(k2p+3h2p+2),

As a consequence, taking the penalty parameter as

γ0 = − 1

(2p + 1)

[

p!

(2p)!

]2

can reduce the phase difference of CIP-FEM to O(k2p+3h2p+2).
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Proof. Let t̃ = t
p
, t̃h = th

p
, and

F̃(t̃h, t̃, γ) := F(th, t, γ) := Det(Dt,th).

notice that

F̃(t̃h, t̃, γ) = Det(Dt,th) = Det(QthDt,th(Qth)H) = Det(D̃t,th).(3.17)

For any square matrix A, let A∗
i,j denotes the cofactor of the (i, j)th entry of A, D̃0 be

the submatrix of D̃t,th obtained by removing the first row and column of it. In order to
apply Lemma 3.7, we need the following deductions. Applying the Laplace expansion for
determinant, we have

F̃(t̃h, t̃, γ) =D̃t,th
1,1

(

D̃t,th
1,1

)∗
+

p−1
∑

j=1

D̃t,th
1,j+1

(

D̃t,th
1,j+1

)∗

=D̃t,th
1,1

(

D̃t,th
1,1

)∗
−

p−1
∑

j=1

D̃t,th
1,j+1

p−1
∑

i=1

D̃t,th
i+1,1

(

D̃0

)∗
i,j
,

by the chain rule for derivative,

F̃ ′
1(t̃h, t̃, γ) =F ′

1(th, t, γ)
∂th

∂t̃h

=p

(

∂D̃t,th
1,1

∂th

(

D̃t,th
1,1

)∗
+ D̃t,th

1,1

∂
(

D̃t,th
1,1

)∗

∂th
−

p−1
∑

i,j=1

(

∂D̃t,th
1,j+1

∂th
D̃t,th

i+1,1

(

D̃0

)∗
i,j

+ D̃t,th
1,j+1

∂D̃t,th
i+1,1

∂th

(

D̃0

)∗
i,j

+ D̃t,th
1,j+1D̃

t,th
i+1,1

∂
(

D̃0

)∗
i,j

∂th

)

)

.

From Lemmas 3.2 and 3.6 and the definition of determinant, we derive that

F̃(t̃, t̃, γ) =

((

1

2p+ 1

[

p!

(2p)!

]2

+ γ

)

t2p+2 +O(t2p+4)

)

(

α0 +O(t2)
)

+O(t2p+4)

=α0

(

1

2p + 1

[

p!

(2p)!

]2

+ γ

)

p2p+2t̃2p+2 +O(t̃2p+4),

F̃ ′
1(t̃, t̃, γ) =p

(

2t+O(t2p+1)
) (

α0 +O(t2)
)

+O(t2p+3)

=2α0p
2t̃+ o(t̃).

Taking a close observation of D̃t,th , we find that all the entries D̃t,th
i,j are C∞ on (th, t),

so is F̃ ′′
1 . Therefore, from Lemma 3.7, for t̃ sufficiently small, there exists t̃h = khh

p
> 0

satisfying

|k − kh| =
p

h
|t̃h − t̃| = 1

2

(

1

2p+ 1

[

p!

(2p)!

]2

+ γ

)

k2p+1h2p +O(k2p+3h2p+2).
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this completes the proof of the theorem. �

Remark 3.1. (a) Taking γ = 0 in Theorem 3.1, the CIP-FEM degenerates to FEM and
the corresponding phase error we deduced coincides with that of [1].

(b) Given k, h, p, let γopt be the solution to (3.17) in Theorem 3.1, then γopt is the
optimal penalty parameter with which the CIP-FEM scheme (2.3) is pollution free in one-
dimensional case, while an explicit form of γopt for general p is hard to find. For readers
who may be interested, we list in Table 1 expressions of γopt for p = 1, 2, 3, 4 (see also [15])
and list in Table 2 double-precision numerical approximations of γ0 and γopt for kh

p
= 1

for p = 1, 2, · · · , 7 as comparison.
(c) Adding more penalty terms (e.g. on jumps of normal derivatives ordered from 1 to

p − 1) may also eliminate the pollution error for problems in 1D or further improve the
pollution error for problems in higher dimensions (see e.g. [15]), while it is also hard to
find explicit forms of the penalty parameters for general p.

(d) In theoretical analysis, we require kh
p

to be sufficiently small. However, we’ll see in

Section 5 that the penalty parameter we derived in Theorem 3.1 behaves quite well under
the assumption of kh

p
≈ 1.

(e) Theorem 3.1 implies that the phase difference may be improved to be |k − kh| =
O(k2p+3h2p+2) if we take γ = γ0. One may be interested in the coefficient (denoted by
cp) in this big O term. In Table 3, we list cp for p = 1, 2, · · · , 8, which is calculated by
programming in MATLAB. We found that they obey the following formula

cp =
γ0
24

∣

∣

∣

∣

rp
(2p + 3)!!

− 1

∣

∣

∣

∣

where rp =

{

9 if p = 1

24(2p − 3)!! if p ≥ 2,

and hence

|k − kγ0h | = γ0
24

∣

∣

∣

∣

rp
(2p + 3)!!

− 1

∣

∣

∣

∣

k2p+3h2p+2 +O(k2p+5h2p+4).

We conjecture that the above formula holds also for general p, which has actually been
verified for p up to 13 via MATLAB programming, although we can not prove it yet.

Table 1. Explicit expressions of γopt for CIP-FEM of order p = 1, 2, 3, 4.

p γopt

1
(

(6 + t2) cos(t)− 6 + 2t2
)/

12
/

(1− cos(t))2

2

(

(240 + 16t2 + t4) cos(t) + 104t2 − 3t4 − 240
)/(

(960t2 − 11520) cos(t)
+(5760 + 960t2) cos2(t)− 1920t2 + 5760

)

3

(

(25200 + 1080t2 + 30t4 + t6) cos(t) + 11520t2 − 540t4 + 4t6 − 25200
)/

(

(36288000 + 2419200t2 + 151200t4) cos2(t)
+(13305600t2 − 72576000 − 604800t4) cos(t)− 15724800t2 + 453600t4 + 36288000

)

4

(

(5080320 + 161280t2 + 3024t4 + 48t6 + t8) cos(t) + 2378880t2 − 134064t4 + 1800t6 − 5t8

−5080320
)/(

(1024192512000 + 43893964800t2 + 1219276800t4 + 40642560t6) cos2(t)
+(424308326400t2 − 2048385024000 − 23166259200t4 + 121927680t6) cos(t)

−468202291200t2 + 21946982400t4 − 162570240t6 + 1024192512000
)
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Table 2. Penalty parameters for numerical experiments.

p γ = γ0 γ = γopt (kh/p = 1)

1 −8.333333333333333 × 10−2
−8.592096810583184 × 10−2

2 −1.388888888888889 × 10−3
−1.758364973238755 × 10−3

3 −9.920634920634921 × 10−6
−1.896623966419027 × 10−5

4 −3.936759889140842 × 10−8
−1.793840107031879 × 10−7

5 −9.941312851365762 × 10−11
−1.642663180893377 × 10−9

6 −1.737991757231777 × 10−13
−7.477550634563100 × 10−11

7 −2.228194560553560 × 10−16
−2.132344906487912 × 10−14

Table 3. Coefficients of the leading terms for |k − kγ0h |.

p cp p cp p cp
1 1/720 4 223/140826470400 7 1097/119020127189483520000
2 1/22400 5 421/103567809945600 8 1607/177431543456322355200000
3 97/254016000 6 101/14104949354496000 · · · · · ·

4. Extension to multi-dimensions

In this section we will show that the Theorem 3.1 still holds in higher dimensions (d =
2, 3). We will sketch the proof for two dimensions and then explain how to generalize to
three dimensions.

First, we recall the following definition and properties of Kronecker matrix product which
are esssential to our investigation.

Definition 4.1 (Kronecker Product [22, 29]). If Y = (yij)m×n
, Z = (zij)q×r

, then the

Kronecker product Y ⊗ Z is an mq × nr block matrix in the form of

Y ⊗ Z =







y11Z · · · y1nZ
...

. . .
...

yn1Z · · · ynnZ







Properties (a) The Kronecker product is bilinear and associative: X ⊗ (Y +Z) = X ⊗ Y +
X ⊗ Z, (X + Y )⊗ Z = X ⊗ Z + Y ⊗ Z, X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z.

(b) If Y1,Y2, Z1 and Z2 are matrices of such size that can form the matrix products Y1Y2

and Z1Z2, we then have mixed-product property: (Y1 ⊗ Z1)(Y2 ⊗ Z2) = Y1Y2 ⊗ Z1Z2.
(c) Conjugate transposition is distributive over the Kronecker product: (Y ⊗ Z)H =

Y H ⊗ ZH.

We are now in the position to consider the two-dimensional case. Let t1 = t cos θ, t2 =
t sin θ, th1 = th cos θ, th2 = th sin θ where t = kh, th = khh as before. The following lemma
gives an explicit expression of the coefficient matrix D in (2.9), whose proof is not difficult
but too long to give here and we leave it to Appendix A.4.

Lemma 4.1. When solving the two-dimensional Helmholtz equation with pth order CIP-
FEM on the tensor product mesh, the coefficient matrix D associated to the set of generating
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nodes Xg = {x0,0,x0,1, · · · ,xp−1,p−1} (See Figure 2.1) takes the following form:

D = Dt1,th1 ⊗Mth2 +Mth1 ⊗Dt2,th2

where Dti,thi is the coefficient matrix in Lemma 3.1 by replacing t, th with ti, thi, respec-
tively, and Mβ is defined by

Mβ
1,1 = 2

∫ 1
0 λ2

0 dx+ 2cos β
∫ 1
0 λpλ0 dx,

Mβ
1,j+1 =

∫ 1
0 λjλ0 dx+ e−iβ

∫ 1
0 λp−jλ0 dx, Mβ

i+1,1 = conj(Mβ
1,i+1),

Mβ
i+1,j+1 =

∫ 1
0 λjλi dx, 1 ≤ i, j ≤ p− 1.

By analogy with the one-dimensional case, in order to calculate the determinant of matrix
D, we aim to transform it to a form which is more calculable. We need the following lemmas
to proceed with our research whose rigorous proofs are postponed to Appendices A.5 and
A.6.

Lemma 4.2. If β = o(1) as t → 0, M̃β = QβMβ(Qβ)H satisfies the following estimates:

M̃β
1,1 = 1 + o(1) and M̃β

1,j+1,M̃
β
j+1,1 =

∫ 1

0
λj dx+ o(1) ∀1 ≤ j ≤ p− 1,

where Qβ is defined in (3.6).

Lemma 4.3. Let D0 be the matrix defined in Lemma 3.2. Denote by

D1 =

(

0 0T

0 D0

)

, M1 =











1
∫ 1
0 λ1 dx · · ·

∫ 1
0 λp−1 dx

∫ 1
0 λ1 dx

∫ 1
0 λ1λ1 dx · · ·

∫ 1
0 λ1λp−1 dx

...
...

. . .
...

∫ 1
0 λp−1 dx

∫ 1
0 λp−1λ1 dx · · ·

∫ 1
0 λp−1λp−1 dx











,

D̂ = D1 ⊗M1 +M1 ⊗D1.

then we have D̂∗
1,1 6= 0, where ∗ denotes for the algebraic cofactor.

We remark here that Lemma 4.3 will play the role of Lemma 3.2.

Theorem 4.1. When solving the two-dimensional Helmholtz equation with pth order CIP-
FEM on the tensor product mesh in R2, there exists a constant C0 such that if kh

p
≤ C0,

we have the following estimate for the phase difference.

|k − kh| =
1

2

(

1

(2p + 1)

[

p!

(2p)!

]2

+ γ

)

k2p+1h2p +O(k2p+3h2p+2),

As a consequence, taking the penalty parameter as

γ0 = − 1

(2p + 1)

[

p!

(2p)!

]2

can reduce the phase difference of CIP-FEM to O(k2p+3h2p+2).
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Proof. Taking Q = Qth1 ⊗Qth2 , from Lemma 4.1, we have

D̃ = QDQH

=
(

Qth1Dt1,th1(Qth1)H
)

⊗
(

Qth2Mth2(Qth2)H
)

+
(

Qth1Mth1(Qth1)H
)

⊗
(

Qth2Dt2,th2(Qth2)H
)

= D̃t1,th1 ⊗ M̃th2 + M̃th1 ⊗ D̃t2,th2 .

Then it follows the same procedure as in the proof of Theorem 3.1. Let t̃ = t
p
, t̃h = th

p
,

and define

F̃(t̃h, t̃, γ, θ) := F(th, t, γ, θ) := Det(D) = Det(D̃).

We only need to evaluate the leading term of F̃(t̃, t̃, γ, θ) and F̃ ′
1(t̃, t̃, γ, θ). Observing

the structure of matrix D̃ and performing in a similar manner as that in Theorem 3.1, we
conclude that

F(t̃, t̃, γ, θ)

=D̂∗
1,1

(

1

(2p + 1)

[

p!

(2p)!

]2

+ γ

)

(t2p+2
1 + t2p+2

2 ) +O(t2p+4)

=D̂∗
1,1

(

1

(2p + 1)

[

p!

(2p)!

]2

+ γ

)

(

(cos θ)2p+2 + (sin θ)2p+2
)

p2p+2t̃2p+2 +O(t̃2p+4),

and

F̃ ′
1(t̃, t̃, γ, θ) = 2pD̂∗

1,1(cos
2 θ + sin2 θ)t+ o(t) = 2D̂∗

1,1p
2t̃+ o(t̃).

Thus by Lemma 3.7, for t̃ sufficiently small, the phase difference in direction θ reads:

1

2

(

1

(2p + 1)

[

p!

(2p)!

]2

+ γ

)

(

(cos θ)2p+2 + (sin θ)2p+2
)

k2p+1h2p +O(k2p+3h2p+2),

notice that
∣

∣(cos θ)2p+2 + (sin θ)2p+2
∣

∣ ≤
∣

∣(cos θ)2p+2
∣

∣+
∣

∣(sin θ)2p+2
∣

∣ ≤ cos2 θ + sin2 θ = 1,

we finally obtain the conclusion as claimed. �

Remark 4.1. The results in Theorem 4.1 could be extended to the 3D case with D =
∑3

i=1

(

(
⊗i−1

j=1Mthj
)
⊗Dti,thi

⊗
(
⊗3

j=i+1Mthj
)

)

and Q =
⊗3

j=1Q
thj . We omit the de-

tails.

5. Numerical results

In this section we will illustrate the pollution effect of the FEM, CIP-FEM with the

penalty parameter γ = γ0 = − 1
(2p+1)

[

p!
(2p)!

]2
we derived in Theorem 3.1 and 4.1 and the

penalty parameter γ = γopt as well. We also verify that the pollution term and phase
difference are of the same order.
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According to the preasymptotic error analyses of FEM [32, 36, 15, 26, 25], the following
error estimate holds for the finite element solution uFEMh .

‖u− uFEMh ‖H1 . kphp + k2p+1h2p(5.1)

where the first term in the right hand side is the interpolation error and the second term
is the pollution error which is of the same order as the phase difference. Since the phase
difference of the CIP-FEM is of order k2p+3h2p+2 if γ = γ0 (see Theorem 3.1 and 4.1), we
expect the following error estimate for the CIP-FEM with γ = γ0

‖u− uh‖H1 . kphp + k2p+3h2p+2(5.2)

which reduce the pollution error of the FEM to Ck2p+3h2p+2.

Example 1. We simulate the following one dimensional Helmholtz problem:
{

−u′′ − k2u = 1, in (0, 1),

u(0) = 0, u′(1) + iku(1) = 0,

whose exact solution reads: u = 1
k2

(

e−ikx + ie−ik sin(kx)
)

.

Figure 5.1 presents log-log plots of relative H1 errors and phase differences |k−kh| versus
the reciprocal of mesh size h for FEM and CIP-FEM with p = 1, 2, 3, respectively. Note
that the slope of the error curve is −m means that the convergence order of the error in h
is m. For k = 10, the convergence orders in h of the FE and CIP-FE solutions are coincide
with that of the best approximation (with convergence order p in h), which indicates that
no pollution effect occurs for small wave number k. As k grows larger (k = 103 and 104),
the convergence orders of both the pollution error and phase difference with respect to
h are 2p for the FEM and 2p + 2 for the CIP-FEM with γ = γ0, respectively, while the
CIP-FEM with γ = γopt remains unpolluted. Notice that the pollution effect diminishes
as h becomes smaller and enters the asymptotic regime.

Similar analysis could be applied on Figure 5.2 that gives log-log plots of the errors
versus the reciprocal of the wave number k, which especially verifies that the convergence
orders of both the pollution error and phase difference with respect to k are 2p+1 for the
FEM and 2p+ 3 for the CIP-FEM with γ = γ0, respectively, furthermore, taking γ = γopt

in CIP-FEM eliminates the pollution effect. These observations verify the error estimates
in (5.1) and (5.2).

Example 2. We simulate the following two-dimensional Helmholtz equation:
{

−∆u− k2u = 0, in Ω,
∂u
∂n

+ iku = g, on ∂Ω,

where Ω = (0, 1)×(0, 1) and g is so chosen depending on the exact solution u = sin
(

√
2
2 k(x+

y)
)

.
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Figure 5.1. Example 1: Log-log plot of relative H1 error (left) and phase
difference (right) versus the reciprocal of the mesh size. The dotted lines
give reference slopes denoted by κ.

Figure 5.3 demonstrates the improvement of the CIP-FEM with γ = γ0 compared with
the FEM scheme intuitively. As it shown in the figure, By tuning the penalty parameter,
the CIP-FEM can indeed significantly reduce the pollution error of the FEM.
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Figure 5.2. Example 1: Log-log plot of relative H1 error (left) and phase
difference (right) versus the reciprocal of the wave number. The dotted lines
give reference slopes denoted by κ.

Next we investigate the orders of the pollution errors. Due to the limitation of the
computer, for this two-dimensional problem, we can only calculate the solutions on a mesh
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Figure 5.3. Example 2: The relative errors of the FE solutions, the CIP-
FE solutions (γ = γ0), with mesh size h determined by kh

p
= 1 for p =

1, 2, 3, 4 and k = 4, 8, · · · , 500.

with mesh size as small as h ≈ 0.001. Similar simulations as Figures 5.1and 5.2 in one-
dimension can not show obvious convergence orders. We adopt the concept of “critical mesh
size” [15] to verify the convergence orders of the pollution errors for the two-dimensional
numerical example.

Definition 5.1 (Critical Mesh Size). Given a relative tolerance ε, a wave number k and
the degree of approximation space p, the critical mesh size h(k, p, ε) with respect to the
relative tolerance ε is defined by the maximum mesh size such that the relative H1 error of
the (CIP-)FE solution is less than or equal to ε.

Clearly, the critical mesh size is achieved in the preasymptotic regime and if the pollution

error is O(km+1hm) for some positive integer m, then h(k, p, ε) = ε
1
mO(k−

m+1
m ). Figure 5.4

draws the log-log plot of the critical mesh sizes h(k, p, ε) [15] versus k for FEM and CIP-
FEM with γ = γ0 for p = 1, 2, 3, 4 (ε = 0.5 for p = 1, 2 and ε = 0.1 for p = 3, 4). It is shown

that the critical mesh sizes are of order k
− 2p+1

2p for the FEM and k
− 2p+3

2p+1 for the CIP-FEM
with γ = γ0, respectively, which supports the error estimates in (5.1) and (5.2).
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Figure 5.4. Example 2: The log-log plot of the critical mesh size [15]
h(k, p, ε)(p = 1, 2, 3, 4) versus k for FEM and CIP-FEM with γ = γ0 on 2D
tensor product meshes.

Appendix A. Appendix

A.1. Proof of Lemma 3.3.

Proof. Following [1, §4.1], define

B̂τ (u, v) =

∫ 1

−1
(u′v′ − τ2uv) ds,

Φτ
e(s) =

∑Ne+1
j=1 (−1)jτ−2jL(2j−1)

2Ne+1(s)
∑Ne+1

j=1 (−1)jτ−2jL(2j−1)
2Ne+1(1)

, Φτ
o(s) =

∑No

j=1 (−1)jτ−2jL(2j−1)
2No

(s)
∑No

j=1 (−1)jτ−2jL(2j−1)
2No

(1)
,

where Ln(s) is the Legendre polynomial of degree n whose dth derivative reads:

L(d)
n (s) =

1

2nn!

dn+d(s2 − 1)n

dsn+d

=
n!

2n(n− d)!

n−d
∑

m=0

(

n+d
m+d

)(

n−d
m

)

(s+ 1)n−m−d(s − 1)m.

Inserting the equation above into [1, (4.6)] and simplifying, we obtain

Φτ
e(s) =

1
∑Ne+1

j=1

{

(−1)jτ−2j (2Ne+2j)!
22j−1(2Ne+2−2j)!(2j−1)!

}

Ne+1
∑

j=1

{

(−1)jτ−2j(2Ne + 1)!

22Ne+1(2Ne + 2− 2j)!

2Ne+2−2j
∑

m=0

( 2Ne+2j
m−1+2j

)(2Ne+2−2j
m

)

(s+ 1)2Ne+2−2j−m(s− 1)m
}

,
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Φτ
o(s) =

1
∑No

j=1

{

(−1)jτ−2j (2No−1+2j)!
22j−1(2No+1−2j)!(2j−1)!

}

No
∑

j=1

{

(−1)jτ−2j(2No)!

22No(2No + 1− 2j)!

2No+1−2j
∑

m=0

(2No−1+2j
m−1+2j

)(2No+1−2j
m

)

(s+ 1)2No+1−2j−m(s− 1)m
}

.

It is obvious that
Bt(u, v) = 2B̂ t

2
(u, v),

by taking τ = t
2 , x = s+1

2 and combining with [1, (4.15)–(4.16)], the proof is thus completed.
�

A.2. Proof of Lemma 3.4.

Proof. The representation of ci and di could be proved readily from Lemma 3.3 owing to
the uniqueness of ξ0 and ξ1. The remainder of the proof is straightforward.

Aj =
1

2

p−1
∑

i=1

(−1)i
(

p
i

)

Φe

( i

p

)

+
(−1)j

2

p−1
∑

i=1

(−1)i
(

p
i

)

Φo

( i

p

)

, i = 1, 2.

If p is even, inserting (3.4) into the second summation of A1, yields

p−1
∑

i=1

(−1)i
(

p
i

)

Φo

( i

p

)

=
1

∑

p

2
j=1

{

(−1)jt−2j 2(p−1+2j)!
(p+1−2j)!(2j−1)!

}

p

2
∑

j=1

{

(−1)jt−2j2p!

(p + 1− 2j)!pp+1−2j

p−1
∑

i=1

(−1)i
(

p
i

)

p+1−2j
∑

m=0

(

p−1+2j
m−1+2j

)(

p+1−2j
m

)

ip+1−2j−m(i− p)m
}

=:
1

∑

p

2
j=1

{

(−1)jt−2j 2(p−1+2j)!
(p+1−2j)!(2j−1)!

}

p

2
∑

j=1

{

(−1)jt−2j2p!

(p + 1− 2j)!pp+1−2j
E1

}

.(A.1)

By making the substitution of i → p− i,m → p+ 1− 2j −m in E1, we have

E1 :=

p−1
∑

i=1

p+1−2j
∑

m=0

(−1)i
(

p
i

)(

p−1+2j
m−1+2j

)(

p+1−2j
m

)

ip+1−2j−m(i− p)m

=

p−1
∑

i=1

p+1−2j
∑

m=0

(−1)p−i
(

p
p−i

)(

p−1+2j
p−m

)(

p+1−2j
p+1−2j−m

)

(p− i)m(−i)p+1−2j−m

=(−1)2p+1−2j
p−1
∑

i=1

p+1−2j
∑

m=0

(−1)i
(

p
i

)(

p−1+2j
m−1+2j

)(

p+1−2j
m

)

(i− p)mip+1−2j−m = −E1.
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thus the second terms of A1 and A2 vanishes, we then arrive at

A1 = A2 =
1

2

p−1
∑

i=1

(−1)i
(

p
i

)

Φe

( i

p

)

=
1

∑

p

2
+1

j=1 (−1)jt−2j 4(p+2j)!
(p+2−2j)!(2j−1)!

p

2
+1
∑

j=1

{

(−1)jt−2j 2(p+ 1)!

(p+ 2− 2j)!pp+2−2j

p−1
∑

i=1

(−1)i
(

p
i

)

p+2−2j
∑

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

ip+2−2j−m(i− p)m
}

.

If p is odd, follow a similar argument, the details of which are omitted here, we obtain

A1 = −A2 =
1

2

p−1
∑

i=1

(−1)i
(

p
i

)

Φo

( i

p

)

=
−1

∑

p+1
2

j=1 (−1)jt−2j 4(p+2j)!
(p+2−2j)!(2j−1)!

p+1
2
∑

j=1

{

(−1)jt−2j 2(p + 1)!

(p+ 2− 2j)!pp+2−2j

p−1
∑

i=1

(−1)i
(

p
i

)

p+2−2j
∑

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

ip+2−2j−m(i− p)m
}

.

This completes the proof of the lemma. �

A.3. Proof of Lemma 3.5.

Proof. We will use (0.154)3,(0.154)4 ,(0.156)1 in [21] to complete the proof. Set 00 ≡ 1,
(0
0

)

≡
1. We first prove the equation below

E2 :=

p
∑

m=0

(

p+2
m+1

)(

p
m

)

=

p
∑

m=0

(

p+1
m

)(

p
m

)

+

p
∑

m=0

(

p+1
m+1

)(

p
m

)

=

p
∑

m=0

(

p+1
m

)(

p
m

)

+

p
∑

m=0

(

p+1
p−m

)(

p
p−m

)

=

p
∑

m=0

(

p+1
m

)(

p
m

)

+

p
∑

m=0

(

p+1
m

)(

p
m

)

=2

p
∑

m=0

(

p+1
m

)(

p
p−m

) (0.156)1
= 2

(2p+1
p

)

.(A.2)
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By exchanging the order of summation and applying the binomial expansion to N , we
have

N =

p
∑

i=0

(−1)i
(

p
i

)

p+2−2j
∑

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

ip+2−2j−m(i− p)m − 2(−1)p
(

p+2j
2j−1

)

pp+2−2j

=

p+2−2j
∑

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

p
∑

i=0

(−1)i
(

p
i

)

ip+2−2j−m
m
∑

l=0

(

m
l

)

il(−p)m−l−2(−1)p
(

p+2j
2j−1

)

pp+2−2j

=

p+2−2j
∑

m=0

(

p+2j
m−1+2j

)(

p+2−2j
m

)

Tm,j − 2(−1)p
(

p+2j
2j−1

)

pp+2−2j

(A.3)

where

Tm,j =
m
∑

l=0

(

m
l

)

(−p)m−l
p
∑

i=0

(−1)i
(

p
i

)

ip+2−2j−m+l

for m = 0, j = 1,

T0,1 =

p
∑

i=0

(−1)i
(

p
i

)

ip
(0.154)4
= (−1)pp!

for 1 ≤ m ≤ p, j = 1, if 0 ≤ l ≤ m− 1, we have p−m+ l ≤ p− 1, thus

Tm,1 =

m−1
∑

l=0

(

m
l

)

(−p)m−l
p
∑

i=0

(−1)i
(

p
i

)

ip−m+l +

p
∑

i=0

(−1)i
(

p
i

)

ip

=

p
∑

i=0

(−1)i
(

p
i

)

ip = (−1)pp!

for 2 ≤ j ≤ ⌊p2⌋+ 1, p+ 2− 2j −m+ l ≤ p+ 2− 2j ≤ p− 2, hence

Tm,j
(0.154)3
= 0

Combining with (A.2) and (A.3), we obtain

N =

{

(−1)pp!E2 − 2(−1)p(p + 2)pp = 2(−1)p
(

(2p+1)!
(p+1)! − (p+ 2)pp

)

, j = 1

2(−1)p+1(p+2j
2j−1

)

pp+2−2j, 2 ≤ j ≤ ⌊p2⌋+ 1.

The proof is completed. �

A.4. Proof of Lemma 4.1.

Proof. For two-dimensional problem, {xg} = {x0,0,x0,1, · · · ,xp−1,p−1} is a generating set
of the mesh (see Figure 2.1).
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re Let φi,j = φi(x)φj(y) be the nodal basis function of the two-dimensional Qp finite
element space at xi,j , where φi = λi(

x
h
) is the one-dimensional nodal basis function at xi.

Similar to (3.1), we have for 0 ≤ i1, i2, j1, j2 ≤ p,
∫ h

0

∫ h

0
(∇φi1,j1 · ∇φi2,j2 − k2φi1,j1φi2,j2) dx

=

∫ h

0

∫ h

0

(

(

φ′
i1
(x)φ′

i2
(x)− k2φi1(x)φi2(x)

)

φj1(y)φj2(y)

+ φi1(x)φi2(x)
(

φ′
j1
(y)φ′

j2
(y)− k2φj1(y)φj2(y)

)

+ k2φi1(x)φi2(x)φj1(y)φj2(y)
)

dxdy

=Bt(λi1 , λi2)

∫ 1

0
λj1λj2dx+Bt(λj1 , λj2)

∫ 1

0
λi1λi2dx+t2

∫ 1

0
λi1λi2dx

∫ 1

0
λj1λj2dx.(A.4)

The lemma may be proved by writing equations at the nodal points x0,0,x0,1, · · · ,
xp−1,p−1 and using (A.4),(3.2), and Lemma 3.1 to simplify the coefficients. The calcu-

lations are basic but quite tedious. We take the (1, 1)th entry of D as an example and omit
the derivations of other entries. Clearly, D1,1 is the coefficient of U0,0 in the equation at
x0,0, which is expressed as follows:

D1,1 =Aγ(φ0,0, φ0,0) + 2 cos(th1)Aγ(φp,0, φ0,0) + 2 cos(th2)Aγ(φ0,p, φ0,0)

+ 4 cos(th1) cos(th2)Aγ(φp,p, φ0,0)

+ 2 cos(2th1)Aγ(φ2p,0, φ0,0) + 2 cos(2th2)Aγ(φ0,2p, φ0,0)

+ 4 cos(th1) cos(2th2)Aγ(φp,2p, φ0,0) + 4 cos(2th1) cos(th2)Aγ(φ2p,p, φ0,0).

From (A.4),(3.2), and Lemma 3.1, we conclude that

D1,1 =
[

2Bt1(λ0, λ0) + 2 cos(th1)Bt1(λp, λ0)

+
(

2 + (1− (−1)p)2 − 2(1 − (−1)p)2 cos(th1)− 2(−1)p cos(2th1)
)

p2pγ
]

×
(

2

∫ 1

0
λ2
0 + 2cos(th2)

∫ 1

0
λ0λp

)

+

(

2

∫ 1

0
λ2
0 + 2cos(th1)

∫ 1

0
λ0λp

)

×
[

2Bt2(λ0, λ0) + 2 cos(th2)Bt2(λp, λ0)

+
(

2 + (1− (−1)p)2 − 2(1 − (−1)p)2 cos(th2)− 2(−1)p cos(2th2)
)

p2pγ
]

=Dt1,th1
1,1 ⊗Mth2

1,1 +Mth1
1,1 ⊗Dt2,th2

1,1 .

This completes the proof. �

A.5. Proof of Lemma 4.2.

Proof. We first prove the following estimates for a fixed x:

Φe(x) = 1 +O(t2), Φo(x) = (2x− 1) +O(t2), as t → 0.(A.5)
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The proof of (A.5) relies on the following fact whose proof is trival and we omit it here,
∑m

i=1 ait
−2i

∑n
i=1 bit

−2i
=

am
bn

t2n−2m +O(t2n−2m+2), if am, bn 6= 0,m ≤ n.

thus an easy induction gives

Φe(x) =
(2Ne + 1)!

(4Ne+2
2Ne+1

)

(4Ne + 2)!/(2Ne + 1)!
+O(t2) = 1 +O(t2),

Φo(x) =
(2No)!

(

(4No−1
2No

)

(x− 1) +
(4No−1
2No−1

)

x
)

(4No − 1)!/(2No − 1)!
+O(t2) = 2x− 1 +O(t2).

According to Lemma 3.4 and (A.5), we have

ci, di = O(1), ci + di = Φe(i/p) = 1 +O(t2).

The remainder of this proof is quite straightforward.

M̃β
1,j+1 =Mβ

1,j+1 +

p−1
∑

i=1

(

ci + di + (e−iβ − 1)di
)

Mβ
i+1,j+1

=

∫ 1

0
λjλ0 dx+ (1 +O(β))

∫ 1

0
λjλp dx+

p−1
∑

i=1

(

1 + o(1)
)

∫ 1

0
λjλi dx

=

∫ 1

0
λj

p
∑

i=0

λi dx+ o(1) =

∫ 1

0
λj dx+ o(1),

M̃β
1,1 =Mβ

1,1 +

p−1
∑

i=1

(ci + e−iβdi)Mβ
i+1,1 +

p−1
∑

j=1

(cj + eiβdj)M̃β
1,j+1

=

∫ 1

0
λ0

(

λ0 +

p−1
∑

i=1

ciλi

)

dx+ e−iβ

∫ 1

0
λ0

(

λp +

p−1
∑

i=1

diλi

)

dx

+

∫ 1

0
λp

(

λp +

p−1
∑

i=1

diλi

)

dx+ eiβ
∫ 1

0
λp

(

λ0 +

p−1
∑

i=1

ciλi

)

dx

+

p−1
∑

j=1

(cj + eiβdj)
(

∫ 1

0
λj dx+ o(1)

)

=

∫ 1

0
(λ0 + λp)

(

λ0 + λp +

p−1
∑

i=1

(ci + di)λi

)

dx

+

p−1
∑

j=1

(

1 + o(1)
)

(

∫ 1

0
λj dx+ o(1)

)

+O(β)
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=

∫ 1

0
(λ0 + λp)

(

1 + o(1)
)

dx+

p−1
∑

j=1

∫ 1

0
λj dx+ o(1) = 1 + o(1).

This completes the proof of the lemma. �

A.6. Proof of Lemma 4.3.

Proof. Similar to the proof of Lemma 3.2, for any v = (v0, · · · , vp−1)
T ∈ Rp, let v =

v0 +
∑p−1

i=1 viλi, we have

vTM1v = v20 + 2

p−1
∑

i=1

∫ 1

0
v0viλi dx+

p−1
∑

i,j=1

∫ 1

0
viλivjλj dx = ‖v‖2L2(0,1)

& v20 + (v0 + v1)
2 + · · · + (v0 + vp−1)

2 + v20 & |v|2,
where we have used the inequality (v0+ vj)

2 ≥ 1
p+1v

2
j − 1

p
v20 with ε = p

p+1 to derive the last

inequality. The above estimate says that M1 is symmetric and positive definite (SPD).
Since D0 is SPD (see Lemma 3.2), there exists a non-singular (p − 1) × (p − 1) matrix

X, such that

XD0X
T = Ip−1,

where Ip−1 is the (p− 1)× (p− 1) identical matrix. Introducing a non-singular matrix

Y =

(

1 0T

0 X

)

,

Properties (a-c) of the Kronecker matrix product implies that

(Y ⊗ Y )D̂(Y ⊗ Y )T =

(

0 0T

0 Ip−1

)

⊗ YM1Y
T + YM1Y

T ⊗
(

0 0T

0 Ip−1

)

.

Noting that YM1Y
T is also SPD, there exists an orthogonal transformation W , such that

W (YM1Y
T )W T =







m1 · · · 0
...

. . .
...

0 · · · mp






:= M0,

where the eigenvalues {mi}1≤i≤p are all positive real numbers.

Ď =(W ⊗W )(Y ⊗ Y )D̂(Y ⊗ Y )T (W ⊗W )T

=

(

0 0T

0 Ip−1

)

⊗M0 +M0 ⊗
(

0 0T

0 Ip−1

)

.

Ď is a diagonal matrix with the following entries on its diagonal line:

0,m2, · · · ,mp,m1,m1 +m2, · · · ,m1 +mp, · · · ,mp,mp +m2, · · · ,mp +mp.

Thus Ď has only one zero eigenvalue and (p2 − 1) positive ones.
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Noting that the first row and the first column of D̂ are all zeros, all the eigenvalues of
the sub-matrix obtained by removing the first row and the first column of D̂ are positive,
which leads to D̂∗

1,1 6= 0. �
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[25] F. Ihlenburg and I. Babuška. Finite element solution of the Helmholtz equation with high wave number.
Part II: The hp version of the FEM. SIAM Journal on Numerical Analysis, 34(1):315–358, 1997.

[26] F. Ihlenburg and B. IM. Finite element solution of the Helmholtz equation with high wave number.
Part I: The h-version of the FEM. Computers and Mathematics With Applications, 30(9):9–37, 1995.

[27] Y. Li and H. Wu. FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly
matched layer truncation. SIAM Journal on Numerical Analysis, 57(1):96–126, 2019.

[28] I. Mazzieri and F. Rapetti. Dispersion analysis of triangle-based spectral element methods for elastic
wave propagation. Numerical Algorithms, 60(4):631–650, 2012.

[29] H. NEUDECKER. The Kronecker matrix product and some of its applications in econometrics. Sta-
tistica Neerlandica, 22(1):69–82, 2008.

[30] F. Odeh and J. B. Keller. Partial differential equations with periodic coefficients and Bloch waves in
crystals. Journal of Mathematical Physics, 5(11):1499–1504, 1964.

[31] L. L. Thompson and P. M. Pinsky. A Galerkin least squares finite element method for the
two-dimensional Helmholtz equation. International Journal for Numerical Methods in Engineering,
38(3):371–397, 1995.

[32] H. wu. Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high
wave number. Part I: linear version. IMA Journal of Numerical Analysis, 34(3):1266–1288, 2014.

[33] H. Wu and J. Zou. Finite element method and its analysis for a nonlinear Helmholtz equation with
high wave numbers. SIAM Journal on Numerical Analysis, 56(3):1338–1359, 2018.

[34] Y. Zhou and H. Wu. Optimal Penalty Parameters for CIP-FEM on 3D tetrahedral mesh. PhD thesis,
Nanjing University, 2021.

[35] Y. Zhou and H.Wu.Optimal Penalty Parameters for Quadratic CIP-FEM on Equilateral Triangulation.
PhD thesis, Nanjing University, 2021.

[36] L. Zhu and H. Wu. Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with
high wave number. Part II: hp version. SIAM Journal on Numerical Analysis, 51(3):1828–1852, 2013.

(A1) Department of Mathematics, Nanjing University, Jiangsu, 210093, P.R. China

Email address: zhouyu524@hotmail.com

(A2) Department of Mathematics, Nanjing University, Jiangsu, 210093, P.R. China

Email address: hjw@nju.edu.cn


	1. Introduction
	2. CIP-FEM and discrete wave number
	2.1. CIP-FEM
	2.2. Discrete wave number

	3. Dispersion analysis in one dimension
	4. Extension to multi-dimensions
	5. Numerical results
	Appendix A. Appendix
	A.1. Proof of Lemma 3.3
	A.2. Proof of Lemma 3.4
	A.3. Proof of Lemma 3.5
	A.4. Proof of Lemma 4.1
	A.5. Proof of Lemma 4.2
	A.6. Proof of Lemma 4.3

	References

