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DAAN CAMPS† , EFEKAN KÖKCÜ‡ , LINDSAY BASSMAN† , WIBE A. DE JONG† ,

ALEXANDER F. KEMPER‡ , AND ROEL VAN BEEUMEN†

Abstract. Quantum computing is a promising technology that harnesses the peculiarities of
quantum mechanics to deliver computational speedups for some problems that are intractable to
solve on a classical computer. Current generation noisy intermediate-scale quantum (NISQ) com-
puters are severely limited in terms of chip size and error rates. Shallow quantum circuits with
uncomplicated topologies are essential for successful applications in the NISQ era. Based on matrix
analysis, we derive localized circuit transformations to efficiently compress quantum circuits for sim-
ulation of certain spin Hamiltonians known as free fermions. The depth of the compressed circuits
is independent of simulation time and grows linearly with the number of spins. The proposed nu-
merical circuit compression algorithm behaves backward stable and scales cubically in the number of
spins enabling circuit synthesis beyond O(103) spins. The resulting quantum circuits have a simple
nearest-neighbor topology, which makes them ideally suited for NISQ devices.
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1. Introduction. The field of quantum computing [28] is rapidly evolving. The
current generation of quantum hardware is known as Noisy Intermediate-Scale Quan-
tum (NISQ) computers [30] and can perform specialized computational tasks that
become rapidly intractable for a classical computer [1]. A computational task for a
quantum computer, or quantum program, is typically expressed as a quantum circuit
that consists of a sequence of unitary transformations [28]. Each of these unitary
transformations typically acts on just one or two qubits of the quantum computer and
they are often referred to as quantum gates. The technological limitations in NISQ
hardware impose substantial constraints both on the number of qubits and on the
number of unitary operations, also known as circuit depth, that can be performed.
Noise introduced by two qubit gates eventually reduces the fidelity of the quantum
state until a useful signal can no longer be measured. Shallow and simple quantum
circuit structures are thus crucial for successful applications in the NISQ era.

Quantum circuit compilation or synthesis [4, 31] is the problem of computing a
circuit representation into two qubit operations for a target unitary matrix. General
purpose synthesis algorithms based on well-known matrix decompositions have been
proposed in the literature, for example, based on Givens [41] or Householder [18]
QR factorization of the target unitary. A more efficient algebraic synthesis algorithm
in terms of circuit complexity is known as the quantum Shannon decomposition [31]
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and is based on a hierarchical cosine-sine decomposition (CSD) [32,33] of the unitary
matrix. While these methods work for every unitary matrix, they have two major
disadvantages. Firstly, they require an exorbitant amount of classical resources. The
dimension of the unitary matrix for N qubits to be decomposed is 2N × 2N . Storing
this matrix on a classical computer rapidly becomes intractable, let alone computing
a decomposition of cubic complexity in the matrix dimension such as a QR factoriza-
tion or CSD. Secondly, the circuits that are derived from these synthesis algorithms
contain, in general, exponentially many gates in terms of the number of qubits. For
many applications of practical interest, more efficient circuits can be obtained with
optimization methods [42] or by exploiting certain structures in the unitary [11]. This
approach still suffers from the first issue as the full unitary has to be formed.

In this paper we propose an application-specific circuit compression and synthesis
algorithm that overcomes both challenges. We never form the 2N×2N unitary and the
compression algorithm has a cubic complexity in N which is an exponential improve-
ment compared to a cubic dependence on 2N [18,31,41]. Furthermore, the compressed
circuits have a simple nearest-neighbor topology, a circuit depth of O(N), and O(N2)
quantum gates. This makes them ideally suited for the NISQ era and in particular for
hardware based on superconducting qubits. The application that our synthesis algo-
rithm is designed for is known as Hamiltonian simulation [24] which involves the evolu-
tion of a quantum state of the system under the time-dependent Schrödinger equation.
This problem is ubiquitous in quantum chemistry [6, 8] and physics, for example in
adiabatic ground state preparation [5]. We show that quantum circuits for the time
evolution of certain spin models, known in physics as free fermionizable or integrable
models, are efficiently compressible. Our analysis leads to an algebraic circuit com-
pression algorithm that behaves as a backward stable algorithm in practice. MATLAB
and C++ implementations of our algorithms are publicly available as part of the fast
free fermion compiler (F3C) [12, 37] at https://github.com/QuantumComputingLab.
F3C is build based on the QCLAB toolbox [13,38] for creating and representing quantum
circuits.

A related algorithm based on a Givens QR factorization of an N × N matrix
formed by the quadratic Hamiltonian was proposed in [21] to generate Slater deter-
minants. This method was further developed to prepare a Hartree-Fock wave func-
tion [2] and generic fermionic Gaussian states [19]. It assumes that the full circuit
maps to a free fermionic system, while our localized operations can still be used for
circuits that are partially comprised of specific quantum gates.

This paper is accompanied by a dual paper targeted at the physics community [22]
that analyzes the properties of the Hamiltonians from studying the Hamiltonian alge-
bra. While this paper focuses on the matrix structures and the efficient and accurate
numerical computation of the compression, [22] focuses on the implications for the
physics community and showcases the results of an adiabatic state preparation exper-
iment performed on quantum hardware that is only feasible due to the compressed
quantum circuits.

The remainder of our paper is organized as follows. Section 2 provides a more de-
tailed introduction to the problem of Hamiltonian simulation, reviews the concept of
operator splitting methods to solve this problem, introduces the specific spin Hamil-
tonians for which our compression algorithm works, and relates the current paper to
earlier work. Section 3 provides an overview of useful elementary results on Pauli
rotation matrices and parameterizations of SU(2) that we will use for the remainder
of the analysis. Section 4 shows that compressing quantum circuits for the simulation
of classical Ising models to depth O(1) immediately follows from Section 3. We pres-

https://github.com/QuantumComputingLab
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ent our circuit compression algorithms for simulation circuits that are comprised of
gates that allow for a fusion and turnover operation in Section 5. Section 6 demon-
strates based on the results from Section 3 that Kitaev chains and XY Hamiltonians
satisfy these criteria and can be efficiently compressed. Section 7 shows the same for
transverse-field XY Hamiltonians and the special case of transverse-field Ising models.
Details of the implementation and considerations on numerical stability are provided
in Section 8. Section 9 provides numerical examples that demonstrate the speed and
accuracy of our method. We conclude in Section 10.

2. Problem statement and preliminary results. In this section we review
the problem statement and preliminary results about Hamiltonian simulation on quan-
tum computers.

2.1. Hamiltonian simulation. Simulating a quantum system of N spins or
qubits involves the evolution of the quantum state of the system under the Schrödinger
equation,

∂

∂t
ψ(t) = −iH(t)ψ(t),

and is fully determined by H(t) ∈ C2N×2N

, the time-dependent Hamiltonian of the

system, and the initial state of the system, ψ(t0) ∈ C2N

. The Hamiltonian is a time-
dependent Hermitian operator of exponential dimension in the system size and the
quantum state ψ(t) is a vector of unit norm.

Simulating from initial time t0 to final time t1 is achieved by the time-evolution
operator

(2.1) U(t1, t0) = T exp

(
−i

∫ t1

t0

H(t)dt

)
,

where T exp is the time-ordered matrix exponential. The final state at time t1 becomes
ψ(t1) = U(t1, t0)ψ(t0). For a time-independent Hamiltonian the closed-form solution
is U(t1, t0) = exp (−i(t1 − t0)H). Time evolution is a hard problem to solve on a
classical computer due to the exponential dimensionality of the state space and the
time-dependence of the Hamiltonian. In digital quantum simulation, (2.1) is evalu-
ated on a quantum computer which naturally operates in a state space of exponential
dimension. Multiple quantum algorithms have been proposed with (near) optimal
asymptotic scaling [9, 10, 15, 16, 20, 25, 26]. All of these algorithms rely on more com-
plicated circuit structures that are not well-suited for the constraints imposed by NISQ
computers where the circuit depth is limited. Quantum circuits derived from operator
splitting [27,35] methods, also known as Trotter product formulas [14,17,34,36] in the
physics community, often lead to simple circuit structures but with a circuit depth
that usually depends linearly on simulation time.

2.2. Operator splitting methods. We rely on two approximations in order to
implement (2.1) on a quantum computer using an operator splitting method. First,
we discretize in time by approximating H(t) by a piecewise constant function with nt
time-steps of length ∆t that discretize the interval [t0, t1) [29]:

H(t) ≈ H(tτ ) =: Hτ , 0 < τ ≤ nt, tτ = t0 + τ∆t, t ∈ [tτ−1, tτ ).

Second, we approximate the matrix exponential of Hτ by products of matrix
exponentials that are easier to implement on a quantum computer. The simplest case
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is a first-order product formula which decomposes the Hamiltonian operator in a sum
of two terms H = A+B. The approximate time-evolution operator for time-step ∆t,
U(∆t) = exp(−iA∆t) exp(−iB∆t), satisfies [14]:

‖U(∆t)− exp(−iH∆t)‖ ≤ ∆t2

2
‖[A,B]‖,

where [A,B] := AB − BA. This result can be bootstrapped to show that for H =∑
`H` and U(∆t) =

∏
` exp(−iH`∆t), we have that

(2.2) ‖U(∆t)− exp(−iH∆t)‖ ≤ ∆t2

2

∑
i>j

‖[Hi, Hj ]‖.

Without loss of generality, we will only use first-order Trotter decompositions through-
out this paper.

Combining the discretization in time (H(t) ≈ Hτ ) and the Trotter decomposition
of the Hamiltonian, Hτ =

∑
`H`,τ , we have the following approximation to the time-

evolution operator

U(nt∆t) =

nt−1∏
k=0

Unt−k(∆t), Uτ (∆t) =
∏
`

exp(−iH`,τ∆t),(2.3)

where the index τ is a time-ordered multiplication over nt discretized time-steps ∆t
and ` multiplies over the terms in the Trotter decomposition. Quantum circuits
based on this formula naturally become a concatenation of blocks that implement the
individual time-steps and their depth grows linearly with nt:

U(nt∆t) = U1(∆t) U2(∆t)

· · ·
Unt

(∆t)· · ·
· · ·
· · ·

.

Note that in quantum circuit diagrams, time flows from left to right, which means
that the order of operations is reversed compared to (2.3).

2.3. Spin Hamiltonians. Our compression results only hold for certain time-
dependent, ordered or disordered Hamiltonians that model chains of spin-1/2 particles
with a nearest-neighbor coupling and external magnetic field. These Hamiltonians
are typically expressed in terms of the Pauli spin-1/2 matrices,

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
,

which are generators for the group of 2 × 2 unitary matrices with unit determinant,
also known as SU(2). We often write σα where α ∈ {x, y, z} as many of our results are
independent of the type of Pauli matrix. A basis for the Hilbert space of composite
quantum systems is constructed through the tensor product of the state spaces of the
individual systems. To this end it is useful to introduce an abbreviated notation for
a σα matrix that acts on the ith spin in a chain of N spins:

(2.4) σαi := I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗σα ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−i

,

where I is the 2× 2 identity matrix.



AN ALGEBRAIC CIRCUIT COMPRESSION ALGORITHM 5

The most complicated class of Hamiltonians that we consider is known as the
time-dependent, disordered transverse field XY (TFXY) model. The Hamiltonian is
given by

H(t) =

N−1∑
i=1

Jxi (t)σxi σ
x
i+1 + Jyi (t)σyi σ

y
i+1︸ ︷︷ ︸

Coupling

+

N∑
i=1

hzi (t)σ
z
i︸ ︷︷ ︸

External Field

.(2.5)

The other two permutations of x, y, and z result in TFXZ and TFYZ Hamiltonians
for which our circuit compression method also works.

The parameters Jx, Jy, and hz in the Hamiltonian (2.5) depend both on time t
and on the index i of the spin-1/2 particle in the chain. The dependence on the index i
means that the Hamiltonian is disordered. If the parameters are independent of i, the
Hamiltonian is called ordered. We discuss TFXY Hamiltonians in detail in Section 7.
Other models that are compressible are classical Ising models, Kitaev chains, XY
models, and tranverse-field Ising models (TFIM). All of these are subclasses of TFXY
Hamiltonians obtained by restricting some parameters of the full TFXY model.

2.4. Related work. Besides [22], this paper is closely related to two earlier
papers [7, 23] written by some of us. The results in our current paper were first
conjectured in [7]. There, the fixed-depth circuit property was identified by using
QFAST [42], an optimization-based numerical circuit compiler. This compilation
method becomes challenging for problems larger than 7 qubits because of the expo-
nential dimensionality of the state space and this prompted us to analyze the problem
in more detail. Our analysis presented in the current paper resulted in a constructive
proof of the fixed-depth property (Section 5) for all cases conjectured in [7] and a
scalable and accurate circuit compression algorithm that easily handles systems with
O(103) qubits. Furthermore, we improve the circuit depth of the classical Ising model
to O(1) compared to [7]. In [23] the existence of fixed depth circuits for Hamiltonian
simulation is proven through a Cartan decomposition of the Lie algebra generated
by the Hamiltonian. The advantage of our current approach over [23] is that by
compressing an easy to generate Trotter circuit to shallow depth, we avoid having to
optimize the whole circuit at once, which again only scales up to 10 qubits [23]. Fur-
thermore, our results are derived from matrix analysis and our algorithms are exact
up to machine precision.

3. Elementary properties and results. We give an overview of all properties
that we use later in the analysis of the circuit compression algorithm. We start with
the following well-known commutation relations between Pauli matrices:[

σα, σβ
]

= 2iεαβγσ
γ , {α, β, γ} ⊆ {x, y, z},(3.1)

with εαβγ the Levi-Cevita tensor. Kronecker products of two Pauli matrices do com-
mute: [

σα ⊗ σα, σβ ⊗ σβ
]

= 0, α, β ∈ {x, y, z}.(3.2)

Definition 3.1. For α ∈ {x, y, z}, we define a single-spin Pauli-α rotation over
an angle θ as

(3.3) Rα(θ) := exp(−iσα θ/2) = α .
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If the Pauli-α rotation acts on the ith spin, we denote it as Rαi (θ). Similarly, a
two-spin Pauli-α rotation over an angle θ is defined as

(3.4) Rαα(θ) := exp(−iσα ⊗ σα θ/2) = α ,

and denoted as Rααi (θ) if it acts on the nearest-neighbor spins i, i+ 1.

We introduced our diagrammatic notation for single- and two-spin Pauli-rotations
in Definition 3.1. This will be our quantum circuit representation for these unitary
matrices. The vertical direction indicates the spins on which the unitary operations
are performed. The matrix representation of the single- and two-spin Pauli rotations
are given by:

Rx(θ) =

[
c −is
−is c

]
, Rxx(θ) =


c −is

c −is
−is c

−is c

 ,

Ry(θ) =

[
c −s
s c

]
, Ryy(θ) =


c is

c −is
−is c

is c

 ,

Rz(θ) =

[
e−iθ/2

eiθ/2

]
, Rzz(θ) =


e−iθ/2

eiθ/2

eiθ/2

e−iθ/2

 ,
where c = cos(θ/2) and s = sin(θ/2).

A property that we often use implicitly is the mixed product property of the
Kronecker product and the observation that the identity commutes with every matrix:

(A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I),
A

B
=

A

B

(3.5)

Here we have a first illustration of the reversed order of operations in matrix notation
compared to the schematic notation.

The following three lemmas list useful properties of the Pauli rotation matrices
that are directly verified from Definition 3.1 in combination with the commutation
relations (3.1), (3.2), and (3.5). The first lemma provides some useful commutation
relations for Pauli rotation matrices.

Lemma 3.2. For α, β ∈ {x, y, z}, i ∈ {1, . . . , N − 1}, the following commutation
relations hold for the Pauli rotations:

(i) Two-spin rotations of the same type on overlapping spins:

Rααi+1(θ2)Rααi (θ1) = Rααi (θ1)Rααi+1(θ2),
α

α
=

α

α
i

i+1

i+2

θ1 θ2 θ2 θ1
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(ii) Two-spin rotations of different type on the same spins:

Rββi (θ2)Rααi (θ1) = Rααi (θ1)Rββi (θ2), α β = β α
i

i+1

θ1 θ2 θ2 θ1

(iii) Single- and two-spin rotations of the same type on the same spins:

Rαi (θ3)Rαi+1(θ2)Rααi (θ1) = Rααi (θ1)Rαi+1(θ2)Rαi (θ3), α
α

α
=

α

α
α

i

i+1

θ3

θ2 θ1

θ3

θ2θ1

The next lemma shows that rotations of the same type acting on the same spins
can be easily fused together.

Lemma 3.3. Let α ∈ {x, y, z}.
(i) For i ∈ {1, . . . , N}, single-spin Pauli-α rotations acting on the same spins can

be fused or multiplied together:

Rαi (θ2)Rαi (θ1) = Rαi (θ1 + θ2), α α = αi

θ1 θ2 θ1 + θ2

(ii) For i ∈ {1, . . . , N − 1}, two-spin Pauli-α rotations acting on the same spins
can be fused or multiplied together:

Rααi (θ2)Rααi (θ1) = Rααi (θ1 + θ2), α α = α
i

i+1

θ1 θ2 θ1 + θ2

The following result directly follows from the commutativity (3.2).

Lemma 3.4. For α, β ∈ {x, y, z}, α 6= β, 0 ≤ θα, θβ < 4π, we have that

exp
(
−i
(
σα ⊗ σαθα/2 + σβ ⊗ σβθβ/2

))
= exp(−iσα ⊗ σαθα/2) exp(−iσβ ⊗ σβθβ/2),

Rαβ(θα, θβ) = Rαα(θα)Rββ(θβ),

or as a circuit diagram:

α

β
= α β = β α

3.1. Euler decompositions of SU(2). The group SU(2) is given by

(3.6) SU(2) =

{[
α −β̄
β ᾱ

]
: α, β ∈ C, |α|2 + |β|2 = 1

}
,

and it is well-known (see for example [28, Theorem 4.1]) that any element of SU(2) can
be parametrized by three Euler angles. We will refer to this as an Euler decomposition
of SU(2).
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Lemma 3.5. Let α, β ∈ {x, y, z}, α 6= β. Every matrix U ∈ SU(2) can be repre-
sented as:

U = Rα(θ1)Rβ(θ2)Rα(θ3), U = α β α

θ3 θ2 θ1

.(3.7)

The decomposition is unique, except for a set of measure 0, if the angles are restricted
to 0 ≤ θ1 < 2π, 0 ≤ θ2 ≤ π and 0 ≤ θ3 < 4π.

Proof. We give a proof for α = z, β = y, other cases follow from a similar
argument. Direct computation yields:

Rz(θ1)Ry(θ2)Rz(θ3) =

[
e−iθ1/2

eiθ1/2

] [
cos(θ2/2) − sin(θ2/2)
sin(θ2/2) cos(θ2/2)

] [
e−iθ3/2

eiθ3/2

]
,

=

[
cos(θ2/2)e−i(θ1+θ3)/2 − sin(θ2/2)e−i(θ1−θ3)/2

sin(θ2/2)e i(θ1−θ3)/2 cos(θ2/2)e i(θ1+θ3)/2

]
.(3.8)

It is clear that this parametrizes SU(2) and that the Euler angles are unique unless
θ2 = 0, π.

We can turn over an Euler decomposition of SU(2) to its dual decomposition as
shown in the following result.

Lemma 3.6. Let α, β ∈ {x, y, z}, α 6= β. For every set of Euler angles given by
θ1, θ2, θ3 there exists a set of dual Euler angles given by θa, θb, θc such that,

Rα(θ1)Rβ(θ2)Rα(θ3) = Rβ(θa)Rα(θb)R
β(θc), α β α = β α β

θ3 θ2 θ1 θc θb θa

.

The relation between both sets of Euler angles is given by:

(3.9)

tan

(
θa + θc

2

)
= tan

(
θ2

2

)
cos((θ1 − θ3)/2)

cos((θ1 + θ3)/2)
,

tan

(
θa − θc

2

)
= − tan

(
θ2

2

)
sin((θ1 − θ3)/2)

sin((θ1 + θ3)/2)
,

and

(3.10)

tan

(
θ1 + θ3

2

)
= tan

(
θb
2

)
cos((θa − θc)/2)

cos((θa + θc)/2)
,

tan

(
θ1 − θ3

2

)
= − tan

(
θb
2

)
sin((θa − θc)/2)

sin((θa + θc)/2)
.

Proof. We again only give the proof for α = z, β = y, but the result holds in
general. In this case, the left-hand side of Lemma 3.6 is given by (3.8). The right-hand
side is equal to:[

cos(θa/2) − sin(θa/2)
sin(θa/2) cos(θa/2)

] [
e−iθb/2

eiθb/2

] [
cos(θc/2) − sin(θc/2)
sin(θc/2) cos(θc/2)

]
.

As this is an SU(2) matrix, it is determined by its first column. After performing the
matrix products and using some elementary trigonometry relations, we find the first
column to be:

(3.11)
(1, 1) : cos(θb/2) cos((θa + θc)/2)− i sin(θb/2) cos((θa − θc)/2),

(2, 1) : cos(θb/2) sin((θa + θc)/2)− i sin(θb/2) sin((θa − θc)/2).
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The lemma directly follows from setting the first column of this matrix to the first
column of (3.8).

The following two lemmas are closely related to Lemma 3.6.

Lemma 3.7. Let α, β ∈ {x, y, z}, α 6= β, i ∈ {1, . . . , N − 1}. For every set of
Euler angles θ1, θ2, θ3, there exists a set of dual Euler angles θa, θb, θc such that

Rααi (θ1)Rββi+1(θ2)Rααi (θ3) = Rββi+1(θa)Rααi (θb)R
ββ
i+1(θc).

In terms of a diagram this relation is given by:

α

β

α
=

β

α

β

i

i+1

i+2

θ3 θ2 θ1 θc θb θa

The relation between both sets of Euler angles is given by (3.9) and (3.10).

Lemma 3.8. Let α, β ∈ {x, y, z}, α 6= β, i ∈ {1, . . . , N − 1}. For every set of
Euler angles θ1, θ2, θ3, there exists a set of dual Euler angles θa, θb, θc such that

Rααi (θ1)Rβi (θ2)Rααi (θ3) = Rβi (θa)Rααi (θb)R
β
i (θc),

Rααi (θ1)Rβi+1(θ2)Rααi (θ3) = Rβi+1(θa)Rααi (θb)R
β
i (θc),

or as a circuit diagram:

α
β

α =
β

α
βi

i+1
α

β
α =

β
α

β

i

i+1

The relation between both sets of Euler angles is given by (3.9) and (3.10).

Lemmas 3.7 and 3.8 follow from the observation that the matrices involved have
the same group structure as SU(2). We refer the interested reader to [22] for further
details.

4. Classical Ising model. In this section we show, based on the results from
Section 3, that the approximate time-evolution operator from (2.3) can be imple-
mented in a circuit of depth O(1) for Hamiltonians that are known as (classical) Ising
models. The Ising model is a classical Hamiltonian because all the terms in its ex-
pansion commute. This allows for the O(1) depth. The Hamiltonians in Sections 6
and 7 consist of terms that do not commute and are truly quantum. They will require
deeper circuits that are more challenging to compute.

The Hamiltonian for the Ising model is given by,

H(t) =

N−1∑
i=1

Jαi (t)σαi σ
α
i+1 +

N∑
i=1

hαi (t)σαi , α ∈ {x, y, z}.(4.1)

We will use the shorthand notation Hαα+α(t) for this Hamiltonian thereby referring
to its nonzero terms. If we decompose this Hamiltonian in its two-spin and single-
spin interaction, Hαα+α(t) = Hαα(t) + Hα(t), a single time-step in the discretized
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time-evolution operator (2.3) becomes,

Uτ (∆t) = exp(−iHαα
τ ∆t) exp(−iHα

τ ∆t),

= exp

(
−i

N−1∑
i=1

Jαi (tτ )σαi σ
α
i+1 ∆t

)
exp

(
−i

N∑
i=1

hαi (tτ )σαi ∆t

)
,

=

N−1∏
i=1

Rααi (2Jαi (tτ ) ∆t)

N∏
i=1

Rαi (2hαi (tτ ) ∆t).

Since all the terms in Hαα+α(t) commute according to (3.1) and (3.5), we did
not introduce a Trotter error according to (2.2), except for the discretization in time.
Using the commutativity of two-spin Pauli rotations, Lemma 3.2(i), it follows that
we can rearrange the ascending cascades of two-spin Pauli rotations that make up a
single time-step into an even-odd ordering:

N−1∏
i=1

Rααi (2Jαi (tτ )∆t) =
∏

odd i

Rααi (2Jαi (tτ )∆t)
∏

even i

Rααi (2Jαi (tτ )∆t)

α

α

α

α α

α

α

α

=

The time-evolution operator (2.3) for the Ising becomes a horizontal concatenation
of these layers interleaved with layers of single-spin rotations. According to Lemma 3.2
all gates in the circuit commute with each other and according to Lemma 3.3, gates of
the same type that are acting on the same spin(s) can be fused together. This circuit
compression method for Ising models is illustrated in Figure 1.

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

=

θ:,1 θ:,2 θ:,nt

∑
i θ:,iφ:,1 φ:,2 φ:,nt

∑
i φ:,i

Fig. 1. Compression to a circuit of depth O(1) for time-evolution of an Ising model Hamiltonian
as in (4.1).

The parameters of the compressed O(1) circuits are computed by straightforward
numerical integration of the parameters of the time-dependent Ising Hamiltonians.
This requires O(ntN) operations for disordered Ising Hamiltonians and only O(nt)
for ordered Ising Hamiltonians. In case the Ising Hamiltonian is time-independent,
the complexity can be further reduced to O(log2(nt)N) and O(log2(nt)) for respec-
tively disordered and ordered Ising Hamiltonians by applying the merging algorithm
recursively.
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5. Constant-depth circuits with fusion and turnover operations. In this
section we present a second algorithm for computing constant-depth circuits for time-
evolution by means of compressing longer circuits. The difference with the circuits
presented in Section 4 is the type of operations that we can perform on the gates in the
circuit. We constructively show that quantum circuits comprised of non-commuting
two-spin gates which allow for a fusion and turnover operation can efficiently be
compressed to a circuit with depth O(N). To show this, we use circuit transformations
that are equivalent to transformations used in core chasing algorithms for eigenvalue
problems [3, 39,40].

The turnover operation acts locally on a pattern of three two-spin gates and
changes a ∨-shaped pattern to a ∧-shaped pattern or vice versa:

=

Lemma 3.7 was a first example of a turnover operation for two-spin Pauli rotations. A
useful operation that we can do with the turnover operation is illustrated in Figures 2a
to 2e. It pulls a free gate through an ascending cascade of gates which moves the
incoming gate on position down.

(a) (b) (c) (d)

(e) (f)

1

2

(g)

Fig. 2. (a) A free gate is moved in from the left side of the ascending cascade of three gates,
(b) this gives a ∨-shaped pattern of gates that are ready for a turnover, (c) the turnover operation
results in a free gate on the right side of the ascending cascade that has moved one position down,
to achieve final configuration shown in (d). Steps (a)-(d) are summarized with the concise notation
in (e). (f) A free gate can be moved from right to left, and (g) the order of turnover operations
matters when moving multiple gates through a cascade.

An analogous operation can be performed for a free gate and a descending cascade
of gates, or for a free gate on the right side of an ascending (Figure 2f) or descending
cascade of gates. If we move multiple gates through a descending or ascending cascade,
the order of turnover operations matters as illustrated in Figure 2g.

5.1. Square and triangle circuits. We define two types of circuits with fixed
patterns of two-spin gates: a circuit with a square pattern of gates and with a triangle
pattern of gates.

Definition 5.1 (Square Circuit). A square circuit on N spins has N vertical
layers that are alternatingly starting from the first and second spin.
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Definition 5.2 (Triangle Circuit). A triangle circuit on N spins has N − 1
descending cascades with the ith descending cascade starting from spin N − i and
containing i two-spin gates.

Figure 3 illustrates square and triangular circuits for the odd and even number
of spins. The number of gates in a square circuit is equal to the number of gates in a
triangle pattern and scales quadratically as N(N − 1)/2.

(a) Square for 5 spins (b) Triangle for 5 spins

(c) Square for 6 spins (d) Square→Triangle, step 1

1

2

3

(e) Square→Triangle, step 2

4

(f) Triangle for 6 spins

Fig. 3. (a) Square and (b) triangle circuits for systems with 5 spins. (c) A square circuit
on 6 spins and (d) the same square circuit with additional open space. (e) The three gates in the
second ascending cascade of the square circuit are moved over to the bottom half using a total of
6 turnover operations, (f) finally the first gate is moved from the top left to bottom right using 4
turnover operations resulting in a triangle circuit for 6 spins.

Using the turnover operation, we can transform a square circuit into a triangle
circuit. The algorithm for 6 spins is summarized in Figure 3 and generalizes to any
even number of spins. In Figure 3d we create sufficient open space in the square circuit
such that we can use the turnover operation to move the top half of gates in the square
circuit over to the bottom half in Figure 3e, thereby creating the triangle circuit in
Figure 3f. With minor alterations the algorithm to convert a square to a triangle
circuit can be extended to systems with an odd number of spins. Furthermore, all
the turnover operations are reversible, which means that we can easily transform a
triangle circuit back to a square circuit by reversing the algorithm. The computational
complexity to go from a square to a triangle circuit on N spins or vice versa scales as
O(N3).

5.2. Merging gates with a triangle circuit. We will now proceed to show
that a triangle is the minimal circuit for two-spin gates that allow for a turnover and
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fusion operation. This holds because every two-spin gate on either the left or right side
of a triangle circuit can be repeatedly turned over with gates in the triangle circuit
until it eventually can be fused with a gate at the bottom of the triangle circuit. This
is illustrated in Figures 4a and 4b for a 5-spin triangle circuit with a cascade of gates
on both the left and right side.

For a Trotter-based implementation of a simulation circuit, the gates often come in
vertical layers that act alternating on even and odd spins. In that case the annihilation
of the gates acting on even spins can all be done in parallel, and the same is true for
the gates acting on odd spins. This is shown in Figures 4c and 4d.

1

2

3

4

(a)

1

2

3

4

(b)

1

1

1

(c)

2

2

(d)

Fig. 4. (a) Sequential annihilation of an ascending sequence of gates positioned to the left of a
5-spin triangle circuit through repeated turnover and fuse operations, (b) similar for a sequence of
gates on the right of a 5-spin triangle circuit. A vertical layer of gates can be merged in parallel with
a 6-spin triangle circuit by first merging all gates acting on odd spins (c) and afterwards merging
the remaining gates on the even spins (d).

The average computational cost of merging a single gate with a triangle circuit
scales as O(N), and the cost of merging a complete vertical layer of gates with a
triangle is O(N2). There is no difference in computational complexity between dis-
ordered and ordered Hamiltonians, both require O(ntN

2) operations to annihilate nt
time-step. For time-independent Hamiltonians, we can again reduce the complexity
to O(log2(nt)N

2) by using the merging algorithm recursively.

5.3. Circuit compression algorithms. The complete circuit compression al-
gorithms are outlined in Algorithm 5.1 for time-dependent Hamiltonians and in Al-
gorithm 5.2 for the time-independent case. The input to Algorithm 5.1 is a Trotter
circuit C on N spins with nt time-steps or 2nt vertical layers. We assume that
nt > N/2 as otherwise minimal depth is not reached. In line 1, we take the first
N vertical layers out of C and transform it to triangle representation C ′. The for
loop runs over the remaining layers and merges them into C ′ using the approach of
Figures 4c and 4d. In the end C ′ is transformed back to a square circuit of depth N
that is equivalent to the input circuit C with depth 2nt.

In the time-independent case, we first create a minimal depth square C ′ from the
fixed time-step CTS in line 2. This square is again transformed to a triangle that is
repeatedly merged with itself in line 6 by splitting the triangle into cascades and using
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Algorithm 5.1 Compression of time-dependent Hamiltonians

Data: Trotter circuit C on N spins with nt time-steps, nt > N/2.
Result: Compressed N ×N Trotter circuit C ′ equivalent to C.

1 C ′ ←− TriangleCircuit(C[:, 1:N ])
2 for l← N + 1 to 2nt do
3 MergeLayer(C ′, C[:, l])
4 end
5 C ′ ←− SquareCircuit(C ′)

the method from Figure 4b. This doubles the total simulation time in every loop.
Both algorithms end with a conversion to square format as this form has a shal-

lower circuit depth compared to the triangle format. This makes square circuits better
suited for NISQ devices, even though both circuits have the same number of gates.

Algorithm 5.2 Compression of time-independent Hamiltonians

Data: Trotter circuit CTS for a single time-step, total number of time-steps nt =
2τN/2.

Result: N ×N Trotter circuit C ′ for nt time-steps.

// Fill C ′ to square form with N/2 time-steps CTS.
1 for l← 1 to N/2 do
2 C ′[:, l:l+1]←− CTS
3 end
4 C ′ ←− TriangleCircuit(C ′)
// Repeatedly merge C ′ with itself up to total time-steps of 2τN/2.

5 for t← 1 to τ do
6 MergeTriangle(C ′, C ′)
7 end
8 C ′ ←− SquareCircuit(C ′)

6. Kitaev chains and XY models. In this section we show that two classes of
closely related Hamiltonians, respectively known as Kitaev chains and XY models, can
be implemented with gates that satisfy the fusion and turnover conditions introduced
in the previous section. It follows that the discretized time-evolution operator (2.3)
can be implemented in a quantum circuit with depth O(N) for these models.

6.1. Kitaev chains. A Kitaev chain is a Hamiltonian of the form

H(t) =

N−1∑
i=1

Jαi
i (t)σαi

i σ
αi
i+1,(6.1)

with the restriction that two neighboring spins i and i + 1 have different type of
interaction, i.e. αi 6= αi+1. For example,

H(t) = Jy1 (t)σy1σ
y
2 + Jx2 (t)σx2σ

x
3 + Jz3 (t)σz3σ

z
4 + Jx4 (t)σx4σ

x
5 ,(6.2)
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is a 5-spin Kitaev chain. Using a Trotter decomposition in even and odd terms, we
get the following approximation for a single time-step:

Uτ (∆t) = exp(−iH(t)∆(t)),

= exp(−iHeven(t)∆(t)) exp(−iHodd(t)∆(t)) +O(∆t2),

≈ Rxx2 (2Jx2 (tτ )∆t)Rxx4 (2Jx4 (tτ )∆t)Ryy1 (2Jy1 (tτ )∆t)Rzz3 (2Jz3 (tτ )∆t).

This is illustrated in a circuit diagram on the left side of Figure 5. A square circuit for
the Hamiltonian (6.2) that satisfies Definition 5.1 is shown in the middle of Figure 5.
It consists of two complete time-steps and a single vertical layer of gates acting on the
odd spins. Using the turnover operation from Lemma 3.7, we can use the algorithm
from Section 5.1 to transform this square circuit to the equivalent triangle circuit
shown on the right of Figure 5. Remark that the number of gates of each type is
changed due to Lemma 3.7, but the type of gate acting on every pair of spins is pre-
served. Afterwards, we can use the turnover and fusion operation from Lemma 3.3(ii)
to compress the circuit to constant depth by means of Algorithm 5.1 or Algorithm 5.2.
This shows that we can always compress the circuit for the simulation of a Kitaev to
square or triangle form.

y

z

x

x

(a)

y

z

x

x

y

z

x

x

y

z

(b)

x

z

x

y

x

z

x

x

z

x

(c)

Fig. 5. (a) A single time-step for the Kitaev chain (6.2), (b) a square circuit for this Kitaev
chain, and (c) a triangle circuit for this Kitaev chain.

6.2. XY models. The class of XY Hamiltonians is given by

H(t) =

N−1∑
i=1

Jαi (t)σαi σ
α
i+1 + Jβi (t)σβi σ

β
i+1, α, β ∈ {x, y, z},(6.3)

where α 6= β and all parameters Jαi , J
β
i are nonzero. This class consists of XY, XZ,

and YZ Hamiltonians for the appropriate choices of α and β. If we split (6.3) in
H(t) = Hαβ(t) +Hβα(t) with

Hαβ(t) =
∑
odd i

Jαi (t)σαi σ
α
i+1 +

∑
even i

Jβi (t)σβi σ
β
i+1,

Hβα(t) =
∑
odd i

Jβi (t)σβi σ
β
i+1 +

∑
even i

Jαi (t)σαi σ
α
i+1,

we see that we have rewritten it as a sum of two regular Kitaev chains. Using the
Trotter decomposition and circuit compression described in Section 6.1 for each of
the two Kitaev chains Hαβ(t) and Hβα(t), we find that we can get a circuit for H(t)
as a product of two triangle circuits for the Kitaev chain. This is illustrated in the
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first row of Figure 6 for the case of the XY model. It follows from the commutativity
properties (i) and (ii) of Lemma 3.2 that we can combine these two Kitaev chains
into one triangle circuit, as shown on the second row of Figure 6. The gates in this
circuit are two-axes rotation gates defined in Lemma 3.4, and are a product of Rxx

and Ryy rotations. Because of the commutativity of the two Kitaev chains, they can
be simulated separately. However, for certain types of quantum hardware, a product
of Rxx and Ryy rotations can be evaluated at approximately the same cost as a single
two-spin Pauli rotation [7]. In that case it makes sense to simulate the two Kitaev
chains simultaneously.
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y

x

y

x

y

y

x

y

(a)
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x
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y

x

(b)
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y
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y

x

y

x

y

x

y

x

y

x

y

x

y

x

y
x

y

(c)

x

z

y

z

(d)

Fig. 6. Triangle circuits for the Kitaev chains HXY (a) and HY X (b). (c) Combination of
two Kitaev chains in a single triangle circuit for the complete XY model, (d) two-spin gates for XZ
and YZ models.

The elementary gates for XY, XZ and YZ Hamiltonians are listed in Figures 6c
and 6d. Within each class, these gates can be fused and turned over by separating
them into their two-spin Pauli rotations and using the results from Section 3.

7. Transverse-field XY and Ising models. In this section, we discuss the
most general class of Hamiltonians for which our compression algorithm works. These
are the TFXY Hamiltonians already introduced in (2.5). In Section 7.1 we briefly
discuss the case of the full TFXY model, but more details about the implementation
of the fusion and turnover operation are deferred to Section 8. Section 7.2 introduces
the transverse-field Ising model (TFIM) as a special case of TFXY that can be treated
separately under some conditions.

7.1. TFXY model. The two-spin gates for TFXY, TFXZ, and TFYZ Hamil-
tonians are shown in Figure 7. The existence of the TFXY fusion and turnover
operations is proven in [22] by considering the Hamiltonian algebras of 2- and 3-spin
TFXY models and their Cartan decompositions. It is further shown that the TFXY
fusion requires two turnovers of Euler decompositions of SU(2), Lemma 3.6, and that
a TFXY turnover can be done by invoking this lemma 32 times. In our compression
algorithms we use more efficient implementations of the fusion and turnover opera-
tions described in Section 8. With these two operations, we can use Algorithms 5.1
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and 5.2 to compress TFXY circuits.
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y

z

z

y

y
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y
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x

x

y

z

x

x

Fig. 7. Two-spin gates for TFXY, TFXZ, and TFYZ Hamiltonians.

7.2. TFIM model. The transverse-field Ising model is a special case of the
TFXY Hamiltonian with only one non-zero coupling term,

H(t) =

N−1∑
i=1

Jαi (t)σαi σ
α
i+1 +

N∑
i=1

hβi (t)σβi , α, β ∈ {x, y, z},(7.1)

where α 6= β. The most frequently studied cases in the literature are α = x, β = z,
and α = z, β = x. We present our discussion for the former case, but all results
remain valid for other choices.

One straightforward approach for compressing a TFIM circuit is to use the more
general TFXY gates from Section 7.1 and set the Jy parameters to zero. While this
leads to a valid compression algorithm, the Jy parameters in the triangle circuit will
become nonzero throughout the procedure as the gate

z

z
x

z

z

doesn’t allow for fusion and turnover operations.
An alternative approach is to use Lemma 3.8 as a turnover operation for a TFIM

Hamiltonian. In this setting, the turnover simultaneously operates on one- and two-
spin gates and the compression algorithm appears to be different from the algorithms
in Section 5, but it turns out that they are completely analogous. We illustrate the gist
of the idea for a small example that draws a parallel between a 6-spin Kitaev chain and
a 3-spin TFIM circuit in Figure 8. We see that we can map the two-spin Rzz rotations
from the Kitaev chain to the one-spin Rz rotations in the TFIM Hamiltonian and the
Rxx rotations are mapped to Rxx rotations that mutually commute (Lemma 3.2).
Another interpretation is that every pair of consecutive spins in the Kitaev chain is
combined to a single spin in the TFIM circuit. It follows from this mapping that we
can use the algorithms from Section 5 together with Lemmas 3.3 and 3.8 to compress
TFIM circuits and transform them from square to triangle or vice versa. The total
number of gates for a minimal representation of an N -spin TFIM circuit is N(2N−1),
N2 of the gates are one-spin Pauli rotations, N(N − 1) are two-spin Pauli rotations.

Depending on the details of the quantum hardware, it is important to remark that
the cost of a single two-spin Pauli-X rotation can sometimes be considered approxi-
mately the same as the cost of a two-spin XY rotation since both require the same
number of two qubit CNOT gates [7]. These are the main source of errors on many
devices and in that case we expect the TFXY mapping to perform better. However,
for other devices the Rαα transformations can be supported natively and the TFIM
mapping might be preferable.

8. Implementation details. We describe some relevant details of the numerical
implementations of our fusion and turnover algorithms.
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(a) Kitaev square
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(b) Kitaev triangle
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(c) TFIM square
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(d) TFIM triangle

Fig. 8. (a) A square circuit for a Kitaev chain with 2N = 6 spins and (b) the corresponding
triangle circuit. These can be mapped to a (c) square circuit for a TFIM Hamiltonian for N = 3
spins and (d) a triangle circuit for the TFIM Hamiltonian.

8.1. Storage. All Pauli rotations throughout the compression algorithms for
Ising, Kitaev chains, XY, and TFIM models are stored by two doubles storing cos(θ/2)
and sin(θ/2). This avoids the numerical evaluation of (inverse) trigonometric func-
tions, and instead we can rely on Givens rotation matrices in the turnover operations.

For the fusion of two compatible 1- or 2-spin Pauli rotations (Lemma 3.3), we
simply compute the first column of a product of two 2× 2 matrices.

8.2. Turnover of SU(2). The angles for an SU(2) turnover are given by (3.9)
and (3.10). Numerical evaluation of these formulas requires (inverse) trigonometric
functions which can be avoided and replaced by Givens rotations leading to ideal
numerical roundoff properties [3].

As input to our SU(2) turnover routine, we have three Euler angles stored as[
cos(θa/2) sin(θa/2)

]
,

[
cos(θb/2) sin(θb/2)

]
,

[
cos(θc/2) sin(θc/2)

]
,(8.1)

or, in short, [ca, sa], [cb, sb], and [cc, sc]. Without loss of generality, we form the first
column of the corresponding SU(2) matrix (3.6) under the assumption that the Euler
angles correspond to a YZY parametrization (3.11), Ry(θ1)Rz(θ2)Ry(θ3). The (1, 1)
element, α = αr + iαi, and the (2, 1) element, β = βr + iβi, of the SU(2) matrix are
in that case:

(8.2)
αr = cb(cacc − sasc), αi = −sb(cacc + sasc),

βr = cb(sacc + casc), βi = −sb(sacc − casc),

which we directly compute from our input Euler angles (8.1). The dual Euler angles
that we have to compute form a ZYZ decomposition (3.8) of the same SU(2) matrix,
so they have to sayisfy:

(8.3)
αr = c2(c1c3 − s1s3), αi = −c2(s1c3 + c1s3),

βr = s2(c1c3 + s1s3), βi = s2(s1c3 − c1s3).

It follows from (3.8) and (8.3) that we can compute c2 = |α| =
√
α2
r + α2

i and s2 =

|β| =
√
β2
r + β2

i , which is properly normalized as |α|2 + |β|2 = 1 by (3.6).
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Next, we get from (8.3) that we can compute [c1, s1] and [c3, s3] from two Givens
rotation matrices that introduce zeros in, respectively, v1 or v′1, and v3 or v′3,

(8.4)

v1 =

[
αr/c2 + βr/s2

−αi/c2 + βi/s2

]
, v′1 =

[
−αi/c2 − βi/s2

βr/s2 − αr/c2

]
,

v3 =

[
−αi/c2 + βi/s2

−αr/c2 + βr/s2

]
, v′3 =

[
αr/c2 + βr/s2

−αi/c2 − βi/s2

]
.

To ensure the lowest relative error, we choose the vector with largest norm between
v1 and v′1, and similar for v3 and v′3. It follows from the roundoff properties of Givens
rotation matrices [3] that this algorithm computes the dual Euler angles [c1, s1], [c2, s2]
and [c3, s3] to high relative accuracy.

8.3. TFXY gates. A TFXY gate is parametrized by six angles and has the
following matrix representation,

(8.5) UTFXY =
z

z

x

y

z

z

θ1

θ2

θ3

θ4

θ5

θ6

=


α −δ̄

β −γ̄
γ β̄

δ ᾱ

 ,
where the matrix entries are given by

(8.6)

α = cos((θ3 − θ4)/2) e−i(θ1+θ2+θ5+θ6)/2,

β = cos((θ3 + θ4)/2) e−i(θ1−θ2+θ5−θ6)/2,

γ = −i sin((θ3 + θ4)/2) e−i(θ1−θ2−θ5+θ6)/2,

δ = −i sin((θ3 − θ4)/2) e−i(θ1+θ2−θ5−θ6)/2.

It can be shown that both the outer 2× 2 matrix
[
α −δ̄
δ ᾱ

]
and the inner 2× 2 matrix[

β −γ̄
γ β̄

]
form SU(2) by mapping the matrix elements to two independent ZYZ decom-

positions (3.8). In our implementation, we store a TFXY gate by the four complex
numbers α, β, γ, and δ which can be easily computed form the angles via (8.6). The
values α, β, γ, and δ can easily be converted back to a parametrization with six angles.

Unitary 4×4 matrices that have the nonzero pattern of the matrix in (8.5) are also
known as matchgates [7]. Matchgates can be permuted to a block-diagonal matrix by
the following permutation matrix:

(8.7) P⊕ =


1

1
1

1

 , PT⊕ =


1

1
1

1

 .
We get that,

(8.8) P⊕


α −δ̄

β −γ̄
γ β̄

δ ᾱ

PT⊕ =


α −δ̄
δ ᾱ

β −γ̄
γ β̄

 =

[
α −δ̄
δ ᾱ

]
⊕
[
β −γ̄
γ β̄

]
.

In what follows, we use the notation TFXY(A,B), where A,B ∈ SU(2), to denote the
TFXY gate with its outer 2× 2 SU(2) matrix equal to A and its middle 2× 2 SU(2)
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matrix equal to B. With this notation, we can rewrite (8.8) in schematic notation as

PT⊕ TFXY(A,B) P⊕ = A⊕B .

The fusion of two TFXY gates can thus simply be computed as the matrix product
of two 2× 2 matrices:

TFXY(A,B) = TFXY(A1, B1) TFXY(A2, B2), ⇐⇒ A = A1A2, B = B1B2.

Two sets of three TFXY gates satisfy a turnover relation if,

(8.9)
TFXY(A,B) TFXY(E,F )

TFXY(C,D)
=

TFXY(W,X)

TFXY(U, V ) TFXY(Y,Z)
.

We will present how we numerically compute the turnover transformation for TFXY
matrices. For every A,B ∈ SU(2), we have that,

(8.10)
PT⊕ TFXY(A,B) P⊕

=
A⊕B

= A⊕B ⊕A⊕B,

which is a block-diagonal matrix with repeated blocks on the diagonal. Similarly,
from carrying out the matrix multiplication, we find that,

(8.11)
TFXY(A,B)

PT⊕ P⊕
=


α −δ̄
β −γ̄
α −δ̄
β −γ̄
γ β̄

δ ᾱ
γ β̄

δ ᾱ

 ,

for A =
[
α −δ̄
δ ᾱ

]
and B =

[
β −γ̄
γ β̄

]
.

It follows from (8.10) and (8.11) that in the permuted basis, I2 ⊗ P⊕, the TFXY
turnover equation (8.9) becomes a matrix equation involving matrices of the following
nonzero structure:

A,B C,D E,F

=

U, V W,X Y,Z

The squares and circles indicate the elements from each SU(2) matrix that make up
the TFXY gate. To go from the factorization on the left-hand side to the factorization
on the right-hand side (∨ to ∧), we form the product of the three unitaries on the
left-hand side and block-divide this unitary matrix Q as

Q11 Q14

Q22 Q23

Q32 Q33

Q41 Q44

 =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

.
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This unitary matrix has a lot of structure that we exploit. The four 2×2 matrix pairs
(Q11, Q33), (Q22, Q44), (Q23, Q41), (Q14, Q32) are all of the form:

(8.12)

([
a b
c d

]
,

[
d̄ −c̄
−b̄ ā

])
.

This means that we only have to compute four 2×2 matrices to construct Q. Further-
more, it can be shown that matrix pairs of this form can always be simultaneously
(anti-)diagonalized. A second property that we use, is that the four diagonal blocks
are of equal norm, and similarly the four blocks on the anti-diagonal are of equal
norm. To compute the turnover, we have to compute the following four coupled
matrix decompositions:

U∗(Q11, Q33)Y ∗ = ([w11
x11

] , [ x22
w22

]) , V ∗(Q22, Q44)Z∗ = ([w11
x11

] , [ x22
w22

]) ,

U∗(Q14, Q32)Z∗ = ([ w12
x12

] , [ x21
w21

]) , V ∗(Q23, Q41)Y ∗ = ([ w12
x12

] , [ x21
w21

]) ,

in such a way that the ordering of the (anti-)diagonalizations is consistent and that
they share the same eigenvectors.

Our numerical algorithm depends on the ratio between ‖Qi,i‖2 and ‖Qk,5−k‖2. If
‖Qi,i‖2 ≤ ‖Qk,5−k‖2, we start with computing SU(2) matrices U and Y that diagonal-
ize (Q11, Q33). Keeping Y fixed, we compute V that anti-diagonalizes (Q23, Q41)Y ∗.
Finally keeping V fixed, we compute Z that diagonalizes V ∗(Q22, Q44). If ‖Qi,i‖2 >
‖Qk,5−k‖2, we start with computing SU(2) matrices V and Y that anti-diagonalize
(Q23, Q41). Keeping Y fixed, we compute U that diagonalizes (Q11, Q33)Y ∗. Finally
keeping U fixed, we compute Z that anti-diagonalizes U∗(Q14, Q32).

Afterwards, the SU(2) matrices W and X are determined from the (anti-)diagonal
elements of the (anti-)diagonalized matrices. To compute the turnover in the other
direction (∧ to ∨), from the right-hand side of (8.9) to the left-hand side, we simply
interchange the roles of the first and third spins. This is just a permutation of the
8 × 8 unitary. During our extensive numerical tests we observed that this algorithm
always computes the TFXY turnover up to high relative accuracy.

9. Numerical examples. All numerical experiments are performed on a AMD
Ryzen Threadripper 3990X 64-Core Processor @ 2.9 GHz with 256 GB RAM. Our
experiments can be reproduced with the F3C++ code [12,37].

For our first numerical experiment, we compressed Trotter circuits for XY and
TFXY models with randomly generated angles sampled from the standard normal
distribution to benchmark the speed and accuracy of our algorithms. Figure 9 shows
the cubic scaling of transforming the circuit between square and triangle representa-
tion and back, and the quadratic scaling of merging a time-step with a triangle circuit.
Both algorithms easily scale up to O(103) spins, which is well beyond the capabilities
of current quantum hardware. The compression of a full TFXY model, based on the
simultaneous diagonalization algorithm for the turnover operation, is about a factor
of 10 slower than compressing an XY model, which uses two SU(2) turnovers. The
TFXY turnover can alternatively be implemented with 32 SU(2) turnovers [22], hence
the simultaneous diagonalization approach is 1.5 times faster. Figure 10 displays the
Frobenius norm difference between the unitary of the full Trotter circuit Qf , and the
unitary of the compressed Trotter circuit Qc in function of the number of time-steps
for systems up to 10 spins. We observe that our compression algorithm achieves high
accuracy in all cases and that the rounoff error grows sub-linearly.

For our final numerical experiment, we report the error on the compression al-
gorithms for the adiabatic state preparation experiment presented in [22]. In this
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Fig. 9. Scaling for compression of XY and TFXY models in function of number of spins.

100 101 102 103 104
10−16

10−12

10−8

10−4

100

XY

O(nt)

number of time-steps nt

‖Q
c
−
Q

f
‖ F

6 spins
8 spins

10 spins

100 101 102 103 104
10−16

10−12

10−8

10−4

100

TFXY

O(nt)

number of time-steps nt

‖Q
c
−
Q

f
‖ F

6 spins
8 spins

10 spins

Fig. 10. Maximum Frobenius error on 100 randomly generated compressed circuits (Qc) com-
pared to full circuits for XY and TFXY models in function of number of time-steps.

experiment, the ground state of a classical Ising model, that is easy to prepare, is
evolved adiabatically to the ground state of a TFIM Hamiltonian. The experiment
in [22] is performed for a 5-spin system with two different time-steps ∆t, 0.05 and 0.25,
and nt respectively chosen as 1200 and 240 such that the final simulation time is the
same. The first option leads to a significantly smaller Trotter error but to a slightly
higher numerical error on the compressed circuit due to roundoff accumulation as five
times more time-steps have to be merged. The total error remains small in all cases.

10. Conclusions. We presented a fast and accurate quantum circuit synthesis
algorithm that is suitable for compressing circuits to simulate certain classes of spin
Hamiltonians known as free fermionizable models on current generation quantum
devices. Our algorithms are based on matrix factorizations and easily scale up to
O(103) spins as we make use of localized circuit transformations that allow us to keep
the 2N×2N unitary matrix in factorized form throughout the algorithm. Furthermore,
we can make the Trotter error as small as required without increasing the circuit
depth. Numerical experiments showed that our turnover routines based on Givens
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Fig. 11. Frobenius error on compressed circuit (Qc) compared to full circuits (Qf ) for the
adiabatic state preparation experiment presented in [22].

rotation matrices and simultaneous (anti-)diagonalization behave backward stable.
Our approach is not limited to Hamiltonian simulation, any quantum circuit partially
comprised of the gates that we discussed admits local fusion and turnover operations.
We provide reference implementations that are readily available and can be used to
improve existing quantum compilers and transpilers.
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