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Abstract. In this paper we propose a novel class of methods for high order accurate integration
of multirate systems of ordinary differential equation initial-value problems. The proposed methods
construct multirate schemes by approximating the action of matrix ϕ-functions within explicit ex-
ponential Rosenbrock (ExpRB) methods, thereby called Multirate Exponential Rosenbrock (MERB)
methods. They consist of the solution to a sequence of modified “fast” initial-value problems, that
may themselves be approximated through subcycling any desired IVP solver. In addition to prov-
ing how to construct MERB methods from certain classes of ExpRB methods, we provide rigorous
convergence analysis of these methods and derive efficient MERB schemes of orders two through
six (the highest order ever constructed infinitesimal multirate methods). We then present numerical
simulations to confirm these theoretical convergence rates, and to compare the efficiency of MERB
methods against other recently-introduced high order multirate methods.

1. Introduction. In this paper, we consider numerical methods to perform
highly accurate time integration for multirate systems of ordinary differential equation
(ODE) initial-value problems (IVPs). The primary characteristic of these problems is
that they are comprised of two or more components that on their own would evolve
on significantly different time scales. Such problems may be written in the general
additive form

(1.1) u′(t) = F (t, u(t)) := Ff (t, u) + Fs(t, u), t ∈ [t0, T ], u(t0) = u0,

where Ff and Fs contain the “fast” and “slow” operators or variables, respectively.
Typically, either due to stability or accuracy limitations the fast processes must be
evolved with small step sizes; however the slow processes could allow much larger
time steps. Such problems frequently arise in the simulation of “multiphysics” sys-
tems, wherein separate models are combined together to simulate complex physical
phenomena [7]. While such problems may be treated using explicit, implicit, or mixed
implicit-explicit time integration methods that evolve the full problem using a shared
time step size, this treatment may prove inefficient, inaccurate or unstable, depend-
ing on which time scale is used to dictate this shared step size. Historically, scientific
simulations have treated such problems using ad hoc operator splitting schemes where
faster components are “subcycled” using smaller time steps than slower components.
Schemes in this category include Lie–Trotter [20] and Strang–Marchuk [19, 27] tech-
niques, that are first and second-order accurate, respectively. In recent years, however,
methods with increasingly high orders of accuracy have been introduced. Our partic-
ular interest lies in methods allowing so-called “infinitesimal” formulations, wherein
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the fast time scale is assumed to be solved exactly, typically through evolution of a
sequence of modified fast IVPs,

v′(τ) = Ff (τ, v) + g(τ), τ ∈ [τ0, τf ], v(τ0) = v0,

and where the forcing function g(τ), time interval [τ0, τf ], and initial condition v0 are
determined by the multirate method to incorporate information from the slow time
scale. In practice, however, these fast IVPs are solved using any viable numerical
method, typically with smaller step size than is used for the slow dynamics. While
both the legacy Lie–Trotter and Strang–Marchuk schemes satisfy this description,
each uses g(τ) = 0, and only couple the time scales through the initial condition v0.
The first higher-order infinitesimal multirate methods were the multirate infinitesimal
step (MIS) methods [25, 29], that allowed up to third order accuracy. These have been
extended by numerous authors in recent years to support fourth and fifth orders of
accuracy, as well as implicit or even mixed implicit-explicit treatment of the slow time
scale [1, 3, 14, 23, 26].

Most higher-order (≥ 3) infinitesimal methods, including MIS, relaxed MIS [26],
extended MIS [1], multirate infinitesimal GARK [22, 23], and implicit-explicit multi-
rate infinitesimal GARK [3], place no restrictions on the operators Ff and Fs. The
corresponding order conditions for these methods are rooted in partitioned Runge–
Kutta theory, to the end that the number of order conditions grows exponentially
with the desired order of accuracy, to the effect that none of these methods have been
proposed with order of accuracy greater than four.

In previous work, we presented an alternate approach for deriving infinitesimal
multirate methods that was based on exponential Runge–Kutta (ExpRK) theory,
named multirate exponential Runge–Kutta (MERK) methods [14]. A particular ben-
efit of this theory is that exponential Runge–Kutta methods require fewer order con-
ditions than partitioned Runge–Kutta methods; however, to leverage this theory,
MERK methods require that the fast time scale operator is autonomous and that it
depends linearly on the solution u, i.e., these consider the IVP

(1.2) u′(t) = F (t, u(t)) := Lu+N (t, u), t ∈ [t0, T ], u(t0) = u0,

where the “fast” and “slow” components are Ff (t, u) = Lu and Fs(t, u) = N (t, u),
respectively. With this restriction in place, however, MERK methods have been
proposed with orders of accuracy up to five.

In this work, we address the case of a non-autonomous and nonlinear fast time
scale operator Ff (t, u) by proposing to use a dynamic linearization approach that
updates the operators L and N within each time step. We then leverage this dy-
namic linearization approach through building multirate schemes from exponential
Rosenbrock (ExpRB) methods. This new class of multirate schemes, called Multi-
rate Exponential Rosenbrock (MERB) methods, approximates the action of matrix
ϕ-functions within explicit ExpRB methods, and consist of solving a sequence of
modified linear ODE-IVPs, which can be integrated using any desired ODE solvers.
Moreover, we establish an elegant convergence theory for MERB methods, allowing us
to determine a minimum order of accuracy for the numerical methods needed for solv-
ing the corresponding fast time scale IVPs. In addition to this theory, we generalize
the coefficients for a number of high-order ExpRB methods and exploit their parallel
stage structure to derive efficient multirate methods of very high order (including
the first-ever infinitesimal multirate method of order six), with optimized numbers
of modified fast IVPs. Our numerical experiments show that these new proposed
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MERB schemes are uniformly the most efficient when considering slow function calls
(this is particular of interest for multirate systems where the fast component is much
less costly to compute than the slow component), and thus are very competitive in
comparison with recently developed high order multirate methods such as MERK and
MRI-GARK.

The remainder of this paper is organized as follows. We first present the structure
of ExpRB methods (Section 2.1). Then in Section 2.2 we interpret the corresponding
ExpRB internal stages and time step approximations as exact solutions to modi-
fied “fast” initial-value problems, thereby deriving MERB methods. In Section 2.3
we present rigorous convergence analysis for this family of newly-proposed methods.
Then in Section 2.4 we construct specific multirate methods from this family for prac-
tical use, and discuss techniques for their numerical implementation in Section 2.5.
In Section 3 we provide detailed numerical results to compare the performance of the
proposed methods with the recent MERK methods of orders three through five, as
well as with third and fourth order explicit MRI-GARK methods. Finally, we provide
concluding remarks and discuss avenues for future research in Section 4.

2. Multirate Exponential Rosenbrock Methods.

2.1. Exponential Rosenbrock schemes. ExpRB methods are constructed by
linearizing the vector field F (t, u) at each step along the numerical solution (tn, un),

(2.1) u′(t) = F (t, u(t)) = Jnu(t) + Vnt+Nn(t, u(t))

with

(2.2) Jn =
∂F

∂u
(tn, un), Vn =

∂F

∂t
(tn, un), Nn(t, u) = F (t, u)− Jnu− Vnt.

We note that if (1.1) is in fact autonomous, i.e., u′(t) = F (u(t)), then this linearization
simplifies since Vn = 0 and Nn(t, u) = Nn(u) = F (u)− Jnu.

One can represent the exact solution to (2.1) at time tn+1 = tn +H as in [12] by
applying the variation-of-constants formula (a.k.a., Duhamel’s principle),

(2.3)

u(tn+1) = eHJnu(tn) +

∫ H

0

e (H−τ)Jn
(
Vn(tn + τ) +Nn(tn + τ, u(tn + τ))

)
dτ

= eHJnu(tn) +Hϕ1(HJn)Vntn +H2ϕ2(HJn)Vn

+

∫ H

0

e (H−τ)JnNn(tn + τ, u(tn + τ))dτ,

where ϕk(Z) (Z = HL) belong to the family of ϕ-functions given by

(2.4) ϕk(Z) =
1

Hk

∫ H

0

e (H−τ) Z
H

τk−1

(k − 1)!
dτ, k ≥ 1.

Explicit ExpRB methods approximate the integral in (2.3) by using a quadrature rule
with nodes ci in [0, 1] (i = 1, . . . , s) (c1 = 0). Denoting the resulting approximations
un ≈ u(tn) and Uni ≈ u(tn + ciH), ExpRB methods may be written as
(2.5)

Uni = un + ciHϕ1(ciHJn)F (tn, un) + c2iH
2ϕ2(ciHJn)Vn +H

i−1∑
j=2

aij(HJn)Dnj ,

un+1 = un +Hϕ1(HJn)F (tn, un) +H2ϕ2(HJn)Vn +H

s∑
i=2

bi(HJn)Dni,
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where

(2.6) Dni = Nn(tn + ciH,Uni)−Nn(tn, un),

(i = 2, . . . , s) and where Dn1 = 0 [9, 12]. Here, the weights aij(HJn) and bi(HJn)
are usually chosen (by construction) as linear combinations of the ϕk(ciHJn) and
ϕk(HJn) functions given in (2.4), respectively. These unknown functions can be
determined by solving order conditions, depending on the required order of accuracy.

Remark 2.1. (Order conditions) For later use, in Table 1 we recall the stiff order
conditions for ExpRB methods up to order 6 from [16]. We note that an ExpRB
method of order 6 only requires 7 conditions, which is much less than the 36 conditions
needed for explicit Runge–Kutta or exponential Runge–Kutta methods of the same
order. This is the advantage of the dynamic linearization approach (2.1), and can be
understood by observing from (2.2) that

(2.7)
∂Nn
∂u

(tn, un) = 0 and
∂Nn
∂t

(tn, un) = 0.

This property significantly simplifies the number of order conditions, particularly for
higher-order schemes. A further consequence of (2.7) is that from (2.6) we have
Dni = O(H2), meaning that ExpRB methods are at least of order 2.

Table 1: Stiff order conditions for ExpRB methods up to order 6 (from [16]). Here
Z,K, and M denote arbitrary square matrices.

No. Order condition Order

1
∑s
i=2 bi(Z)c2i = 2ϕ3(Z) 3

2
∑s
i=2 bi(Z)c3i = 6ϕ4(Z) 4

3
∑s
i=2 bi(Z)c4i = 24ϕ5(Z) 5

4
∑s
i=2 bi(Z)ciK

(∑i−1
k=2 aik(Z)

c2k
2! − c

3
iϕ3(ciZ)

)
= 0 5

5
∑s
i=2 bi(Z)c5i = 120ϕ6(Z) 6

6
∑s
i=2 bi(Z)c2iM

(∑i−1
k=2 aik(Z)

c2k
2! − c

3
iϕ3(ciZ)

)
= 0 6

7
∑s
i=2 bi(Z)ciK

(∑i−1
k=2 aik(Z)

c3k
3! − c

4
iϕ4(ciZ)

)
= 0 6

2.2. A multirate procedure for ExpRB methods. Inspired by our recent
work [14], we now show how ExpRB schemes can be interpreted as a class of multirate
infinitesimal step-type methods. Namely, we construct modified differential equations
whose exact solutions corresponding to the ExpRB internal stages Uni (i = 2, . . . , s)
and the final stage un+1.

Lemma 2.2. Consider an explicit exponential Rosenbrock scheme (2.5) where the
weights aij(HJn) and bi(HJn) can be written as linear combinations of ϕk functions,

(2.8) aij(HJn) =

`ij∑
k=1

α
(k)
ij ϕk(ciHJn), bi(HJn) =

mi∑
k=1

β
(k)
i ϕk(HJn),
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and where `ij and mi are some positive integers. Then, Uni and un+1 are the exact
solutions of the following (linear) modified differential equations

v′ni(τ) = Jnvni(τ) + pni(τ), vni(0) = un, i = 2, . . . , s,(2.9a)

v′n+1(τ) = Jnvn+1(τ) + qn(τ), vn+1(0) = un(2.9b)

at the times τ = ciH and τ = H, respectively. Here pni(τ) and qn(τ) are polynomials
in τ given by

pni(τ) = Nn(tn, un) + (tn + τ)Vn +

i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τk−1
)
Dnj ,(2.10a)

qn(τ) = Nn(tn, un) + (tn + τ)Vn +

s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τk−1

)
Dni.(2.10b)

Proof. The proof can be carried out in a very similar manner as in [14, Theo-
rem 3.1]. Here, we only sketch the main idea. First, we insert the ϕk functions from
(2.4) into (2.8) to get the integral representations of aij(HJn) and bi(HJn):

aij(HJn) =

∫ ciH

0

e (ciH−τ)Jn
`ij∑
k=1

α
(k)
ij

(ciH)k(k − 1)!
τk−1dτ,(2.11a)

bi(HJn) =

∫ H

0

e (H−τ)Jn
mi∑
k=1

β
(k)
i

Hk(k − 1)!
τk−1dτ.(2.11b)

Inserting these into (2.5) shows that the ExpRB stages and time step update may be
written as

Uni = eciHJnun +

∫ ciH

0

e (ciH−τ)Jnpni(τ)dτ, i = 2, . . . , s,(2.12a)

un+1 = eHJnun +

∫ H

0

e (H−τ)Jnqn(τ)dτ,(2.12b)

which clearly show that Uni = vni(ciH) and un+1 = vn+1(H) by means of the
variation-of-constants formula applied to (2.9a) and (2.9b), respectively.

MERB methods. Starting from the initial value u0 = u(t0), equations (2.9) from
Lemma 2.2 suggest a multirate procedure to approximate the numerical solutions un+1

(n = 0, 1, 2, . . .) obtained by ExpRB methods. Specifically, one may integrate the slow
process (Vnt + Nn(t, u)) using a macro time step H, and integrate the fast process
(Jnu) using a micro time step h = H/m (where m > 1 is an integer representing the
time scale separation factor) via solving the “fast” ODEs (2.9a) on [0, ciH] and (2.9b)

on [0, H]. Let us denote the corresponding numerical solutions of these ODEs as Ûni
(≈ vni(ciH) = Uni) and ûn+1 (≈ vn+1(H) = un+1). Then this multirate procedure
consists in each step of solving (2.9)–(2.10) with the initial value ûn (û0 = u0). Since
we must linearize each step around the approximate solution ûn instead of the true
value un, we denote the approximations of Jn, Vn, Nn(t, u), and Dnj appearing in
polynomials (2.10) as

Ĵn =
∂F

∂u
(tn, ûn), V̂n =

∂F

∂t
(tn, ûn), N̂n(t, u) = F (t, u)− Ĵnu− V̂nt,(2.13a)

D̂nj = N̂n(tn + cjH, Ûnj)− N̂n(tn, ûn).(2.13b)
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Thus, starting with û0 = u0, for each time step tn → tn+1 we solve perturbed linear
ODEs for i = 2, . . . , s:

(2.14) y′ni(τ) = Ĵnyni(τ) + p̂ni(τ), τ ∈ [0, ciH], yni(0) = ûn,

with

(2.15) p̂ni(τ) = N̂n(tn, ûn) + (tn + τ)V̂n +

i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τk−1
)
D̂nj ,

to obtain
Ûni ≈ yni(ciH) ≈ vni(ciH) = Uni.

Then, using these approximations, we find

(2.16) q̂n(τ) = N̂n(tn, ûn) + (tn + τ)V̂n +

s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τk−1

)
D̂ni

and solve one additional linear ODE

(2.17) y′n+1(τ) = Ĵnyn+1(τ) + q̂n(τ), τ ∈ [0, H], yn+1(0) = ûn

to obtain the update

ûn+1 ≈ yn+1(H) ≈ vn+1(H) = un+1.

Since this process can be derived from ExpRB schemes satisfying (2.8), we call the
resulting methods (2.14)–(2.17) Multirate Exponential Rosenbrock (MERB) methods.
Note that since Ûn1 and yn1(0) do not enter the MERB scheme, for the sake of
completeness, one can define Ûn1 = yn1(0) = ûn.

Remark 2.3. (A comparison with MERK methods). Based on their structure in
(2.14)–(2.17), MERB methods have similar structure to MERK methods. Hence, they
can retain MERK’s interesting features, including very few evaluations of the costly
slow components, and they do not require computing matrix functions as ExpRB
methods do. The main difference is that at each integration step MERB methods must
update the linearization components Ĵn, V̂n, N̂n and D̂nj . However, this increased
cost may be balanced by the fact that, due to the property (2.7), high order MERB
methods should require considerably fewer modified ODEs than MERK methods of
the same order (see Section 2.4).

2.3. Convergence analysis of MERB methods.

2.3.1. Analytical framework. To analyze the convergence of MERB methods,
we employ the abstract framework of strongly continuous semigroups (see, e.g., [5, 21])
on a Banach space X. Throughout this paper, we denote the norm in X by ‖ · ‖. Let

(2.18) J =
∂F

∂u
(t, u)

be the Fréchet partial derivative of F . We make use of the following assumptions.
Assumption 1. The Jacobian (2.18) is the generator of a strongly continuous

semigroup e tJ in X. This implies that there exist constants C and ω such that

(2.19)
∥∥e tJ

∥∥ ≤ Ceωt, t ≥ 0,
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and consequently ϕk(HJ), aij(HJ) and bi(HJ) are bounded operators.

Assumption 2. The solution u : [t0, T ] → X of (1.1) is sufficiently smooth with
derivatives in X, and F : [t0, T ] × X → X is sufficiently Fréchet differentiable in a
strip along the exact solution to (1.1). All derivatives occurring are assumed to be
uniformly bounded.

Stability bound. Since Ĵn = ∂F
∂u (tn, ûn) arising in MERB methods changes at

every step, and Ĵn ≈ Jn, we also employ the following stability bound (for the discrete
evolution operators on X) of exponential Rosenbrock methods (see [9, Sect. 3.3]) to
have

(2.20)
∥∥∥n−k∏
j=0

eHĴn−j

∥∥∥ ≤ CS, t0 ≤ tk ≤ tn ≤ T.

The importance of this bound is that the constant CS is uniform in k and n, despite
the fact that Jn varies from step to step.

2.3.2. A global error representation of MERB methods. Since MERB
methods (2.14)–(2.17) result in a numerical solution ûn+1 which approximates the
numerical solution un+1 of ExpRB methods (as denoted above) at time tn+1, we
will employ the local errors of ExpRB methods to analyze the global error of MERB
methods. Throughout the paper the following error notations will be used.
• Global error notation for MERB methods. We denote the global error at time

tn+1 of a MERB method as

(2.21) ên+1 = ûn+1 − u(tn+1).

• Local error notation for ExpRB methods. We denote the local error at tn+1 of
the base ExpRB method as

(2.22) ẽn+1 = ũn+1 − u(tn+1)

Here, ũn+1 is the numerical solution of the base ExpRB method obtained after car-
rying out one step of (2.5) starting from the exact solution u(tn) as the initial value,
i.e.,

ũn+1 = eHJ̃nu(tn)+Hϕ1(HJ̃n)Ṽntn +H2ϕ2(HJn)Ṽn(2.23a)

+H

s∑
i=1

bi(HJ̃n)Ñn(tn + ciH, Ũni),

Ũni = eciHJ̃nu(tn) + ciHϕ1(ciHJ̃n)Ṽntn + c2iH
2ϕ2(ciHJ̃n)Ṽn(2.23b)

+H

i−1∑
j=1

aij(HJ̃n)Ñn(tn + cjH, Ũnj),

where

(2.24) J̃n =
∂F

∂u
(tn, u(tn)), Ṽn =

∂F

∂t
(tn, u(tn)), Ñn(t, u) = F (t, u)− J̃nu− Ṽnt.

Note that from Lemma 2.2, (2.23) is equivalent to one step of the MERB scheme
starting from the exact initial value yn+1(0) = u(tn) (for which the solution of the
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IVP (2.17) on [0, H] is “known” to be yn+1(H) = ũn+1). Therefore, one can consider
that ẽn+1 is also the local error of MERB methods.
• Global error notation for approximation of the IVP (2.17). As ûn+1 ≈ yn+1(H)

(the true solution of the ODE (2.17)), we denote the global error of an ODE solver
used for integrating (2.17) on [0, H] as

(2.25) ε̂n+1 = ûn+1 − yn+1(H).

• Global error notation for approximation of the IVP (2.14). Similarly, since Ûni
is the numerical solution of (2.14) on [0, ciH] obtained by an ODE solver, let us denote
the global error of this approximation as

(2.26) ε̂ni = Ûni − yni(ciH).

Note that by applying the variation-of-constants formula to (2.17) and using
(2.11b), yn+1(H) can be represented as

(2.27)

yn+1(H) = eHĴn ûn +Hϕ1(HĴn)V̂ntn +H2ϕ2(HJn)V̂n

+H

s∑
i=1

bi(HĴn)N̂n(tn + ciH, Ûni).

In view of (2.21), (2.22), and (2.25), we can write

(2.28) ên+1 = ûn+1 − ũn+1 + ẽn+1 = ε̂n+1 + (yn+1(H)− ũn+1) + ẽn+1,

i.e., the global error arising from the MERB scheme can be written as the sum of
the global error of the ODE solver used for the IVP (2.17), the difference between
the true solution to the IVP (2.17) and the numerical solution obtained by the base
ExpRB method (2.23), and the local error arising from this ExpRB-based method.

To keep our presentation in a compact form, we introduce

tni = tn + ciH,(2.29a)

B̂n = ϕ1(HĴn)V̂ntn +Hϕ2(HĴn)V̂n +

s∑
i=1

bi(HĴn)N̂n(tni, Ûni),(2.29b)

B̃n = ϕ1(HJ̃n)Ṽntn +Hϕ2(HJ̃n)Ṽn +

s∑
i=1

bi(HJ̃n)Ñn(tni, Ũni).(2.29c)

Using (2.29), we now derive a full expansion of (2.28), which later tells us how the
global error of MERB methods can be estimated by the sum of the propagated local
errors of ExpRB methods and the global errors of the ODE solvers used for integrating
(2.14) and (2.17).

Theorem 2.4. The global error ên+1 of MERB methods (2.14)–(2.17) at time
tn+1 can be expressed as
(2.30)

ên+1 =
( n∏
j=0

eHĴn−j −
n∏
j=0

eHJ̃n−j

)
u0︸ ︷︷ ︸

Error1

+

n∑
k=0

( n−k−1∏
j=0

eHJ̃n−j

)
ẽk+1︸ ︷︷ ︸

Error2

+

n∑
k=0

( n−k−1∏
j=0

eHĴn−j

)
ε̂k+1︸ ︷︷ ︸

Error3

+H

n∑
k=0

[( n−k−1∏
j=0

eHĴn−j

)
B̂k −

( n−k−1∏
j=0

eHJ̃n−j

)
B̃k

]
︸ ︷︷ ︸

Error4

.
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Proof. In view of (2.28), we first study the difference (yn+1(H) − ũn+1). Using
(2.29b) and (2.25) (which implies ûn = yn(H) + ε̂n), we have

(2.31) yn+1(H) = eHĴn ûn +HB̂n = eHĴnyn(H) + eHĴn ε̂n +HB̂n.

Solving this recurrence relation (with note that y0(H) = u(t0) = u0) gives
(2.32)

yn+1(H) =
( n∏
j=0

eHĴn−j

)
u0 +

n−1∑
k=0

( n−k−1∏
j=0

eHĴn−j

)
ε̂k+1 +H

n∑
k=0

( n−k−1∏
j=0

eHĴn−j

)
B̂k.

Similarly, using (2.29c) and (2.22) (which implies u(tn) = ũn− ẽn), we can write ũn+1

in (2.23a) as

(2.33) ũn+1 = eHJ̃nu(tn) +HB̃n = eHJ̃n ũn − eHJ̃n ẽn +HB̃n.

After solving this recurrence, we end up with
(2.34)

ũn+1 =
( n∏
j=0

eHJ̃n−j

)
u0 −

n−1∑
k=0

( n−k−1∏
j=0

eHJ̃n−j

)
ẽk+1 +H

n∑
k=0

( n−k−1∏
j=0

eHJ̃n−j

)
B̃k.

Subtracting (2.34) from (2.32) gives (yn+1(H)− ũn+1) and inserting this into (2.28)
proves (2.30).

Next, in order to estimate the global error ên+1, we prove some preliminary results.

2.3.3. Preliminary results and error bounds.

Lemma 2.5. The term Error4 in (2.30) can be further expressed as
(2.35)

Error4 = H

n∑
k=0

[( n−k−1∏
j=0

eHĴn−j −
n−k−1∏
j=0

eHJ̃n−j

)
B̂k +

( n−k−1∏
j=0

eHJ̃n−j

)
(B̂k − B̃k)

]
,

where

(2.36)

B̂k − B̃k =
2∑
j=1

[(
ϕj(HĴk)− ϕj(HJ̃k)

)
Ṽk + ϕj(HĴk)(V̂k − Ṽk)

]
t2−jk Hj−1

+

s∑
i=1

(
bi(HĴk)− bi(HJ̃k)

)
Ñk(tki, Ũki)

+

s∑
i=1

bi(HĴk)
(
N̂k(tki, Ûki)− Ñk(tki, Ũki)

)
.

Proof. The derivation of (2.35) is straightforward by subtracting and adding the

same term
∏n−k−1
j=0 eHJ̃n−j B̂k within the sum

∑n
k=0

[
·
]

in Error4. Also, by subtracting
(2.29c) from (2.29b), one can easily obtain (2.36).

To estimate the difference in the nonlinear terms at each internal MERB and ExpRB
stage,

(
N̂k(tki, Ûki)− Ñk(tki, Ũki)

)
in (2.36), we first study the difference

(2.37) Êni = Ûni − Ũni.
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Denoting

Âni = ciϕ1(ciHĴn)V̂ntn + c2iHϕ2(ciHJn)V̂n +

i−1∑
j=1

aij(HĴn)N̂n(tnj , Ûnj),(2.38a)

Ãni = ciϕ1(ciHJ̃n)Ṽntn + c2iHϕ2(ciHJn)Ṽn +

i−1∑
j=1

aij(HJ̃n)Ñn(tnj , Ũnj),(2.38b)

we obtain the following result.

Lemma 2.6. The difference between Ûni and Ũni can be expressed as

(2.39) Êni = ε̂ni + eciHĴn ên +
(
eciHĴn − eciHJ̃n

)
u(tn) +H(Âni − Ãni)

with
(2.40)

Âni − Ãni =

2∑
`=1

[(
ϕ`(ciHĴn)− ϕ`(ciHJ̃n)

)
Ṽn + ϕ`(ciHĴn)(V̂n − Ṽn)

]
c`it

2−`
n H`−1

+

i−1∑
j=1

(
aij(HĴn)− aij(HJ̃n)

)
Ñn(tnj , Ũnj)

+

i−1∑
j=1

aij(HĴn)
(
N̂n(tnj , Ûnj)− Ñn(tnj , Ũnj)

)
.

Here, ε̂n1 = Ûn1 − yn1(c1H) = ûn − yn1(0) = 0 (due to c1 = 0) and thus Ên1 = ên.

Proof. From (2.37) and (2.26), we have

(2.41) Êni = ε̂ni + yni(ciH)− Ũni.

Using (2.38b), one can write Ũni given in (2.23b) as

(2.42) Ũni = eciHJ̃nu(tn) +HÃni.

By applying the variation-of-constants formula to (2.14) and using (2.11a),

(2.43) yni(ciH) = eciHĴn ûn +HÂni = eciHĴn(ên + u(tn)) +HÂni,

where Âni is given in (2.38a). Inserting (2.42) and (2.43) into (2.41) gives (2.39). Simi-
larly to (2.36), the expression (2.40) can be verified by subtracting (2.38b) from (2.38a)
first and then adding and subtracting to the result the same terms ciϕ1(ciHĴn)Ṽntn,

c2iHϕ2(ciHĴn)Ṽn, and
∑i−1
j=1 aij(HĴn)Ñn(tn + cjH, Ũnj).

Next, we prove several bounds needed to estimate the terms in (2.36) and (2.40). To
simplify our presentation within both this and the following subsections, we will use
C as a generic constant that may have different values at each occurrence.

Lemma 2.7. Under Assumption 2, the bound

(2.44) ‖N̂n(tni, Ûni)−Ñn(tni, Ũni)‖ 6 C‖Êni‖+C‖Êni‖2+C‖Ĵn−J̃n‖+C‖V̂n−Ṽn‖

holds for all n and i as long as Êni remains in a sufficiently small neighborhood of 0.
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Proof. First, we split

N̂n(tni, Ûni)− Ñn(tni, Ũni) = N̂n(tni, Ûni)− N̂n(tni, Ũni)︸ ︷︷ ︸
Nsplit1

+ N̂n(tni, Ũni)− Ñn(tni, Ũni)︸ ︷︷ ︸
Nsplit2

.

Using (2.13a) and (2.24), we write the term Nsplit2 as

(2.45)
Nsplit2 =

(
F (tni, Ũni)− ĴnŨni − V̂ntni

)
−
(
F (tni, Ũni)− J̃nŨni − Ṽntni

)
= (J̃n − Ĵn)Ũni + (Ṽn − V̂n)tni.

Expanding N̂n(tni, Ûni) into a Taylor series expansion around (tni, Ũni) gives

(2.46) Nsplit1 =
∂N̂n
∂u

(tni, Ũni)Êni +

∫ 1

0

(1− θ)∂
2N̂n
∂u2

(tni, Ũni + θÊni)(Êni, Êni)dθ.

Under Assumption 2, (2.44) follows by bounding ‖Nsplit1‖+ ‖Nsplit2‖.
Lemma 2.8. Under Assumptions 1 and 2, the bounds

‖Ĵn − J̃n‖ 6 C‖ên‖+ C‖ên‖2,(2.47a)

‖V̂n − Ṽn‖ 6 C‖ên‖+ C‖ên‖2,(2.47b)

‖e tĴn − e tJ̃n‖ 6 Ct‖ên‖, t ≥ 0(2.47c)

‖ϕ`(tĴn)− ϕ`(tJ̃n)‖ 6 Ct‖ên‖, t ≥ 0(2.47d)

‖bi(HĴn)− bi(HJ̃n)‖ 6 CH‖ên‖,(2.47e)

‖aij(HĴn)− aij(HJ̃n)‖ 6 CH‖ên‖(2.47f)

hold for all n, `, i and j, as long as the global errors ên remain in a sufficiently small
neighborhood of 0.

Proof. By definition, Ĵn− J̃n = ∂F
∂u (tn, ûn)− ∂F

∂u (tn, u(tn)). Using Assumption 2,

one can expand G(t, u) := ∂F
∂u (t, u) in a Taylor series around (tn, u(tn)) to get

Ĵn − J̃n =
∂G

∂u
(tn, u(tn))ên +O(‖ên‖2),

which shows (2.47a). Similarly (2.47b) may be verified by expanding ∂F
∂t (t, u) in a

Taylor series around (tn, u(tn)).

Next, we estimate the difference between the two semigroups e tĴn and e tJ̃n in a

similar manner as in [17, Lemma 4.2]. Observing that e tĴn is the solution of the IVP

w′(t) = Ĵnw(t) = J̃nw(t) + (Ĵn − J̃n)w(t), w(0) = I,

We apply the variation-of-constants formula to this IVP to obtain

e tĴn − e tJ̃n = t

∫ 1

0

e (1−θ)tJ̃n(Ĵn − J̃n)eθtĴn dθ.

Therefore, (2.47c) follows directly from (2.19) and (2.47a). Using this, the bounds
(2.47d)–(2.47f) follow from using (2.4) and (2.8) (see also [17, Lemma 4.3]).

Using the results from Lemmas 2.6, 2.7, and 2.8, we obtain the following result.
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Corollary 2.9. Under Assumptions 1 and 2, the estimate

(2.48) ‖B̂k − B̃k‖ 6
i∑

j=1

C‖ε̂kj‖+ C‖êk‖+ C‖êk‖2

holds for all k, as long as Êki and the global errors êk remain in a sufficiently small
neighborhood of 0.

Proof. Using Lemmas 2.8 and 2.7, one can bound (2.36) as

(2.49) ‖B̂k − B̃k‖ 6 CH‖êk‖+ C‖êk‖+ C‖êk‖2 + C‖Êki‖+ C‖Êki‖2.

Next, we apply Lemma 2.6 (with n = k) to get Êki and then estimate it by using
(2.19) and Lemma 2.8 (the bound (2.47c)):

(2.50) ‖Êki‖ 6 ‖ε̂ki‖+ C‖êk‖+ CH‖êk‖+H‖Âki − Ãki‖.

Again using Lemmas 2.8 and 2.7, the bound on ‖Âki − Ãki‖ from (2.40) is similar to
(2.49). Inserting this into (2.50) we have

(2.51) ‖Êki‖ 6 ‖ε̂ki‖+ CH‖êk‖+ C‖êk‖+ C‖êk‖2 +

i−1∑
j=1

C‖Êkj‖.

Since Êk1 = êk (see Lemma 2.6), this relation finally shows that

(2.52) ‖Êki‖ 6 ‖ε̂ki‖+ CH‖êk‖+ C‖êk‖+ C‖êk‖2 +

i−1∑
j=1

C‖ε̂kj‖.

Now using the fact that CH‖êk‖+ C‖êk‖ = (CH + C)‖êk‖ 6 C‖êk‖, one can easily
show (2.48) from (2.49) and (2.52).

Finally, we give a technical lemma, which can be later used to estimate the term
Error1 appearing in (2.30).

Lemma 2.10. Let {Zj}nj=0 and {Yj}nj=0 be two sequences (of operators) in X. We
have

(2.53)

n∏
j=0

Zn−j −
n∏
j=0

Yn−j =

n∑
k=0

( n−k−1∏
j=0

Zn−j

)
(Zk − Yk)

( n∏
j=n−k+1

Yn−j

)
.

Proof. By adding and subtracting
∏n−1
j=0 Zn−jY0 and then

∏n−2
j=0 Zn−jY0Y1, the

left hand side of (2.53) can be written as

ZnZn−1 . . . Z1(Z0 − Y0) + ZnZn−1 . . . Z2(Z1 − Y1)Y0 + (ZnZn−1 . . . Z2 − YnYn−1 . . . Y2)Y1Y0

=
( n−1∏
j=0

Zn−j
)
(Z0 − Y0) +

( n−2∏
j=0

Zn−j
)
(Z1 − Y1)Y0 + (ZnZn−1 . . . Z2 − YnYn−1 . . . Y2)Y1Y0.

We continue adding and subtracting
(∏n−k−1

j=0 Zn−j

)(∏n
j=n−k+1 Yn−j

)
in this man-

ner until k = n to obtain the right hand side (2.53).
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Corollary 2.11. Under Assumptions 1 and 2, the estimate

(2.54)
∥∥∥ n∏
j=0

eHĴn−j −
n∏
j=0

eHJ̃n−j

∥∥∥ 6 H

n∑
k=0

C‖êk‖.

holds for all n as long as the global errors êk remain sufficiently small.

Proof. This follows by applying Lemma 2.10 to Zn−j = eHĴn−j and Yn−j =

eHJ̃n−j , and using the stability bound (2.19) and the bound (2.47c) from Lemma 2.8.

2.3.4. MERB convergence. With the above preparation in hand, we are now
ready to prove convergence of our MERB methods.

Theorem 2.12. Let the initial value problem (1.1) satisfy Assumptions 1–2. Con-
sider for its numerical solution a MERB method (2.14)–(2.17) that is constructed from
an ExpRB method of global order p using with macro time step H. Let m denote the
number of fast steps per slow step. If the fast ODEs (2.14) and (2.17) associated
with the MERB method are integrated with micro time step h = H/m by using ODE
solvers that have global order of convergence q and r, respectively, then the MERB
method is convergent with the error bound

(2.55) ‖ûn − u(tn)‖ 6 CHp + CHhq + Chr

on compact time intervals t0 ≤ tn = t0 + nH ≤ T . Here, while the first error
constant depends on T − t0 (but is independent of n and H), the second and third
error constants also depend on the error constants of the chosen ODE solvers.

Proof. We begin with the global error expansion given in Theorem 2.4, and es-
timate each of the terms in (2.30). First, from Corollary 2.11 it is obvious that
‖Error1‖ 6 H

∑n
k=0 C‖êk‖. Then the stability bound (2.19) tells us that ‖Error2‖ 6∑n

k=0 C‖ẽk+1‖ and ‖Error3‖ 6
∑n
k=0 C‖ε̂k+1‖. Next, examining the expression

(2.35) we employ Corollaries 2.9 and 2.11, along with the stability bound (2.19), to

obtain ‖Error4‖ 6 H
∑n
k=0

[
CH‖êk‖+

∑i
j=1 C‖ε̂kj‖+C‖êk‖+C‖êk‖2

]
. Therefore,

we derive from (2.30) that

(2.56) ‖ên+1‖ 6 H

n∑
k=0

C‖êk‖+

n∑
k=0

C‖ẽk+1‖+

n∑
k=0

C‖ε̂k+1‖+H

n∑
k=0

(

i∑
j=1

C‖ε̂kj‖).

From our assumption that the base ExpRB method has global order p, its local error
satisfies ‖ẽk+1‖ 6 CHp+1.

As for the global errors ε̂k+1 and ε̂kj obtained by solving the fast ODEs (2.17)
and (2.14) on [0, H] and [0, ciH], respectively (using micro time step h), the global
error analysis from [8, Theorem 3.4] guarantees that

‖ε̂k+1‖ 6 hr CL (eLH − 1) = ChrH eLH−1
LH = ChrHϕ1(LH) 6 ChrH,(2.57a)

‖ε̂kj‖ 6 hq CL (eLciH − 1) = ChqciH
eLciH−1
LciH

6 ChqHϕ1(LciH) 6 ChqH.(2.57b)

These bounds require that the Jacobian Ĵk of the right hand sides of both ODEs
satisfies ‖Ĵk‖ 6 L. This follows from ‖∂F∂u (t, u)‖ 6 L, which easily follows from
Assumption 2. Combining these bounds and shifting the index n in (2.56) to n − 1,
we obtain

(2.58) ‖ên‖ 6 H

n−1∑
k=0

C‖êk‖+

n−1∑
k=0

(
CHp+1 + ChrH + ChqH2

)
.
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The error bound (2.55) results from applying a discrete Gronwall lemma to (2.58).

Remark 2.13. Since h = H/m, one can write the error bound (2.55) as ‖ûn −
u(tn)‖ 6 CHp + C

mqH
q+1 + C

mrH
r. Thus for a fixed m, a MERB method (2.14)–

(2.17) will converge with order p provided that the inner ODE solvers for (2.14)
and (2.17) have orders q ≥ p − 1 and r ≥ p, respectively. We note that this is an
improvement compared to MRI-GARK methods [23], that in fact require both q ≥ p
and r ≥ p for a method of order p. It is also worth mentioning that the error bound
(2.55) for MERB methods is similar to the one obtained with MERK methods [14].

2.4. Construction of specific MERB methods. Guided by Theorem 2.12,
in order to derive MERB methods it is important to begin with base ExpRB methods
that satisfy Lemma 2.2. Fortunately, such ExpRB methods are available up to order
6 in the literature, see [9, 17, 18]. In this subsection, we extend some of these methods
to write their coefficients more generally, and then derive MERB methods of orders
2 through 6 from these schemes. Note that since a MERB method (2.14)–(2.17) is
uniquely characterized by its polynomials p̂ni(τ) and q̂n(τ), we only provide those
polynomials here. In particular, we note that these MERB methods require fewer
modified ODEs to be solved per slow time step than comparable order MRI-GARK
[23] and MERK methods [14].

2.4.1. Second-order methods. First, consider the second-order ExpRB-Euler
scheme (see [9], and [12, Sect. 1.2.2] for non-autonomous problems)

un+1 = un +Hϕ1(HJn)F (tn, un) +H2ϕ2(HJn)Vn.

Using Lemma 2.2 we immediately derive from this the second-order MERB2 method:

q̂n(τ) = N̂n(tn, ûn) + (tn + τ)V̂n, τ ∈ [0, H].(2.59)

This only requires the solution of one modified ODE. We note that since second order
multirate methods have been available for some time, we do not include MERB2 in our
numerical results, and instead focus on higher order multirate methods.

2.4.2. Third-order methods. In [9], a 2-stage 3rd-order ExpRB method called
exprb32 was constructed (using c2 = 1) for autonomous problems. Extending this
to non-autonomous problems and writing this for general c2, we solve condition 1 of
Table 1 directly (with s = 2) to give a general family of third-order methods:

(2.60)
Un2 = un + c2Hϕ1(c2HJn)F (tn, un) + c22H

2ϕ2(c2HJn)Vn,

un+1 = un +Hϕ1(HJn)F (tn, un) +H2ϕ2(HJn)Vn +H 2
c22
ϕ3(HJn)Dn2.

From this we construct the MERB3 family of third-order methods:

(2.61)

p̂n2(τ) = N̂n(tn, ûn) + (tn + τ)V̂n, τ ∈ [0, c2H],

q̂n(τ) = N̂n(tn, ûn) + (tn + τ)V̂n +
τ2

c22H
2
D̂n2, τ ∈ [0, H].

Clearly, this requires the solution of 2 modified ODEs per slow time step (whereas
third-order MERK and MRI-GARK methods require solving 3 modified ODEs per
step). In our numerical experiments we take c2 = 1

2 , which gives rise to a total fast
time step traversal for MERB3 of (1 + c2)H = 1.5H.
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2.4.3. Fourth-order method. There exist several 4th-order ExpRB schemes
[9, 17, 18, 13, 15] with coefficients fulfilling Lemma 2.2. However, we chose a 2-
stage 4th-order ExpRB method called exprb42 which was constructed for autonomous
problems in [13]. Transforming this to non-autonomous form, we have

(2.62)
Un2 = un + 3

4Hϕ1( 3
4HJn)F (tn, un) + 9

16H
2ϕ2( 3

4HJn)Vn,

un+1 = un +Hϕ1(HJn)F (tn, un) +H2ϕ2(HJn)Vn +H 16
9 ϕ3(HJn)Dn2.

We then apply Lemma 2.2 to construct the 4th-order MERB4 method:

(2.63)
p̂n2(τ) = N̂n(tn, ûn) + (tn + τ)V̂n, τ ∈ [0,

3

4
H]

q̂n(τ) = N̂n(tn, ûn) + (tn + τ)V̂n +
16

9

τ2

H2
D̂n2, τ ∈ [0, H].

MERB4 only requires solving 2 modified ODEs per slow time step, whereas 4th-order
MRI-GARK and MERK methods require 5 and 4 modified ODEs in each step, re-
spectively. We further note that (2.63) has a total fast traversal time of 7

4H = 1.75H.

2.4.4. Fifth-order methods. ExpRB methods of order 5 can be found in [17,
18]. Here, for efficiency purposes, we consider a parallel scheme called pexprb54s4,
whose coefficients (with fixed nodes ci) satisfy Lemma 2.2. It uses s = 4 stages
and is embedded with a fourth-order scheme (for stepsize adaptivity) but can be
implemented as a 3-stage method. A detailed derivation of pexprb54s4 is given in
[18] (solving conditions 1–4 of Table 1 with the choices b2(Z) = 0, a43(Z) = 0,

a32(Z) =
2c33
c22
ϕ3(c3Z), and a42 =

2c34
c22
ϕ3(c4Z)). Following that derivation, we present

here a family of fifth-order ExpRB methods (depending on parameters c2, c3, c4) for
non-autonomous problems:
(2.64)
Un2 = un +H

(
c2ϕ1(c2HJn)F (tn, un) + c22Hϕ2(c2HJn)Vn

)
,

Un3 = un +H
(
c3ϕ1(c3HJn)F (tn, un) + c23Hϕ2(c3HJn)Vn +

2c33
c22
ϕ3(c3HJn)Dn2

)
,

Un4 = un +H
(
c4ϕ1(c4HJn)F (tn, un) + c24Hϕ2(c4HJn)Vn +

2c34
c22
ϕ3(c4HJn)Dn2

)
,

un+1 = un +H (ϕ1(HJn)F (tn, un) +Hϕ2(HJn)Vn + b3(HJn)Dn3 + b4(HJn)Dn4)

with

b3(HJn) = 1
c23(c4−c3)

(
c4ϕ3(HJn)− 6ϕ4(HJn)

)
,

b4(HJn) = 1
c24(c3−c4)

(
2c3ϕ3(HJn)− 6ϕ4(HJn)

)
,

c4 = 3(5c3−4)
5(4c3−3) .

We note that the two internal stages {Un3, Un4} are independent of one another and
thus can be computed simultaneously. They also have the same format, in that they
have the same formula but only act on different inputs c3 and c4, which we exploit
below to give the same polynomial for their corresponding modified ODEs.
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Applying Lemma 2.2 to (2.64) results in the fifth-order family of MERB5 methods:

(2.65)

p̂n2(τ) = N̂n(tn, ûn) + (tn + τ)V̂n, τ ∈ [0, c2H]

p̂n3(τ) ≡ p̂n4(τ) = N̂n(tn, ûn) + (tn + τ)V̂n +
(

τ
c2H

)2
D̂n2, τ ∈ [0, c3H]

q̂n(τ) = N̂n(tn, ûn) + (tn + τ)V̂n + τ2

H2

(
c4

c23(c4−c3)
D̂n3 + c3

c24(c3−c4)
D̂n4

)
− τ3

H3

(
1

c23(c4−c3)
D̂n3 + 1

c24(c3−c4)
D̂n4

)
, τ ∈ [0, H].

This only requires solving 3 modified ODEs per slow step (the only existing fifth-order
multirate method, MERK5, requires 5). In our experiments we choose c2 = c4 = 1

4 <
c3 = 33

40 , so we can solve the modified ODE (2.14) using the polynomial p̂n3(τ) on

[0, c3H] to obtain both Ûn3 ≈ Un3 and Ûn4 ≈ Un4 (since c4 < c3), without solving an
additional fast ODE on [0, c4H]. Using this strategy, the total fast traversal time for
MERB5 is (1 + c2 + c3)H = 83

40H = 2.075H.

2.4.5. Sixth-order methods. To the best of our knowledge, the only existing
ExpRB method of order 6, named pexprb65s7, is given in [18]. It uses s = 7 stages
and is embedded with a fifth-order method. As with (2.64), this method consists
of multiple independent internal stages (namely the stages in two groups {Un2, Un3}
and {Un4, Un5, Un6, Un7}) that can be computed simultaneously, which we exploit to
implement like a 3-stage method. While pexprb65s7 is constructed for autonomous
problems and uses a set of fixed nodes ci, we extend the derivation from [18] to
construct a family of 7-stage sixth-order methods for non-autonomous problems:

(2.66)

Unk = un + ckHϕ1(ckHJn)F (tn, un) + (ckH)2ϕ2(ckHJn)Vn, k = 2, 3

Uni = un + ciHϕ1(ciHJn)F (tn, un) + (ciH)2ϕ2(ciHJn)Vn,

+Hai2(HJn)Dn2 +Hai3(HJn)Dn3, i = 4, 5, 6, 7

un+1 = un +Hϕ1(HJn)F (tn, un) +H2ϕ2(HJn)Vn +H

7∑
i=4

bi(HJn)Dni,

where

ai2(HJn) = 1
c22(c3−c2)

(
2c3i c3ϕ3(ciHJn)− 6c4iϕ4(ciHJn)

)
,

ai3(HJn) = 1
c23(c2−c3)

(
2c3i c2ϕ3(ciHJn)− 6c4iϕ4(ciHJn)

)
,

bi(HJn) = −2α̂iϕ3(HJn) + 6η̂iϕ4(HJn)− 24β̂iϕ5(HJn) + 120γ̂iϕ6(HJn),

γ̂i =
1

c2i (ci − ck)(ci − cl)(ci − cm)
, α̂i = ckclcmγ̂i,

β̂i = (ck + cl + cm)γ̂i, η̂i = (ckcl + clcm + ckcm)γ̂i.

Here i, k, l,m ∈ {4, 5, 6, 7} are distinct indices and ci, ck, cl, cm are distinct (positive)
nodes. Applying Lemma 2.2 we obtain the first-ever sixth-order infinitesimal multirate



MULTIRATE EXPONENTIAL ROSENBROCK METHODS 17

method, MERB6:

p̂n2(τ) ≡ p̂n3(τ) = N̂n(tn, ûn) + (tn + τ)V̂n, τ ∈ [0, c2H]

p̂n4(τ) ≡ p̂n5(τ) ≡ p̂n6(τ) ≡ p̂n7(τ) = N̂n(tn, ûn) + (tn + τ)V̂n

+ τ2

(c3−c2)H2

(
c3
c22
D̂n2 − c2

c23
D̂n3

)
− τ3

(c3−c2)H3

(
1
c22
D̂n2 − 1

c23
D̂n3

)
, τ ∈ [0, c4H]

q̂n(τ) = N̂n(tn, ûn) + (tn + τ)V̂n − τ2

H2

7∑
i=4

α̂iD̂ni + τ3

H3

7∑
i=4

η̂iD̂ni

− τ4

H4

7∑
i=4

β̂iD̂ni + τ5

H5

7∑
i=4

γ̂iD̂ni. τ ∈ [0, H]

As seen, MERB6 requires only 3 modified ODEs per each slow time step like MERB5,
reflecting the fact that its base 6th-order ExpRB method (2.66) has the structure of
a 3-stage method. MERB6 can be also implemented in an efficient way by choosing
c3 < c2 and c5, c6, c7 < c4. With these choices, we can solve the modified ODE (2.14)

using p̂n2(τ) on [0, c2H] to obtain both Ûn2 ≈ Un2 and Ûn3 ≈ Un3 without solving
an additional fast ODE on [0, c3H]. Similarly, we can solve (2.14) using p̂n4(τ) on

[0, c4H] to get all four approximations Ûni ≈ Uni (i = 4, 5, 6, 7) without solving 3
additional ODEs on [0, c5H], [0, c6H], and [0, c7H]. In our numerical experiments, we
take c3 = c5 = 1

10 < c2 = c6 = 1
9 < c7 = 1

8 < c4 = 1
7 . This gives a total fast traversal

time of (1 + c2 + c4)H = 79
63H ≈ 1.253H.

2.5. MERB method implementation. In Algorithm 2.1 we provide a precise
description of the MERB algorithm. We note that in our implementations of MERB

Algorithm 2.1 MERB method

• Input: F ; J ; V ; t0; u0; s; ci (i = 1, . . . , s); H
• Initialization: Set n = 0; ûn = u0.

While tn < T
1. Set Ûn1 = ûn.
2. Compute Ĵn = J(tn, ûn) and V̂n = V (tn, ûn)
3. For i = 2, . . . , s do

(a) Find p̂ni(τ) as in (2.15).

(b) Solve (2.14) on [0, ciH] to obtain Ûni ≈ yni(ciH).
4. Find q̂n(τ) as in (2.16)
5. Solve (2.17) on [0, H] to get ûn+1 ≈ yn+1(H).
6. Update tn+1 := tn +H, n := n+ 1.

• Output: Approximate values ûn ≈ un, n = 1, 2, . . . (where un is the numer-
ical solution at time tn obtained by an ExpRB method).

methods, we found it beneficial to include formulas for N̂n(t, u) and D̂ni(t, u) as
additional inputs to the algorithm (provided they can be pre-computed) for use in
equations (2.15) and (2.16) to avoid floating-point cancellation errors when seeking
very accurate solutions. On the other hand, we note that within the MERB algorithm,
both the products Jw and V τ can be approximated from F using finite differences,

J(t, u)w = 1
σ (F (t, u+ σw)− F (t, u)) +O(σ), and

V (t, u)τ = 1
σ (F (t+ στ, u)− F (t, u)) +O(σ),
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instead of J and V being provided analytically; however, when seeking high accuracy
then such approximations can cause excessive floating-point cancellation error.

3. Numerical Experiments. In this section, we implement MERB methods on
select multirate test problems to demonstrate accuracy and efficiency. We first discuss
choices for the inner fast integrators, fast-slow splitting, optimal time scale separation
factors, and give a general description of how the error and efficiency are measured.
We then present numerical results for a reaction-diffusion problem and a semi-linear
nonautonomous system with coupling between the fast and slow variables. For each
problem, we compare the proposed MERB3, MERB4, MERB5, and MERB6 methods with
other recently developed multirate methods that treat the slow time scale explicitly,
namely MERK3, MERK4, and MERK5 from [14], plus MRI-GARK-ERK33a and MRI-GARK-
ERK45a from [23], written here in short form as MRI-GARK33a and MRI-GARK45a.
MATLAB implementations of all tests are provided on Github [4].

3.1. Choice of inner integrators. For uniformity in our implementations of
MERB, MERK, and MRI-GARK methods of the same order, we use the same ex-
plicit fast integrators for solving all modified ODEs. Third-order methods use a
3-stage explicit third-order method from equation (233f) of [2], fourth-order meth-
ods use a 4-stage explicit fourth-order method commonly known as “RK4” from [11],
fifth-order methods use an 8-stage fifth-order method which is the explicit part of
ARK5(4)8L[2]SA from [10], while the sixth-order method uses an 8-stage explicit
sixth-order method based on the 8,5(6) procedure of [28]. We note that although
both MERK and MERB methods could compute the internal stages using a lower
order integrator, for the sake of simplicity that approach is not used here.

3.2. Fast-slow splitting. The splitting of an IVP into fast and slow compo-
nents, u′(t) = F (t, u) = Ff (t, u) + Fs(t, u), for MERB methods is dictated by the
dynamic linearization process at each time step,

(3.1) û′(t) = F (t, û(t)) = Ĵnû(t) + V̂nt+ N̂n(t, û(t)),

where the multirate splitting becomes Ff (t, u) = Ĵnu and Fs(t, u) = V̂nt + N̂n(t, u).
This brings interesting questions when comparing against MERK and MRI-GARK
methods that do not require dynamic linearization. MERK methods require that
Ff (t, u) = Lu, but MRI-GARK methods have no constraints on Ff or Fs. Thus to
provide a more thorough picture in the following comparisons of MERB, MERK and
MRI-GARK methods, we consider two separate fast-slow splittings for each problem.
The first is the dynamic linearization (3.1), that can place more of a problem’s dynam-
ics at the fast time scale than other fixed multirate splittings; this offers a potential
for greater multirate accuracy but at the expense constructing the dynamic lineariza-
tion at each slow step. Our second splitting defines a fixed Ff (t, u) = Lu, leaving
Fs(t, u) = F (t, u) − Lu; in the ensuing results we call this the ‘fixed linearization’.
Though the motivation for this splitting arises from the MERK requirement on Ff , we
also apply this splitting to MRI-GARK methods. We note that other fixed splittings
which can offer different accuracy and efficiency insights on multirate methods are
possible, however we only focus on one fixed splitting for each test problem. Methods
that use fixed linearization are denoted with an asterisk in our results, for instance,
MERK3∗ uses a fixed linearization while MERK3 uses dynamic linearization.

3.3. Optimal time scale separation. In order to compare methods at their
peak performance, we strive to determine an optimal time scale separation factor for
each multirate method on each test problem. The optimal time scale separation factor
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m = H/h is the integer ratio between the slow and fast time step sizes that results
in maximal efficiency. We follow the approach from [14] for determining this value
experimentally, by comparing efficiency in terms of slow-only function evaluations and
total (slow+fast) function evaluations for several different values of m and H.

Method
Slow

stages
Modified

ODEs

Fast time
traversal
of [0, H]

React.-diffusion
optimal m

Bidirect. coupling
optimal m

Dynamic Fixed Dynamic Fixed

MERB3 2 2 1.5 10 80
MERK3 3 3 2.166 20 10 80 10

MRI-GARK33a 3 3 1 20 5 80 10
MERB4 2 2 1.75 10 40
MERK4 6 4 2.833 20 10 40 10

MRI-GARK45a 5 5 1 10 1 40 1
MERB5 4 3 2.075 5 10
MERK5 10 5 3.2 5 5 10 10
MERB6 7 3 1.253 5 5

Table 2: Multirate method properties: number of slow internal stages and modified
ODEs, total step traversal times, and optimalm factors for each problem and splitting.

Table 2 presents the optimal m values for each method and each test problem
splitting. A trend emerges among MERK and MRI-GARK methods that use both
dynamic and fixed linearization: dynamic linearization almost exclusively results in
larger optimal m values than fixed linearization, supporting our earlier hypothesis that
dynamic linearization includes more of the problem within the fast dynamics, thereby
requiring a larger m value to resolve. We also note that for the fixed linearization,
both MRI-GARK methods have smaller m values than other methods, resulting in
less computational work at the fast time scale for a given H value.

3.4. Presentation of results. For each test problem we sort our results into 3
groups: O(H3) methods, O(H4) methods, and O(H5) with O(H6) methods. In each
group we provide four kinds of “log-log” plots: one convergence plot (error versus
H) and three efficiency plots that measure cost through slow function calls, total
function calls, and MATLAB runtimes, respectively. Solution error is computed as
the maximum absolute error over all spatial grid points and time outputs, as measured
against either an analytical solution or highly accurate reference solution. We also
compute convergence rates using a linear least squares fit of the log(error) versus
log(H) data, neglecting points at the reference solution floor. Each of our efficiency
measurements tells a different story. First, slow function calls illustrate the cost of
a multirate method when applied to IVP systems with expense dominated by the
slow components Fs(t, u). Second, total function calls capture the cost of Ff (t, u),
and highlight properties of methods related to their total fast traversal times. Lastly,
even though MATLAB runtimes are a poor proxy for runtimes on HPC applications,
we use them here to capture the costs associated with dynamic linearization, and to
measure how these costs affect efficiency.
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3.5. Reaction-diffusion. From Savcenco et al.[24], we consider the reaction-
diffusion equation:

(3.2) ut = εuxx + γu2(1− u), 0 < x < 5, 0 < t ≤ 5.

The initial and boundary conditions are u(x, 0) = (1+exp(λ(x−1)))−1 and ux(0, t) =
ux(5, t) = 0 respectively, where λ = 1

2

√
2γ/ε. Multiple combinations of γ and ε are

possible, here we choose γ = 0.1 and ε = 0.01 that lead to an optimal m > 1
when using dynamic linearization. We use a second-order centered finite difference
scheme with 101 spatial grid points to discretize the diffusion term. In addition
to dynamic linearization, MERK and MRI-GARK methods also use a fixed splitting
where Ff (t, u) = εuxx and Fs(t, u) = γu2(1−u). The numerical solution is considered
at 10 evenly spaced points within the time interval, and all methods are tested with
slow time steps H = 0.5 × 2−k, for k = 0, . . . , 6. We compute error by comparing
against a reference solution obtained using MATLAB’s ode15s with relative tolerance
10−13 and absolute tolerance 10−14.
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Fig. 1: Convergence (top-left) and efficiency (top-right, bottom) for O(H3) methods
on the reaction-diffusion problem of Section 3.5. The legend displays the measured
convergence rates for each method in parentheses.

Figures 1-3 show accuracy and efficiency results for this problem. Examining
the top-left of Figure 1 and the legend, we see that each third-order method attains
the expected order of convergence. The observed errors for the dynamic linearization
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approach on all methods are less than for fixed linearization. This can be attributed
to inclusion of more of the problem at the fast time scale in the case of dynamic
linearization, which results in higher optimal time scale separation factors (as shown
in Table 2) and lower errors. Among the methods that apply dynamic linearization,
MERK3 and MRI-GARK33a have almost identical errors that are lower than those for
MERB3, which uses an m two times smaller. MERK3∗ and MRI-GARK33a∗ have the
largest errors on this test problem.

Turning to the efficiency results at the top-right and bottom of Figure 1, the most
efficient methods in each of these plots are closest to the bottom left corner. For our
MATLAB implementations, MERB3 has an obvious advantage in terms of runtime,
while both MRI-GARK33a and MRI-GARK33a∗ have the least efficient implementation.
Taking into account only MERK and MRI-GARK methods, there is not a significant
runtime difference between the dynamic fixed linearization approaches, although the
fixed linearization is very slightly faster at tighter accuracies. When looking at total
function calls, both MRI-GARK33a and MRI-GARK33a∗ are the most efficient of the
group, largely owing to their shorter fast traversal time of 1.0H, while MERB3 and
MERK3 have traversal times of 1.5H and 2.166H, respectively. The slow function
call efficiency is closely aligned with the convergence behavior: at large values of H,
MERK3 and MRI-GARK33a are the most efficient, but MERB3 is just as efficient as
MERK3 and MRI-GARK33a at tighter accuracies.
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Fig. 2: Convergence (top-left) and efficiency (top-right, bottom) for O(H4) methods
on the reaction-diffusion problem of Section 3.5.
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In Figure 2 we present the corresponding plots for the fourth-order methods.
Here, all methods approximately reach their expected order of convergence, with
MERK4∗ and MRI-GARK45a∗ outperforming their expectations. MERK4 has the smallest
error, but also uses an m value that is two times greater than other fourth-order
methods on this test problem (see Table 2). MERK4∗ starts off with larger errors than
MERB4 and MRI-GARK45a, but because it converges at fifth-order for this test problem,
its errors quickly drop below those for MERB4 and MRI-GARK45a. MRI-GARK45a∗ has
an m = 1 which seemingly puts it at a disadvantage when comparing accuracy with
other methods, however, larger values ofm only lead to more total function evaluations
with no reduction in error. Focusing on runtime efficiency, MERB4 is more efficient
at larger error values, but MERK4 is eventually the most efficient at smaller error
values. Total function call efficiency repeats the previous pattern from third-order
methods: MRI-GARK45a and MRI-GARK45a∗ are the most efficient and closely line up,
MERB4 performs better than MERK4 and MERK4∗due to its shorter total traversal time
of 1.75H versus 2.833H. Finally, when comparing slow function calls MERB4 is the
most efficient. This is expected since MERB4 only has 2 slow stages, compared with 6
for MERK4 and 5 for MRI-GARK45a.
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Fig. 3: Convergence (top-left) and efficiency (top-right, bottom) of O(H5) and O(H6)
methods on the reaction-diffusion problem of Section 3.5.

The first thing to note discussing the fifth and sixth-order methods is that they all
use the same m = 5 for this problem (Table 2). Their convergence and efficiency plots
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are provided in Figure 3. On this problem, all methods converge at their expected
rates, although MERB6 starts out with larger error values than the fifth-order methods,
that all cluster around similar error values, although the dynamic linearization used
by MERK5 results in slightly less error than the fixed linearization used in MERK5∗. In
all three measures of efficiency MERB5 is the most efficient. Looking at total function
calls efficiency, MERB5 has a total traversal time of 2.075H compared to 3.2H for
MERK5 and 1.253H for MERB6 (though we barely get to see advantages of this due to
its larger error on this problem). When it comes to slow function calls, MERB5’s 4 slow
stages is much lower than the 10 stages for MERK5and 7 stages for MERB6. Combining
the merits of MERB5 from total function calls and slow function calls explains its
runtime efficiency performance.

3.6. Bidirectional coupling system. Inspired by [6, Sect. 5.1], we propose the
following semi-linear, nonautonomous bidirectional coupling problem on 0 < t ≤ 1:

u′ = σv − w − βt,(3.3a)

v′ = −σu,(3.3b)

w′ = −λ(w + βt)− β

(
u− a(w + βt)

aλ+ bσ

)2

− β

(
v − b(w + βt)

aλ+ bσ

)2

,(3.3c)

with exact solution u(t) = cos(σt) +ae−λt, v(t) = − sin(σt) + be−λt, and w(t) =
(aλ + bσ)e−λt − βt. This problem features linear coupling from slow to fast time
scales through the equation (3.3a), and nonlinear coupling from fast to slow time
scales through the equation for (3.3c). In addition, it includes tunable parameters
{a, b, β, λ, σ} taken here to be {1, 20, 0.01, 5, 100}, with aσ = bλ; σ determines the
frequency of the fast time scale and β controls the strength of the nonlinearity. In the
case of dynamic linearization, smaller values of β correspond with weaker nonlinearity,
resulting in higher values of the optimal time scale separation factor m. While there
are various possible fixed splittings, we chose the most natural splitting into fast
variables and slow variables informed by the exact solution:

Ff (t,u) =

 σv
−σu
0

 , Fs(t,u) =

 −w − βt
0

−λ(w + βt)− β
(
u− a(w−βt)

aλ+bσ

)2
− β

(
v − b(w−βt)

aλ+bσ

)2


We assess error at 20 equally spaced points within the time interval and consider
time steps H = 0.05× 2−k for integers k = 0, 1, . . . , 7.

Accuracy and efficiency plots for this problem are shown in Figures 4-6. Starting
with third-order methods in Figure 4, all methods incorporating dynamic linearization
have similar errors, coinciding with their uniform time scale separation factor of m =
80. Similarly, the methods using fixed linearization MERK3∗ and MRI-GARK33a∗ have
the same m = 10, leading to comparable errors. As before, dynamic linearization leads
to lower errors than fixed linearization (here the difference in errors for the same H is
up to 103). The previous efficiency observations are repeated here as well: MERB3 is
the most efficient in runtime and slow function evaluations, while MRI-GARK33a is
slightly more efficient in total function evaluations.

Results for fourth-order methods are plotted in Figure 5. Like with the third-
order methods, we use the same m for dynamic linearization methods, but here there
is slightly more variation in errors, with MERK4 being slightly more accurate than the
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Fig. 4: Convergence (top-left) and efficiency (top-right, bottom) of O(H3) methods
on the bidirectional coupling problem of Section 3.6.

others in this group. Both MERB4 and MERK4 show optimal runtime efficiency, the
MRI-GARK methods are the most efficient in total function calls, and MERB4 is again
the most efficient in slow function calls.

Finally, the performance of fifth and sixth-order methods on the bidirectional
coupling problem is illustrated in Figure 6. The accuracy of these methods is almost
identical on this test problem with MERB6 demonstrating a slightly steeper line, so we
focus on the efficiency comparisons. Both of our new MERB methods are the most
competitive for this test problem. We observe that MERB5 is slightly more efficient
in terms of runtime at larger error values, but at smaller errors MERB6 becomes
more efficient due to its higher order of accuracy. MERB6 is also the most efficient
in total function calls followed by MERB5, due to their smaller total traversal times in
comparison with MERK5. The small number of stages for MERB5 makes it clearly more
efficient in terms of slow function calls.

4. Conclusions. We have introduced a new approach for multirate integration
of initial-value problems that evolve on multiple time scales. Employing an MIS-like
approach wherein the couplings between slow and fast time scales occurs through
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Fig. 5: Convergence (top-left) and efficiency (top-right, bottom) of O(H4) methods
on the bidirectional coupling problem of Section 3.6.

defining a sequence of modified IVPs at the fast time scale, and built off of existing
ExpRB methods, the proposed MERB methods allow creation of multirate methods
with very high order of accuracy, and minimize the amount of costly processing of the
slow time scale operator. In addition to deriving a clear mechanism for constructing
these from certain classes of ExpRB schemes, we provide rigorous convergence analysis
for MERB methods. We note that the style of this analysis is much more elegant than
our approach for MERK methods [14], in that we analyze the overall MERB error by
separately quantifying the error between the MERB approximation of the underlying
ExpRB method, and the error in the ExpRB approximation of the original IVP. With
this theory in hand, we propose a suite of MERB methods with orders 2 through 6,
where in the cases of orders 3–6, we additionally provide generalizations of the base
ExpRB methods and extend these to non-autonomous problems.

We examine the performance of the proposed MERB methods of orders 3 through
6, comparing these against existing MERK and explicit MRI-GARK methods on
two test problems, and where the MERK and MRI-GARK methods are tested with
two potential multirate splittings on each problem. While all MERB, MERK and
MRI-GARK methods exhibited their theoretical convergence rates on these problems
and splittings, their efficiency differed considerably. In order to provide results that
potentially apply to a broad range of multirate applications, we investigate efficiency
using three separate measurements of cost: MATLAB runtime, total function calls
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Fig. 6: Convergence (top-left) and efficiency (top-right, bottom) of O(H5) and O(H6)
methods on the bidirectional coupling problem of Section 3.6.

(both fast and slow), and slow function calls only. Within these metrics, some general
patterns emerge. First, most of the methods exhibited optimal efficiency at higher
m = H/h values when using multirate splittings based on dynamic linearization as
opposed to fixed splittings. Second, the proposed MERB methods show the best
runtime efficiency of all methods and splittings, although in some cases the equivalent
order MERK method with dynamic splitting is competitive. Third, due to their total
fast time scale traversal times of 1.0H, the MRI-GARK methods always exhibit the
best total function call efficiency. Lastly, due to their low number of slow stages,
the proposed MERB methods are uniformly the most efficient when considering slow
function calls (only in a few instances MERK with dynamic splitting was competitive).
This is particular of interest for multirate problems where the fast component is much
less costly to compute than the slow component.

Based on these results, we find that the newly proposed MERB methods provide
a unique avenue to construction of high order MIS-like multirate methods, and that
they are very competitive in comparison with other recently-developed high order
MIS-like multirate schemes. More work remains, however. An obvious extension
is to include embeddings to enable low-cost temporal error estimation, as well as
to investigate robust techniques for error-based multirate time step adaptivity. A
further extension of MERB methods could focus on applications that require implicit
or mixed implicit-explicit treatment of processes at the slow time scale.
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