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Abstract

We study stochastic perturbations of ODE with stable limit cycles – referred to as
stochastic oscillators – and investigate the response of the asymptotic (in time)
frequency of oscillations to changing noise amplitude. Unlike previous studies,
we do not restrict our attention to the small noise limit, and account for the fact
that large deviation events may push the system out of its oscillatory regime.
To do so, we consider stochastic oscillators conditioned on their remaining in an
oscillatory regime for all time. This leads us to use the theory of quasi-ergodic
measures, and to define quasi-asymptotic frequencies as conditional, long-time
average frequencies. We show that quasi-asymptotic frequencies exist under min-
imal assumptions, though they may or may not be observable in practice. Our
discussion recovers and expands upon previous results on stochastic oscillators
in the literature. In particular, existing results imply that the asymptotic fre-
quency of a stochastic oscillator depends quadratically on the noise amplitude.
We describe scenarios where this prediction holds, though we also show that it
is not true in general – potentially, even for small noise.

Keywords: Stochastic oscillators ⋅ Isochrons ⋅ Quasi-ergodic measures

1 Introduction

1.1 Background

This paper is a small contribution to our understanding of how oscillatory dynamical sys-
tems respond to random perturbations. Specifically, we study ODE with stable periodic
solutions, and investigate the effect which additive or multiplicative Guassian noise has on
the asymptotic (time average) frequency of oscillations. When noise is present, we refer to
these systems in general as stochastic oscillators.

We attempt to provide a unified, rigorous context for past results on the subject, and
comment on several commonly made assumptions which do not hold in general. The mathe-
matics employed in this paper is relatively simple. The only technical novelty of our approach
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Z.P. Adams The asymptotic frequency of stochastic oscillators

is the use of “quasi-ergodic measures” (see Section 3) to study the long term behaviour of
stochastic oscillators.

This subject – the effect of noise on oscillatory dynamical systems – has been studied
from various perspectives over the past thirty years. In the 1990’s, most work focused on
the effect of noise on oscillatory dynamical systems’ invariant measures. Particular attention
was given to “stochastic Hopf bifurcations”, for instance in the work of Arnold & Imkeller,
[2], Arnold, Sri Namachchivaya, & Schenk-Hoppé [3], and Baxendale [11].

A more dynamical approach gained popularity in the 2000’s, based on earlier work of
Guckenheimer [26] and Winfree [52] which rigorously defined the phase of deterministic
oscillators. In this approach, a stochastic oscillator is projected, via a “phase map”, onto
the circle. The projected process is then identified as the “phase” of the system. There
is some freedom in how one defines the phase, as we discuss below. Once the phase of an
oscillatory dynamical system is defined, one may study how it, and properties derived from
it, are affected by the addition of noise to the system.

Following Teramae & Tanaka [48], the authors of [8], [9], [14], [23], [25], [47], [54], define
phase maps by referring to the unperturbed (deterministic) oscillator. Meanwhile, [12], [13],
[20], [41], [42], [43], [44], attempt to account for the non-deterministic behaviour of a stochas-
tic oscillator when definining a phase map. Notably, the work of Schwabedal & Pikovsky in
[41], [42], [43], [44], attempts to develop a theory of phase maps for noise-induced oscilla-
tions, rather than just oscillations perturbed by noise. We here note that the present paper
focuses exlusively on noise-perturbed oscillations.

As will be seen, the phase maps of Cao, Engel, Schwabedal, Pikovsky, and their collab-
orators in [12], [13], [20], [41], [42], [43], [44], do not strictly meet our definition of a phase
map. However, the discussion of this paper could be generalized to include most of these
definitions (except perhaps those of Schwabedal & Pikovsky in [41], [42]) with little difficulty.
See Remark 1.1 for further discussion of this point.

In some of the works mentioned above, in particular [8], [9], [14], [23], [25], [47], [48], [54],
approximate SDE for the phase of a stochastic oscillator are derived. From such an equation,
[8], [25], [47], [54], derive a formula for a stochastic oscillator’s asymptotic frequency. The
results of each of these studies imply that the difference between the asymptotic frequency
of an oscillatory system with and without noise is proportional to the square of the noise
amplitude. However, two common assumptions are made in their analyses, which do not
hold in general.

First, the authors assume that stochastic deviations in the amplitude of oscillations due
to noisy perturbations are negligible. It is true that large deviation results [22] guarantee
that the system should stay in a “small” neighbourhood of a stable deterministic limit cycle
for a “long time” (in a sense which we do not make precise here). However, if a deterministic
limit cycle has a bounded basin of attraction, and the system is perturbed by additive noise
(as used in several of the references we cite), then at some almost surely finite stopping time
the stochastic system will exit the basin of attraction of the limit cycle. From this time
onwards, the phase of the system is not well-defined, and hence neither is the time average
of the system’s frequency.

Second, it is assumed that the pointwise ergodic theorem1 can be applied to the phase of

1For details of the pointwise ergodic theorem which we use in Section 2 (first proven by Birkhoff [7]),
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a stochastic oscillator. In most cases this is true – and would always be true if the assumption
of the previous paragraph held – but it is a technicality which should be taken care of.

Not all studies of stochastic oscillators make these assumptions. In Bressloff & MacLaurin
[9], Cheng & Qian [14], and Giacomin et al. [23], SDE for the phase of a stochastic oscillator
are rigorously derived. The authors are careful to note that the phase may only be well-
defined up to some finite stopping time.

While the analysis of [9] ends at a finite stopping time, [14], [23], consider long time
dynamics by making use of large deviation theory. In [14], [23], time and noise amplitude
are simultaneously taken to infinity and zero, respectively, in a co-dependent fashion. The
phase is thereby guaranteed to be well-defined throughout their arguments. Similar to [8],
[25], [47], [54], the results of [23] imply that the difference between the average frequency
of an oscillatory system with and without noise is proportional to the square of the noise
amplitude in the small noise regime.

In the present study, we first consider (in Section 2) the long term dynamics of stochastic
oscillators by assuming that the phase is always well-defined. Then, dropping this assumption
in Section 3, we use the theory of quasi-ergodic measures (introductions to which can be
found in the textbook of Collet et al. [15] or the recent dissertation of Villemonais [51]),
which allows us to consider a stochastic oscillator conditioned on the phase being well-
defined for all time. We thence come to a formula for a “quasi-asymptotic frequency”.
We see a clear possibility of non-quadratic dependence of this quasi-asymptotic frequency
on the noise amplitude. Our formula for the (quasi) asymptotic frequency of a stochastic
oscillator is compared with previous results in Section 4. In particular, our simple arguments
recover the results of Giacomin et al. [23] up to a correction term. We conjecture that this
correction term may be non-trivial in the small-noise regime for certain systems, though
further investigation is needed to prove this. When our prediction differs from that of [23],
the asymptotic frequencies which we predict are likely observable on different time scales
from those identified in [23].

In Section 5 we discuss the advantages and disadvantages of our work. As we will see,
the primary advantages are that it is rigorous, and that it is not restricted to the small-noise
amplitude regime. A major disadvantage is that, though quasi-asymptotic frequencies are
always well-defined, they may not be “observable”, in a sense made precise below. Finally,
directions for future work are considered.

1.2 Technical setup

Before proceeding, we introduce our technical setup and state necessary definitions. Past
results and present goals are also stated in a more precise language than in Section 1.1.

We begin by considering an autonomous differential equation generated by a C2 vector
field V on Rd,

∂tx = V (x). (1)

Denote the flow map of (1) by (t, x) ↦ X0
t (x). We assume throughout this document that

(1) has a stable limit cycle Γ of period T > 0, in the sense of [26]. That is, Γ is a one
dimensional manifold parameterized as Γ = {γt}t∈R such that

refer to Section 1.2 of the textbook by Cornfeld et al. [16].
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1. X0
t (γs) = γt+s and γt+T = γt, and

2. there exists an open set B(Γ) ⊂ Rd containing Γ such that for all x ∈ B(Γ),

lim
t→∞ inf

y∈Γ
∥X0

t (x) − y∥ ÐÐ→t→∞ 0.

Let B(Γ) be the basin of attraction of Γ. We take a surjective map π ∶ B(Γ) → [0, T )
such that

π(γs) = s modT, (2)

and let the π-phase (or simply phase, when unambiguous) of a continuous path (Yt)t≥0 in
B(Γ) be π(Yt). In general, we refer to such a map as a phase map. For the rest of the
document, all phase maps are assumed to be C2. For a phase map π, the corresponding
normalized phase map is π1 ∶= T −1π.

Remark 1.1. The “phase maps” of Cao [12], Cao et al. [13], Engel & Kuehn [20], and
Schwabedal & collaborators [41], [42], [43], [44], do not satisfy condition (2). Dropping this
condition, the discussion of this paper would extend to the phase maps of [12], [13], [44].
For our discussion to apply to the phase map of [20], we would need to consider random
phase maps. The complications introduced to our arguments by weakening the definition
of a phase map are marginal. Nevertheless, we maintain the condition (2) in the definition
of a phase map for didactic purposes. Our arguments do not easily extend to the phase
maps of [41], [42], which are designed to handle noise-induced (rather than noise-perturbed)
oscillations. Nor do our arguments easily extend to the phase map used in [43], which deals
with chaotic (rather than stochastic) oscillators.

In the literature, frequent use is made of the isochron map, which is the unique phase
map invariant under the time T flow of (1). That is, the isochron map is the unique map
π ∶ B(Γ)→ [0, T ) satisfying (2) and

π(x) = π(X0
T (x)) for all x ∈ B(Γ). (3)

Equivalently, the isochron map can be defined for each x ∈ B(Γ) as the unique number
π(x) ∈ [0, T ) such that

∥X0
t (x) − γt+π(x)∥ ÐÐ→t→∞ 0.

The isochron map was introduced in the context of deterministic oscillators by Winfree [52],
and studied from a mathematical perspective by Guckenheimer [26] (though as [26] points
out, similar ideas can be traced back to Poincaré). When π is the isochron map, we refer to
the π-phase of a continuous path in B(Γ) as its isochronal phase.

Throughout our discussion, we must take care of possible singularities of phase maps π
that may exist at the boundary of B(Γ). A phase singularity is a point x0 ∈ ∂B(Γ) such
that some derivative of π blows up at x0. For instance, if π is the isochron map and x0 is a
zero of V with an unstable manifold intersecting B(Γ), then x0 is a phase singularity of π.
This follows from the fact that π′(x)V (x) = 1 for all x ∈ B(Γ), so

∥π′(x)∥ ∼ ∥V (x)∥−1 ÐÐÐ→
x→x0

∞.
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Our interest lies in stochastic perturbations of (1). Let (Ω,F , (Ft)t≥0,P) be a filtered
probability space satisfying the usual conditions on which all random variables and stochastic
processes of this document are to be defined. Consider the stochastic differential equation

dX = V (X)dt + σB(X)dW, (4)

where W = (Wt)t≥0 is a standard (Ft)t≥0-adapted Brownian motion on Rd, B ∶ Rd → Rd×d is
a continuous map, and σ ≥ 0. A solution to (4) is a continuous, (Ft)t≥0 adapted stochastic
process (Xt)t≥0 such that

Xt = X0 + ∫
t

0
V (Xs)ds + σ∫

t

0
B(Xs)dWs almost surely. (5)

For details on the solution theory of (4), refer to [38].
For x ∈ Rd, let Px( ⋅ ) ∶= P ( ⋅ ∣X0 = x), where X0 is the initial condition of (4). For any

distribution ν on Rd let
Pν ( ⋅) ∶= ∫

Rd
Px( ⋅ )ν(dx),

which is P conditioned on the initial distribution of (4) being ν. Denote by Ex and Eν the
expectation with respect to Px and Pν .

Let the flow map of (4) be (t, x)↦Xσ
t (x). When unambiguous, we omit the dependence

of the flow on initial conditions, writing Xσ
t = Xσ

t (x). For any phase map π, note that
the phase of (4) is only defined so long as Xσ

t remains in B(Γ) for all t ≥ 0, which is not
guaranteed in general. The exit time of (Xσ

t )t≥0 from B(Γ) is

τσ ∶= inf {t > 0 ∶ Xσ
t ∈ ∂B(Γ)} ,

so that any phase map of (4) is only defined for t < τσ.
The main object in which we are interested is the asymptotic frequency of (4), defined as

cσ ∶= lim
t→∞

1

t
π1(Xσ

t )

when it exists. We use the normalized phase map, so that cσ is the long-time average number
of full rotations per unit time. If the unnormalized phase map were used (as in [23]), then
cσ would be the long-time average number of full rotations per deterministic period.

In Section 2 we assume that τσ = ∞, in which case cσ ∈ R is (usually) well-defined. A
formula for the asymptotic frequency is given, which facilitates a qualitative understanding of
its dependence on the noise amplitude σ > 0. In Section 3 we allow for τσ <∞ almost surely,
and study cσ conditioned on the event τσ = ∞ using the theory of quasi-ergodic measures.
We discuss examples where cσ is observable, in the sense that t−1π1(Xσ

t ) approaches cσ
for some t < τσ with high probability. In Section 4, we study the qualitative dependence
of cσ − c0 on σ > 0, and compare our results with those of past studies, [23] in particular.
Section 5 concludes the paper, summarizing our results and highlighting directions for future
research.
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2 Systems which oscillate for all time

In this section, we study the asymptotic frequency of a stochastic oscillator assuming that
τσ =∞. Note that in our setup, this is usually only possible for multiplicative noise, specifi-
cally when the diffusion coefficient in(4) is such that B(x)→ 0 as x→ ∂B.

Our main result is the following theorem; its analogue when τσ is almost surely finite is
given in Theorem 3.3. As noted in Remark 2.3, the assumption that µσ has bounded support
in B(Γ) can be substantially weakened. We include this assumption at first to simplify the
theorem’s proof.

Theorem 2.1. Let (Xσ
t )t≥0 be the stochastic process governed by (4), and assume τσ = ∞.

Let Γ be a stable limit cycle of (1) with basin of attraction B(Γ) and period T > 0. Fix a
phase map π ∶ B(Γ)→ [0, T ). Suppose that

(i) (Xσ
t )t≥0 has an ergodic measure µσ with bounded support in B(Γ),

(ii) If π has a phase singularity x0 ∈ ∂B(Γ), then µσ is such that for δ > 0

∫
Bδ(x0)

∥π′(x)∥µσ(dx) < ∞, ∫
Bδ(x0)

∥π′′(x)∥µσ(dx) < ∞, (6)

i.e µσ decays sufficiently fast near x0.

Then,

cσ ∶= lim
t→∞

1

t
π1(Xσ

t )

= ∫
B(Γ)

π′1(x)V (x) + σ
2

2
Trπ′′1 (x)[B(x),B(x)]µσ(dx)

(7)

exists as a deterministic real number, the limit converging in probability.

Proof. By Itô’s formula, we have

π(Xσ
t ) = ∫

t

0
π′(Xσ

s )V (Xσ
s ) +

σ2

2
Trπ′′(Xσ

s )[B(Xσ
s ) ⋅ ,B(Xσ

s ) ⋅ ]ds

+ σ∫
t

0
π′(Xσ

s )B(Xσ
s )dWs

=∶ It + IIt.

(8)

To handle It, we remark that condition (ii), the assumed regularity of π, and the boundedness
of the support of µσ imply that the map

x ↦ π′(x)V (x) + σ
2

2
Trπ′′(x)[B(x) ⋅ ,B(x) ⋅ ] (9)

is integrable over B(Γ) with respect to µσ. Applying the pointwise ergodic theorem (see
Section 1.2 of [16]) with respect to µσ then yields

lim
t→∞

1

t ∫
t

0
π′(Xσ

s )V (Xσ
s ) +

σ2

2
Trπ′′(Xσ

s )[B(Xσ
s ) ⋅ ,B(Xσ

s ) ⋅ ]ds

= ∫
Γδ
π′(x)V (x) + σ

2

2
Trπ′′(x)[B(x) ⋅ ,B(x) ⋅ ]µσ(dx).

6
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For IIt, assume that the initial distribution of (Xt)t≥0 is µσ. By Itô’s isometry and the
definition of the distribution of a process,

Eµσ [∥IIt∥
2] ≤ Eµσ [∫

t

0
∥π′(Xs)B(Xs)∥2

ds]

≤ ∫
B(Γ)∫

t

0
∥π′(x)B(x)∥2

dsµσ(dx)

≤ C0t.

By the Burkholder-Davis-Gundy inequality,

Eµσ [[II]t] ≤ C1t

for some C1 > 0, where [II]t denotes the quadratic variation of IIt. This implies that
Eµσ [t−2[II]t]→ 0 as t→∞. Then, by Theorem 4.1 of van Zanten [50],

1

t
IIt ÐÐ→

t→∞ 0 in distribution.

As the distributional limit of t−1IIt is zero, a constant, this is also a limit in probability. If
the initial distribution of (Xt)t≥0 is not µσ, we nevertheless know that the distribution of
Xt becomes arbitrarily close to µσ as t →∞. Therefore, we apply the same argument after
waiting for transient behaviour to die out.

When cσ exists, as defined in (7), we refer to it as the asymptotic frequency of (4) in
B(Γ).

Theorem 2.1 is really just an application of the pointwise ergodic theorem. We are
not the first to use the pointwise ergodic theorem to study the asymptotic frequency of
a stochastic oscillator, see for instance Teramae et al. [47] and Yoshimura & Arai [54].
However, [54] assumes that the distance of Xσ

t from Γ is approximately zero for all t > 0,
while [47] only considers the small noise limit of the system and assumes that attraction of
(1) to Γ occurs infinitely fast. Therefore, the integrability condition (ii) does not enter into
their consideration. As already remarked, the assumption that Xσ

t remains near Γ for all
t > 0 is not necessarily good, even for small σ > 0.

When attempting to apply Theorem 2.1, the integrability condition (6) needs to be
checked. In Appendix A, we provide sufficient conditions for (6) to be satisfied. In Example
2.1, we consider a simple SDE satisfying this condition for some values of σ > 0. How-
ever, Examples 2.1 & 2.2 illustrate that Appendix A provides sufficient, but not necessary,
conditions for the existence of an asymptotic frequency.

Remark 2.2. We have not been able to obtain estimates on the rate of convergence in (7),
though in some cases we expect this rate to be exponential. Indeed, if (Xt)t≥0 is restricted to
a compact subset of its phase space, it satisfies Doeblin’s condition (see for instance Section
16 of Meyn & Tweedie [36]). Moreover, if π does not have a phase singularity on ∂B(Γ), then
the integrand appearing in It is a bounded function on B(Γ). Hence, for It the conditions of
Katz & Thomasian [30] are satisfied, and we have that 1

t It converges to cσ at an exponential
rate.
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However, this exponential rate of convergence is not guaranteed in the presence of a phase
singularity on ∂B(Γ). Nor is an exponential rate of convergence of 1

t IIt to zero guaranteed by
any theory which we are aware of. Therefore, we cannot conclude that the rate of convergence
of 1

tπ1(Xt) to cσ is exponential. Future work may study this rate of convergence, and rates
of convergence to quasi-ergodic averages in general.

Remark 2.3. In condition (i) of Theorem 2.1, we require the support of µσ to be bounded.
This is to prevent the potential growth of the drift and diffusion coefficients V, B, at infinity
from preventing the µσ-integrability of the functional in (9). However, the condition is not
necessary. Indeed, suppose that

• B(Γ) = Rd, so that the phase is well-defined for all time, and that

• the distribution of (Xt)t≥0 converges to µσ at an exponential rate, which is the case for
a wide range of processes.

Then, µσ satisfies a Poincaré inequality, which implies that µσ must have tails which decay
to zero at an exponential rate (see Chapter 4 of Bakry et al. [4] for details). So long as V and
B have subexponential growth as ∥x∥ → ∞, we may therefore conclude that the functional
in (9) is still integrable with respect to µσ, and the argument of Theorem 2.1 applies to this
scenario with little extra effort.

Example 2.1. Consider the following stochastic perturbation of the Hopf normal form,

dx = (x − y − x(x2 + y2))dt + σx(2 − (x2 + y2))dW,
dy = (x + y − y(x2 + y2))dt + σy(2 − (x2 + y2))dW, (10)

driven by a single Brownian motion (Wt)t≥0. Here and in all other examples, the noise is
interpreted in the Itô sense. Note that the choice of noise in (10) implies that its solution is
bounded in the circle of radius

√
2 uniformly in time.

When σ = 0, the unit circle Γ = S1 is globally stable (i.e. B(Γ) = R2). Hence τσ = ∞,
regardless of the choice of diffusion coefficient, so that the isochronal phase of the solution
process is defined for all t ≥ 0. This example is particularly nice for our purposes, since one
may check that the isochron of each (x, y) ∈ S1 is the ray

π−1(x, y) = {s(x, y) ∶ s > 0}.

Note that the diffusion coefficient in (10) is such that the conditions of Corollary A.1 are
met, so long as

0 ≤ σ ≤ σ∗ ∶= TrV ′(0)/2d = 1/2.
Thus, t−1π(Xt) converges to some cσ ∈ R in probability as t → ∞ for σ < σ∗. However, our
numerical experimets suggest that this convergence also occurs for some σ > σ∗.

In Figure 1a, we approximate cσ by a numerical value of t−1π(Xσ
t ) for large t > 0. We

ran an Euler-Maruyama scheme (see Chapter 8 of [34]) with a time step of dt = 0.0025 up to
time tend = 5000. Note that the approximation

cσ − c0 ≃ mσ2 with m ∶= 1.8 ∗ 10−3. (11)
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appears to be good for σ ∈ [0,0.4]. Thus in this example, the prediction of Giacomin et
al. [23] appears to extend into the moderate-noise regime, and holds on time-scales much
larger than what they predict. For σ > 0.4, cσ appears to enter a non-quadratic regime.

As noted in Remark 2.3, uniform in time boundedness of the solution is a sufficient
condition for the existence of a deterministic asymptotic frequency, but not necessary. For
instance, consider

dx = (x − y − x(x2 + y2))dt + σxdW,
dy = (x + y − y(x2 + y2))dt + σy dW. (12)

With noise of this form the process is guaranteed to leave any bounded subset of R2 at
some almost surely finite stopping time. However, the system still possesses a unique ergodic
measure in B(Γ) = R2/{0}, and satisfies condition (ii) of Theorem 2.1 for σ < σ∗, by Corollary
A.1. Numerical simulations again suggest that the asymptotic frequency exists, and depends
quadratically on σ ∈ [0,0.5] (not shown).

Example 2.2. We consider a process generated by an SDE to which Corollary A.1 does not
apply,

dx = (x − y − x(x2 + y2))dt + σ(2 − (x2 + y2))dW,
dy = (x + y − y(x2 + y2))dt + σ(2 − (x2 + y2))dW. (13)

Investigating the Fokker-Planck operator of this system, one finds that the comparison prin-
ciple cannot be used to conclude that its ergodic measure (which exists and is unique) decays
quadratically near zero. Hence, our previous arguments do not guarantee that the integral
in (7) converges.

Nevertheless, simulating the system for a long time, we observe the apparent convergence
of t−1π(Xt) to a deterministic cσ for σ ∈ [0,0.5]. The asymptotic frequency appears to depend
non-quadratically on σ ∈ [0,0.5]. Beyond the value σ = 0.5, we did not observe apparent
convergence of 1

tπ1(Xt) to a fixed deterministic constant, though this may only be due to
an exceptionally slow rate of convergence. See Figure 2b.

As we discuss further in Section 4, Theorem 2.1 implies that a non-quadratic dependence
of cσ on σ > 0 must be due to significant changes in µσ. Indeed, in this example, the radially
asymmetric noise which we use leads to a loss of radial symmetry in µσ. See Figure 2b.
We may further remark that the asymmetry of µσ in this example corresponds to a sort of
noise-induced bistability in (13). Each of the peaks of the invariant measure seen in Figure
2b corresponds to a meta-stable state, between which the system rapidly switches. This sort
of noise-induced bistability has also been studied by Newby & Schwemmer [37], [45].

Example 2.3. The theory developed here extends, in some cases, to parabolic SPDE inter-
preted as stochastic evolution equations on a Hilbert space. For instance, consider

dX = (∆X +N(X))dt + σB(X)dW, (14)

with periodic spatial domain S1, interpreted as an evolution equation on L2(S1;Rn). The
Laplace operator is ∆ ∶ H1(S1;Rd) ⊂ L2(S1;Rd) → L2(S1;Rd), and N ∶ Cb(S1;Rd) →
Cb(S1;Rd) is a locally Lipschitz nonlinearity. For simplicity, we assume that B(x) is a
trace class operator for each x ∈ L2(S1;Rd), that x↦ B(x) is continuous in the strong oper-
ator topology, and that (Wt)t≥0 is a trace-class Wiener process. These assumptions allow us

9



Z.P. Adams The asymptotic frequency of stochastic oscillators

(a) (b)

Figure 1: Approximate values of cσ − c0 for σ ∈ [0,10] in (10) & (13),
shown in (a) and (b) respectively. Both plots were obtained by simulat-
ing the respective system using an Euler-Maruyama scheme up to time
t = 1000, at which point convergence appears to be reached. Note that
the quadratic fit (11) appears to be good in (a) for σ ∈ [0,10], while
super-quadratic dependence appears to occur for σ ≳ 5 in (b).

(a) (b)

Figure 2: Monte-Carlo approximations of the unique ergodic measures
in B(Γ) of (10) and (13) (shown in (a) and (b), respectively), both with
σ = 0.4. In (a), note the approximate radial symmetry of the invariant
measure, not present in (b).

to conclude that existence and uniqueness of solutions to (14) hold in the mild sense. That
is, there exists a unique stochastic process (Xσ

t )t≥0 satisfying

Xσ
t = et∆Xσ

0 + ∫
t

0
e∆(t−s)N(Xσ

s )ds + σ∫
t

0
e∆(t−s)B(Xσ

s )dWs

for Xσ
0 ∈ Cb(S1;Rd). See Da Prato & Zabczyk [17] or Liu & Röckner [33] for details.

When σ = 0, there are instances of (14) possessing an asymptotically stable travelling

10
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wave solution in L2(S1;Rd), for instance the FitzHugh-Nagumo system

du = (D∆u + u(1 − u)(u − a))dt + σu(1 − u)(u − a)dW,
dv = (δD∆v + γu − v)dt.

(15)

When σ = 0, the existence and stability of a travelling wave solution of (15) on a periodic
spatial domain is proven in Ariola & Koch [1], as long as the scaling parameter D is suffi-
ciently small (equivalently, as long as the spatial domain is sufficiently large). The choice of
diffusion coefficient in (15) guarantees that the solution remains in a bounded subset of the
travelling wave’s basin of attraction for all time. On a periodic spatial domain, the travelling
wave is a periodic solution. When the noise is trace class, MacLaurin [35] guarantees that
the isochron map is well-defined, C2, and satisfies an Itô formula. This allows us to translate
most of the proof of Theorem 2.1 to this setting unchanged.

So long as δ > 0, we may apply Theorem 11.38 of Da Prato & Zabczyk [17] to conclude
that (15) possesses an ergodic measure in B(Γ). Theorem 2.1 therefore translates to this
setting, and we can conclude that (15) has an asymptotic frequency in B(Γ) for all σ > 0.
This asymptotic frequency is in fact the asymptotic speed of the stochastic travelling wave.

Future work will focus on studying this system with additive noise, using the theory
outlined in the following section. We are also interested in extending this example to the
case of non-trace class noise, and the case δ = 0. When the noise is not trace class, the
results of [35] need to be strengthened. When δ = 0, we must handle the fact that the linear
part of the system’s drift coefficient does not generate a compact C0-semigroup. This makes
proving the existence of an ergodic measure slightly more difficult.

One might also consider how the speed of the wave on an unbounded spatial domain
compares to the speed of the wave on a “large” periodic spatial domain. This would provide
a rigorous foundation for the existence of the asymptotic stochastic wave speeds computed
e.g. in the thesis work of Hamster [27], [28]. It could also provide a theoretical framework
for other works on the effects of noise on the speed of travelling waves, such as Eichinger et
al. [19] or MacLaurin [35].

3 Systems which may not oscillate for all time

In many situations, one cannot assume that τσ = ∞. Nevertheless, we often expect the
solution of (4) to remain in B(Γ) for a “long time”. For instance, persistence in B(Γ) over
some finite time interval may be guaranteed by a large deviation principle [22]. However,
large deviation principles only apply in the small noise regime.

When τσ is almost surely finite, but large, we might study the dynamics of the system
in terms of a “quasi-ergodic measure”. The textbook of Collet et al. [15] or the recent
dissertation of Villemonais [51] are good entry points to the general theory of quasi-ergodic
measures. An extensive bibliography of works related to quasi-ergodic measures has been
collected by Pollett [39]. 2

2When introducing quasi-ergodic measures, it is typical – and important – to distinguish between quasi-
ergodic measures and quasi-stationary measures. However, we choose to omit a discussion of these and other
subtleties, opting to only state immediately necessary definitions and results.
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Definition 3.1. Let (E,E) be a metric space, (Yt)t≥0 an E-valued Markov process, and
B ⊂ E a bounded open subset of E. Suppose Y0 ∈ B, and define the exit time of (Yt)t≥0 as

τB ∶= inf{t > 0 ∶ Yt ∈ ∂B}.

A quasi-ergodic measure of (Yt)t≥0 in B is a measure µ such that

lim
t→∞Eζ [

1

t ∫
t

0
χA(Ys)ds ∣ τB > t] = µ(A) ∀A ∈ B(E),

for any initial distribution ζ supported in the open set B. That is, µ(A) is the expected
fraction of time (Yt)t≥0 spends in A, given that Yt ∈ B for all t ≥ 0. Note that a quasi-ergodic
measure is an ergodic measure in the usual sense if and only if τB =∞ almost surely.

To prove an analogue of Theorem 2.1 in the quasi-ergodic setting, we need a version
of the pointwise ergodic theorem for quasi-ergodic measures. The earliest “quasi-ergodic
theorem”, to our knowledge, was proven by Breyer & Roberts in 1999 [10]. We make use of
the quasi-ergodic theorem in [51], modified from [55]. Its statement is here modified to fit
our notation.

Proposition 3.2 (Example 5.1 and Corollary 6.5 of [51]). Let E be a Banach space. Take
a bounded subset B of E, and let (Yt)t≥0 be an E-valued Itô diffusion with locally Hölder
continuous drift & diffusion coefficients, and a locally uniformly elliptic diffusion coefficient.
Then, (Yt)t≥0 possesses a unique quasi-ergodic distribution ν. Moreover, for any ν-measurable
function g ∶ E → R, any starting point x ∈ B, and any ε > 0,

Px (∣
1

t ∫
t

0
g(Xs)ds − ∫

B(Γ)
g(x)ν(dx)∣ ≥ ε ∣ t < τσ) ÐÐ→

t→∞ 0. (16)

From Proposition 3.2, we have the following.

Theorem 3.3. Let (Xσ
t )t≥0 be a stochastic process governed by (4). Let Γ be a stable limit

cycle of (1) with basin of attraction B(Γ) and period T > 0. Fix a phase map π ∶ B(Γ) →
[0, T ). Suppose that

(i) (Xσ
t )t≥0 satisfies the hypotheses of Proposition 3.2, so that it has a quasi-ergodic mea-

sure µσ with bounded support in B(Γ),

(ii) If π has a phase singularity x0 ∈ B(Γ), then µσ is such that for some δ > 0

∫
Bδ(x0)

∥π′(x)∥µσ(dx) < ∞, ∫
Bδ(x0)

∥π′′(x)∥µσ(dx) < ∞.

Then,

Px (∣
1

t
π1(Xσ

t ) − cσ∣ ≥ ε ∣ t < τσ) ÐÐ→t→∞ 0, (17)

where

cσ = ∫
B(Γ)

π′1(x)V (x) + 1

2
Trπ′′1 (x)[B(x),B(x)]µσ(dx). (18)

12
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Proof. For this proof, we fix σ > 0 and write Xt = Xσ
t . Recall the Itô formula (8) for π(Xt)

and the local martingales (It)t≥0, (IIt)t≥0, defined therein. The proof is similar to that of
Theorem 2.1, with some subtlety arising in the handling of IIt.

When (Xt)t≥0 satisfies the hypotheses of Proposition 3.2, we know that it has a well-
defined Q-process in B(Γ), which we denote X̃t (see Chapter 6 of [51]). We then define

ĨI t ∶= ∫
t

0
π′(X̃s)B(X̃s)dWs.

As this is a local martingale with respect to (Qx)x∈B(Γ), we may apply Itô’s isometry and

the Burkholder-Davis-Gundy inequality to it. In particular, if the initial distribution of X̃t

is µσ, then

cEµσ [[ĨI]t] ≤ Eµσ [∥ĨI t∥
2]

≤ ∫
Ω
∫

t

0
∥π′(X̃s(ω))B(X̃s(ω))∥

2
dsQ(dω)

≤ ∫
t

0
ds ∫

B(Γ)
∥π′(x)B(x)∥µσ(dx) ≤ C0 t

for some c, C0 > 0. A similar estimate can be obtained for an arbitrary initial distribution ν
with support in B(Γ), since the distribution of X̃t becomes arbitrarily close to µσ for large
t > 0. Applying Theorem 4.1 of van Zanten [50], we conclude that, for any ε > 0 and initial
distribution ν supported in B(Γ),

Qν (
1

t
ĨI t > ε) ÐÐ→

t→∞ 0. (19)

By the definition of Qν (see Chapter 6 of [51]), for any ε0 > 0 and A ∈ F there exists t0 > 0
such that if t > t0, then

∥Qν(A) − Pν(A ∣ t < τσ)∥ < ε0.
Hence, (19) implies

Pν (
1

t
IIt > ε ∣ t < τσ) = Pν (

1

t
ĨI t > ε ∣ t < τσ) ÐÐ→

t→∞ 0.

Applying Theorem 3.2 to (It)t≥0 with respect to the quasi-ergodic measure µσ completes the
proof.

Definition 3.4. If (4) satisfies the hypotheses of Theorem 3.3, we refer to cσ defined in
(18) as the quasi-asymptotic frequency of (4).

Though its proof is simple, Theorem 3.3 is stronger than the results of e.g. Giacomin et
al. [23], in that we are not restricted to the small σ regime. Even in the small σ regime, we
will see in Section 4 that our result may differ from that of [23]. To bridge this (potential)
gap between our prediction and [23], we remark that when the quasi-asymptotic frequency
does exist, it may only be observable on a particular time scale. We therefore expect that,
when our prediction for cσ differs from the prediction of Giacomin et al., the two predictions
are observable on different time scales.

13
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It should also be noted that, even when the quasi-ergodic frequency in (18) exists, it is
not necessarily observable on any time scale with high probability. More precisely, the rate
of convergence of t−1π1(Xσ

t ) to cσ may be slower than the rate of escape of Xσ
t from B(Γ).

In this case cσ has a low probability of being observed.
Unfortunately, the theory of quasi-ergodic measures is still insufficiently developed for

a general comparison of the rate of convergence of t−1π1(Xσ
t ) with the rate of escape of

Xσ
t from B(Γ). We can nevertheless find several examples where Theorem 3.3 applies, and

where the rate of convergence to the quasi-asymptotic frequency appears to be much faster
than the rate of escape from B(Γ).

Example 3.1. Consider the following SDE in polar coordinates, with deterministic param-
eters 0 < a < b < c,

dr = r(r − a)(r − b)(r − c)dt + σr dW,
dθ = r−2 dt.

(20)

The system with σ = 0 has a stable limit cycle at r = b, the basin of attraction of which
is bounded by unstable limit cycles at r = a and r = c. Example 5.1 of [51] guarantees the
existence of a unique quasi-ergodic measure supported in the annulus Aa,c ∶= {(r, θ) ∶ r ∈
(a, c)}. There is no phase singularity on the boundary of this domain. Hence, (20) possesses
a quasi-asymptotic frequency in Aa,c for σ > 0.

We have numerically approximated the quasi-ergodic frequency of (20), and show the
results in Figure 3. For σ ∈ [0,0.08], (20) was simulated up to time tend = 400000 using
an Euler-Maruyama scheme (see Chapter 8 of Lord et al. [34]) with step size dt = 0.0004.
Note that cσ appears to depend quadratically on σ well into the moderate-noise regime (see
Figure 3). Convergence of the quasi-asymptotic frequency appears to occur slowly, but still
much faster than escape from Aa,c. We were not able to simulate long enough to observe a
sufficient number of escapes to estimate the escape rate.

Example 3.2. We here consider the example of a stochastic predator-prey system with a
Holling type III functional response,

du = (u(a − u) − b u2v

1 + u2
) dt

dv = (c u2v

1 + u2
− dv) dt + σB(v)dW.

(21)

In applications, (21) has been used to model the interaction of a population of phytoplankton,
u, with a population of zooplankton, v. The parameters of (21) are non-dimensionalized, but
derive from the birth, death, and feeding rates of both populations, along with the carrying
capacity of their environment. We refer to Freedman [21] for a further discussion of the
deterministic version of this model. For the stochatic model see, for instance, Reichenbach
et al. [40] or Sun et al. [46]. We remark that systems such as (21) are often studied with
spatial diffusion and a time-periodic forcing term. For simplicity, we omit these features.

We simulate (21) with two different choices of diffusion coefficient, taking B to be either

B0(v) ∶= 1 or B1(v) ∶= v − v∗.

14
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Figure 3: (a) Approximate values of the difference between the quasi-
asymptotic frequency cσ and the deterministic frequency c0 in (20).
Numerical parameters were a = 1, b = 2, c = 3. The system was sim-
ulated up to time tend = 400000 using an Euler-Maruyama scheme with
time step dt = 0.0004. Simulating on this time scale, t−1π1(Xt) appears
to converge to the quasi-asymptotic frequency, and the approximation
cσ − c0 ≃mσ2 appears to be good for m = 0.37.

The noise B = B0 is motivated by the analysis of Reichenbach et al. [40], while we also study
the noise B = B1 out of curiousity. Either choice of noise may cause the system to exit the
positive quadrant of R2 in finite time, beyond which point the model ceases to be meaningful.
The model (21) is usually analyzed outside of the small-noise regime, so that the results of
those cited in Section 1.1 cannot apply. Hence, we use the theory of quasi-ergodic mesaures,
conditioning on the system remaining in the positive quadrant of R2.

The deterministic parameter values we use are

a = 6.8, b = 1.25, c = 0.8, d = 0.5. (22)

At these parameter values, the system with σ = 0 possesses an unstable equilibrium at

u∗ ∶=
√
d(c − d)
c − d ≃ 1.29, v∗ ∶=

c(a − u∗)
bu∗(c − d)

≃ 9.10,

surrounded by a stable limit cycle Γ. See Figure 4. Since the isochronal phase of the stable
limit cycle in (21) is not easy to compute numerically, we use the angular phase centered at
(u∗, v∗); that is, we take

π(u, v) ∶= tan(u − u∗
v − v∗

) .

In the case of (21), the angular phase centered at (u∗, v∗) satisfies our definition of a phase
map. Note that (u∗, v∗) is a phase singularity of π.

In this setup, all hypotheses of Theorem 3.3 are automatically satisfied, save for (ii).
We have not been able to work out sufficient conditions for (ii) to be satisfied, such as
a quasi-ergodic analogue of Theorem A.1 (but see the discussion at the end of Appendix
A). Nevertheless, we may numerically observe an apparent convergence of t−1π1(Xσ

t ) to a
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deterministic constant for a range of values of σ > 0 and either choice of B, as we discuss in
the following.

When B = B0, we see that the response of cσ to increasing σ > 0 is large, and apparently
non-quadratic when observed on this scale. See Figure 5a. The noise has a correspondingly
large qualitative effect on the quasi-stationary measure of the system (and thus the closely
related quasi-ergodic measure) – see Figures 6a & 6b. Escapes from the positive quadrant
of R2 were not observed on the time-scales which we simulated over.

When B = B1, increasing σ causes a large increase in cσ until about σ = 0.5. The
dependence of cσ on σ, viewed at this scale, is apparently linear, with a slope of m ≃ 13.8.
For values of σ greater than 0.5, the choice of diffusion coefficient caused the system to
escape from the positive quadrant of R2 before suitable convergence was observed. In this
situation, available computer time would not allow us to approximate cσ using the methods
of this paper. Simultaneously, the choice B = B1 kept the system, on average, further away
from the phase singularity at (u∗, v∗) than with B = B0. See Figure 6. This may account
for the smaller effect which increasing σ had on the quasi-asymptotic frequency relative to
when B = B0, as we see in Fgure 5.

For both B = B0 and B = B1, the rate of convergence to cσ was much slower in this
example than any of the other examples we have discussed. Nevertheless, with B = B0

and σ < 1, escapes from the positive quadrant of R2 were not observed, so that cσ can be
approximated by 1

tπ1(Xt) for large values of t. The same holds for B = B1 when σ < 0.5. For
B = B1 and σ > 0.5, the rate of escape from the positive quadrant of R2 was sufficiently fast
to prevent us from observing 1

tπ1(Xt) for sufficiently large t, due to limited computer time.

Figure 4: Trajectories of the predator-prey system (21) with parameters
as in (22). In black: the stable limit cycle of the system when σ = 0
surrounding the ustable equilibrium (u∗, v∗), the latter shown as a star.
In red: a trajectory of the system started on the limit cycle with σ = 0.1
and B = B0. In blue: a trajectory of the system started on the limit
cycle with σ = 0.5 and B = B0.

Remark 3.5. Our approach to computing cσ is not suitable for studying the small noise
regime. This is due to the fact that, if we want an accurate simulation of an SDE, we
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(a) (b)

Figure 5: Approximate values of cσ for σ ∈ {0,0.1, . . . ,1} in (21), with
parameters as in (22). In (a), B = B0. In (b), B = B1. All simu-
lations were performed with a time step size of dt = 0.01, up to time
tend = 1000000. Note that for B = B0, cσ does not exhibit a quadratic
dependence on σ > 0 over this range of values. Meanwhile, for B = B1,
cσ appears to depend linearly on σ > 0 over the range of values shown.
However, see Remark 3.5.

need to take the time step dt at least on the order of σ2. Meanwhile, if we want an accu-
rate approximation of cσ, we need to simulate for a very long time. Hence, our approach
to approximating cσ for small σ > 0 would require more computer time than we have at
our disposal. Future work may attempt to compute cσ directly from (7) by numerically
approximating the quasi-ergodic measure µσ, and then numerically integrating.

Unfortunately, numerical techniques for approximating quasi-ergodic measures are still in
their infancy, but see Dobson et al. [18], Li [31], or Li & Yuan [32]. The Monte-Carlo method,
which we have used in our approximations of stationary and quasi-stationary measures, does
not provide sufficient accuracy for an accurate computation of cσ. Our approximations are
only useful insofar as they provide a qualitative understanding of the co-responsive behaviour
of cσ and µσ to changes in σ.

Remark 3.6. The theory of quasi-ergodic measures has been developed in the setting of
Markov processes taking values in an arbitrary measurable space [51]. Hence, just as in
Example 2.3, the theory of this section extends to the infinite dimensional setting, with the
added difficulties associated with invariant measure theory in spaces which are not locally
compact. We could for instance consider the FitzHugh-Nagumo system perturbed by additive
noise,

du = (D∆u + u(1 − u)(u − a))dt + σ dW,
dv = (δD∆v + γu − v)dt,

(23)

again considered as an evolution equation on L2(S1;R2).
Just as for ergodic measures, proving the existence of a quasi-ergodic measure in the

infinite dimensional setting is somewhat more subtle than in the finite dimensional case. At
this point, there are no easily applied theorems in the quasi-ergodic setting which would be
analogous to Theorem 11.38 of Da Prato & Zabczyk [17]. One could attempt to restrict
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(a) (b)

(c) (d)

Figure 6: Monte-Carlo approximations of the quasi-stationary measures
of (21), with parameters as in (22). The diffusion coefficient in each
subfigure is as follows: (a) σ = 0.1, B = B0; (b) σ = 0.5, B = B0; (c)
σ = 0.1, B = B1; (d) σ = 0.5, B = B1. The introduction of noise on
this scale has a dramatic effect on the quasi-stationary measure of the
system. In 6b, the apparent multiple peaks are a numerical artefact. In
6c & 6d, we see that the choice of diffusion coefficient keeps the system,
on average, further away from the phase singularity at (u∗, v∗). In 6d,
the system spends most of its time near the peak shown in the figure.
However, by simulating individual paths of the system, we see that at
random times (21) still makes rapid circuits around (u∗, v∗). Thus the
system is still oscillatory, though this is not apparent from the form of
its invariant measure when approximated at the coarse scale used here.

dynamics to a compact subdomain of phase space, but the escape rate of a truly infinite
dimensional process from such a domain is likely to be high. Further study is needed.
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4 Decomposing the asymptotic frequency & compari-

son with past results

We have seen that if (4) has a unique (quasi) ergodic measure µσ in B(Γ), then it has a
(quasi) asymptotic frequency in B(Γ). For a fixed phase map π, this frequency is given by

cσ = ∫
B(Γ)

π′1(x)V (x) + σ
2

2
Trπ′′1 (x)[B(x),B(x)]µσ(dx), (24)

so long as the integral converges. In this section, we discuss the possibility of a non-quadratic
response of cσ to σ. Additionally, we compare (24) with a prediction of Giacomin et al. [23].

Remark that for any continuous function f which is uniformly bounded on a neighbour-
hood of Γ, we have

∫
B(Γ)

f(x)µ0(dx) = 1

T ∫
T

0
f(γt)dt,

where we recall that {γt}t∈R is the parameterization of Γ of period T > 0. Decomposing the
(quasi) ergodic measure of (4) in B(Γ) as µσ = µ0 + νσ for some signed measure νσ, we write
the (quasi) asymptotic frequency of (4) – assuming it exists – as

cσ = 1

T ∫
T

0
π′1(γt)V (γt)dt +

σ2

2T ∫
T

0
Trπ′′1 (γt)[B(γt),B(γt)]dt

+ ∫
B(Γ)

π′(x)V (x)νσ(dx) +
σ2

2 ∫B(Γ)Trπ′′1 (x)[B(x),B(x)]νσ(dx)

=∶ c0 + aσ + σ2(b0 + bσ).

(25)

When π is the isochron map, it holds that π′(x)V (x) = 1 for x ∈ B(Γ), so

∫
T

0
π′1(γt)V (γt)dt = 1 and ∫

B(Γ)
π′1(x)V (x)νσ(dx) = 0.

Hence, when π is the isochron map (25) becomes

cσ = c0 + σ2(b0 + bσ). (26)

A quadratic approximation of (cσ)σ≥0 is therefore good if bσ remains relatively constant.
This would follow, for instance, from a bound on the total variation norm of νσ.

We can compare (26) with a prediction of [23], who study the long-time behaviour of the
isochronal phase of SDE of the form (4). Notably, [23] do not require τσ =∞, and handle the
fact that the isochronal phase may not be defined for all time by taking σ → 0 simultaneously
with t→∞. That is, the authors take a sequence of times (t(σ))σ>0 such that

t(σ)ÐÐ→
σ→0

∞

in a controlled fashion, and study the behaviour of Xσ
t(σ) as σ → 0. The family (t(σ))σ>0 is

chosen such that Xσ
t(σ) remains in B(Γ) with high probability for each σ > 0, thanks to large

deviation estimates.
To state a result of [23], we recall the winding number of Xσ

t , which is the number of full
clockwise rotations minus the number of full counter-clockwise rotations made by π(Xσ

t ).
The winding number at time t ≥ 0 is denoted nσt .
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Theorem 4.1 (Theorem 2.6 of [23]). There exists c > 0 such that for any (t(σ))σ≥0 satsifying

lim
σ→0+σ

2t(σ) = ∞, lim
σ→0+ e

−cσ−2t(σ) = 0,

then

lim
σ→0+

nσ
t(σ) − t(σ)/T
σ2t(σ)/T = b0, (27)

with b0 as in (25).

Colloquially, Theorem 4.1 implies that for “small” σ > 0 and “appropriately sized” t > 0
(specifically, such that σ−2 ≲ t ≲ e−cσ−2), the time average frequency of the random oscillator
at time t, denoted c̃σ(t), is

c̃σ(t) ∶=
nσt
t

≃ c0 + σ2b0.

That is, the stochastic frequency is, approximately in the long term, equal to the determin-
istic frequency plus a correction of order σ2. Using a zero-one law, it can be shown that
nσt /t ≃ π1(Xσ

t )/t for large t ≥ 0 (assuming t ≤ τσ). Hence, we find that our result agrees
with the result of [23] in the small σ > 0 regime, unless bσ in (25) varies significantly with
increasing σ.

It would be interesting to find an example of (4) where bσ changes rapidly for small σ > 0,

∂

∂σ
∣
σ=0
bσ ≠ 0.

In this case, our definition of the asymptotic frequency of a stochastic oscillator may differ
from that of [23] in the small noise regime. In such a scenario, it is likely that our cσ is
observable on a different time scale than the c̃σ(t) predicted by [23]. Unfortunately, as we
have already noted, the theory of quasi-ergodic measures remains insufficiently devloped for
us to estimate the time-scale on which cσ is observed with high probability.

Further understanding of the relation between cσ and µσ can only be achieved on a case-
by-case basis, and requires more information about µσ. All simulations used in this paper are
the result of Monte Carlo schemes. In the future, improved methods of approximating the
invariant measures of stochastic oscillators could be used to obtain more accurate predictions
of cσ using the formula (7), such as Dobson et al. [18] or Li [31]. A similar technique has
been developed for approximating quasi-ergodic measures in Li & Yuan [32].

5 Conclusions & outlook

The response of the asymptotic frequency of a stochastic oscillator to varying noise amplitude
has been studied extensively over the past two decades. Before defining the asymptotic
frequency of a stochastic oscillator, one needs a notion of its phase. This is usually achieved
via a so-called phase map, as described in Section 1.2. However, as the domain of definition
of a phase map is often bounded, and stochastic oscillators driven by many realistic choices
of noise will almost surely exit any bounded domain in finite time, the asymptotic frequency
is not necessarily well-defined.
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When a stochastic oscillator remains in the domain of a phase map’s definition for all time,
one can obtain a formula for its asymptotic frequency via the pointwise ergodic theorem.
This requires the phase map and ergodic measure of the stochastic oscillator to satisfy the
integrability condition of Theorem 2.1 (or Remark 2.3). While these conditions are satisfied
in most applications, the possibility of pathological examples where they are not have not
been ruled out.

The theory of quasi-ergodic measures can be used to make sense of the asymptotic fre-
quency of any stochastic oscillator. To avoid issues caused by the unboundedness of some
stochastic processes, we may restrict our attention to the event of a stochastic oscillator re-
maining in a bounded subdomain of its phase space for all time. Though this event may be
of probability zero, it can still yield physically relevant information. Whether or not it does
depends on the comparative values of two quantities: the rate of convergence of the frequency
of the (conditioned) stochastic oscillator to its asymptotic average, and the rate of escape of
the stochastic oscillator from the bounded subdomain. If the latter is less than the former,
then the quasi-asymptotic frequency is observable. Identifying conditions which guarantee
the observability of quasi-asymptotic frequencies will be the subject of future work.

Most previous studies of the response of the asymptotic frequency of stochastic oscillators
to varying noise amplitude imply that the frequency depends quadratically on the noise
amplitude, at least in the small noise regime. The results of Section 4 suggest that one could
expect a quadratic response of the (quasi) asymptotic frequency both within and outside of
the small noise regime, so long as the term bσ in (25) remains relatively constant. On the
other hand, it is possible that (cσ)σ>0 is not quadratic in the small noise regime if bσ varies
significantly for small σ. This would require the difference between the (quasi) ergodic
measure of the perturbed system to significantly differ from the ergodic measure of the
unperturbed system. Determining when this is the case requires a better understanding of
the dependence of the (quasi) ergodic ditribution of stochastic oscillators on noise amplitude,
and this can only be achieved on a case-by-case basis.
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A Sufficient Conditions for Theorem 2.1

The following proposition provides sufficient conditions for the hypotheses of Theorem 2.1 to
be satisfied. Due to the cursory nature of this paper, we have chosen to include only a sketch
of its proof.

Proposition A.1. Let π be the isochron map of (1). Let (Xσ
t )t≥0 be the solution of (4). If

x0 ∈ B(Γ) is the only phase singularity of π and
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(i) B(x) and V (x) have polynomial entries, and ∥B(x)∥ and ∥V (x)∥ are O(∥x − x0∥) as
x approaches x0,

(ii) For all t ≥ 0, Xσ
t has a density with respect to Lebesgue measure,

(iii) B(x) > 0 for x ∈ B(Γ) and B(x)→ 0 as x approaches ∂B(Γ),

(iv) TrV ′(x0) > 2dσ2 and V ′(0) is positive definite,

then the assumptions of Theorem 2.1 are satisfied.

Proof. By assumption (iii) the process is trapped in B(Γ) for all time, and we may therefore
restrict our attention to the pre-compact Polish space B(Γ). The existence of an ergodic mea-
sure of (4) in B(Γ) then follows from a straightforward application of the Krylov-Bogoliubov
Theorem and irreducibility. Its uniqueness is guaranteed by the irreducibility of the solution
to (4) in B(Γ), which also follows from assumption (iii). The ergodic measure has a density
with respect to Lebesgue measure, denoted ρσ, by assumption (ii).

Without loss of generality, we assume x0 = 0. Since

π′(x)V (x) ≡ 1 and π′′(x)V (x) + π′(x)V ′(x) ≡ 0, (28)

we have
∥π′(x)∥ ∼ ∥V (x)∥−1

and ∥π′′(x)∥ ∼ ∥π′(x)∥∥V ′(x)∥∥V (x)∥−1
.

By condition (i) of this corollary, this implies that, for x near zero,

∥π′(x)∥ ∼ ∥x∥−1
and ∥π′′(x)∥ ∼ ∥x∥−2

.

We will therefore aim to show that ρσ(x) ≤ k∥x∥2
for some k > 0.

To this end, remark that the distribution ρσ of µσ satisfies the stationary Fokker-Planck
equation

∇ ⋅ (V (x)ρ(x)) − σ
2

2
∆(B(x)B(x)∗ρ(x)) = 0, ∫

B(Γ)
ρσ(x)dx = 1. (29)

Define A ∶= 2V ′(x0)/σ2. Fixing δ > 0 and taking arbitrarily small ε > 0, we use assumption (i)
to approximate the solution ρσ of (29) by the solution ρ̃σ,ε of the uniformly elliptic equation

∇ ⋅ (Axρ(x)) −∆((∥x∥2 + ε)ρ(x)) = 0 for x ∈ Bδ(0),
ρ(x) = ρσ(x) for x ∈ ∂Bδ(0).

(30)

Since the solution ρσ to (29) is uniformly bounded on ∂Bδ(0), we can find k > 0 such that

ρσ(x) ≤ k∥x∥2
for x ∈ ∂Bδ(0).

Writing (30) in divergence free form, a comparison principle (Theorem 3.3 of Gilbarg & Trudinger
[24]) applies if TrA ≥ 4d and A is positive definite. This allows us to conclude that

ρ̃σ,ε(x) ≤ k∥x∥2
for all x ∈ Bδ(0),
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where k is independent of ε > 0.
It can be shown that, for small enough ε > 0, ρ̃σ,ε is indeed a good approximation of ρσ

on Bδ(x) when δ is sufficiently small. Therefore if V ′(x0) is positive definite and TrV ′(x0) ≥
2dσ2 we have

∫
Bδ(0)

max{∥π′(x)∥, ∥π′′(x)∥} µσ(dx) < ∞,

as desired.

We conjecture that a similar proposition, with similar conditions on the drift and diffusion
coefficients of (4), can be worked out for the hypotheses of Theorem 3.3. However, this would
only guarantee that the convergence (17) holds. It would not necessarily guarantee that
∣1
tπ1(Xσ

t ) − cσ∣ would be small for values of t which are less than τσ with high probability.
That is, while an anologue of Proposition A.1 may guarantee the existence of a quasi-
asymptotic frequency, it would not guarantee its observability.
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