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Abstract

This paper studies the perfectly-matched-layer (PML) method for wave scatter-
ing in a half space of homogeneous medium bounded by a two-dimensional, per-
fectly conducting, and locally defected periodic surface, and develops a high-accuracy
boundary-integral-equation (BIE) solver. Along the vertical direction, we place a
PML to truncate the unbounded domain onto a strip and prove that the PML solu-
tion converges linearly to the true solution in the physical subregion of the strip with
the PML thickness. Laterally, we divide the unbounded strip into three regions: a re-
gion containing the defect and two semi-waveguide regions, separated by two vertical
line segments. In both semi-waveguides, we prove the well-posedness of an associ-
ated scattering problem so as to well define a Neumann-to-Dirichlet (NtD) operator
on the associated vertical segment. The two NtD operators, serving as exact lateral
boundary conditions, reformulate the unbounded strip problem as a boundary value
problem onto the defected region. Due to the periodicity of the semi-waveguides,
both NtD operators turn out to be closely related to a Neumann-marching operator,
governed by a nonlinear Riccati equation. It is proved that the Neumann-marching
operators are contracting, so that the PML solution decays exponentially fast along
both lateral directions. The consequences culminate in two opposite aspects. Neg-
atively, the PML solution cannot exponentially converge to the true solution in the
whole physical region of the strip. Positively, from a numerical perspective, the Ric-
cati equations can now be efficiently solved by a recursive doubling procedure and
a high-accuracy PML-based BIE method so that the boundary value problem on
the defected region can be solved efficiently and accurately. Numerical experiments
demonstrate that the PML solution converges exponentially fast to the true solution
in any compact subdomain of the strip.

1 Introduction

Due to its nearly reflectionless absorption of outgoing waves, perfectly matched layer or
PML, since its invention by Berenger in 1994 [4], has become a primary truncation tech-
nique in a broad class of unbounded wave scattering problems [11, 31, 16], ranging from
quantum mechanics, acoustics, electromagnetism (optics), to seismology. Mathematically,
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a PML can be equivalently understood as a complexified transformation of a coordinate
[12]. A wave outgoing along the coordinate is then analytically continued in the complex
plane and becomes exponentially decaying in the PML. However, it is such a double-edged
feature that makes PML be placed only in the direction where the medium structure is
invariant so as to guarantee the validity of analytic continuation. Consequently, PML
loses its prominence for some complicated structures, such as periodic structures [20].
Motivated by this, this paper studies wave scattering in a half space of homogeneous
medium bounded by a two-dimensional, perfectly conducting, and locally defected pe-
riodic surface, and investigate the potential of PML in designing an accurate boundary
integral equation (BIE) solver for the scattering problem.

Let a cylindrical wave due to a line source, or a downgoing plane wave be specified
above the defected surface. Then, a primary question is to understand clearly how the
scattered wave radiates at infinity. Intrinsically, PML is highly related to the well-known
Sommerfeld radiation condition (SRC), which, arguably, is an alternative way of saying
“wave is purely outgoing at infinity”. However, SRC is considered to be no longer valid
for characterizing the scattered wave even when the surface is flat [2]. Instead, upward
propagation radiation condition (UPRC), a.k.a angular spectrum representation condition
[14] is commonly used, and can well pose the present problem or even more general rough
surface scattering problems [5, 7, 8]. Milder than SRC, UPRC only requires that the
scattered wave contain no downgoing waves on top of a straight line above the surface,
allowing waves incoming horizontally from infinity.

If the surface has no defects, the total wave field for the plane-wave incidence is quasi-
periodic so that the original scattering problem can be formulated in a single unit cell,
bounded laterally but unbounded vertically. According to UPRC, the scattered wave at
infinity can then be expressed in terms of upgoing Bloch waves, so that a transparent
boundary condition or PML of a local/nonlocal boundary condition can be successfully
used to terminate the unit cell vertically; readers are referred to [3, 10, 26, 34] and
the references therein, for related numerical methods as well as theories of exponential
convergence due to a PML truncation. But, if the incident wave is nonquasi-periodic, e.g.,
the cylindrical wave, or if the surface is locally defected, much fewer numerical methods or
theories have been developed as it is no longer straightforward to laterally terminate the
scattering domain. Existing laterally truncating techniques include recursive doubling
procedure (RDP) [33, 15], Floquet-Bloch mode expansion [17, 19, 24], and Riccati -
equation based exact boundary condition [21].

In a recent work [18], we proved that the total field for the cylindrical incidence, a.k.a
the Green function, satisfies the standard SRC on top of a straight line above the surface.
Based on this, we further revealed that for the plane-wave incidence, the perturbed part
of the total field due to the defect satisfies the SRC as well. Consequently, this suggests to
use a PML to terminate the vertical variable so as to truncate the unbounded domain to
a strip, bounded vertically but unbounded laterally. In fact, such a natural setup of PML
had already been adopted in the literature [33, 6, 32], without a rigorous justification
of the outgoing behavior, though. It is worthwhile to mention that Chandler-Wilde and
Monk in [6] rigorously proved that under a Neumann-condition PML, the PML solution
converges to the true solution in the whole physical region of the strip at the rate of
only algebraic order of PML thickness; they further revealed that the PML solution
due to the cylindrical incidence for a flat surface decays exponentially at infinity of a
rectangular strip. However, it remains unclear how the PML solution radiates at infinity
of the more generally curved strip under consideration. On the other hand, no literally
rigorous theory has been developed to clearly understand why this PML-truncated strip
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can further be laterally truncated to a bounded domain by the aforementioned techniques
without introducing artificial ill-posedness; in other words, the well-posedness of scattering
problems in exterior regions of the truncated domain is unjustified.

To address these questions, we first prove in this paper that under a Dirichlet-condition
PML, the PML solution due to the cylindrical incidence, i.e., Green’s function of the strip,
converges to the true solution in the physical subregion of the strip at an algebraic order
of the PML thickness. Next, we split the strip into three regions: a bounded region con-
taining the defect and two semi-waveguide regions of a single-directional periodic surface,
separated by two vertical line segments. By use of Green’s function of the strip, transpar-
ent boundary conditions can be developed to truncate the unbounded semi-waveguides.
Based on this, we apply the method of variational formulation and Fredholm alternative
to prove the well-posedness of the scattering problem in either semi-waveguide so as to
define a Neumann-to-Dirichlet (NtD) operator on its associated vertical segment. The
two NtD operators serve exactly as lateral boundary conditions to terminate the strip and
to reformulate the unbounded strip problem as a boundary value problem on the defected
region. Due to the periodicity of the semi-waveguides, both NtD operators turn out to
be closely related to a Neumann-marching operator, which solves a nonlinear Riccatti
equation. It is proved that the Neumann-marching operators are contracting, indicating
that the PML solution decays exponentially fast along both lateral directions even for
the curved strip. The consequences culminate in two opposite aspects. Positively, from a
numerical perspective, the Riccati equations can be efficiently solved by an RDP method
so that the strip can be laterally truncated with ease. Negatively, the PML solution shall
never exponentially converge to the true solution in the whole physical region of the strip.
Nevertheless, as conjectured in [6], exponential convergence is optimistically expected to
be realizable in any compact subdomain of the strip.

To validate the above conjecture numerically, we employ a high-accuracy PML-based
boundary integral equation (BIE) method [28] to execute the RDP so that the two Riccati
equations can be accurately solved for the two Neumann-marching operators, respectively,
and hence the two NtD operators terminating the strip can be obtained. With the two
NtD operators well-prepared, the boundary value problem in the defected region can be
accurately solved by the PML-based BIE method again. By carrying out several numerical
experiments, we observe that the PML truncation error for wave field over the defected
part of the surface decays exponentially fast as PML absorbing strength or thickness
increases. This indicates that there is a chance that the PML solution still converges to
the true solution exponentially in any compact subdomain of the strip, the justification
of which remains open.

The rest of this paper is organized as follows. In section 2, we introduce the half-
space scattering problem and present some known well-posedness results. In section 3,
we introduce a Dirichlet-condition PML, prove the well-posedness of the PML-truncated
problem and study the prior error estimate of the PML truncation. In section 4, we study
well-posedness of the semi-waveguide problems. In section 5, we establish lateral boundary
conditions, prove the exponentially decaying property of the PML solution at infinity of
the strip, and develop an RDP technique to get the lateral boundary conditions. In section
6, we present a PML-based BIE method to numerically solve the scattering problem. In
section 7, numerical experiments are carried out to demonstrate the performance of the
proposed numerical method and to validate the proposed theory. We draw our conclusion
finally in section 8 and propose some future plans.
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2 Problem formulation

Let Ω × R ⊂ R3 be an x3-invariant domain bounded by a perfectly-conducting surface
Γ × R, where Γ ⊂ R2, bounding domain Ω ⊂ R2, is a local perturbation of a T -periodic
curve ΓT ⊂ R2 periodic in x1-direction, as shown in Figure 1(a). We denote the Cartesian

(a) (b)

PML

Figure 1: (a) A sketch of the half-space scattering problem. (b) A PML placed above Γ.
The scattering surface Γ locally perturbs the periodic curve ΓT of period T . x∗ represents
the exciting source. ΓH is an artificial interface, on which a DtN map is defined or a PML
is placed.

coordinate system of R3 by (x1, x2, x3) and let x = (x1, x2) ∈ Ω. Throughout this paper,
we shall assume that Γ is Lipschitz and that Ω satisfies the following geometrical condition

(GC1) : (x1, x2) ∈ Ω⇒ (x1, x2 + a) ∈ Ω, ∀a ≥ 0.

For simplicity, suppose Γ only perturbs one periodic part of ΓT , say |x1| < T
2 .

Let the unbounded domain Ω × R be filled by a homogeneous medium of refractive
index n. For a time-harmonic transverse-electric (TE) polarized electro-magnetic wave,
of time dependence e−iωt for the angular frequency ω, the x3-component of the electric
field, denoted by utot, is x3-invariant and satisfies the following two-dimensional (2D)
Helmholtz equation

∆utot + k2utot =0, on Ω, (1)

utot =0, on Γ, (2)

where ∆ = ∂2
x1 +∂2

x2 is the 2D Laplacian and k = k0n with k0 = 2π
λ denoting the free-space

wavenumber for wavelength λ.
Let an incident wave uinc be specified in Ω and let x = (x1, x2) ∈ Ω. In this paper,

we shall mainly focus on the following two cases of incidences: (i) a plane wave uinc(x) =
eik(cos θx1−sin θx2) for the incident angle θ ∈ (0, π); (ii) a cylindrical wave uinc(x;x∗) =

G(x;x∗) = i
4H

(1)
0 (k|x− x∗|) excited by a source at x∗ = (x∗1, x

∗
2) ∈ Ω. In the latter case,

equation (1) should be replaced by

∆utot + k2utot = −δ(x− x∗), (3)

so that utot(x;x∗) in fact represents the Green function excited by the source point x∗.
For simplicity, we assume that |x∗1| < T/2 so that x∗ is right above the perturbed part of
Γ.

Let usc = utot−uinc denote the scattered wave. One may enforce the following UPRC:

usc(x) = 2

∫
ΓH

∂G(x; y)

∂y2
usc(y)ds(y), (4)
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where ΓH = {(x1, H) : x1 ∈ R} denotes a straight line strictly above Γ for some H > 0
and y = (y1, y2). According to [7], the UPRC helps to define a Dirichlet-to-Neumann
map T : H1/2(ΓH) → H−1/2(ΓH) for the domain ΩH = {x ∈ Ω : x2 > H}, such that for
any φ ∈ H1/2(ΓH),

T φ = F−1Mzφ̂, (5)

where φ̂(H; ξ) = [Fφ](H; ξ) denotes the following normalized Fourier transform

[Fφ](H; ξ) =
1√
2π

∫
R
φ(x1, H)e−iξx1dx1, (6)

and the operator Mz in the space of Fourier transforms is the operator of multiplication
by

z(ξ) =

{
−i
√
k2 − ξ2, for |ξ| ≤ k,√

ξ2 − k2, for |ξ| > k.
(7)

Then, we may enforce
∂νu

sc = −T usc, on ΓH , (8)

where, unless otherwise indicated, ν always denotes the outer unit normal vector on
ΓH . The UPRC guarantees the well-posedness of our scattering problem [7], but allows
usc containing incoming waves, largely limiting its applications in designing numerical
algorithms. Nevertheless, our recent work [18] has shown a stronger Sommerfeld-type
condition for the aforementioned two incidences, which still preserves the well-posedness.
Note that [18] assumes further the following condition:

(GC2): some (and hence any) period of ΓT contains a line segment,

which guarantees a local behavior of the Green function utot(x; y) for any x, y sufficiently
close to each line segment. Let SH = Ω ∩ {x : x2 < H} be the strip between ΓH and Γ.
The radiation condition reads as follows:

(i). For the plane-wave incidence, uog := utot−utot
ref , where utot

ref is the reference scattered
field for the unperturbed scattering curve Γ = ΓT , satisfies the following half-plane
Sommerfeld radiation condition (hSRC): for some sufficiently large R > 0 and any
ρ < 0,

lim
r→∞

sup
α∈[0,π]

√
r |∂ruog(x)− ikuog(x)| = 0, sup

r≥R
r1/2|uog(x)| <∞, and uog ∈ H1

ρ (SRH),

(9)
where x = (r cosα,H + r sinα), SRH = SH ∩ {x : |x1| > R}, and H1

ρ (·) = (1 +

x2
1)−ρ/2H1(·) denotes a weighted Sobolev space. We defer the computation of utot

ref

to section 6.3.

(ii). For the cylindrical incidence, the total field uog := utot itself satisfies the hSRC (9)
in ΩH . Thus, the scattered field usc satisfies (9) as well since uinc satisfies (9).

Certainly, uog satisfies the UPRC condition (4) such that (8) holds for uog in place of usc

[9, Them. 2.9(ii)]. In the following, we shall consider the cylindrical incidence only and
the plane-wave incidence case can be analyzed similarly.

We recall some important results from [7]. To remove the singularity of the right-hand
side of (3), let

uog
r (x;x∗) = uog(x;x∗)− χ(x;x∗)uinc(x;x∗), (10)
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where the cut-off function χ(x;x∗) = 1 in a neighborhood of x∗ and has a sufficiently
small support enclosing x∗. Let VH = {φ|SH : φ ∈ H1

0 (Ω)}. Then, it is equivalent to seek
uog
r ∈ VH that satisfies the following boundary value problem

∆uog
r + k2uog

r =g, on SH , (11)

∂νu
og
r =− T uog

r , on ΓH , (12)

where g = −[∆χ]uinc− 2
∑2

j=1 ∂xjχ∂xju
inc ∈ L2(SH) such that supp g is in the neighbor-

hood of x∗ contained in SH . An equivalent variational formulation reads as follows: Find
uog
r ∈ VH , such that for any φ ∈ VH ,

b(uog
r , φ) = −(g, φ)SH , (13)

where the sesqui-linear form b(·, ·) : VH × VH → C is given by

b(φ, ψ) =

∫
SH

(∇φ · ∇ψ̄ − k2φψ̄)dx+

∫
ΓH

T φψ̄ds. (14)

It has been shown in [7] that b satisfies the following inf-sup condition: for all v ∈ VH ,

γ||v||VH ≤ sup
φ∈VH

|b(v, φ)|
||φ||VH

, (15)

where γ > 0 depends on H, k and Ω. Furthermore, b defines an invertible operator
A : VH → V ∗H such that (Aφ, ψ) = b(φ, ψ) and ||A−1|| ≤ γ−1. Thus, uog

r = −A−1g so
that uog = −A−1g + χuinc.

The hSRC (9) suggests to compute the outgoing wave uog numerically, as the PML
technique[4, 6] could apply now to truncate the x2-direction. In the following sections,
we shall first introduce the setup of a PML to truncate x2 and then develop an accurate
lateral boundary condition to truncate x1.

3 PML Truncation

Mathematically, the PML truncating x2 introduces a complexified coordinate transfor-
mation

x̃2 = x2 + iS

∫ x2

0
σ(t)dt, (16)

where σ(x2) = 0 for x2 ≤ H and σ(x2) ≥ 0 for x2 ≥ H; note that such a tilde notation
can also be used to define ỹ2 and x̃∗2 in the following. As shown in Figure 1(b), the planar
strip SLH = R× [H,H + L] with nonzero σ is called the PML region so that L represents
its thickness. In this paper, we choose an m ≥ 0 and,

σ(x2) =


2fm2

fm1 +fm2
, x2 ∈ [H,H + L/2]

2, x2 ≥ H + L/2,m 6= 0
1, x2 ≥ H + L/2,m = 0

(17)

where we note that σ ≡ 1 if m = 0, and

f1 =

(
1

2
− 1

m

)
ξ3 +

ξ

m
+

1

2
, f2 = 1− f1, ξ =

2x2 − (2H + L/2)

L/2
.
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Let Lc := x̃2(H + L) −H = L + iScL, where Sc = S
L

∫ H+L
H σ(t)dt. Both the real part

and imaginary part of Lc affect the absorbing strength of the PML [12].
Now, let x̃ = (x1, x̃2). For x∗ ∈ SH , according to (4), we can define by analytic

continuation that

uog(x̃;x∗) := 2

∫
ΓH

∂G(x̃; y)

∂y2
uog(y;x∗)ds(y),

that satisfies
∆̃uog(x̃;x∗) + k2uog(x̃;x∗) = −δ(x− x∗),

where ∆̃ = ∂2
x1 + ∂2

x̃2
. By chain rules, we see that ũog(x;x∗) := uog(x̃;x∗) satisfies

∇ · (A∇ũog) + k2αũog =− δ(x− x∗), on ΩPML, (18)

ũog =0, on Γ. (19)

where A = diag{α(x2), 1/α(x2))}, α(x2) = 1 + iSσ(x2), and the PML region ΩPML =
Ω∩ {x : x2 ≤ H +L} consists of the physical region SH and the PML region SLH . On the
PML boundary x2 = H + L, we use the homogeneous Dirichlet boundary condition

ũog = 0, on ΓH+L = {x : x2 = H + L}. (20)

The authors in [6] adopted a Neumann condition on the PML boundary ΓH+L and proved
the well-posedness of the related PML truncation problem. Here, we choose the Dirichlet
condition (20) since, as we shall see, our numerical results indicate that the Dirichlet-PML
seems more stable than the Neumann-PML. Furthermore, we need Green’s function of
the strip ũog(x;x∗) for any x∗ ∈ ΩPML but not limited to SH to establish lateral boundary
conditions. For completeness, we shall, following the idea of [6], study the well-posedness
of the problem (18-20) for any x∗ ∈ ΩPML.

The fundamental solution of the anisotropic Helmholtz equation (18) is [28]

G̃(x; y) = G(x̃; ỹ) =
i

4
H

(1)
0 [kρ(x̃; ỹ)], (21)

where ỹ = (y1, ỹ2), the complexified distance function ρ is defined to be

ρ(x̃, ỹ) = [(x1 − y1)2 + (x̃2 − ỹ2)2]1/2, (22)

and the half-power operator z1/2 is chosen to be the branch of
√
z with nonnegative real

part for z ∈ C\(−∞, 0] such that arg(z1/2) ∈ [0, π). The special choice of σ in (17) ensures
that

G̃(x; y) = G̃(x; yimag), (23)

for any x ∈ ΓH+L, when y = (y1, y2) and yimag = (y1, 2(H +L)− y2), the mirror image of
y w.r.t line ΓH+L, are sufficiently close to ΓH+L so that ρ(x̃; ỹ) = ρ(x̃; ỹimag).

To remove the singularity of the right-hand side of (18), we introduce

ũog
r (x;x∗) = ũog(x;x∗)− χ(x;x∗)ũinc(x;x∗), (24)

with the same cut-off function χ as in (10), where ũinc(x;x∗) = uinc(x̃; x̃∗). Then, ũog
r

satisfies

∇ · (A∇ũog
r ) + k2αũog

r = g̃inc, on ΩPML, (25)

ũog
r = 0, on Γ, (26)

ũog
r = 0, on ΓH+L, (27)
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where g̃inc = [∇ · (A∇) + k2α](1 − χ(x;x∗))ũinc(x;x∗) ∈ L2(ΩPML) with supp g̃inc ⊂
ΩPML = SH∪SLH . Considering that x∗ can be situated in SLH , supp g̃inc may not completely
lie in the physical domain SH . To establish a Dirichlet-to-Neumann map on ΓH like (8),
we need to study the following boundary value problem in the PML strip SLH : given

q ∈ H1/2(ΓH), s ∈ H1/2(ΓH+L), and g̃inc
PML = g̃inc|SLH ∈ L

2(SLH) with supp g̃inc
PML ⊂ SLH ,

find v ∈ H1(SLH) such that

∇ · (A∇v) + k2αv = g̃inc
PML, on SLH , (28)

v = q, on ΓH , (29)

v = s, on ΓH+L. (30)

Let

v0(x) = v(x)−
∫
SLH

[G̃(x; y)− G̃(x; yimag)]g̃inc
PML(y)dy := v(x)− vinc

PML(x),

where we recall that yimag is the mirror image of y w.r.t line ΓL+H . Thus, v0 satisfies

∇ · (A∇v0) + k2αv0 = 0, on SLH , (31)

v0 = qn, on ΓH , (32)

v0 = sn, on ΓH+L, (33)

where qn = q − vinc
PML|ΓH ∈ H1/2(ΓH) and sn = s− vinc

PML|ΓH+L
∈ H1/2(ΓH+L).

Looking for v0 in terms of only complexified plane waves, we get

v̂0(x2; ξ) = [Fv0](x2; ξ) = A exp(z(ξ)(x̃2 −H)) +B exp(−z(ξ)(x̃2 −H)), (34)

where we recall that z has been defined in (7),

A(ξ) =
ŝn(ξ)− exp(−z(ξ)Lc)q̂n(ξ)

exp(z(ξ)Lc)− exp(−z(ξ)Lc)
, and B(ξ) =

−ŝn(ξ) + exp(z(ξ)Lc)q̂n(ξ)

exp(z(ξ)Lc)− exp(−z(ξ)Lc)
,

ŝn(ξ) = [Fsn](H + L; ξ) and q̂n(ξ) = [Fqn](H; ξ). Here, to make A and B well-defined,
we could let ξ travel through a Sommerfeld integral path −∞+ 0i→ 0→∞− 0i instead
of R [25] such that z 6= 0. Consequently,

−∂v̂0

∂x2

∣∣∣∣
x2=H

= z
−2

exp(zLc)− exp(−zLc)
ŝn + z

exp(zLc) + exp(−zLc)
exp(zLc)− exp(−zLc)

q̂n. (35)

Now define two bounded operators Tp : H1/2(ΓH)→ H−1/2(ΓH) by

F [Tpqn](H; ξ) = z
exp(zLc) + exp(−zLc)
exp(zLc)− exp(−zLc)

q̂n,

and Np : H1/2(ΓH+L)→ H−1/2(ΓH) by

F [Npsn](H + L; ξ) = z
−2

exp(zLc)− exp(−zLc)
ŝn;

note that the above definitions allow ξ ∈ R now, since limits can be considered when
z = 0. Returning back to the PML-truncated problem (25-27), we reformulate it as
an equivalent boundary value problem on the physical region SH : Find ũog

r ∈ VH that
satisfies

∇ · (A∇ũog
r ) + k2αũog

r =g̃inc|SH , on SH , (36)
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∂ν ũ
og
r =− Tpũog

r |ΓH + fp, on ΓH , (37)

where
fp = Np(vinc

PML|ΓH+L
) + Tp(vinc

PML|ΓH ) + ∂νv
inc
PML|ΓH ∈ H

−1/2(ΓH). (38)

The associated variational formulation reads as follows: Find ũog
r ∈ VH , such that for any

ψ ∈ VH ,

bp(ũ
og
r , ψ) = −

∫
SH

g̃inc|SH ψ̄dx+

∫
ΓH

fpψ̄ds, (39)

where the sesquilinear form bp(·, ·) : VH × VH → C is given by

bp(φ, ψ) =

∫
SH

(∇φ · ∇ψ̄ − k2φψ̄)dx+

∫
ΓH

ψ̄Tpφds. (40)

As in [6], we define the following k-dependent norm

||φ||2Hs(R) =

∫
R

(k2 + ξ2)s|[Fφ](ξ)|2dξ

for Hs(R). Then, the following lemma characterizes a rough difference of Tp away from
T .

Lemma 3.1 We have for any kScL > 0,

||T − Tp|| ≤
1

kScL
. (41)

Proof 1 By a simple analysis, it can be seen that

||T − Tp|| = sup
ξ∈R

|z(ξ)|√
k2 + ξ2

|1− coth(z(ξ)Lc)|

= sup
ξ∈R

2|z(ξ) exp(−2z(ξ)Lc)|√
k2 + ξ2|1− exp(−2z(ξ)Lc)|

= max{S1, S2},

where we recall that Lc = L+ iScL,

S1 = sup
0≤t≤1

2t exp(−2tkScL)√
2− t2

√
1 + exp(−4tkL)− 2 cos(2tkScL) exp(−2tkL)

= sup
0≤t≤1

2t exp(−2tkScL)
√

2− t2
√

(1− exp(−2tkL))2 + 4 exp(−2tkL) sin2(tkScL)

and

S2 = sup
t≥1

2t exp(−2tkScL)
√

2 + t2
√

(1− exp(−2tkL))2 + 4 exp(−2tkL) sin2(tkScL)
.

Clearly, S2 ≤ 2 exp(−2kL). Since for t ≥ 0,

f(t) =
t exp(−2tkScL)

1− exp(−2tkScL)

is nonincreasing, it is easy to see that S1 ≤ 2f(0) = 1
kScL

.
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We do not intend to study the relation of ||Tp − T || and the other parameter Sc, as
was done in [6] to optimize the performance of the PML, since the estimate in Lemma 3.1
is enough. Clearly, the sesquilinear form bp in (40) defines a bounded linear functional
Ap : VH → V ∗H such that: for any φ ∈ VH ,

((A−Ap)φ, ψ) = b(φ, ψ)− bp(φ, ψ) =

∫
ΓH

ψ̄(T − Tp)φds.

Analogous to [6, Sec. 3], we see immediately that

||A − Ap|| ≤ 2||T − Tp|| ≤
2

kScL
.

Consequently, Ap has a bounded inverse provided that ScL is sufficiently large as A is
invertible. Since the right-hand side of (39) defines a bounded functional in V ∗H , we in
fact have justified the following well-posedness result.

Theorem 3.1 Provided that ScL is sufficiently large, the PML-truncated problem (18),
(19) and (20) admits a unique solution ũog(x;x∗) = ũog

r (x;x∗) + χ(x;x∗)ũinc(x;x∗) with
ũog
r ∈ H1

0 (ΩPML) = {φ ∈ H1(ΩPML) : φ|Γ∪ΓH+L
= 0} for any x∗ ∈ ΩPML such that

||ũog
r (·;x∗)||H1(ΩPML) ≤ C||g̃inc||L2(ΩPML).

Remark 3.1 The well-posedness in Theorem 3.1 holds in general for any Lipschitz curve
satisfying (GC1).

Since for any φ ∈ VH ,

bp(φ, ψ) = b(φ, ψ)−
∫

ΓH

ψ̄(T − Tp)φds,

the inf-sup condition (15) of b implies the inf-sup condition of bp: for any φ ∈ VH ,

sup
ψ∈VH

|bp(φ, ψ)|
||ψ||VH

≥ sup
ψ∈VH

|b(φ, ψ)|
||ψ||VH

− 2

kScL
||φ||VH ≥ (γ − 2

kScL
)||φ||VH , (42)

provided ScL is sufficiently large. As a consequence of (42), we immediately obtain the
prior error estimate for the PML truncation if x∗ ∈ SH .

Corollary 3.1 Provided that ScL is sufficiently large,

||uog(·;x∗)− ũog(·;x∗)||VH ≤
2

γkScL− 2
||uog

r (·;x∗)||VH . (43)

whenever x∗ ∈ SH .

Proof 2 Since for x∗ ∈ SH , (uog − ũog)|SH = (uog
r − ũog

r )|SH ∈ VH , we have for any
φ ∈ VH ,

bp(u
og
r − ũog

r , φ) = −
∫

ΓH

φ̄(T − Tp)uog
r ds,

so that by the inf-sup condition (42),

||uog
r − ũog

r ||VH ≤(γ − 2

kScL
)−1 sup

φ∈VH

|bp(uog
r − ũog

r , φ)|
||φ||VH

= (γ − 2

kScL
)−1 sup

φ∈VH

|
∫

ΓH
φ̄(T − Tp)uog

r ds|
||φ||VH

≤ 2

(γ − 2
kScL

)kScL
||uog

r ||VH .
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4 Semi-waveguide problems

Unlike the exponential convergence results in [10, 34], (43) indicates only a poor conver-
gence of the PML method over SH . We however believe that exponential convergence
can be realized in a compact subset of SH , which is indeed true if Γ is flat [6]. This leads
to an essential question after the vertical PML truncation: how to accurately truncate
ΩPML in the lateral x1-direction? To address this question, as inspired by [21] and as
illustrated in Figure 2 (a), we shall consider the following two semi-waveguide problems:

(P±) :


∇ · (A∇ũ) + k2αũ = 0, on Ω±PML := ΩPML ∩

{
x : ±x1 >

T
2

}
,

ũ = 0, on Γ± := Γ ∩
{
x : ±x1 >

T
2

}
,

ũ = 0, on Γ±L+H := ΓL+H ∩
{
x : ±x1 >

T
2

}
,

∂νc ũ = g±, on Γ±0 := ΩPML ∩
{
x : x1 = ±T

2

}
,

for given Neumann data g± ∈ H−1/2(Γ±0 ), where νc = Aν denotes the co-normal vector
with ν pointing towards Ω±PML, ũ denotes a generic field, and we note that Γ± ⊂ ΓT does
not contain the defected part Γ0. In this section, we shall study the well-posedness of the

(a) (b)

Figure 2: (a) Region ΩPML is divided into three regions Ω−PML, Ω0 and Ω+
PML; semi-

waveguide problems (P±) are defined in Ω± bounded by Γ±H+L, Γ±0 and Γ±. (b) Domain

Ω+
PML is further truncated onto Ω0a by a smooth curve Γa intersecting Γ+ and Γ+

H+L

perpendicularly at a and a′, respectively. Ω+
a = Ω+

PML\Ω0a and the auxiliary line Lεa is
chosen such that the domain Ωε is sufficiently narrow.

semi-waveguide problems (P±).
By Theorem 3.1, the following uniqueness result is easy to obtain.

Lemma 4.1 Provided that ScL is sufficiently large, problem (P±) has at most one solu-
tion in H1(Ω±PML).

Proof 3 Suppose ũ ∈ H1(Ω+
PML) satisfies (P+) with g+ = 0. Let

Ωe
PML ={x ∈ R2 : (x1, x2) ∈ Ω+

PML or (T − x1, x2) ∈ Ω+
PML} ∪ Γ+

0 ,

Γe ={x ∈ R2 : (x1, x2) ∈ Γ+ or (T − x1, x2) ∈ Γ+ or (T/2, x2) ∈ Γ}.

Then,

ũe(x1, x2) =

{
ũ(x1, x2), x1 ≥ T/2,
ũ(T − x1, x2), x1 < T/2,

in H1(Ωe
PML) satisfies problem (25-27) with g̃, ΩPML and Γ replaced by 0, Ωe

PML and
Γe, respectively. Theorem 3.1 and Remark 3.1 imply that ũe = 0 on Ωe

PML so that ũ =
ũe|Ω+

PML
= 0. The uniqueness of problem (P−) can be established similarly.
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We are ready to study the well-posedness of problem (P±) by the Fredholm alternative.
Without loss of generality, we shall study (P+) only. To make use of Fredholm theory, we
need first to truncate Ω+

PML by an exact transparent boundary condition. Under condition
(GC2), there exists a line segment La ⊂ ΓT ∩ Γ with the midpoint a = (a1, a2) ∈ La for
a1 > T/2. For a small fixed constant ε > 0, we can find a vertical line segment Lεa and
a simple and smooth curve Γa ⊂ ΩPML connecting La and Γ+

H+L such that the distance

of Lεa and Γa is ε and that Γa intersecting La and Γ+
H+L perpendicularly at a and a′,

respectively, as shown in Figure 2 (b). Let Ωε be the domain bounded by Γa, L
ε
a, La and

Γ+
H+L and Ω+

a be the unbounded domain bounded by Γa, Γ+
H+L and Γ. For sufficiently

small ε, the above choice of Lεa and Γa guarantees that k > 0 is not an eigenvalue of

−∇ · (A∇ũ) =k2αũ, on Ωε, (44)

ũ =0, on ∂Ωε. (45)

Now for the unbounded domain Ω+
ε = Ωε ∪Γa ∪Ω+

a , by a symmetrical reflection w.r.t the
line containing Lεa, the partial boundary ∂Ω+

ε ∩Γ can be extended to a Lipschitz boundary,
denoted by Γε, satisfying (GC1). Then, Theorem 3.1, with Γε in place of Γ, can help to
construct the Dirichlet Green function of Ω+

ε by G̃D(x; y) = ũog(x; y) − ũog(x; yεimag)

satisfying G̃D(·; y)|∂Ω+
ε

= 0, where yεimag is the mirror image of the source point y w.r.t
line Lεa. Choosing Γa in such a special way, the following local regularity property of
G̃D(x; y) can be ensured.

Proposition 4.1 Under the geometrical conditions (GC1) and (GC2), for sufficiently
large values of L and m in (17), G̃D(x; y) admits the following decomposition

G̃D(x; y) = G̃(x; y)− G̃(x; ylimag) +Rl(x, y), y ∈ Ωl, (46)

such that Rl(x, y) is a sufficiently smooth function of x and y for (x, y) ∈ Ωl ∪ Ωc × Ωl,
where G̃ is defined by (21), Ωl is a sufficiently small neighborhood of point l in Ω+

ε and
ylimag is the mirror image of l w.r.t line Ll for l = a, a′, and Ωc can be any bounded subset
of Ω+

ε .

Proof 4 We consider y close to point a′ only. Define

ũa′(x; y) := ũog(x; y)− χa′(x)
[
G̃(x; y)− G̃(x; ya

′
imag)

]
,

where the cut-off function χa′ = 1 in a neighborhood of a′ and has a small support that is
independent of y. Then, it can be seen that ũa′ satisfies (25-27) with g̃inc replaced by

[∇ · (A∇) + k2α](1− χa′(x))
[
G̃(x; y)− G̃(x; ya

′
imag)

]
∈ Cm−1

comp(ΩPML × Ωl),

where Cm−1
comp consists of m−1 times differentiable functions with compact supports, and we

note that m defined in (17) determines the smoothness of σ. By arguing the same way as
in [18, Lem 2.4] and by choosing m sufficiently large, Ra′(x, y) = ũa′(x; y)− ũog(x; yεimag)

becomes a sufficiently smooth function for (x, y) ∈ Ωl ∪ Ωc × Ωl.

On Γa, we now define the following two integral operators:

[Saφ](x) = 2

∫
Γa

G̃D(x; y)φ(y)ds(y), (47)

[Kaφ](x) = 2

∫
Γa

∂νc(y)G̃D(x; y)φ(y)ds(y), (48)

Proposition 4.1 reveals that classic mapping properties hold for the above two integral
operators on the open arc Γa.
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Lemma 4.2 We can uniquely extend the operator Sa as a bounded operator from H−1/2(Γa)

to H̃1/2(Γa), the operator Ka as a compact (and certainly bounded) operator from H̃1/2(Γa)

to H̃1/2(Γa). Moreover, we have the decomposition Sa = Sp,a + Lp,a such that Sp,a :

H−1/2(Γa)→ H̃1/2(Γa) is positive and bounded below, i.e., for some constant c > 0,

Re

(∫
Γa

Sp,aφφ̄ds
)
≥ c||φ||2

H−1/2(Γa)
,

for any φ ∈ H−1/2(Γa), and Lp,a : H−1/2(Γa)→ H̃1/2(Γa) is compact.

Proof 5 By Proposition 4.1, the proof follows from similar arguments as in [18, Sec.
2.3] but relies on Fredholm of the single-layer potential and compactness of the double-
layer potential of kernels relating to G̃, the fundamental solution of the strongly elliptic
Helmholtz equation (18), as has been studied in [30, Thm. 7.6] and [23]. We omit the
details.

Analogous to [23, Lem. 5.1], one gets the following the Green’s representation

ũ(x) =

∫
Γa

[
∂νc(y)G̃D(x; y)ũ(y)− G̃D(x; y)∂νc(y)ũ(y)

]
ds(y). (49)

By the jump relations [23, Thm. 5.1], letting x approach Γa, we get the following trans-
parent boundary condition (TBC)

ũ−Kaũ = −Sa∂νc ũ, on Γa. (50)

As indicated in Figure 2 (b), let Ω0a be the domain bounded by Γ+
0 , Γa, Γ+

H+L and Γ+,

H1
D(Ω0a) = {v|H1(Ω0a) : v ∈ H1(Ω+

PML), v|Γ+ = 0, v|ΓH+L
= 0},

and Va = H1
D(Ω0a)×H−1/2(Γa) be equipped with the natural cross-product norm. (P+)

can be equivalently formulated as the following boundary value problem: find (ũ, φ) ∈ Va
solving

∇ · (A∇ũ) + k2αũ = 0, on Ω0a, (51)

∂νc ũ|Γ+
0

= g+, on Γ+
0 , (52)

∂νc ũ|Γa = φ, on Γa, (53)

ũ−Kaũ = −Saφ, on Γa. (54)

An equivalent variational formulation reads: find (ũ, φ) ∈ Va such that

bps((ũ, φ), (v, ψ)) =

∫
Γ+
0

g+v̄ds, (55)

for all (v, ψ) ∈ Va, where the sesquilinear form bps(·, ·) : Va × Va → C is given by

bps((ũ, φ), (v, ψ)) =

∫
Ω0a

[
(A∇ũ)T∇v − k2αũv̄

]
dx−

∫
Γa

[
φv̄ − (ũ−Kaũ+ Saφ) ψ̄

]
ds.

We are now ready to establish the well-posedness of problems (P+).
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Theorem 4.1 Under the geometrical conditions (GC1) and (GC2), provided that L is
sufficiently large, the semi-waveguide problem (P±) has a unique solution ũ ∈ H1(Ω±PML)
such that ||ũ||H1(Ω±PML) ≤ C||g

±||H−1/2(Γ±0 ) for any g± ∈ H−1/2(Γ±0 ), respectively, where C

is independent of g±.

Proof 6 We study (P+) only. For the variational problem (55), we can decompose bps =
b1 + b2 where

b1((ũ, φ), (v, ψ)) =

∫
Ω0a

[
(A∇ũ)T∇v − k2αũv̄

]
dx−

∫
Γa

[
φv̄ − ũψ̄ − Sp,aφψ̄

]
ds,

b2((ũ, φ), (v, ψ)) =

∫
Γa

[Lp,aφ−Kaφ] ψ̄ds.

According to Lemma 4.2, b1 is coercive on V as

Re(b1((ũ, φ), (ũ, φ))) =

∫
Ω0a

[
|ũx1 |2 + (1 + σ2(x2))−1|ũx2 |2 − k2|ũ|2

]
dx+ Re

(∫
Γa

Sp,aφφ̄ds
)

≥c||ũ||2H1(Ω0a) − C||ũ||
2
L2(Ω0a) + c||φ||2

H−1/2(Γa)
,

and the bounded linear operator associated with b2 is compact. Consequently, bps is Fred-
holm of index zero [30, Thm. 2.34].

Now, we prove ũ = 0 and φ = 0 when g+ = 0. By (49), we can directly extend ũ to
Ω+
ε , denoted by ũext. Then, the TBC (50) implies γ+ũext|Ω+

a
= ũ|Γa so that by the jump

relations, γ−ũext|Ωε = 0 where γ+ (γ−) defines the trace operator of ũext onto Γa from
Ω+
a (Ωε). Thus, ũ− = ũext|Ωε satisfies (44) and (45). But the special choice of ε and Ωε

has ensured that ũ− ≡ 0 on Ωε so that the trace of ∂νc ũ
ext taken from Ωε is 0. The jump

conditions then imply that the trace of ∂νc ũ
ext taken from Ω+

a is φ. Consequently,

w(x) =

{
ũ(x), x ∈ Ω0a,
ũext(x), x ∈ Ω+

a ,

belongs to H1(Ω+
PML) and satisfies (P+) with g+ = 0. But Lemma 4.1 already justifies

that w must be 0 on Ω+
PML, which indicates that ũ = 0 and φ = 0. The proof then follows

from the fact that the right-hand side of (55) defines a bounded anti-linear functional in
V ∗a .

Remark 4.1 Like Therorem 3.1, Theorem 4.1 also holds for any Lipschitz curves Γ±,
which are not necessarily periodic, satisfying the geometrical conditions (GC1) and (GC2).

5 Lateral boundary conditions

According to Theorem 3.1, ∂νc ũ
og(·;x∗)|±Γ0

∈ H−1/2(Γ±0 ) for any x∗ ∈ SH with |x∗1| <
T/2. Thus, ũ = ũog(·;x∗)|Ω±PML

satisfies (P±) with g± = ∂νc ũ
og(·;x∗)|±Γ0

in the dis-

tributional sense, respectively. Theorem 4.1 then implies that we can define two ver-

tical Neumann-to-Dirichlet (vNtD) operators N± : H−1/2(Γ±0 ) → H̃1/2(Γ±0 ) satisfying
ũog|Γ±0 = N±∂νc ũog|Γ±0 . Such transparent boundary conditions can serve as exact lateral

boundary conditions to terminate the x1-variable for the PML-truncated problem (18)
and (19). Consequently, the original unbounded problem (1) and (2) equipped with the
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hSRC condition (9) can be truncated onto the perturbed cell Ω0 := ΩPML∩
{
x : |x1| < T

2

}
and be reformulated as the following boundary value problem:

(BVP1) :


∇ · (A∇ũog) + k2αũog = −δ(x− x∗), on Ω0,
ũog = 0, on Γ0 = Γ ∩ {x : |x1| < T/2},
ũog = 0, on Γ0

H+L = ΓH+L ∩ {x : |x1| < T/2},
ũog = N±∂νc ũog, on Γ±0 .

Theorems 3.1 and 4.1 directly imply that (BVP1) admits the following unique solution

ũog(·;x∗) = ũog
r (·;x∗)|Ω0 + χ(·;x∗)|Ω0 ũ

inc(x;x∗)|Ω0 ,

with ũog
r defined in Theorem 3.1. Nevertheless, it is challenging to getN± by directly solv-

ing the unbounded problem (P±) in practice. To overcome this difficulty, in this section,
we shall define two closely related Neumann-marching operators, derive the governing
Riccati equations, and design an efficient RDP to accurately approximate N±.

5.1 Neumann-marching operators R±p
Now, let

Γ±j ={(x1 ± jT, x2) :, x = (x1, x2) ∈ Γ±0 },
Ω±PML,j ={x ∈ Ω±PML : ±x1 > T/2 + (j − 1)T},

Ω±j =Ω±PML,j\Ω
±
PML,j+1

for j ∈ N∗, as illustrated in Figure 3(a) for the notations of superscript +.

(a) (b)

Figure 3: (a) The semi-waveguide region Ω+
PML is divided into {Ω+

j }∞j=1 of the same shape.

The operator R+
p can then march Neumann data through the vertical line segments

{Γ+
j }∞j=0. (b) The boundary of Ωj consists of four parts: Γ+

j,1 (left), Γ+
j,2 (bottom), Γ+

j,3

(right), Γ+
j,4 (top). Here, θin indicates the interior angle at a corner, as will be used in

(86).

As insipired by [21], the well-posedness of (P±) well defines two bounded Neumann-
marching operators R±p : H−1/2(Γ±0 )→ H−1/2(Γ±1 ) such that ∂ν±c ũ

og|Γ±1 = R±p ∂ν±c ũ
og|Γ±0 ,

where ν±c = Aν± with ν± = (±1, 0)T . We have the following properties of R±p , analogous
to [21, Thm. 3.1].

Proposition 5.1 Under the conditions that (GC2) holds and kL is sufficiently large, we
can choose Γ±0 intersecting Γ at a smooth point such that R±p are compact operators and

∂ν±c ũ
og|Γ±j+1

= R±p ∂ν±c ũ
og|Γ±j , (56)

15



holds for any j ≥ 0. Furthermore,
ρ(R±p ) < 1, (57)

where ρ denotes the spectral radius.

Proof 7 We study only the property of R+
p . The choice of Γ+

0 and the interior regularity
theory of elliptic operators directly imply the compactness of R+

p .
It is clear that (56) holds for j = 0. We need only justify the case j = 1 as

all others can be done by induction. Consider the semi-waveguide problem (P+) with
g+ = −∂ν+c ũ

og|Γ+
1

, where the negative sign appears since ν+
c = −νc. Theorem 4.1

implies that ũog
n (x) = ũog(x1 + T, x2) for x ∈ Ω+

PML is the unique solution. Then
∂ν+c ũ

og
n |Γ+

1
= R+

p ∂ν+c ũ
og
n |Γ+

0
, which reads exactly ∂ν+c ũ

og|Γ+
2

= R+
p ∂ν+c ũ

og|Γ+
1

.

Now we prove (57) by contradiction. Suppose otherwise there exists 0 6= g ∈ H−1/2(Γ+
0 )

such that R+
p g = λ0g with |λ0| ≥ 1. Suppose ũ satisfies (P+) with g+ = g on Γ+

0 . Then,

for any v ∈ H1(Ω+
PML) so that v(· − jT, ·) ∈ H1(Ω+

PML,j+1) for any j ≥ 0, we have by
Green’s identity that,

|λ0|j
∣∣∣∣∫

Γ0

gv̄ds

∣∣∣∣ =

∣∣∣∣∣
∫

Γj

(R+
p )jgv(· − jT, ·)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫

ΩPML,j+1

[
(A∇ũog)T∇v(· − jT, ·)− k2αũogv(· − jT, ·))

]
dx

∣∣∣∣∣
≤C||ũog||H1(Ω+

PML,j+1)||v||H1(Ω+
PML) → 0, j →∞,

which is impossible.

By the following identity [22],

ρ(R±p ) = lim
j→∞

||(R±p )j ||1/j ,

it can be seen that there exists a sufficiently large integer N0 > 0 such that (R±p )N0 is
contracting, i.e.,

||(R±p )N0 || < 1. (58)

Let Ω±,N0
j be the interior of N0 consecutive cells ∪N0

j′=1Ω±(j−1)N0+j′ . As a corollary, the
above results indicate that ũog decays exponentially at infinity of the strip.

Corollary 5.1 Under the conditions that (GC2) holds and kL is sufficiently large,

||ũog(·;x∗)||
H1(Ω

±,N0
j )

≤ C||(R±p )N0 ||j−1||g̃inc||L2(ΩPML), (59)

where we recall that g̃inc = [∇· (A∇)+k2α](1−χ(x;x∗))ũinc(x;x∗), and C is independent
of j ≥ 0. In other words, the PML truncated solution ũog(x;x∗) decays exponentially fast
to 0 in the strip as |x1| → ∞ for any x∗ ∈ ΩPML.

Remark 5.1 Authors in [6] have revealed a similar result as (59) for Γ being a flat
surface. The above corollary indicates that such an exponentially decaying property for the
PML truncated solution holds even for locally defected periodic curves. As a consequence,
this reveals that the PML truncation cannot realize an exponential convergence to the
true solution for numerical solutions at regions sufficiently away from the source or local
defects since the true solution is expected to decay only of an algebraic rate at infinity: [7]

has indicated that uog behaves as O(x
−3/2
1 ) as x1 →∞.
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Though Corollary 5.1 provides hopeless results, we point out that (59) holds for L
being fixed but j →∞. If, on the contrary, j is fixed but L→∞, we believe exponential
convergence can still be achieved. In doing so, we need a more effective description of
the Neumann-marching operators R±p , as was done in [21]. Take R+

p as an example. As

shown in Figure 3(b), recall that Ω+
j denotes the j-th unit cell on the right of Γ+

0 , which
is unperturbed for j ≥ 1, and to simplify the presentation, we further denote the four
boundaries of Ω+

j by

Γj,1 = Γ+
j−1, Γj,3 = Γ+

j , Γj,2 = Ω+
j ∩ Γ, Γj,4 = Ω+

j ∩ Γ+
H+L.

Consider the following boundary value problem for a generic field ũ:

(BVP2) :


∇ · (A∇ũ) + k2αũ = 0, on Ω+

j ,

ũ = 0, on Γj,2 ∪ Γj,4,
∂νc ũ = gi, on Γ+

i , i = j − 1, j,

for gi ∈ H−1/2(Γ+
i ), i = j − 1, j. We have the following well-posedness theorem.

Theorem 5.1 Provided that kT/π /∈ E := {i′/2j′ |j′ ∈ N, i′ ∈ N∗}, and L is sufficiently
large, (BVP2) is well-posed. The well-posedness even holds with Ω+

j replaced by the inte-

rior domain of 2l consecutive cells, say ∪2l
j=1Ω+

j , for any number l ≥ 0.

Proof 8 It is clear that only uniqueness is needed [30, Thm. 4.10]. Suppose j = 1
and gi = 0, i = 0, 1. Then, by first an even extension over Γ+

0 and then a 2T -periodic
extension, we get a 2T -periodic solution ũe (corresponding to a normal incidence) in a
strip bounded in the x2-direction by a 2T -periodic grating surface, possibly different from
Γ, and ΓH+L. However, according to the well-posedness theory [5, Cor. 5.2] for the
half-space scattering by the grating, the PML convergence theory in [10, Thm. 2.4] can
be readily adapted here to show that ũe ≡ 0, considering that kT/π /∈ E has excluded
horizontally propagating Bloch modes.

Remark 5.2 We note that the condition kT/π /∈ E is not necessary for the well-posedness
of (BVP2). Even if kT/π ∈ E, one may impose zero Neumann condition on Γ4,j to
guarantee the uniqueness of the modified (BVP2) [29, 34].

By Theorem 5.1, we can define a bounded Neumann-to-Dirichlet operatorN (0) : H−1/2(Γ+
j−1)×

H−1/2(Γ+
j )→ H̃1/2(Γ+

j−1)× H̃1/2(Γ+
j ) such that[

ũ|Γ+
j−1

ũ|Γ+
j

]
= N (0)

[
∂ν−c ũ|Γ+

j−1

∂ν+c ũ|Γ+
j

]
, (60)

for all j ≥ 1. Due to the invariant shape of Ω+
j with respect to j, N (0) is in fact

independent of j. Suppose j = 1. Then, by the linearity principle, N (0) can be rewritten
in the following matrix form

N (0) =

[
N (0)

00 N (0)
01

N (0)
10 N (0)

11

]
,

where the bounded map N (0)
i′j′ : H−1/2(Γ+

j′) → H̃1/2(Γi′) maps ∂νc ũ|Γ+
j′

= gj′ to ũ|Γ+
i′

if

g1−j′ = 0 for i′, j′ = 0, 1.
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Due to the shape invariance of Γ+
j , we shall identify H−1/2(Γ+

j ) for all j ≥ 0 as the

same space H−1/2(Γ+
0 ), and, similarly, the H̃1/2(Γ+

j ) shall all be identified as the dual

space of H−1/2(Γ+
0 ).

Returning back to the semi-waveguide problems (P±), we have, by the definition of
R+
p and (60) for j = 1 and 2, that

N (0)
10 ∂ν−c ũ

og|Γ+
0
−N (0)

11 R
+
p ∂ν−c ũ

og|Γ+
0

= ũog|Γ+
1

= N (0)
00 R

+
p ∂ν−c ũ

og|Γ+
0
−N (0)

01 (R+
p )2∂ν−c ũ

og|Γ+
0
.

(61)

Here and in the following, the product of two operators should be regarded as their
composition. Thus,[

N (0)
10 +N (0)

11 R
+
p +N (0)

00 R
+
p +N (0)

01 (R+
p )2
]
∂νc ũ

og|Γ+
0

= 0,

for any ∂νc ũ
og|Γ+

0
∈ H−1/2(Γ+

0 ), so that we end up with the following Riccati equation for

R+
p :

N (0)
10 + [N (0)

11 +N (0)
00 ]R+

p +N (0)
01 (R+

p )2 = 0. (62)

One similarly obtains the governing equation for R−p :

N (0)
01 + [N (0)

11 +N (0)
00 ]R−p +N (0)

10 (R−p )2 = 0. (63)

Analogous to [21], the previous results in fact indicate that the two Riccati equations
(62) and (63) must be uniquely solvable under the condition that ρ(R±p ) < 1. The vNtD
operators N± mapping ∂νc ũ

og|Γ±0 to ũog|Γ±0 are respectively given by

N+ =N (0)
00 −N

(0)
01 R

+
p , (64)

N− =N (0)
11 −N

(0)
10 R

−
p . (65)

However, due to the nonlinearity of the Riccati equations (62) and (63), it is not that
easy to get N± in practice [21]. To tackle this difficulty, we shall develop an RDP to
effectively approximate R±p .

5.2 Recursive doubling procedure

Take R+
p as an example. We first study the NtD operator

N (l) =

[
N (l)

00 N (l)
01

N (l)
10 N (l)

11

]
(66)

on the boundary of ∪2l
j=1Ω+

j for l ≥ 1, where N (l)
i′j′ is bounded from H−1/2(Γ+

0 ) to H̃1/2(Γ0)

for i′, j′ = 0, 1. If l = 1, we need to compute N (1) on the boundary of Ω+
1 ∪ Ω+

2 . Using
(60) for j = 1 and 2 and eliminating ũog and ∂νc ũ

og by the continuity condition on Γ+
1 ,

one gets

(N (l−1)
00 +N (l−1)

11 )∂ν+c ũ
og|Γ+

1
= −N (l−1)

10 ∂ν−c ũ
og|Γ+

0
+N (l−1)

01 ∂ν+c ũ
og|Γ+

2
. (67)

By Theorem 5.1 , the well-posedness of the modified (BVP2) for l = 1, indicates that
there exist two bounded operators Al−1,Bl−1 : H−1/2(Γ+

0 )→ H−1/2(Γ+
0 ) such that

∂ν+c ũ
og|Γ+

1
= −Al−1∂ν−c ũ

og|Γ+
0

+ Bl−1∂ν+c ũ
og|Γ+

2
.
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Equation (67) implies that

Al−1 = (N (l−1)
00 +N (l−1)

11 )−1N (l−1)
10 , Bl−1 = (N (l−1)

00 +N (l−1)
11 )−1N (l−1)

01 ,

where (N (l−1)
00 + N (l−1)

11 )−1 is a generalized inverse from H̃1/2(Γ0) to H−1/2(Γ+
0 ). Thus,

one obtains

N (l)
00 =N (l−1)

00 −N (l−1)
01 Al−1, N (l)

01 = N (l−1)
01 Bl−1, (68)

N (l)
10 =N (l−1)

10 Al−1, N (l)
11 = N (l−1)

11 −N (l−1)
10 Bl−1. (69)

Equations (68-69) can be recursively applied to get N (l) for all l ≥ 1, and the number
of consecutive cells {Ωj} doubles after each iteration, which form the origin of the term
“recursive doubling procedure” (RPD) in the literature [33, 15]. In the following, we shall
see that RDP provides a simple approach for solving (62) and (63).

Now, analogous to (62), we obtain from N (l) and (56) the following equations

N (l)
10 + [N (l)

11 +N (l)
00 ](R+

p )2l +N (l)
01 (R+

p )2(l+1)
= 0, (70)

N+ = N (l)
00 −N

(l)
01 (R+

p )2l . (71)

Since ||(R+
p )N0 || < 1, the third term in (70) is expected to be exponentially small for

l� log2N0, so that we approximate

(R+
p )2l ≈ −[N (l)

11 +N (l)
00 ]−1N (l)

10 , (72)

N+ ≈ N (l)
00 +N (l)

01 [N (l)
11 +N (l)

00 ]−1N (l)
10 , (73)

and we get R+
p iteratively from

(R+
p )2j = −[N (j)

11 +N (j)
00 ]−1

[
N (j)

10 −N
(j)
01 (R+

p )2j+1
]
, j = l − 1, · · · , 0. (74)

One similarly obtains N− and R−p from

(R−p )2l ≈ −[N (l)
11 +N (l)

00 ]−1N (l)
01 , (75)

N− ≈ N (l)
11 +N (l)

01 [N (l)
11 +N (l)

00 ]−1N (l)
10 , (76)

(R−p )2j = −[N (j)
11 +N (j)

00 ]−1
[
N (j)

01 −N
(j)
10 (R−p )2j+1

]
, j = l − 1, · · · , 0. (77)

From the above, it can be seen that the essential step to approximate N± is to get
the NtD operator N (0) on the boundary of any unperturbed unit cell Ω±j for j ∈ Z+.

As no information of the field ũog in Ω±j is required, it is clear that the BIE method

is an optimal choice, as it treats only the boundary of Ω±j . Since PML is involved in

domain Ω±j , the high-accuracy PML-based BIE method developed in our previous work

[28] straightforwardly provides an accurate approximation of N (0), so as to effectively
drive RDP to get N±. We shall present the details in the next section.

6 The PML-based BIE method

In this section, we shall first review the PML-based BIE method in [28] to approximate
the NtD operator on the boundary of any unit cell, perturbed or not, by an NtD matrix.
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Then, we shall use these NtD matrices to approximate the two vNtD operators N± on
Γ±0 and to solve (BVP1) finally. From now on, we shall assume that the scattering surface
Γ is piecewise smooth and satisfies (GC1) only. Though the previous well-posedness
theory relies on (GC2), our numerical solver does not rely on such an assumption, and
we believe (GC2) can be weakened to at least accept piecewise smooth curves, which we
shall investigate in a future work.

6.1 Approximating N±

Without loss of generality, consider (BVP2) in an unperturbed cell, say Ω+
1 , and we need

to approximate N (0) first. According to [28], for any ũ satisfying

∇ · (A∇ũ) + k2αũ = 0, (78)

on Ω+
1 , we have the following Green’s representation theorem

ũ(x) =

∫
∂Ω+

1

{G̃(x, y)∂νc ũ(y)− ∂νcG̃(x, y)ũ(y)}ds(y), (79)

for all x ∈ Ω+
1 ; we recall that ν denotes the outer unit normal vector on ∂Ω+

1 . Moreover,
as x approaches ∂Ω+

1 = ∪4
j=1Γj,1, the usual jump conditions imply [28]

K[ũ](x)−K0[1](x)ũ(x) = S∂νc [ũ](x), (80)

where we have defined the following integral operators

S[φ](x) = 2

∫
∂Ω+

1

G̃(x, y)φ(y)ds(y), (81)

K[φ](x) = 2p.v.

∫
∂Ω+

1

∂νcG̃(x, y)φ(y)ds(y), (82)

K0[φ](x) = 2p.v.

∫
∂Ω+

1

∂νcG̃0(x, y)φ(y)ds(y), (83)

where p.v. indicates the Cauchy principle value, and

G̃0(x, y) = − 1

2π
log ρ(x̃, ỹ), (84)

is the fundamental solution of the complexified Laplace equation

∇ · (A∇ũ0(x)) = 0. (85)

Note that theoretically,

K0[1](x) = −θ
in(x)

π
. (86)

where θin(x) is defined as the interior angle at x, as indicated in Figure 3(b). However,
numerically evaluating K0[1] near corners is more advantageous as has been illustrated in
the literature [13, 27]. Thus, ũ = (K − K0[1])−1S∂νc ũ on ∂Ω+

1 . Consequently, the NtD
operator Nu for any unperturbed domain can be defined as

Nu = (K −K0[1])−1S.
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To approximate Nu, we need to discretize the three integral operators on the right-
hand side. Suppose now the piecewise smooth curve ∂Ω+

1 is parameterized by x(s) =
{(x1(s), x2(s))|0 ≤ s ≤ L1}, where s is the arclength parameter. Since corners may
exist, ũ(x(s)) can have corner singularities in its derivatives at corners. To smoothen ũ,
we introduce a grading function s = w(t), 0 ≤ t ≤ 1. For a smooth segment of ∂Ω+

1

corresponding to s ∈ [s0, s1] and t ∈ [t0, t1] such that si = w(ti) for i = 0, 1, where s0 and
s1 correspond to two corners, we take [13, Eq. (3.104)]

s = w(t) =
s0wp1 + s1wp2
wp1 + wp2

, t ∈ [t0, t1], (87)

where the positive integer p ensures that the derivatives of w(t) vanish at the corners up
to order p,

w1 =

(
1

2
− 1

p

)
ξ3 +

ξ

p
+

1

2
, w2 = 1− w1, ξ =

2t− (t0 + t1)

t1 − t0
.

To simplify notation, we shall use x(t) to denote x(w(t)), and x′(t) to denote dx
ds (w(t))w′(t)

in the following. Assume that t ∈ [0, 1] is uniformly sampled by an even number, denoted
by N , of grid points {tj = jh}Nj=1 with grid size h = 1/N , and that the grid points contain
all the corner points. Thus, S[∂νc ũ] at point x = x(tj) can be parameterized by

S[∂νc ũ](x(tj)) =

∫ 1

0
S(tj , t)φ

s(t)dt, (88)

where S(tj , t) = i
2H

(1)
0 (kρ(x(tj), x(t))), and the scaled co-normal vector φs(t) = ∂νc ũ(x(t))|x′(t)|,

smoother than ∂νc ũ(x(t)), is introduced to regularize the approximation of Nu.
Considering the logarithmic singularity of S(tj , t) at t = tj , we can discretize the

integral in (88) by Alpert’s 6th-order hybrid Gauss-trapezoidal quadrature rule [1] and
then by trigonometric interpolation to get

S[∂νc ũ
s]

 x(t1)
...

x(tN )

 ≈ S

 φs(t1)
...

φs(tN )

 , (89)

where the N ×N matrix S approximates S. One similarly approximates K[ũ](x(tj)) and
K0[1](x(tj)) for j = 1, · · · , N , so that we obtain, on the boundary of ∂Ω+

1 ,
u1,1

u1,2

u1,3

u1,4

 = Nu


φs

1,1

φs
1,2

φs
1,3

φs
1,4

 , (90)

where u1,j′ and φs1,j′ represent Nj′ × 1 column vectors of ũ and φs at the Nj′ grid points

of Γ1,j′ , respectively for j′ = 1, 2, 3, 4; note that N =
∑4

j′=1Nj′ and the grid points on
Γ1,3 are obtained by horizontally translating the grid points on Γ1,1 so that N1 = N3.
Clearly, the N ×N matrix Nu approximates the scaled NtD operator N s

u related to Nu
by Nu∂νc ũ = N s

uφ
s. Now, by ũ|Γ1,2∪Γ1,4 = 0, we eliminate vectors u1,2, u1,4, φ1,2 and φ1,4

in (90) so that we obtain two 2N1 × 2N1 matrices N (0) and T that satisfy[
u1,1

u1,3

]
= N (0)

[
φs

1,1

φs
1,3

]
,

[
φs

1,2

φs
1,4

]
= T

[
φs

1,1

φs
1,3

]
, (91)
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where we denote

N (0) =

[
N

(0)
00 N

(0)
01

N
(0)
10 N

(0)
11

]
,

with N
(0)
ij ∈ CN1×N1 ; the above elimination is stable due to the well-posedness of (BVP2)

in Theorem 5.1. Note that, different from [28], we no longer simultaneously assume
ũ = φs = 0 on Γ1,2 ∪ Γ1,4, which could cause pronounced error in numerical results. Now
compare (60) and (91). Like Nu, N (0) approximates the scaled NtD operator N (0),s on
Γ+

1 ∪ Γ+
3 related to N (0) by N (0)∂νc ũ = N (0),sφs.

Consequently, the previously developed RDP can be easily adapted here in terms
of notationally replacing N by N for the equations (68-77), so that we get two N1 ×
N1 matrices R+

p and N+ approximating the (scaled) Neumann-marching operator R+
p

and the (scaled) vNtD operator N+ such that φs
1,3 = −R+

p φ
s
1,1 and u1,1 = N+φs

1,1.
One similarly obtains two N1 × N1 matrices R−p and N− approximating R−p and N−,
respectively.

6.2 Solving (BVP1)

We are now ready to use the PML-based BIE method to solve the main problem (BVP1).
For x∗ ∈ Ω0, to eliminate the δ function, we consider ũsc(x;x∗) = ũog(x;x∗)− ũinc(x;x∗),
satisfying (78). For simplicity, we denote (cf. Fig.2 (a))

Γ0,1 = Γ−0 , Γ0,2 = Γ0, Γ0,3 = Γ+
0 , and Γ0,4 = ΓH+L

0 .

Then, analogous to (90), on the four boundaries Γ0,j , j = 1, 2, 3, 4, we apply the PML-
based BIE method in the previous section to approximate the NtD operator for ũsc and
∂νc ũ

sc on the boundary of the perturbed cell Ω0 by a matrix Np,
usc

0,1

usc
0,2

usc
0,3

usc
0,4

 = Np


φsc,s

0,1

φsc,s
0,2

φsc,s
0,3

φsc,s
0,4

 , (92)

where usc
0,j and φsc,s

0,j represent column vectors of ũsc and ∂νc ũ
sc|x′| at the grid points of

Γ0,j , respectively, for j = 1, 2, 3, 4. Rewriting the above in terms of ũog and ∂νc ũ
og, we

get 
uog

0,1

uog
0,2

uog
0,3

uog
0,4

 = Np


φog,s

0,1

φog,s
0,2

φog,s
0,3

φog,s
0,4

+


uinc

0,1

uinc
0,2

uinc
0,3

uinc
0,4

−Np


φinc,s

0,1

φinc,s
0,2

φinc,s
0,3

φinc,s
0,4

 , (93)

where uinc
0,j and φinc,s

0,j represent column vectors of ũinc(x;x∗) and ∂νc ũ
inc(x;x∗)|x′| at the

grid points of Γ0,j , respectively, etc.. The boundary conditions in (BVP1) imply that

uog
0,2 =0, uog

0,4 = 0, (94)

uog
0,1 =N−φog,s

0,1 , uog
0,3 = N+φog,s

0,3 . (95)

Solving the linear system (93-95), we get ũog(x;x∗) and ∂νc ũ
og(x;x∗) on all grid points of

∂Ω0.
Now we discuss how to evaluate ũog(x;x∗) in the physical domain SH . We distinguish

two cases:
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1. x ∈ Ω0. Since on the grid points of ∂Ω0, ũsc and ∂νc ũ
sc|x′| are available, we use

Green’s representation formula (79) with ∂Ω+
1 replaced by ∂Ω0 to compute ũsc(x;x∗)

in Ω0 so that ũog(x;x∗) becomes available in Ω0.

2. x ∈ Ω±j . Consider Ω+
1 first. Suppose uog

1,j′ and φog,s
1,j′ represent column vectors of

ũog and ∂νc ũ
og|x′| at the grid points of Γ1,j′ , for 1 ≤ j′ ≤ 4. By the continuity

of ∂νc ũ
og on Γ1,1 = Γ0,3 = Γ+

0 , φog,s
1,1 = −φog,s

0,3 . Since φog,s
1,3 = −R+

p φ
og,s
1,1 , we get

uog
1,j′ for j′ = 1, 3 by (91), and φog,s

1,j′ for j′ = 2, 4. Given that uog
1,2 = uog

1,4 = 0,

ũog(x;x∗) and ∂νc ũ
og|x′| on ∂Ω+

1 become available, so that the Green’s representa-
tion formula (79) applies to get ũog(x;x∗) in Ω+

1 . Repeating the same procedure, one
obtains ũog(x;x∗) in Ω+

j for j ≥ 2. The case for x ∈ Ω−j can be handled similarly.

Consequently, utot(x;x∗) ≈ ũog(x;x∗) becomes available for x ∈ SH ⊂ Ω0∪
[
∪∞j=1Ωj,+ ∪ Ωj,−

]
.

6.3 Computing utot for plane-wave incidence

To close this section, we briefly discuss how to compute utot for a plane incident wave
uinc = eik(cos θx1−sin θx2) for θ ∈ (0, π). First, we consider the non-perturbed case Γ = ΓT
so that utot becomes the reference solution utot

ref . It is clear that usc
ref = utot

ref − uinc satisfies
the following quasi-periodic condition

usc
ref(−T/2, x2) =γusc

ref(T/2, x2), (96)

∂x1u
sc
ref(−T/2, x2) =γ∂x1u

sc
ref(T/2, x2), (97)

where γ = eik cos θT . On Γ, we have from (2) that

usc
ref = −uinc. (98)

Due to the quasi-periodicity, above x2 = H, we could express usc
ref in terms of a Fourier

series, i.e.,

usc
ref(x1, x2) =

∞∑
j=−∞

Rje
iαjx1+iβjx2 , x2 ≥ H, (99)

where αj = k cos θ + 2πj
T and βj =

√
k2 − α2

j if |αj | ≤ k, otherwise βj = i
√
α2
j − k2,

and Rj denotes the j-th reflective coefficient. Thus, the complexified field ũsc
ref(x1, x2) =

usc
ref(x1, x̃2) satisfies on the PML boundary x2 = L+H

ũsc
ref(x1, L+H) =

∞∑
j=−∞

Rje
iαjx1+iβj(H+L)−βjScL. (100)

For simplicity, we assume that all βj are sufficiently away from 0, so that provided that
L and Sc are sufficiently large, we can directly impose the following Dirichlet boundary
condition

ũsc
ref(x1, H + L) = 0. (101)

If βj is quite close to 0, accurate boundary conditions can be developed; we refer readers
to [26, 29, 34] for details. Besides, ũsc

ref satisfies the quasi-periodic conditions (96) and
(97) and the surface condition (98), but with u replaced by ũ.
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On the boundary ∂Ω0, the PML-BIE method gives, analogous to (92),
usc

1

usc
2

usc
3

usc
4

 = Np


φsc

1

φsc
2

φsc
3

φsc
4

 , (102)

where usc
j′ and φsc

j′ represent vectors of ũsc
ref and ∂νc ũ

sc
ref |w′| at the grid points of Γ0,j′ ,

respectively, for 1 ≤ j′ ≤ 4; note that Np is the same as Nu in (90) since Γ = ΓT .
Equation (101) directly implies that

usc
4 = 0. (103)

The quasi-periodic conditions (96) and (97) imply

usc
3 = γusc

1 , φsc
3 = −γφsc

1 . (104)

The interface condition (98) indicates

usc
2 = −uinc

2 , (105)

where uinc
2 represents the vector of uinc at grid points of Γ0,2. Solving the linear system

(102-105) gives rise to values of ũsc
ref and ∂νc ũ

sc
ref |w′| on ∂Ω0. The Green’s representation

formula (79) can help to compute ũsc
ref in Ω0. The quasi-periodicity helps to construct ũsc

ref

in any other cells Ω±j for j ∈ N∗. Consequently, utot
ref becomes available in the physical

domain SH .
Now, if Γ is a local perturbation of ΓT , as ũsc

ref is available now, one follows the same
approach developed in section 6.2 to get ũog = ũsc− ũsc

ref in any unperturbed cell and thus
utot in the physical region SH . We omit the details here.

7 Numerical examples

In this section, we will carry out four numerical experiments to validate the performance
of the PML-based BIE method and also the proposed theory. In all examples, we set
the free-space wavelength λ = 1 so that k0 = 2π, and the period T = 1. We consider
two types of incidence: (1) a cylindrical incidence excited by source point x∗ = (0, 1.5);
(2) a plane-wave incidence of angle θ to be specified. We suppose that only one unit
cell of the background periodic structure is perturbed. To setup the PML, we let m = 0
in (17) to define σ for simplicity. In the RDP iterations (73), (74), (76) and (77), we
take l = 20. Furthermore, we choose H = 3 and set the computational domain to be
[−5.5, 5.5]×[−2, 3], which contains 11 cells. To validate the accuracy of our method, we
compute the relative error

Erel :=
||(φsc,s

2,0 )num − (φsc,s
2,0 )exa||∞

||(φsc,s
2,0 )exa||∞

,

for φsc,s
2,0 representing the scaled normal derivative |w′|∂νusc on Γ2,0, the perturbed part of

Γ, and for different values of S and L in the setup of the PML, where superscript “num”
indicates numerical solution, superscript “exa” indicates a sufficiently accurate numerical
solution or the exact solution if available.

Example 1: a flat curve. In the first example, we assume that Γ is the straight
line {x : x2 =0}. Certainly, we can regard such a simple structure as a periodic structure
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with period equal to one wavelength. We regard the line segment between x1 =−0.5 and
x1 =0.5 on Γ as segment Γ0,2, i.e., as the “perturbed” part. For the cylindrical incidence,
the total wave field utot is given by

utot(x;x∗) =
i

4

[
H

(1)
0 (k|x− x∗|)−H(1)

0 (k|x− x∗imag|)
]
,

where the image source point x∗imag = (0,−1.5). Using this to compute the scaled co-
normal derivative on segment Γ0,2, we get the reference solution and can check the accu-
racy of our method. We discretize each smooth segment of the perturbed/unperturbed
unit cell by 600 grid points. To check how the wavenumber condition in Theorem 5.1
affect the accuracy of our numerical solver, we consider two values of the refractive index
n in Ω: (1) n = 1.03 so that kT/π = 2.06 /∈ E ; (2) n = 1 so that kT/π = 2 ∈ E . For both
cases, we compare results of Dirichlet and Neumann boundary conditions on ΓH+L.

For n = 1.03, Figure 4 (a) and (b) compare the exact solution and our numerical
solution for L = 2.2 and S = 2.8. The two solutions are indistinguishable. To give a
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Figure 4: Example 1: Real part of utot in [−5.5, 5.5]× [−2.0, 3.0] excited by the point
source y = (0, 1.5): (a) exact solution; (b) numerical solution. Convergence history of
relative error Erel versus: (c) PML absorbing constant S; (d) Thickness of the PML L,
for both Dirichlet and Neumann conditions on ΓH+L.

detailed comparison, Figure 4 (c) and (d) show how the relative error Erel decays as one
of the two PML parameters, the absorbing constant S and the thickness L, increases
for either zero Dirichlet or zero Neumann condition on ΓH+L. In Figure 4(c), we take
L= 2.2 and let S vary between 0.2 and 2.8, while in Figure 4(d), we take S = 2.8 and
let the PML thickness L vary between 0.2 and 2.2. In both figures, the vertical axis is
logarithmically scaled so that the vertical dashed lines indicate that the relative error Erel

decays exponentially as L or S increases for both conditions. On the other hand, Neumann
condition gives faster convergence rate than Dirichlet condition. The convergence curves
indicate nearly 11 significant digits are revealed by the proposed PML-based BIE method.
The ’o’ lines in Figure 5(a) show the convergence curve of

ERic = ||N (0)
10 + [N

(0)
11 +N

(0)
00 ]R+

p +N
(0)
01 (R+

p )2||∞ (106)

against the number of iterations l. It can be seen that after only 11 iterations, R+
p satisfies

its governing Riccati equation (62) up to round-off errors. The ’o’ lines in Figure 5(b)
show the curve of ||φog,s|Γ+

j
||∞ against j. It can be seen that φog,s and hence ∂ν+c u

og

indeed decay exponentially as j or x1 increases, as has been illustrated in Corollary 5.1.
In Figure 5(c), we compare Dirichlet and Neumann conditions for n = 1. We take L =

2.2 and let S vary from 0.2 to 2.8. Among the four convergence curves, solid lines indicate
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Figure 5: All four examples: (a) Convergence history of ERic in (106) against the number
of iterations l; (b) Radiation behavior of φog,s|Γ+

j
as j →∞. (c): Performance of Dirichlet

and Neumann conditions in Example 1 for n = 1, at which kT/π ∈ Q+; here ’D’ stands
for Dirichlet and ’N’ for Neumann, and 100 indicates 100 grid points are used to discretize
each smooth segment of the unit cells, etc..

600 grid points chosen on each smooth segment of each unit cell, while dashed lines indicate
100 grid points; ’+’ indicates Neumann condition on ΓH+L while ’o’ indicates Dirichlet
condition. If 100 grid points are used, Erel for Neumann condition starts decreasing after
S ≥ 2 whereas Erel for Dirichlet condition has already reached its minimum error; if
600 grid points are used, Neumann condition does not make Erel converge at all for S ∈
[0.2, 2.8], but Dirichlet condition still possesses the same convergence rate and accuracy
as in case n = 1.03. Consequently, Dirichlet condition outperforms Neumann condition
for n = 1.

Example 2: a sine curve. In the second example, we assume that Γ is the sine curve,
x2 =sin(2πx1+π), as shown in Figure 6(a) and that n = 1.03 to make kT/π /∈ Q+. For the
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Figure 6: Example 2: (a) Numerical solution of real part of the total wave field u in
[−5.5, 5.5]× [−2.0, 3.0] excited by the point source y = (0, 1.5). Convergence history of
relative error Erel versus: (b) PML absorbing constant S for fixed PML Thickness L=
2, (c) PML Thickness L for fixed PML absorbing constant S = 2.8; vertical axes are
logarithmically scaled.

cylindrical incidence, we discretize each smooth segment of any unit cell by 600 grid points,
and compare results of Dirichlet and Neumann boundary conditions on ΓH+L. Taking
S=2.8 and L=2.2, we evaluate the wave field in [−5.5, 5.5]×[−2.0, 3.0] and use this as the
reference solution since the exact solution is no longer available. In Figure 6, (a) shows
the field pattern of the reference solution, and (b) and (c) show the convergence history
of relative error Erel versus one of the two PML parameters S and L, respectively. Again,
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we observe that Erel decays exponentially as S or L increases. Unlike the flat surface in
Example 1, we no longer observe a faster convergence rate of Neumann condition, but
find that both conditions share the same convergence rate and accuracy. Considering its
worse result for kT/π ∈ Q and unimpressive improvement for kT/π /∈ Q, we conclude
that Neumann condition is less superior than Dirichlet condition, and thus shall only use
the latter one in the rest experiments. With Dirichlet condition, the ’+’ lines in Figure 5
(a) show the convergence curve of ERic in (106) against the number of iterations l. The
’+’ lines in Figure 5 (b) show the curve of ||φog,s|Γ+

j
||∞ against j.

For the plane-wave incidence, we take θ = π
3 . Employing the method in section 6.3,

we discretize each smooth segment of any unit cell by 700 grid points. Taking S = 2.8
and L = 4, we evaluate the wave field in [−5.5, 5.5]× [−2.0, 3.0] and use this as the
reference solution. In Figure 7, (a) shows the field pattern, and (b) and (c) show the
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Figure 7: Example 2: (a) Numerical solution of real part of the total wave field u in
[−5.5, 5.5]×[−2.0, 3.0] excited by a plane incident wave of angle θ = π

3 . Convergence history
of relative error Erel versus: (b) PML absorbing constant S for fixed PML Thickness
L= 4, (c) PML Thickness L for fixed PML absorbing constant S= 2.8; vertical axes are
logarithmically scaled.

convergence history of relative error Erel versus one of the two PML parameters S and
L, respectively. For both incidences, the convergence curves in Figures 6 and 7 decay
exponentially, indicating that nearly 12 significant digits are revealed by the proposed
PML-based BIE method.

Example 3: a locally perturbed sine curve. In the third example, we assume
that the sine curve Γ : x2 = sin(2πx1 + π) is locally perturbed with the part between
x1 =−0.5 and x1 = 0.5 replaced by the line segment {(x1, 0) : x1 ∈ [−0.5, 0.5]}, as shown
in Figure 8 (a). For the cylindrical incidence, we discretize each smooth segment of any
unit cell by 600 grid points. Taking S = 2.8 and L= 2.2, we evaluate the wave field in
[−5.5, 5.5]×[−2.0, 3.0] and use this as the reference solution, the field pattern of which is
shown in Figure 8 (a). The ’x’ lines in Figure 5 (b) show the curve of ||φog,s|Γ+

j
||∞ against

j.
For the plane incidence, we take θ = π

3 and discretize each smooth segment of any
unit cell by 700 grid points. Taking S = 2.8 and L = 4, we evaluate the wave field in
[−5.5, 5.5]×[−2.0, 3.0] and use this as the reference solution, the field pattern of which is
shown in Figure 8 (b).

For both incidences, Figure 8 (c) and (d) show the convergence history of relative
error Erel versus one of the two PML parameters S and L, respectively. The convergence
curves decay exponentially and indicate that nearly 11 significant digits are revealed by
the proposed PML-based BIE method.
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Figure 8: Example 3: Numerical solution of real part of the total wave field u in
[−5.5, 5.5]× [−2.0, 3.0] excited by: (a) a cylindrical wave by source y = (0, 1.5); (b) a
plane wave of incident angle θ = π

3 . Convergence history of relative error Erel versus: (c)
PML Thickness L for fixed PML absorbing constant S=2.8 for both incidences; (d) PML
absorbing constant S for fixed PML Thickness L= 2.2 (4.0) for cylindrical (plane-wave)
incidence.

Example 4: a locally perturbed binary grating. In the last example, we assume
that Γ consists of periodic rectangular grooves of depth 0.5 and width 0.25, with the part
between x1 =−0.5 and x1 =0.5 replaced by the line segment {(x1, 0) : x1∈ [−0.5, 0.5]}, as
shown in Figure 9(a). For the cylindrical incidence, we discretize each smooth segment of
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Figure 9: Example 4: Numerical solution of real part of the total wave field u in
[−5.5, 5.5]× [−2.0, 3.0] excited by: (a) a cylindrical wave by source y = (0, 1.5); (b) a
plane wave of incident angle θ = π

6 . Convergence history of relative error Erel versus: (c)
PML Thickness L for fixed PML absorbing constant S=2.8 for both incidences; (d) PML
absorbing constant S for fixed PML Thickness L= 2.2 (3.0) for cylindrical (plane-wave)
incidence.

any unit cell by 600 grid points. Taking S=2.8 and L=2.2, we evaluate the wave field in
[−5.5, 5.5]×[−2.0, 3.0] and use this as the reference solution, the field pattern of which is
shown in Figure 9 (a). The ’♦’ lines in Figure 5 (a) show the convergence curve of ERic

in (106) against the number of iterations l. The ’♦’ lines in Figure 5 (b) show the curve
of ||φog,s|Γ+

j
||∞ against j.

For the plane-wave incidence, we take θ = π
6 and discretize each smooth segment of

any unit cell by 600 grid points. Taking S=2.8 and L=3, we evaluate the wave field in
[−5.5, 5.5]×[−2.0, 3.0] and use this as the reference solution, the field pattern of which is
shown in Figure 9 (b).

For both incidences, Figure 9 (c) and (d) show the convergence history of relative
error Erel versus one of the two PML parameters S and L, respectively. The convergence
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curves decay exponentially and indicate that nearly 12 significant digits are revealed by
the proposed PML-based BIE method.

8 Conclusion

This paper studied the perfectly-matched-layer (PML) theory for wave scattering in a
half space of homogeneous medium bounded by a two-dimensional, perfectly conducting,
and locally defected periodic surface, and developed a high-accuracy boundary-integral-
equation (BIE) solver. By placing a PML in the vertical direction to truncate the un-
bounded domain to a strip, we proved that the PML solution converges to the true
solution in the physical subregion of the strip at an algebraic order of the PML thick-
ness. Laterally, the unbounded strip is divided into three regions: a region containing
the defect and two semi-waveguide regions of periodic subsurfaces, separated by two ver-
tical line segments. We proved the well-posedness of an associated scattering problem in
both semi-waveguide so as to well define a Neumann-to-Dirichlet (NtD) operator on the
associated vertical segment. The two NtD operators, serving as exact lateral boundary
conditions, reformulate the unbounded strip problem as a boundary value problem over
the defected region. Each NtD operator is closely related to a Neumann-marching oper-
ator, governed by a nonlinear Riccati equation, which was efficiently solved by an RDP
method and a high-accuracy PML-based BIE method so that the boundary value problem
on the defected region can be solved finally. Our future research plan shall focus on the
following two aspects:

(1). Extend the current work to study locally defected periodic structures of stratified
media. In such case, propagating Bloch modes may exist so that the related Neu-
mann marching operators R±p may not be contracting.

(2). Rigorously justify that the PML solution converges exponentially to the true so-
lution in any compact subset of the strip, as has been demonstrated by numerical
experiments.
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