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DIFFERENTIAL EQUATION BASED PATH INTEGRAL FOR SYSTEM-BATH

DYNAMICS

GESHUO WANG AND ZHENNING CAI

Abstract. We propose the differential equation based path integral (DEBPI) method to simulate the real-
time evolution of open quantum systems. In this method, a system of partial differential equations is derived

based on the continuation of a classical numerical method called iterative quasi-adiabatic propagator path
integral (i-QuAPI). While the resulting system has infinite equations, we introduce a reasonable closure to
obtain a series of finite systems. New numerical schemes can be derived by discretizing these differential
equations. It is numerically verified that in certain cases, by selecting appropriate systems and applying
suitable numerical schemes, the memory cost required in the i-QuAPI method can be significantly reduced.

1. Introduction

In physics, an open quantum system refers to a quantum system coupled with an external environment
(bath). In reality, no quantum system can be absolutely isolated, and therefore the study of open quantum
system is of great importance and nowadays has wide applications in the fields including quantum optics
[3], chemical physics [27, 9], quantum information [21] and even social sciences [8]. In general, for an open
quantum system, the large number of degrees of freedom in the bath prevents us from directly computing
the density matrix of the coupled system. To carry out simulations, the bath is usually assumed to be some
analytically solvable models such as harmonic oscillators so that one can represent the quantum dynamics
using path integrals, and the influence of the bath on the system of interest can be reduced to an influence
functional [5].

Despite such simplification, the difficulty introduced by the system-bath coupling still exists because the
influence functional couples the states of the system at any two time points, leading to a non-Markovian
process. Such process is often formulated using an integro-differential equation (known as Nakajima-Zwanzig
equation), where the effect of the bath is expressed as a memory kernel, represented by the Nakajima-Zwanzig
operator [20, 30]. The numerical methods based on the computation of path integrals, such as quasi-
adiabatic propagator path integral (QuAPI) [12] and hierarchical equations of motion (HEOM) [25, 24]
methods, require significant memory cost to store the contributions from different paths. To reduce the
storage requirement, one idea is to make use of the decaying property of the influence functional to develop
iterative schemes. One typical method is the iterative QuAPI (i-QuAPI) method [13, 14], which truncates
the influence functional to achieve finite memory length, so that partial summation can be carried out in
the path integral. Other approaches based on this idea include the blip-summed method [16, 17], small
matrix decomposition of the path integral (SMatPI) method [18], and important path sampling [23] design
algorithms, which explore extra the numerical sparsity of the problem to further reduce the memory cost.
Some stochastic methods, such as diagrammatic quantum Monte Carlo (dQMC) method [28] and inchworm
Monte Carlo method [4, 1, 29, 2], apply stochastic approaches to estimate path integrals. These methods
no longer suffer from the curse of memory cost. However, numerical sign problem may appear for long-time
simulations [11, 2]. There are also some modeling techniques to simplify the Nakajima-Zwanzig equation,
among which the Lindblad equation [10, 6] considers the weak coupling limit, so that the memory effect can
be ignored and the master equation becomes Markovian. Other approaches based on computable master
equations include the post-Markovian master equation [22] and the generalized quantum master equation
[7].

Despite the fast progress in the numerical computation of open quantum systems, the i-QuAPI method
remains as one of the fundamental and reliable methods, and is often used to compute reference solutions in
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the development of other methods. Since the strongest limitation of i-QuAPI is its memory cost, which grows
exponentially with 1/∆t, the present paper follows the basic idea of the i-QuAPI method and tries to break
such exponential relationship by developing the differential equation based path integral (DEBPI) method.
The DEBPI method formulates a system of differential equations such that i-QuAPI can be considered as
its numerical scheme. Afterwards, we can re-design the numerical scheme by discretizing the PDE system.
It is numerically verified that in certain cases, the memory cost can be significantly reduced.

Throughout this paper, we will mainly focus on a simple open quantum system consisting of a flipping
spin and a thermal bath. Despite the simple setting of the system, it contains all the difficulties related to
the system-bath coupling in general open quantum systems. We refer the authors to [26] for some detailed
discussion on this model.

For the rest of this paper, we present the derivation of DEBPI method and some numerical tests. Section 2
is a brief introduction to the spin-boson model and the i-QuAPI method. In order to derive the continuous
formulation for i-QuAPI method, we give a representation of the continuation of path segments and introduce
notations for the relative quantities in Section 3. With all the preparation in Sections 2 and 3, we derive
a governing partial differential equation system and discuss the required boundary condition in Section 4.
In addition, as the partial differential equation system includes infinite equations, we also provide the idea
of dimensional truncation and the closure of the system in Section 4. In Section 5, we carry out some
numerical experiments based on finite difference discretization method for DEBPI method and compare our
results with i-QuAPI method. In Section 6, we outline the application of the idea in other finite state models
and give a simple conclusion. The derivation of i-QuAPI method is given in the appendix for reference.

2. Spin-boson model and iterative QuAPI method

In a quantum system with Hamiltonian H , the density matrix ρ(t) satisfies the von Neumann equation

i~
d

dt
ρ(t) = Hρ(t)− ρ(t)H,

where i is the imaginary unit, and ~ is the reduced Planck’s constant. For simplicity, ~ is set to be 1 in this
paper. The solution to the von Neumann equation can be formally written as ρ(t) = e−iHtρ(0)eiHt.

For an open quantum system, the operators are defined on the tensor product space Hs ⊗Hb, where Hs

and Hb represent the Hilbert spaces for the system and the bath, respectively. In general, the Hamiltonian
H has the form

(1) H = Hs ⊗ idb + ids ⊗Hb +Hsb

where ids, idb are the identity operators on Hs and Hb, respectively. The operators Hs and Hb are the
Hamiltonian operators for the system and the bath without coupling, and the last term Hsb describes the
system-bath interaction, which lead to entanglement between system and bath. For simplicity, below we
focus on the study of a specific case of the open quantum system, where the system contains a single spin.
The model and the iterative QuAPI method will be introduced in the following subsections.

2.1. Spin-boson model. A fundamental example of open quantum systems is the spin-boson model where
the Hilbert spaces are

Hs = span{|−1〉 , |+1〉}, Hb =
⊗

j

(L2(R3))

with L2(R3) being the L2 space over R3 and j is the index of harmonic oscillators. In spin-boson system,
there are two energy levels in the energy set S = {−1,+1}. In such a system, the Hamiltonians in (1) can
be represented by

(2) Hs = ǫσ̂z +∆σ̂x, Hb =
∑

j

1

2
(p̂2j + ω2

j q̂
2
j ), Hsb = σ̂z ⊗


∑

j

cj q̂j




where σ̂x, σ̂z are Pauli matrices, and p̂j and q̂j are momentum operator and position operator of the j-th
harmonic oscillator, respectively. ǫ represents the energy difference between two spin states and ∆ is the
frequency of the spin flipping. The parameter ωj is the frequency of the j-th harmonic oscillator while cj is
the coupling intensity between the spin and the j-th harmonic oscillator.
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For convenience, it is supposed that the system and bath are not coupled initially, which can be expressed
mathematically by

ρ(0) = ρs(0)⊗ ρb(0)

with ρs and ρb representing the density matrices of the system and the bath, respectively. The reduced
density matrix, which is the density matrix of the system, can be represented by the partial trace of the
whole density matrix:

ρs(t) = trb ρ(t),

where trb is the partial trace operator with respect to Hb. In the spin-boson model, this reduced density
matrix ρs is essentially a 2 × 2 matrix. The algorithm discussed in this paper can be generalized to more
complicated model. However, in this paper, only spin-boson model is involved and there is a simple discussion
about other finite state models in Section 6.

2.2. Iterative QuAPI method. To compute the reduced density matrix in a spin-boson model, the itera-
tive quasi-adiabatic propagator path integral (i-QuAPI) method is developed in [13, 14]. It is assumed that
the density matrix has a finite memory length T although it is non-Markovian. Then we choose the time
step ∆t such that ∆k := T/∆t is an integer. The density matrix can be obtained through computing the
maps Al : S2∆k → C iteratively:

A0(S∆k−1, · · · , S0) :=
∆k−1∏

k1=0

k1∏

k2=0

I(Sk1 , Sk2)
〈
s+0
∣∣ρs(0)

∣∣s−0
〉
;(3)

Λ(Sk, · · · , Sk−∆k) :=

∆k∏

m=0

I(Sk, Sk−m);(4)

Ak−∆k+1(Sk, · · · , Sk−∆k+1) :=
∑

Sk−∆k∈S2

Λ(Sk, · · · , Sk−∆k)Ak−∆k(Sk−1, · · · , Sk−∆k)(5)

for k = ∆k, · · · , N − 1.

where Sj = (s+j , s
−
j ) represents the states on both branches of the path and I(Sj , Sj′) is defined to be

(6) I(Sj , Sj′) =

{
e
−(s+

j
−s−

j
)(ηj,j′ s

+

j′
−η∗

j,j′
s−
j′
)
, j − j′ 6= 1

〈
s+j
∣∣e−iH0∆t

∣∣s+j−1

〉 〈
s−j−1

∣∣eiH0∆t
∣∣s−j
〉
e
−(s+

j
−s−

j
)(ηj,j′ s

+

j′
−η∗

j,j′
s−
j′
)
, j − j′ = 1

where η∗ is the complex conjugate of η. The complex function η has different forms for different j and j′

[19]. For example, if only positive frequencies are considered, when 0 < j′ < j < N ,

(7) ηj,j′ =
4

π

∫ ∞

0

dω
J(ω)

ω2
sin2

(
ω∆t

2

)(
coth

(
βω

2

)
cos(ω∆t(k − k′))− i sin(ω∆t(k − k′))

)
.

In the expression of η,

J(ω) =
π

2

∑

j

c2j
mjωj

δ(ω − ωj)

and δ is the Dirac delta function. The derivation of the i-QuAPI method can be found in the appendix.
With the values of Ak−∆k(Sk, · · · , Sk−∆k), the entries in the reduced density matrix can be computed by

(8) ρs(N∆t) =
∑

SN−∆k+1,··· ,SN∈S

AN−∆k(SN , · · · , SN−∆k+1)
∣∣s+N
〉 〈

s−N
∣∣ .

The system-bath coupling leads to a non-Markovian process where the evolution of the system density
matrix depends on the complete history, and the intensity of the dependence is determined by the discrete
bath response function ηj,j′ . The method of iterative quasi-adiabatic propagator path integral (i-QuAPI),
however, makes use of the decaying property of the discrete bath response function ηj,j′ and truncate the
memory length to a fixed and finite time T , so that the evolution is similar to the time-delay systems, making
the simulation more feasible.

The major obstacle of this method is the memory constraint. In each step, there are in total 22∆k

different values of Al to be stored in the memory. As ∆k is defined to be T/∆t, and T is fixed according to
the problem itself, the restriction on ∆k directly results in a lower bound of ∆t. The contradiction is that
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for more accurate results, smaller ∆t should be chosen, which is prohibited by the memory. For example,
if the truncation time T is 1.5 and the time step ∆t is chosen to be 0.1, then ∆k = 15 and the memory
cost is approximately 22×15 × (16 bytes) = 16GB, where “16 bytes” stands for the size of a double-precision
complex number. However, if a smaller time step, for example, ∆t = 0.075, is required, the memory cost
will become 22×20 × (16 bytes) = 16TB, which is beyond the capacity of most workstations.

3. Continuation of the Path Segments

In order to cut off the memory cost, the most straightforward idea is to reduce the number of path segments
that need to be stored. Equation (6) shows that when the flipping rate ∆ is small, the path segments with
many spin flips may have little contribution to the density matrix, and therefore may be dropped in the path
integrals without much loss of numerical accuracy. To achieve this, we will carry out the following:

(1) Find the governing equations of i-QuAPI by taking the limit ∆t → 0;
(2) Truncate the small terms and provide a reasonable closure;
(3) Discretize the resulting system partial differential equations to get a scheme with less memory cost.

In this section, we will focus only on the representation of the unknown function which stands for a path
segment with memory time T . The complete form of the governing equations will be derived in Section 4.

3.1. Representation of the paths. In the i-QuAPI method, eachAl has a set of parameters Sk−1, · · · , Sk−∆k,
representing a path segment in the path integral. While the sequence Sk−1, · · · , Sk−∆k represents the discrete
path segment, we can regard it as a piecewise constant path segment of the continuous time s∆t : [0, T ) → S2,
defined by

(9) s∆t(τ) = Sk−j , ∀τ ∈
[
(∆k − j)∆t, (∆k − j + 1)∆t

)
, j = 1, · · · ,∆k,

where ∆t = T/∆k. More generally, we would like to consider any path segment h : [0, T ) → S2 with finite
discontinuities, where each discontinuity denotes a flip of the classical spin. We assume that there are D

spin flips in the path segment h. To define h, we introduce a D-dimensional open simplex △(D)
t :

(10) △(D)
t =

{
(τ1, · · · , τD)

∣∣∣∣ τ1 > 0, · · · , τD > 0;

D∑

k=1

τk < t

}

so that h has the form

(11) h(τ) =





(r+0 , r
−
0 ), if τ ∈ [0, τ1),

(r+d , r
−
d ), if τ ∈

[∑d
k=1 τk,

∑d+1
k=1 τk

)
, d = 1, · · · , D − 1,

(r+D, r−D), if τ ∈
[∑D

k=1 τk, T
)
,

where (τ1, · · · , τD) ∈ △(D)
T . In h, we allow the locations of the jumps to be anywhere in (0, T ) instead of

only being the multiples of ∆t. For the paths s∆t and h, we use s+∆t (s−∆t) and h+ (h−) to denote their
positive (negative) branches.

With these definitions, it is natural to express the quantityAk−∆k(Sk−1, · · · , Sk−∆k) asA((k−∆k)∆t, s∆t),
where the first argument (k − ∆k)∆t plays the role of the subscript (k −∆k), denoting the starting time
of the path segment. This can then be further extended to continuous time by writing the quantity as
A(t, h) for any t > 0 and h holding the form (11). However, such a quantity A(t, h) includes a non-classical
argument h, which is inconvenient for the formulation of differential equations and the design of numerical
scheme. We would therefore like to find a more explicit form of A(t, h) containing only real parameters.
With the assumption that h contains only finite discontinuities, the path segment can be fully determined
by the following set of parameters:

• (r+, r−): the state of the path at time t, i.e. the value of h(0) = (h+(0), h−(0)) = (r+0 , r
−
0 ).

• D: the number of spin flips (discontinuous points) in h.
• sgn: a list of D signs representing the branch of each spin flip. Each sign is either “+” (representing
the positive branch h+) or “−” (representing the negative branch h−). In addition, we introduce an
augmenting operation by adding a sign at the beginning of sgn. For example, if sgn = [+,−,+,+],
then [+, sgn] := [+,+,−,+,+].
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• (τ1, · · · , τD) ∈ △(D): a sequence of times with the following meaning:

τk =

{
time difference of the first spin flip and the starting time t, if k = 1;

time difference of the k-th flip and the (k − 1)-th flip, if k = 2, · · · , D.

For example, suppose the truncation time is T = 4 and the graph of the path segment h is given in
Figure 1. Then the corresponding parameters are

• (r+, r−) = (h+(0), h−(0)) = (+1,−1);
• D = 5 (total number of spin flips, 2 in positive branch and 3 in negative branch);
• sgn = [+,−,−,+,−] (branches of the spin flips);
• [τ1, τ2, τ3, τ4, τ5] = [1.0, 0.5, 0.5, 0.5, 1.0] (indicating the times of the spin flips are 1.0, 1.5, 2.0, 2.5,
3.5 from t).

0
1 2.5 T = 4 t

+1

-1

h+

0
1.5 2 3.5 T = 4 t

-1

+1

h−

Figure 1. An example of function h.

Based on such notations, we write down the continuous version of Al as

(12) AD,sgn
(r+,r−)(t, [τ1, · · · , τD]).

In the example given in Figure 1, A can be written as

(13) A
5,[+,−,−,+,−]
(+1,−1) (t, [1.0, 0.5, 0.5, 0.5, 1.0]).

An advantage of the notation (12) is that we can define the value of (12) for (τ1, · · · , τD) ∈ ∂△(D)
T by taking

the limit. In other words, the domain of definition for (τ1, · · · , τD) can be extended from △(D)
T to △(D)

T ,
which is important for us to close the system and formulate the boundary conditions in future sections. Note

that when (τ1, · · · , τD) takes values on ∂△(D)
T , the path segment h may have one or more spin flips at the

same time, or have spin flips at the initial time or the final time. Nevertheless, both notations A(t, h) and
(12) will be used in our further discussions according to the context. The precise relation between A(t, h)
and Ak−∆k will be detailed later in Section 3.3.

In i-QuAPI, another quantity Λ(Sk, · · · , Sk−∆k) is also determined by a path segment, while it has one
more argument than Ak−∆k(Sk−1, · · · , Sk−∆k). In the continuous form, the length of this extra argument
becomes infinitesimal so that the associated continuous quantity is also expected to be determined by h.
This will be discussed in detail in Section 3.2. The integral over the paths, which forms the density matrix,
will be considered in Section 3.4.

In the following sections, our major task is to take the continuous limit ∆t → 0 to define the quantities
we need to formulate differential equations. While taking the limit of the discrete path, we assume that the
memory length T = ∆k∆t is fixed, and Sk−j takes the value of a fixed path segment h(τ) with τ ∈ [0, T )
being the continuous time:

(14) Sk−j = h
(
(∆k − j)∆t

)
, j = 1, · · · ,∆k.

With this assumption, it is clear that when ∆t decreases (or when ∆k increases), the function s∆t defined
in (9) converges to the path segment h(τ). Thereby, we would like to provide proper definitions for the
functions with continuous times.
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3.2. Continuous limit of the propagator. According to (4) and (6), the discrete propagator Λ can be
expressed by

Λ(Sk, · · · , Sk−∆k) = exp

(
−

∆k∑

m=0

(s+k − s−k )(ηk,k−ms+k−m − η∗k,k−ms−k−m)

)

〈
s+k
∣∣e−iH0∆t

∣∣s+k−1

〉 〈
s−k−1

∣∣eiH0∆t
∣∣s−k
〉
.

(15)

In the continuous limit, all the arguments of Λ become a path segment h, and ηk,k′ needs to be replaced by
the bath response function [19] defined by1

η̃(τ) =
1

π

∫ ∞

0

dωJ(ω)

(
coth

(
βω

2

)
cos(ωτ)− i sin(ωτ)

)
.

When τ = (k − k′)∆t, the relation between ηk,k′ and η̃(τ) is

(16) η̃(τ) = lim
∆t→0

ηk,k′

∆t2
.

According to the correspondence between h(·) and Sj given by (14), the continuous limit of s±k−1 appearing

in the bra-ket notations in (15) should be the left limit of h±(t) at t = T . In the case where h is left continuous
at time T , the following proposition holds.

Proposition 1. Given a path segment h, suppose that the discrete path is chosen according to (14) and
Sk = Sk−1. It holds that

lim
∆t→0

Λ(Sk, · · · , Sk−∆k)− 1

∆t
= −W (h)

with

W (h) =

∫ T

0

(
(h+(T )− h−(T )

) (
η̃(τ)h+(T − τ)− η̃∗(τ)h−(T − t)

)
dτ

+ i
( 〈

h+(T )
∣∣H0

∣∣h+(T )
〉
−
〈
h−(T )

∣∣H0

∣∣h−(T )
〉)

.

(17)

where (h+(T ), h−(T )) = (s+k , s
−
k ).

Proof. By Taylor expansion of the operators e±iH0∆t = id ± iH0∆t + O(∆t2), the limit of the bra-kets in
(15) can be given by

lim
∆t→0

〈
s+k
∣∣e−iH0∆t

∣∣s+k−1

〉 〈
s−k−1

∣∣eiH0∆t
∣∣s−k
〉
− 1

∆t
= −i

( 〈
h+(T )

∣∣H0

∣∣h+(T )
〉
−
〈
h−(T )

∣∣H0

∣∣h−(T )
〉)

.

Here due to the left continuity of h, the limits of s±k and s±k−1 are the same. According to the relation of
discrete ηk,k′ and continuous η̃ in (16), the following limit holds:

lim
∆t→0

∑∆k
m=0

(
s+k − s−k

) (
ηk,k−ms+k−m − η∗k,k−ms−k−m

)

∆t

=

∫ T

0

(h+(T )− h−(T ))
(
η̃(τ)h+(T − τ)− η̃∗(τ)h−(T − τ)

)
dτ.

The proposition follows by combining the two limits and applying the Taylor expansion ex = 1+x+O(x2). �

For a given path h with (τ1, · · · , τD) ∈ △(D)
T , one can always increase ∆k to satisfy the condition Sk =

Sk−1. For the case when Sk 6= Sk−1, more details will be discussed in Section 4.2.
According to this proposition, the path-dependent function W (h) can be regarded as the continuous form

of the propagator. As h can be fully determined by the set of parameters described in Section 3.1, we can
mimic the notation in (12) to write W as

WD,sgn
(r+,r−) ([τ1, · · · , τD]) .

1Compared with the expression in [19], we have omitted the term with (s+)2 − (s−)2 since both s+ and s− only take values
±1. Also, the integral domain [0,+∞) comes from our assumption that all the harmonic oscillators have positive frequencies.
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3.3. Continuous limit of A’s. In this section, we would now like to explore the relation between the
function A(t, h) and the quantities Ak−∆k+1(Sk, · · · , Sk−∆k+1). By the idea of the i-QuAPI method, the
quantity Ak−∆k+1(Sk, · · · , Sk−∆k+1) denotes the ensemble of all the discrete paths whose last segments of
length T are given by Sk−∆k+1, · · · , Sk. This can be observed by applying (5) recursively, resulting in

Ak−∆k+1(Sk, · · · , Sk−∆k+1) =
∑

Sk−∆k,··· ,S0∈S2

[
〈
s+k
∣∣e−iH0∆t

∣∣s+k−1

〉
· · ·
〈
s+1
∣∣e−iH0∆t

∣∣s+0
〉 〈

s+0
∣∣ρ̃s(0)

∣∣s−0
〉

〈
s−0
∣∣eiH0∆t

∣∣s−1
〉
· · ·
〈
s−k−1

∣∣eiH0∆t
∣∣s−k
〉

k∏

j1=0

j1∏

j2=max{0,k−∆k}

exp
(
−(s+j1 − s−j1)(ηj1,j2s

+
j2
− η∗j1,j2s

−
j2
)
)
]
,

(18)

where the summation symbol takes into account all the possible paths before the segment specified in the
arguments.

We first take the limit of the system part, represented by the product of several bra-kets in (18). Since
the path segment h is denoted by specifying the locations of spin flips, we choose to deal with the continuous
segments of h and the discontinuities in h separately, requiring the following two lemmas:

Lemma 2. Suppose in the time interval [T1, T2] = [k1∆t, k2∆t], the state of the system remains unchanged,
i.e.

Sk1 = · · · = Sk2 = S := (r+, r−).

For fixed T1 and T2, it holds that

lim
∆t→0

〈
s+k2

∣∣e−iH0∆t
∣∣s+k2−1

〉
· · ·
〈
s+k1+1

∣∣e−iH0∆t
∣∣s+k1

〉
= e−i〈r+|H0|r+〉(T2−T1),

lim
∆t→0

〈
s−k1

∣∣eiH0∆t
∣∣s−k1+1

〉
· · ·
〈
s−k2−1

∣∣eiH0∆t
∣∣s−k2

〉
= ei〈r−|H0|r−〉(T2−T1).

Proof. By the limit e = limx→0 (1 + x)
1/x

and Taylor expansion of the operator e−iH0∆t = id − iH0∆t +
O(∆t2),

lim
∆t→0

〈
s+k2

∣∣e−iH0∆t
∣∣s+k2−1

〉
· · ·
〈
s+k1+1

∣∣e−iH0∆t
∣∣s+k1

〉

= lim
∆t→0

〈
r+
∣∣id− iH0∆t+O(∆t2)

∣∣r+
〉(T2−T1)/∆t

= lim
∆t→0

(
1− i∆t

〈
r+
∣∣H0

∣∣r+
〉
+O(∆t2)

)(T2−T1)/∆t

=e−i〈r+|H0|r+〉(T2−T1).

The proof for the second limit is similar. �

Lemma 3. When s+k 6= s+k+1, the following limit holds.

(19) lim
∆t→0

〈
s+k+1

∣∣e−iH0∆t
∣∣s+k
〉

∆t
= −i

〈
s+k+1

∣∣H0

∣∣s+k
〉
.

Similarly, when s−k 6= s−k , we have

(20) lim
∆t→0

〈
s−k
∣∣eiH0∆t

∣∣s−k+1

〉

∆t
= i
〈
s−k
∣∣H0

∣∣s−k+1

〉
.

Proof. By Taylor expansion of e−iH0∆t,

lim
∆t→0

〈
s+k+1

∣∣e−iH0∆t
∣∣s+k
〉

∆t
= lim

∆t→0

〈
s+k+1

∣∣id− iH0∆t+O(∆t2)
∣∣s+k
〉

∆t

= lim
∆t→0

−i∆t
〈
s+k+1

∣∣H0

∣∣s+k
〉
+O(∆t2)

∆t
= −i

〈
s+k+1

∣∣H0

∣∣s+k
〉
.

The proof for (20) is similar. �
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This lemma shows that the quantity Ak−∆k+1(Sk, · · · , Sk−∆k+1) has magnitude ∆tD if s±k changes val-
ues D times. Thus, it is natural to let the function A(t, h) demonstrated in Section 3.1 be the limit of
∆t−DAk−∆k+1(Sk, · · · , Sk−∆k+1). We write down the result of such a limit in the following definition:

Definition 4. For a path h given by (11), the quantity A(t, h) or equivalently, AD,sgn

(r+0 ,r−0 )
(t, [τ1, · · · , τD]) is

defined by

(21) A(t, h) =

∞∑

D̃=0

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃)
t

dτ̃X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h).

with

X(g) =
〈
r̃+0
∣∣ρs(0)

∣∣r̃−0
〉
e−i(〈r̃+0 |H0|r̃+0 〉−〈r̃−0 |H0|r̃−0 〉)τ̃1

D̃−1∏

j=1

(
e−i
(
〈r̃+j |H0|r̃+j 〉−〈r̃−j |H0|r̃−j 〉

)
τ̃j+1

(
−i
〈
r̃+j
∣∣H0

∣∣r̃+j−1

〉
δ+s̃gnj

+ i
〈
r̃−j−1

∣∣H0

∣∣r̃−j
〉
δ−s̃gnj

))

e
−i
(
〈r̃+

D̃
|H0|r̃+

D̃
〉−〈r̃−

D̃
|H0|r̃−

D̃
〉
)(

t−
∑

D̃
j=1 τ̃j

) (
−i
〈
r̃+
D̃

∣∣∣H0

∣∣∣r̃+
D̃−1

〉
δ+s̃gnD̃

+ i
〈
r̃−
D̃−1

∣∣∣H0

∣∣∣r̃−
D̃

〉
δ−s̃gnD̃

)
;

(22)

Y (h) =e−i(〈r+0 |H0|r+0 〉−〈r−0 |H0|r−0 〉)τ1
D−1∏

j=1

(
e−i
(
〈r+j |H0|r+j 〉−〈r−j |H0|r−j 〉

)
τj+1

(
−i
〈
r+j
∣∣H0

∣∣r+j−1

〉
δ+sgnj

+ i
〈
r−j−1

∣∣H0

∣∣r−j
〉
δ−sgnj

))

e−i
(
〈r+D|H0|r+D〉−〈r−D|H0|r−D〉

)
(T−

∑
D
j=1 τj)

(
−i
〈
r+D
∣∣H0

∣∣r+D−1

〉
δ+sgnj

+ i
〈
r−D−1

∣∣H0

∣∣r−D
〉
δ−sgnj

)
;

(23)

Z(g, h) =−
∫ t

0

dx1

∫ x1

max{0,x1−T}

dx2(g
+(x1)− g−(x1))(g

+(x2)η̃(x1 − x2)− g−(x2)η̃
∗(x1 − x2))

−
∫ t+T

t

dx1

∫ t

max{0,x1−T}

dx2(h
+(x1 − t)− h−(x1 − t))(g+(x2)η̃(x1 − x2)− g−(x2)η̃

∗(x1 − x2))

−
∫ T

0

dx1

∫ x1

0

dx2(h
+(x1)− h−(x1))

(
h+(x2)η̃(x1 − x2)− h−(x2)η̃

∗(x1 − x2)
)

(24)

and g : [0, t) → S2 is defined by

(25) g(τ) =





(r̃+0 , r̃
−
0 ), ∀τ ∈ [0, τ̃1)

(r̃+k , r̃
−
k ), ∀τ ∈ [

∑k
j=1 τ̃j ,

∑k+1
j=1 τ̃j), k = 1, · · · , ˜D − 1

(r̃+
D̃
, r̃−

D̃
), ∀τ ∈ [

∑D̃
j=1 τ̃j , t)

with τ = (τ̃1, · · · , τ̃D) ∈ △(D̃)
t . In (21), δ

r+0
r̃+
D̃

=

{
1, if r̃+

D̃
= r+0

0, if r̃+
D̃

6= r+0
and δ

r−0
r̃−
D̃

=

{
1, if r̃−

D̃
= r−0

0, if r̃−
D̃
6= r−0

. In (22) and

(23), sgnk represents the k-th component of sgn, δ+sgnj
=

{
1, if sgnj is +

0, if sgnj is − and δ−sgnj
=

{
1, if sgnj is −
0, if sgnj is +

.

One can observe from the above definition that the path is separated into two segments. The first segment,
denoted by g, covers the interval [0, t), and all possibilities of g have been considered and summed up on
the right-hand side of (21). The second segment, denoted by h, is specified in the arguments of A. The
two delta symbols in (21) indicate that the last state of g agrees with the first state of h, so that the
two segments are connected without discontinuities. The contributions of g and h coming from the system
evolution are summarized in X(g) and Y (h), respectively, and the non-Markovian contribution coming from
the system-bath interaction is provided in the term eZ(g,h), which couples both segments of the path. Note
that when t = 0, the value of A(0, h) is not necessarily zero. The only terms contributing to the final result

are the terms with D̃ = 0 while other terms vanish as the integral domain △(D)
t has measure zero. The

formulation of A(t, h) follows the same idea of its discrete counterpart Ak−∆k(Sk−1, · · · , Sk−∆k), and the
relation between these two quantities are given in the following theorem:
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Theorem 5. For any t > 0 and given h, the following limit holds:

A(t, h) = lim
∆t→0

Ak−∆k(Sk−1, · · · , Sk−∆k)

∆tD

where Sk−∆k, · · · , Sk−1 is given by (14).

Proof. For any given D̃, (r+0 , r
−
0 ) ∈ S2 and s̃gn ∈ {+,−}D̃, we first estimate X(g), Y (h) and Z(g, h). Let

C1 = maxr,s∈S | 〈r|H0|s〉 |. Then
|X(g)| 6 CD̃

1 , |Y (h)| 6 CD
1 .

In addition, since η̃(·) is a continuous function on [0, T ], we have

|Z(g, h)| 6 T 2 + 2T t

2
· 4max |η̃| := C2(t).

Therefore, we have

R1 :=

∣∣∣∣∣∣

∞∑

D̃=D

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△D̃
t

dτ̃X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

∣∣∣∣∣∣

6

∞∑

D̃=D

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△D̃
t

dτ̃CD̃+D
1 C2(t)

6

∞∑

D̃=D

4 · 2D̃CD̃+D
1 C2(t)

tD̃

D̃!
→ 0 as D → ∞.

(26)

Similarly, in (18), for given h, Sk−∆k+1, · · · , Sk are determined by h as in (14).

R2 :=

∣∣∣∣∣
∑

Sk−∆k,··· ,S0∈S2

number of spin flips>D

〈
s+k
∣∣e−iH0∆t

∣∣s+k−1

〉
· · ·
〈
s+1
∣∣e−iH0∆t

∣∣s+0
〉 〈

s+0
∣∣ρ̃s(0)

∣∣s−0
〉

〈
s−0
∣∣eiH0∆t

∣∣s−1
〉
· · ·
〈
s−k−1

∣∣eiH0∆t
∣∣s−k
〉 k∏

j1=0

j1∏

j2=max{0,k−∆k}

exp
(
−(s+j1 − s−j1)(ηj1,j2s

+
j2
− η∗j1,j2s

−
j2
)
)
∣∣∣∣∣

6

2∆k−2∑

D̃=D

∑

Sk−∆k,··· ,S0∈S2

number of spin flips=D

∣∣∣∣∣
〈
s+k
∣∣e−iH0∆t

∣∣s+k−1

〉
· · ·
〈
s+1
∣∣e−iH0∆t

∣∣s+0
〉 〈

s+0
∣∣ρ̃s(0)

∣∣s−0
〉

〈
s−0
∣∣eiH0∆t

∣∣s−1
〉
· · ·
〈
s−k−1

∣∣eiH0∆t
∣∣s−k
〉 k∏

j1=0

j1∏

j2=max{0,k−∆k}

exp
(
−(s+j1 − s−j1)(ηj1,j2s

+
j2
− η∗j1,j2s

−
j2
)
)
∣∣∣∣∣

.

2∆k−2∑

D̃=D

(
2∆k − 2

D̃

)
∆tD̃+D 6

∞∑

D̃=D

(2∆k − 2)D̃

D̃!
∆tD̃+D 6

∞∑

D̃=D

(2T )D̃

D̃!
∆tD.

Therefore, ∆t−DR2 → 0 as D → ∞. For any ε > 0, there exist a sufficiently large integer D, such that

R1 < ε and ∆t−DR2 < ε.

For the integral over △D̃
t , according to definition of Riemann integral, for a large enough ∆k,

∣∣∣∣∣∣∣∣

∫

△D̃
t

dτ̃X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h) −
∑

g∈GD̃

(r̃
+
0

,r̃
−

0
)

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)∆tD̃

∣∣∣∣∣∣∣∣
<

ε

D̃!

with GD̃
(r̃+0 ,r̃−0 )

being the set of paths that have initial states (r̃+0 , r̃
−
0 ) and D̃ spin flips in the set of all possible

time discrete paths Sk−∆k, · · · , Sk−1.
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In addition, for any given path g ∈ GD̃
(r̃+0 ,r̃−0 )

with D̃ spin flips, according to Lemma 2, Lemma 3, (16) and

the definition of Riemann integral, there exists a large enough ∆k, such that
∣∣∣∣∣∆tD̃X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h) −∆t−D
〈
s+k
∣∣e−iH0∆t

∣∣s+k−1

〉
· · ·
〈
s+1
∣∣e−iH0∆t

∣∣s+0
〉 〈

s+0
∣∣ρ̃s(0)

∣∣s−0
〉

〈
s−0
∣∣eiH0∆t

∣∣s−1
〉
· · ·
〈
s−k−1

∣∣eiH0∆t
∣∣s−k
〉 k∏

j1=0

j1∏

j2=max{0,k−∆k}

exp
(
−(s+j1 − s−j1)(ηj1,j2s

+
j2
− η∗j1,j2s

−
j2
)
)
∣∣∣∣∣ < ε∆tD̃

where Sj = g(j∆t) for j = 0, · · · , k −∆k − 1.
Combine all the results, we have

∣∣∣∣A(t, h)−
Ak−∆k(Sk−1, · · · , Sk−∆k)

∆tD

∣∣∣∣

6R1 +∆t−DR2 +

D−1∑

D̃=0

4 · 2D̃
(

ε

D̃!
+

(
2∆k − 2

D̃

)
ε∆tD̃

)

<
(
2 + 4e2 + 4e4T

)
ε

where 4 · 2D̃ comes from the summation over (r̃+0 , r̃
−
0 ) and s̃gn, the binomial coefficient is the cardinality of

GD̃
(r̃+0 ,r̃−0 )

. The proof is completed as ε is arbitrary. �

According to the definition of A(t, h) for (τ1, · · · , τD) ∈ △(D)
T in Definition 4, we can extend the definition

of A(t, h) to (τ1, · · · , τD) ∈ ∂△(D)
T by taking the limit. The following theorem guarantees that such extension

is well defined.

Theorem 6. For τ
′ = (τ ′1, · · · , τ ′D) ∈ ∂△(D)

T , the limit

lim
(τ1,··· ,τD)→(τ ′

1,··· ,τ
′

D
)
AD,sgn

(r+,r−)(t, [τ1, · · · , τD])

exists and therefore, AD,sgn
(r+,r−)(t, [τ

′
1, · · · , τ ′D]) can be defined by this limit.

Proof. In order to prove the limit exists, we only need to show that for any ε > 0, there exist a small enough
positive number δ, such that

∣∣∣AD,sgn
(r+,r−)(t, [τ

(1)
1 , · · · , τ (1)D ])−AD,sgn

(r+,r−)(t, [τ
(2)
1 , · · · , τ (2)D ])

∣∣∣ < ε

for any τ 1 = (τ
(1)
1 , · · · , τ (1)D ) and τ 2 = (τ

(2)
1 , · · · , τ (2)D ) with τ 1, τ 2 ∈ △(D)

T , ‖τ 1−τ
′‖1 < δ/2 and ‖τ 2−τ

′‖1 <
δ/2. Denote the path of AD,sgn

(r+,r−)(t, [τ
(1)
1 , · · · , τ (1)D ]) by h1 and the path of AD,sgn

(r+,r−)(t, [τ
(2)
1 , · · · , τ (2)D ]) by h2.

h1 and h2 differs only on intervals whose sum is smaller than δ. Therefore,

|Y (h1)− Y (h2)| 6 DL1C
D
1 δ

where L1 is the Lipsichitz constant such that
∣∣∣e−i(〈r+|H0|r+〉−〈r−|H0|r−〉)t1 − e−i(〈r+|H0|r+〉−〈r−|H0|r−〉)t2

∣∣∣ 6 L1|t1 − t2|

for any (r+, r−) ∈ S2. In addition, for any path g : [0, t) → S2,

|Z(g, h1)− Z(g, h2)| 6 4δT · 2max |η̃|.
Then ∣∣∣eZ(g,h1) − eZ(g,h2)

∣∣∣ 6 8TL2max |η̃|δ

with L2 is the Lipsichitz constant of function ex in the interval |x| 6 C2(t) where C2(t) is defined in
Theorem 5. Therefore,

|X(g)Y (h1)Z(g, h1)−X(g)Y (h2)Z(g, h2)| < CD̃
1 CD

1 C2(t)
(
DL1C

D
1 + 8TL2max |η̃|

)
δ := CD̃

1 C3δ.
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Consequentially we have

|A(t, h1)−A(t, h2)| <
∞∑

D̃=0

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃)
t

dτ̃CD̃
1 C3δ 6

∞∑

D̃=0

4
(2tC1)

D̃

D̃!
C3δ = 4e2tC1C3δ.

The proof is completed by choosing δ = (4e2tC1C3)
−1ε. �

3.4. Density Matrix and Observable. Based on the definition of A(t, h), we would like to represent the
density matrix (8) using the form with continuous time. On the left-hand side of (8), the state SN = (s+N , s−N )
denotes the “final state” of the path segment. Such a state corresponds to the left limit of h(τ) at τ = T .
For the spin-boson model, it is fully determined by the initial state (r+, r−), the number of spin flips D and
the sign vector sgn. We denote this final state by

(27) r±f = r±f (r
+, r−, D, sgn).

For example, in Figure 1, the path segment is represented by the parameters in (13) which determines the
final state to be (r+f , r

−
f ) = (+1,+1).

Similar to the discrete case, the values of continuous A’s are closely related to the density matrix, which
contains all information of a quantum system. Here is the method to construct the reduced density matrix
ρ̃(t) based on the values of A’s.

Theorem 7. The density matrix of a spin-boson model is

(28) ρs(t) =

∞∑

D=0

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

AD,sgn
(r+,r−) (t, [τ1, · · · , τD])

∣∣∣r+f
〉〈

r−f

∣∣∣dτ

with △(D)
T is defined by (10), r±f is determined by (27) and τ = (τ1, · · · , τD) ∈ △(D)

T .

Proof. For any fixed t and a path h with D spin flips, by choosing D = 0 in (26), we have

∣∣∣AD,sgn
(r+,r−)(t, [τ1, · · · , τD])

∣∣∣ 6 4e2C1tCD
1 C2(t).

For any D, we have

R1 :=

∥∥∥∥∥∥

∞∑

D=D

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

AD,sgn
(r+,r−)(t, [τ1, · · · , τD])

∣∣∣r+f
〉〈

r−f

∣∣∣dτ

∥∥∥∥∥∥

6

∞∑

D=D

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

∣∣∣AD,sgn
(r+,r−)(t, [τ1, · · · , τD])

∣∣∣ dτ

6

∞∑

D=D

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

4e2C1tCD
1 C2(t)dτ

=

∞∑

D=D

4 · 2D TD

D!
4e2C1tCD

1 C2(t) =

∞∑

D=D

16e2C1tC2(t)
(2C1T )

D

D!
→ 0 as D → ∞
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Similarly, for the discrete expression of density matrix, we have the following estimation.

R2 :=

∥∥∥∥∥∥∥∥∥

∑

Sk−∆k+1,··· ,Sk

number of spin flips>D

Ak−∆k+1(Sk, · · · , Sk−∆k+1)
∣∣s+k
〉〈
s−k
∣∣

∥∥∥∥∥∥∥∥∥

.4

2∆k−2∑

D=D

(
2∆k − 2

D

)
4e2C1tCD

1 C2(t)∆tD

64

2∆k−2∑

D=D

(2∆k − 2)D

D!
4e2C1tCD

1 C2(t)∆tD

6

∞∑

D=D

16e2C1tC2(t)
(2C1T )

D

D!
→ 0 as D → ∞.

Therefore, for any ε > 0, there exists a large enough integer D, such that R1 < ε,R2 < ε.

For each D = 0, · · · , D, (r+, r−) ∈ S2 and sgn ∈ {+,−}D,
∣∣∣r+f
〉〈

r−f

∣∣∣ is fixed. Therefore, according to the

definition of Riemann integral, there exists a large enough integer M1 with M1 > D, such that for all and
∆k > M1, D = 0, · · · , D, (r+, r−) ∈ S2 and sgn ∈ {+,−}D,

∣∣∣∣∣∣

∫

△
(D)
T

AD,sgn
(r+,r−)(t, [τ1, · · · , τD])dτ −

∑

s∆t∈I∆k
D

A(t, s∆t)∆tD

∣∣∣∣∣∣
<

ε

D!

where I∆k
D is the set of all piecewise constant path segment with D spin flips of continuous time determined

by the sequence Sk, · · · , Sk−∆k+1. According to Theorem 5, there exists a large enough integer M2, such
that for ∆k > M2

∣∣A(t, s∆t)∆tD −Ak−∆k+1(Sk, · · · , Sk−∆k+1)
∣∣ < ε∆tD

holds for all D = 0, · · · , D, (r+, r−) ∈ S2 and sgn ∈ {+,−}D. For the paths with number of spin flips being
D (not greater than D), we have

∣∣∣∣∣∣∣∣

∫

△
(D)
T

AD,sgn
(r+,r−)(t, [τ1, · · · , τD])dτ −

∑

Sk−1,··· ,Sk−∆k+1∈S2

number of spin flips=D

Ak−∆k+1(Sk, · · · , Sk−∆k+1)

∣∣∣∣∣∣∣∣

<

(
2∆k − 4

D

)
ε∆tD +

ε

D!
6

(
(2∆k − 4)D

D!
∆tD +

1

D!

)
ε <

(2T )D + 1

D!
ε.
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Therefore, choose ∆k > max{M1,M2}, we finally have
∥∥∥∥∥

∞∑

D=0

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

AD,sgn
(r+,r−) (t, [τ1, · · · , τD])

∣∣∣r+f
〉〈

r−f

∣∣∣ dτ

−
∑

SN−∆k+1,··· ,SN∈S

AN−∆k(SN , · · · , SN−∆k+1)
∣∣s+N
〉〈
s−N
∣∣
∥∥∥∥∥

6

∥∥∥∥∥
D∑

D=0

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

AD,sgn
(r+,r−) (t, [τ1, · · · , τD])

∣∣∣r+f
〉〈

r−f

∣∣∣ dτ

−
∑

SN−∆k+1,··· ,SN∈S

AN−∆k(SN , · · · , SN−∆k+1)
∣∣s+N
〉〈
s−N
∣∣
∥∥∥∥∥+ ε

6

D∑

D=0

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∣∣∣∣∣

∫

△
(D)
T

AD,sgn
(r+,r−) (t, [τ1, · · · , τD]) dτ

−
∑

SN−∆k+1,··· ,SN−1∈S

Sk=(r+
f
,r−

f
),number of spin flips=D

AN−∆k(SN , · · · , SN−∆k+1)

∣∣∣∣∣+ 2ε

6

D∑

D=0

2D+2 (2T )
D + 1

D!
ε+ 2ε 6 (4e4T + 4e2 + 2)ε.

The proof is completed as ε is arbitrary. �

With the reduced density matrix ρ̃(t), any observable O can be computed by

〈O(t)〉 = tr(ρs(t)O).

In the following discussion, we mainly focus on the case with O = σz = diag(1,−1), and therefore

〈σz(t)〉 = 〈+1|ρs(t)|+1〉 − 〈−1|ρs(t)|−1〉 .

4. Differential Equations for Path Integrals

We are now ready to formulate the equations for the functions AD,sgn
(r+,r−) (t, [τ1, · · · , τD]) based on the i-

QuAPI iteration (5). While the resulting equations hold for (τ1, · · · , τD) ∈ △(D)
T with △(D)

T being an open
set, they have to be completed by supplementing with appropriate boundary conditions. Moreover, as D can

take any positive integer, the form AD,sgn
(r+,r−) (t, [τ1, · · · , τD]) actually includes infinite functions. In practice,

one has to truncate the system and apply reasonable closure to make it numerically solvable. These topics
will be discussed separately in the following subsections.

4.1. Formulation of the Differential Equations. With Proposition 1, QuAPI partial differential equa-

tion can be derived in the domain △(D)
T for a spin-boson system. The boundary case will be discussed in

Theorem 9 in the next section.
In this section, a PDE based on (5) for a two-state system is derived. As is discussed above, A’s will be

expressed as the form (12).

Theorem 8. In the spin-boson model, the following partial differential equation holds for A defined by (21)

with the assumption that AD,sgn
(r+,r−)(t, [τ1, · · · , τD]) is differentiable with respect to t and τ1.

∂

∂t
AD,sgn

(r+,r−) (t, [τ1, · · · , τD]) =−WD,sgn
(r+,r−) ([τ1, · · · , τD])AD,sgn

(r+,r−) (t, [τ1, · · · , τD])

+A
D+1,[−,sgn]
(r+,r̂−) (t, [0, τ1, · · · , τD]) +A

D+1,[+,sgn]
(r̂+,r−) (t, [0, τ1, · · · , τD])

+
∂

∂τ1
AD,sgn

(r+,r−) (t, [τ1, · · · , τD])

(29)
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where WD,sgn
(r+,r−) ([τ1, · · · , τD]) is defined in (17) and r̂ means the state different from r, that is, +̂1 = −1 and

−̂1 = +1. Note that when D = 0, the derivative of A with respect to τ1 is zero.

Proof. We take the derivatives directly based on the expression (21). As the integral domain △(D̃)
t is

dependent on t, we first consider the derivative over the integral domain for general function f :

∂

∂t

∫

△
(D̃)
t

f(t, τ̃1, · · · , τ̃D̃)dτ̃ =

∫

△
(D̃)
t

∂

∂t
f(t, τ̃1, · · · , τ̃D̃)dτ̃

+

∫

△
(D̃−1)
t

f(t, τ̃1, · · · , τ̃D̃−1, t− τ̃1 − · · · − τ̃D̃−1)dτ̃1 · · ·dτ̃D̃−1.

(30)

Especially, when D̃ = 0, the second term in (30) vanishes. Therefore,

∂

∂t
AD,sgn

(r+,r−)(t, [τ1, · · · , τD])

=

∞∑

D̃=1

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃−1)
t

dτ̃1 · · · τ̃D̃−1

(
X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

) ∣∣∣
τ̃D̃=t−τ̃1−···−τ̃D̃−1

+
∞∑

D̃=0

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃)
t

dτ̃
∂

∂t
X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

+

∞∑

D̃=0

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃)
t

dτ̃X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)
∂

∂t
Z(g, h)eZ(g,h)

(31)

In addition, we take the partial derivative with respect to τ1.

∂

∂τ1
AD,sgn

(r+,r−)(t, [τ1, · · · , τD])

=

∞∑

D̃=0

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃)
t

dτ̃X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

∂

∂τ1
Y (h)eZ(g,h)

+

∞∑

D̃=0

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃)
t

dτ̃X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)
∂

∂τ1
Z(g, h)eZ(g,h).

For any given path g,

∂

∂t
X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h) −X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

∂

∂τ1
Y (h)eZ(g,h)

=− i
(〈

r̃+
D̃

∣∣∣H0

∣∣∣r̃+
D̃

〉
−
〈
r̃−
D̃

∣∣∣H0

∣∣∣r̃−
D̃

〉)
X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

−
(
−i
( 〈

r+0
∣∣H0

∣∣r+0
〉
−
〈
r−0
∣∣H0

∣∣r−0
〉 )

+ i
( 〈

r+D
∣∣H0

∣∣r−D
〉
−
〈
r−D
∣∣H0

∣∣r−D
〉 ))

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

=− i
( 〈

r+D
∣∣H0

∣∣r−D
〉
−
〈
r−D
∣∣H0

∣∣r−D
〉 )

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h).
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If δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

= 0, both X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h) ∂
∂tZ(g, h)eZ(g,h) and X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h) ∂
∂τ1

Z(g, h)eZ(g,h) are zero. If

δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

= 1, we have (r̃+
D̃
, r̃−

D̃
) = (r+0 , r

−
0 ), we have

∂

∂t
Z(g, h)− ∂

∂τ1
Z(g, h)

= lim
∆t→0

1

∆t

(
−
∫ t+T+∆t

t+T

dx1

∫ t+∆t

x1−T

dx2(h
+(x1 − t−∆t)− h−(x1 − t−∆t))

(r̃+
D̃
η̃(x1 − x2)− r̃−

D̃
η̃∗(x1 − x2))

−
∫ t+T+∆t

t+T

dx1

∫ x1

t+∆t

dx2(h
+(x1 − t−∆t)− h−(x1 − t−∆t))

(h+(x2 − t−∆t)η̃(x1 − x2)− h−(x2 − t−∆t)η̃∗(x1 − x2))

)

=−
∫ T

0

dx2

(
h+(T )− h−(T ))(h+(x2)η̃(T − x2)− h−(x2)η̃

∗(T − x2)
)
.

For the first term in (31), consider the following two quantities:
∞∑

D̃=1

∑

(r̃+0 ,r̃−0 )∈S2

∑

s̃gn∈{+,−}D̃

∫

△
(D̃−1)
t

dτ̃1 · · · τ̃D̃−1

(
X(g)δ

r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

) ∣∣∣
τ̃D̃=t−τ̃1−···−τ̃D̃−1

;(32)

A
D+1,[−,sgn]
(r+,r̂−) (t, [0, τ1, · · · , τD]) +A

D+1,[+,sgn]
(r̂+,r−) (t, [0, τ1, · · · , τD]) .(33)

The first term in (31) involves letting τ̃D̃ = t − τ̃1 − · · · − τ̃D̃−1, which means (τ̃1, · · · , τ̃D̃) ∈ ∂△(D)
t and

therefore, we need to regard it as a limit case. For any D̃ > 1, (r̃+0 , r̃
−
0 ) ∈ S2, s̃gn ∈ {+,−}D̃ with ˜sgnD̃

being +, define the path g : [0, t) → S2 by (25). In addition, define g′ : [0, t) → S2 by

g′(τ) =

{
g(τ), if τ ∈ [0, τ̃1 + · · ·+ τ̃D̃)

lims→(τ̃1+··· ,τ̃D̃)− g(τ), if τ ∈ [τ̃1 + · · ·+ τ̃D̃, t)
.

Compare with path g, path g′ has one fewer spin flip on the positive branch at time τ̃1+ · · ·+ τ̃D̃. In addition,
defined a path h∆t : [0, T ) → S2 by

h∆t(τ) =

{
(r̂+0 , r

−
0 ), if τ ∈ [0,∆t)

h(τ), if τ ∈ [∆t, T )
.

If δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

= 0, then we naturally have

(34) lim
τ̃D̃→t−τ̃1−···−τ̃D̃−1

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h) = lim
∆t→0

X(g′)δ
r̂+0
r̃+
D̃−1

δ
r−0
r̃−
D̃−1

Y (h∆t)e
Z(g′,h∆t)

as they are both zero. If δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

= 1, both δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

= δ
r̂+0
r̃+
D̃−1

δ
r−0
r̃−
D̃−1

= 1 and we just omit the δ symbols in the

following statements. We consider the quotient of X(g)Y (h)eZ(g,h) and X(g′)Y (h∆t)e
Z(g,h). By definition,

X(g)

X(g′)
=

e
−i(〈r̃+

D̃
|H0|r̃+

D̃
〉−〈r̃−

D̃
|H0|r̃−

D̃
〉)

(
t−

∑D̃
j=1 τ̃j

) (
−i
〈
r̃+
D̃

∣∣∣H0

∣∣∣r̃+
D̃−1

〉)

e
−i

(〈
r̃+
D̃−1

∣∣∣H0

∣∣∣r̃+
D̃−1

〉
−
〈
r̃−
D̃−1

∣∣∣H0

∣∣∣r̃−
D̃−1

〉(
t−

∑
D̃
j=1 τ̃j

))

and therefore

lim
τ̃D→t−τ̃1−···−τ̃D̃−1

X(g)

X(g′)
= −i

〈
r̃+
D̃

∣∣∣H0

∣∣∣r̃+
D̃−1

〉
.

Similarly

Y (h)

Y (h∆t)
=

e−i(〈r+0 |H0|r+0 〉−〈r−0 |H0|r−0 〉)∆t

e(〈r̂
+
0 |H0|r̂+0 〉−〈r−0 |H0|r−0 〉)∆t

(
−i
〈
r̂+0
∣∣H0

∣∣r+0
〉)
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and therefore,

lim
∆t→0

Y (h)

Y (h∆t)
=

1

−i
〈
r̂+0
∣∣H0

∣∣r+0
〉 .

As for the term Z, it is clear that

lim
τ̃D→t−τ̃1−···−τ̃D̃−1

∆t→0

Z(g, h)

Z(g′, h∆t)
= 1.

Therefore, (34) also holds for the case δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

= 1. The proof is similar for the case when s̃gnD̃ is ‘−’. Take

the sum over D̃, (r̃+0 , r̃
−
0 ) and s̃gn, we conclude that (32) equals to (33). Combine all the results and (29)

holds with W defined in Proposition 1. Note that it is easy to check when D = 0, (29) holds by regarding
the derivative of A with respect to τ1 being 0. �

Although only spin-boson model is considered in the derivation of the PDE, for more complicated cases,
the derivation keeps the same but more terms should be taken into consideration.

4.2. Boundary Conditions. The equation (29) turns out to be a hyperbolic equation with linear advection
in the τ1 direction, and therefore requires initial and boundary conditions to complete the problem statement.
While the initial condition has been provided in (21) by choosing t = 0, the boundary conditions are still
to be formulated. The advection in (29) shows that the boundary condition should be provided at largest
τ1 for all possible choices of other arguments. Due to the constraint (10), the boundary condition should
specify the function values at τ1 = T − τ2 − · · · − τD. Note that in this case, the corresponding path is not

defined in the formula (11) since (τ1, · · · , τD) locates on the boundary of △(D)
T . In fact, this corresponds to

the path segment h with one or more spin flips occurring exactly at time T . In this special situation, the

value of AD,sgn
(r+,r−)(t, τ ) can be expressed by the value of A(t, h′) with only D− 1 spin flips in h′. The details

are given in the following theorem:

Theorem 9. For (τ1, · · · , τD−1) ∈ △(D−1)
T , sgn ∈ {+,−}D and (r+, r−) ∈ S2, the following equality holds:

AD,sgn
(r+,r−)(t, [τ1, · · · , τD−1, T − τ1 − · · · − τD−1])

= A
D−1,sgn1:D−1

(r+,r−) (t, [τ1, · · · , τD−1])
(
−i
〈
r+f

∣∣∣H0

∣∣∣r̂+f
〉
δ+sgnD

+ i
〈
r̂−f

∣∣∣H0

∣∣∣r−f
〉
δ−sgnD

)
.

(35)

where r±f = r±f (r
+, r−, D, sgn) is defined by (27). In this equation, sgnk1:k2

is the k1-th to k2-th components
of sgn.

Proof. It is clear that (τ1, · · · , τD−1, T − τ1 − · · · − τD−1) ∈ ∂△(D)
T . According to Theorem 6, we have the

following limit:

AD,sgn
(r+,r−)(t, [τ1, · · · , τD−1, T − τ1 − · · · − τD−1]) = lim

τD→(T−τ1−···−τD−1)−
AD,sgn

(r+,r−)(t, [τ1, · · · , τD]).

For simplicity, given (τ1, · · · , τD) ∈ △(D)
T , below we use h to denote the path segment defined by (11) and

use h′ to denote the path segment defined by removing the last spin flip in h:

h′(τ) =




h(τ), if τ ∈ [0, τ1 + · · ·+ τD),

lim
s→(τ1+···+τD)−

h(s), if τ ∈ [τ1 + · · ·+ τD, T ).

Then we have AD,sgn
(r+,r−)(t, [τ1, · · · , τD]) = A(t, h) and A

D−1,sgn1:D−1

(r+,r−) (t, [τ1, · · · , τD−1]) = A(t, h′). Since the

only difference between this two paths is the last segment with length T − τ1 − · · · − τD, which vanishes as
τD → (T − τ1 − · · · − τD−1)

−, we conclude that

lim
τD→(T−τ1−···−τD−1)−

Z(g, h) = Z(g, h′)
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for any path g : [0, t) → S2. In addition,

lim
τD→(T−τ1−···−τD−1)−

Y (h)

Y (h′)

= lim
τD→(T−τ1−···−τD−1)−

e−i(〈r+D|H0|r+D〉−〈r−D|H0|r−D〉)(T−
∑D

j=1 τj)
(
−i
〈
r+D
∣∣H0

∣∣r+D−1

〉
δ+sgnD

+ i
〈
r−D−1

∣∣H0

∣∣r−D
〉
δ−sgnD

)

e−i(〈r+D−1|H0|r+D−1〉−〈r−D−1|H0|r−D−1〉)(T−
∑

D
j=1 τj)

= − i
〈
r+D
∣∣H0

∣∣r+D−1

〉
δ+sgnD

+ i
〈
r−D−1

∣∣H0

∣∣r−D
〉
δ−sgnD

.

Therefore, for any path g,

lim
τD→(T−τ1−···−τD−1)−

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h)eZ(g,h)

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h′)eZ(g,h′)
=
(
−i
〈
r+D
∣∣H0

∣∣r+D−1

〉
δ+sgnD

+ i
〈
r−D−1

∣∣H0

∣∣r−D
〉
δ−sgnD

)

and consequently, the conclusion holds as r±f = r±D. �

In conclusion, the boundary conditions for the functions with D spin flips are determined by the case with

one less spin flip. Note that when we allow (τ1, · · · , τD) to take any values on ∂△(D)
T , there may be more

than one spin flips at time T , which happens if τ1 + · · · + τD = T and τD = 0. In this case, the boundary
condition can be determined by applying (35) repeatedly. In general, for k 6 D, if τ1+ · · ·+ τk = T , we have

AD,sgn
(r+,r−)(t, [τ1, · · · , τk, 0, · · · , 0])

=A
k−1,sgn1:k−1

(r+,r−) (t, [τ1, · · · , τk−1])
D∏

j=k

(
−i
〈
r+j
∣∣H0

∣∣r̂+j
〉
δ+sgnj

+ i
〈
r̂−j
∣∣H0

∣∣r−j
〉
δ−sgnj

)
,

where rj is the j-th state in the path segment:

rj = rf (r
+, r−, j, sgn1:j).

By now, with the equation (29) and the boundary conditions (35), a complete system of infinite partial
differential equations has been formulated.

4.3. Truncation and Closure of the System. The system (29) includes infinite equations since D can
take the value of any non-negative integer. However, for practical numerical computation, we can only solve
finite equations, which requires a truncation of the system. Physically, due to the finite spin flipping rate,
the probability that the system undergoes D spin flips generally follows the Poisson distribution. Therefore

when D is large, the contribution from AD,sgn
(r+,r−) can be regarded as small, so that it is reasonable to discard

evolution equations for AD,sgn
(r+,r−) with large D. This can also be justified mathematically since

∥∥∥∥∥∥

∞∑

D=D+1

∑

(r+,r−)∈S2

∑

sgn∈{+,−}D

∫

△
(D)
T

AD,sgn
(r+,r−)(t, [τ1, · · · , τD])

∣∣∣r+f
〉〈

r−f

∣∣∣dτ

∥∥∥∥∥∥
→ 0, as D → ∞,

which has been shown in the proof of Theorem 7. Below in our numerical method, we will only focus on the

equations of AD,sgn
(r+,r−) with D ∈ {0, 1, · · · , Dmax} for some Dmax chosen suitable for the problem.

However, the equation (29) shows that the evolution of ADmax,sgn
(r+,r−) depends on the values of ADmax+1,sgn

(r+,r−) ,

meaning that our truncation does not form a closed system, which requires us to impose an appropriate

closure. Precisely speaking, we need to provide some predictions of ADmax+1,sgn
(r+,r−) based on the values of

AD,sgn
(r+,r−) with D 6 Dmax. Our approach is to estimate the values of ADmax+1,sgn

(r+,r−) via interpolations based on

Theorem 9 and the following proposition.

Proposition 10. For any (r+, r−), D > 2 and sgn with sgnk = sgnk+1, if τk = 0,

AD,sgn
(r+,r−)(t, [τ1, · · · , τD])

=−A
D−2,[sgn1:k−1,sgnk+2:D ]

(r+,r−) (t, [τ1, · · · , τk−2, τk−1 + τk+1, τk+2, · · · , τD]) 〈+1|H0|−1〉 〈−1|H0|+1〉 .
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Proof. It is clear that (τ1, · · · , τD) ∈ ∂△(D)
T . By Theorem 6, the following limit holds:

AD,sgn
(r+,r−)(t, [τ1, · · · , τD]) = lim

∆t→0−
AD,sgn

(r+,r−)(t, [τ1, · · · , τk−1,∆t, τk+1 −∆t, τk+2, · · · , τD]) := lim
∆t→0−

A(t, h∆t),

and for simplicity, we denote the path of A
D−2,[sgn1:k−1,sgnk+2:D]

(r+,r−) (t, [τ1, · · · , τk−2, τk−1+τk+1, τk+2, · · · , τD]) as

h′. The only difference between the path h∆t and h is in the interval
[∑k

j=1, τj ,
∑k

j=1 τj +∆t
)
. Therefore,

similar to the proof of Theorem 9, we have lim∆t→0− Z(g, h∆t) = Z(g, h′) for any path g : [0, t) → S2. In
addition, similar to the proof of Theorem 9, we have

lim
∆t→0

Y (h∆t)

Y (h′)
= −〈+1|H0|−1〉 〈−1|H0|+1〉

Consequently, we have

lim
∆t→0

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h∆t)Z(g, h∆t)

X(g)δ
r+0
r̃+
D̃

δ
r−0
r̃−
D̃

Y (h′)Z(g, h′)
= −〈+1|H0|−1〉 〈−1|H0|+1〉

for all path g and the result holds. �

The proposition above indicates that if two spin flips occur at the same time on the same branch,
the function value of this path segment can be represented using the function value of the path seg-
ment with both spin flips removed. Therefore, this proposition establishes the relationship between the
function values for path segments with different values of D. To demonstrate how this is applied to
derive the closure of the system, we start with an example with Dmax = 5, and we try to estimate

A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.0]) (see Figure 2). To this end, we consider the time point of the

0
1 2.5 T = 4 t

+1

-1

h+

0
1.5 2 3.5 T = 4 t

-1

+1

h− σ

Figure 2. The illustration of the path segment in

A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.0]).

last spin flip at t = 3.5 on the negative branch as a variable σ while fixing all other spin flips. According to
the structure of h−, the value of σ can take any number between t = 2 and t = 4. When σ = 2, we obtain
a path with two spin flips at the same time point, which is illustrated in Figure 3, and the corresponding

value of A(t, h) is represented by A
6,[+,+,−,−,−,+]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0, 0.5]). Similarly, when σ = 4, we get

A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.5]) (see Figure 4). The idea of our closure is to use the following linear

interpolation as an approximation:

A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.0])

≈ 1

4
A

6,[+,+,−,−,−,+]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0, 0.5])+

3

4
A

6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.5]).

By Proposition 10, the value of A
6,[+,+,−,−,−,+]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0, 0.5]) can be directly obtained from the

value of A
4,[+,+,−,+]
(−1,1) (t, [0, 1.0, 0.5, 1.0]). In addition, the boundary condition (35) in Theorem 9 allows us to

compute the value ofA
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.5]) by the value of A

5,[+,+,−,−,+]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5]).
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0
1 2.5 T = 4 t

+1

-1

h+

0
1.5 2 T = 4 t

-1

+1

h− σ

Figure 3. The illustration of the path segment in A
6,[+,+,−,−,−,+]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0, 0.5]).

0
1 2.5 T = 4 t

+1

-1

h+

0
1.5 2 T = 4 t

-1

+1

h−

σ

Figure 4. The illustration of the path segment in

A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.5]).

In summary, our final estimation is

A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.0])

≈− 1

4
〈+1|H0|−1〉 〈−1|H0|+1〉A4,[+,+,−,+]

(−1,−1) (t, [0, 1.0, 0.5, 1.0])

+
3

4
i 〈−1|H0|+1〉A5,[+,+,−,−,+]

(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5]).

Therefore, we estimate the value of A
6,[+,+,−,−,+,−]
(−1,−1) (t, [0, 1.0, 0.5, 0.5, 0.5, 1.0]) from those with D 6 Dmax.

The idea can be generalized to any paths with Dmax+1 spin flips in a straightforward way. In the example
above, we choose to shift the last spin flip of negative branch. Clearly, the same approach also works for the
positive branch. When the negative branch is chosen, σ can take values in the interval [2, 4], which has a
length of 2. If the positive branch is chosen, the corresponding interval will have a length of 3. In this case,
we prefer to choose the negative branch since the interpolation on a shorter interval is more likely to get a
better approximation. Technically, to determine which branch to choose, we just need to look at the last
three signs of sgn. If at least two of them are positive/negative, we choose the positive/negative branch to
formulate the closure. This approach applies to any case with Dmax > 2.

In general, when a path segment h has D spin flips with D = Dmax + 1, after selecting the branch by
the aforementioned method, we approximate A(t, h) by linear interpolation. In the following discussion, we
assume that the positive branch is selected. The procedure is the same if the negative branch is selected.
According to the branch selection, there must be at least two spin flips on the chosen branch (h+ according
to our assumption). Let σ0 and σ∗ be the locations of the last two spin flips on h+, and σ∗ < σ0. If we move
the last spin flip on h+ to a different location σ ∈ (σ∗, T ), we obtain a new path hσ = (h+

σ , h
−
σ ) : [0, T ) → S2

defined by

h+
σ (τ) =





h+(τ), if τ < σ∗

h+(σ∗), if σ∗ 6 τ < σ

h+(T−), if σ 6 τ < T

.

h−
σ (τ) = h−(τ).
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where h+(T−) = lims→T− h+(s). Clearly, we have h = hσ0 and thus we can approximate A(t, h) by the
following linear interpolation:

(36) A(t, h) = A(t, hσ0 ) ≈
T − σ0

T − σ∗
A(t, hσ∗

) +
σ0 − σ∗

T − σ∗
A(t, hT ).

According to Theorem 9 and Proposition 10, we have

(37) A(t, hT ) = −iA(t, h′)
〈
ĥ+(T−)

∣∣∣H0

∣∣∣h+(T−)
〉
, A(t, hσ∗

) = −A(t, h′′) 〈+1|H0|−1〉 〈−1|H0|+1〉 .

where the paths h′ = (h′+, h′−) and h′′ = (h′′+, h′′−) are given by

h′+(τ) =

{
h+(τ), if τ < σ∗,

h+(σ∗), if σ∗ 6 τ < T,
h′′+(τ) =

{
h+(τ), if τ < σ∗,

lims→σ−

∗

h+(s), if σ∗ 6 τ < T,

h′−(τ) = h−(τ), h′′−(τ) = h−(τ).

It can be seen that h′ has one less spin flip than h, and h′′ has two less spin flips than h. Therefore both
A(t, h′) and A(t, h′′) are included in the truncated system. Plugging (37) into (36) yields an estimated value
of A(t, h), which forms the closure of the PDE system (29).

In the next section, we will find the observable of the system by solve the PDE system numerically. We
call this approach differential equation based path integral (DEBPI) method.

Remark. Here we would like to comment on the relationship between the i-QuAPI scheme and the PDE
system (29). According to the the iteration (5), i-QuAPI considers 22∆k equations in the system. However,
the i-QuAPI method does not perform the truncation by simply choosing a maximum value of D. Instead,
it considers path segments with at most ∆k spin flips on each branch, so that the maximum spin flips in the
path segment can reach 2∆k, but not all path segments with 2∆k spin flips are taken into account. Besides,
the treatment of both boundary condition and closure of the system can be observed from (5). The boundary
condition is needed when updating the value of A for path segments with a spin flip near the end of the path,
which corresponds to the case Sk 6= Sk−1. In this case, such a spin flip is simply dropped on the right-hand
side of (5), which is similar to the right-hand side of our boundary condition (35). The extra bra-ket terms
in (35) appear in the i-QuAPI method as the bra-ket terms in I(Sk, Sk−1) defined in (6). As for the closure,
according to the discretization of the i-QuAPI method, the closure is required only when there are ∆k spin
flips on either of the branches, and in this case, we have τ1 = ∆t and τ1 + · · ·+ τD = T −∆t. According to

(29), one needs the values of A
D+1,[±,sgn]
(r+,r−) (t, [0, τ1, · · · , τD]) to close the system. From this point of view, the

approach of i-QuAPI is to assume that

A
D+1,[±,sgn]
(r+,r−) (t, [0, τ1, · · · , τD]) = A

D+1,[±,sgn]
(r+,r−) (t, [∆t, τ1, · · · , τD])

= A
D,[±,sgn1:D−1]

(r+,r−) (t, [∆t, τ1, · · · , τD−1])
(
−i
〈
r+f

∣∣∣H0

∣∣∣r̂+f
〉
δ+sgnD

+ i
〈
r̂−f

∣∣∣H0

∣∣∣r−f
〉
δ−sgnD

)
,

where the boundary condition (35) has been applied. Based on such a system closure, the i-QuAPI method
can be considered as a numerical scheme of (29).

5. Numerical Experiments

To verify the correctness of the DEBPI method and show the possible memory savings by solving (29)
directly, we present several numerical experiments in this section. The numerical method to solve (29)
generally follows the standard numerical solvers of hyperbolic systems, which will be briefly introduced in
Section 5.1. The numerical results will be exhibited and discussed in Section 5.2.

5.1. Numerical Method. The general structure of our numerical scheme is based on the Strang splitting
method to deal with the zeroth- and first-order terms on the right-hand side of (29) separately. In general,
for a differential equation having the form

∂

∂t
u = L1u+ L2u

with L1 and L2 being two linear operators, Strang splitting approximates the solution by

u(t+∆t) ≈ eL1∆t/2eL2∆teL1∆t/2u(t).
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In our case, we need to focus on the numerical solver of the following two equations:

∂

∂t
AD,sgn

(s+,s−)(t, [τ1, · · · , τD]) =
∂

∂τ1
AD,sgn

(s+,s−)(t, [τ1, · · · , τD]);(38)

∂

∂t
AD,sgn

(s+,s−)(t, [τ1, · · · , τD]) =−WD,sgn
(s+,s−) ([τ1, · · · , τD])AD,sgn

(s+,s−) (t, [τ1, · · · , τD])

+A
D+1,[−,sgn]
(s+,ŝ−) (t, [0, τ1, · · · , τD]) +A

D+1,[+,sgn]
(ŝ+,s−) (t, [0, τ1, · · · , τD]) .

(39)

Thus, evolving (29) by one time step ∆t consists of solving (38) by ∆t/2, and then solving (39) by ∆t,
followed by solving (38) again by ∆t/2.

For both equations, a uniform mesh is used to discretize the domain △(D)
T . Note that this is not needed

for D = 0 since the path segment h is fully determined by its initial state. When D > 0, the sets of grid
points are

PD =

{(
m1hs

N
, · · · , mDhs

N

)
;mk ∈ Z

+,

D∑

k=1

mk < N

}
, D = 1, · · · , Dmax.

where hs = T/N is the grid size. For example, Figure 5 shows the grid points in the case of D = 2, N = 5
and D = 3, N = 4. We do not place grid points on the hypotenuse since their values are determined by the
boundary condition as discussed in Theorem 9.

τ1

τ2

T

T

0

(a) D = 2, N = 5

τ1

τ2

τ3

T

T

T

(b) D = 3, N = 4

Figure 5. The grid points on the two-dimensional simplex (red points) with N = 5 and
three-dimensional simplex (points of all colors) with N = 4.

The τ1-derivative in (38) is discretized by the finite difference method. As (38) is a hyperbolic equation
with linear advection, we apply second-order upwind scheme and Lax-Wendroff method for the τ1-derivative.
Although there are no grid points on the hypotenuse, we still can calculate the values of A on the hypotenuse
with Theorem 9. Therefore, the τ1-derivative of all points with τ1 + · · ·+ τD 6 N − 2 can be estimated by
second-order upwind scheme. As for the grid points with τ1 + · · · + τD = N − 1, we apply Lax-Wendroff
method for the estimation of τ1-derivative. (39) can be regarded as an ODE with respect to t. Therefore,
we simply employ Runge-Kutta method for the numerical solution of (39). Note that the estimation for the
terms with Dmax + 1 spin flips is discussed in Section 4.3.

As a summary, we provide the outline of our algorithm below:

• For each set of parametersD = 0, · · · , Dmax, (s
+, s−) = (±1,±1) and p ∈ PD compute AD,sgn

(s+,s−)(0, p)

according to (21).

• Assume that we already have all values of AD,sgn
(s+,s−)(t, p) for D = 0, · · · , Dmax all possible choices of

(s+, s−) and p ∈ PD at specific time t. We evolve the system to obtain corresponding values of at
time t+∆t by the following steps.
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– Evolve the system (38) by a half time step ∆t/2 using the second-order upwind scheme (for the
points with τ1+ · · ·+ τD 6 N − 2) or Lax-Wendroff method (for the points with τ1+ · · ·+ τD =
N − 1). If points on hypotenuse (the sum of all components are T ) are involved, boundary
condition (35) is applied.

– Evolve the system (39) by a full time step ∆t. If points on the (Dmax +1)-dimensional simplex
is involved, the method to close the system in Section 4.3 is applied.

– Evolve the system (38) by another half time step ∆t/2 using the second-order upwind scheme
or Lax-Wendroff method again.

– Compute the density matrix at time t+ ∆t according to (28) and calculate the observable by
〈O(t)〉 = tr(Oρs(t)).

• Repeat the previous step to evolve the system iteratively.

Here the first step prepares the initial data, which requires numerical integration on △(D)
T . For the evolution

of numerical solution, we fix the time step ∆t so that the solvers of both equations (38)(39) can be written
as matrix-vector multiplications, and the matrices are the same for all steps.

At the end of this subsection, we would like to discuss the memory cost of our method. For aD-dimensional

simplex with N nodes on each edge, there are

(
N +D

D

)
grid points in one simplex. Besides, the initial state

of h, i.e. the subscript (r+, r−) of A, has four different possibilities for the spin-boson model; the branches
of the spin flips, i.e. sgn in the superscript of A, can take 2D choices. Therefore, in total, we need

(40) Ndof = 4

Dmax∑

D=0

2D
(
N +D

D

)

degrees of freedom to store the numerical solution. To compare this with the i-QuAPI method, we first
recall that i-QuAPI needs to store all values of the map Al : S2∆k → C in each iteration, so the memory
cost is 22∆k. Assume that both methods have same truncation time and grid size, we then have ∆k = N .
Thus we need to compare Ndof and 22N . To this end, we estimate Ndof using Stirling’s approximation
k! ∼

√
2πe−kkk+1/2:

Ndof < 4(Dmax + 1)2Dmax

(
N +Dmax

Dmax

)

.
4(Dmax + 1)2Dmax

Dmax!

(N +Dmax)
N+Dmax+1/2

eDmaxNN+1/2

.
4(Dmax + 1)2Dmax

Dmax!
(N +Dmax)

Dmax .

It is now clear that if Dmax ≪ N , the value of Ndof can be significantly less than 22N so that our DEPBI
method will require less memory than the i-QuAPI method.

5.2. Numerical Results. In all our experiments, the frequencies ωj are distributed in [0, ωmax] following
the Poisson distribution:

ωj = −ωc ln

(
1− j

L
(1− exp(−ωmax/ωc))

)
, j = 1, · · · , L

where L is the number of harmonic oscillators. The coupling intensity cj is

cj = ωj

√
ξωc

L
(1 − exp(−ωmax/ωc)), j = 1, · · · , L.

These parameters correspond to the bath with Ohmic spectral density [15]. The number of harmonic
oscillators L is chosen to be 200, and the maximum frequency is chosen as ωmax = 4ωc. For the DEPBI
method, the time step ∆t is fixed as 1/80 in all cases. Other parameters will be specified for each experiment.

5.2.1. Experiments with different coupling intensities. In order to check the validity of our method, we first
study the following parameters, which have been considered in [7, 1]:

∆ = 1, ωc = 2.5∆, β = 5/∆, ǫ = 0.
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The numerical results for ξ = 0.2 and 0.4 are given in Figure 6. The results of our method is compared
with the i-QuAPI results, and the parameters used for both methods are given in the caption. The results
correctly show that when the bath-system coupling is stronger, the fluctuation of the observable damps
faster. In both cases, the evolution of the observable matches well with each other, showing reliability of our
approach.
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(a) ξ = 0.2
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(b) ξ = 0.4

Figure 6. Both methods use truncation time T = 1.5. For i-QuAPI method, ∆k is chosen
to be 10. For c-QuAPI, Dmax = 8 and N = 8.

According to (40), it can be calculated that the DEBPI method needs to store Ndof = 17444860 different
values of A(t, h) for each time step. In comparison, the i-QuAPI method, which has a smaller grid size,
only requires to store 22×10 = 1048576 different values. To understand such a difference, we note that each
discrete path segment in the i-QuAPI method can also be represented using the initial state (r+, r−), the
number of spin flips D, the branches of the spin flips sgn, and the time difference between each pair of spin
flips (τ1, · · · , τD). However, for the i-QuAPI method, there are never more than one spin flip occurring at the
same time on the same branch. In other words, if sgnk = sgnk+1, then τk+1 must be nonzero. For example,
when D = 2 and sgn1 = sgn2, the five points located on the vertical axis of Figure 5a are not considered in
the i-QuAPI method, leading to a lower memory cost than that in our discretization. For larger D, this will
cause more significant difference in the memory usage even if the grid sizes for both methods are the same.
This difference can be eliminated by using a smarter PDE solver, which will be studied to our future work.

Based on our current approach, the memory cost grows exponentially withDmax. Therefore, if the problem
setting allows a lower value of Dmax, the DEBPI method will show its advantage. Moreover, if Dmax can be

chosen small, we can use a small grid size in the discretization of △(D)
T to achieve better accuracy, while for

the i-QuAPI method, the memory cost grows exponentially with ∆k, so that it is prohibitive to choose small
grid sizes. In the following two subsections, we will show several cases with small spin-flipping frequency
such that our method can achieve a lower memory cost.

5.2.2. Experiments with different biases. We now consider the following set of parameters:

ξ = 0.2, ∆ = 0.2, ωc = 5∆, β = 5/∆,

where the spin flipping frequency ∆ is smaller so we expect that a smaller Dmax can be adopted for our
DEBPI approach. Three different biases ǫ are chosen, and the results are given in Figure 7. For Dmax = 5,
the curves for the DEPBI method almost coincide with the i-QuAPI results. Since the parameter ǫ denotes
the difference between the energies of the two states, the three figures correctly show that when ǫ is larger,
the state of spin is more likely to be found as |−1〉, leading to the downshift of the curve in the second and
third subplots in Figure 7.
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(c) ǫ = ∆

Figure 7. Both methods use truncation time T = 4. For i-QuAPI method, ∆k is chosen
to be 10 and for c-QuAPI, Dmax = 5 and N = 10.
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Figure 8. ǫ = 0 and Dmax = 3, 4, 5.

In these tests, DEBPI needs
5∑

D=0

4 × 2D
(
D + 10

D

)
= 458748 numbers to store the numerical solution,

while the i-QuAPI scheme needs 22×10 = 1048576. Thus the memory cost of our method is about a half of
the cost of i-QuAPI. Note that further reducing Dmax may cause significant error in the numerical solution.
Figure 8 shows the numerical results for Dmax = 3, 4, 5 when ǫ = 0, indicating that Dmax = 5 is a proper
choice to guarantee the quality of the solution.

In general, the parameterDmax can be considered as a factor controlling the trade-off between the memory
cost and the numerical accuracy. In order that Dmax can be chosen small, we need both the memory time
and the spin flipping frequency to be relatively small, meaning that within the path segment T , the spin is
unlikely to flip many times. Under such circumstances, our method is more likely to outperform the method
of i-QuAPI in terms of the memory cost.

5.2.3. Experiments with different temperatures. For the last set of tests, we choose the parameters

ξ = 0.2, ∆ = 0.1, ωc = 2.5∆, ǫ = 0,

and we let the inverse temperature of the bath β vary from 0.2/∆ to 5/∆. The results and the numerical
parameters are given in Figure 9. As reflected in the numerical results, in the case of higher temperature,
stronger quantum dissipation leads to faster reduction to the state with equal probabilities on both spin
states.



DIFFERENTIAL EQUATION BASED PATH INTEGRAL FOR SYSTEM-BATH DYNAMICS 25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PDE-based
i-QuAPI

(a) β = 0.2/∆
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(b) β = 1/∆
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(c) β = 5/∆

Figure 9. Both methods use truncation time T = 4. For i-QuAPI method, ∆k is chosen
to be 10 and for c-QuAPI, Dmax = 3 and N = 15.

Compared with the examples in Section 5.2.2, we use the same memory length T = 4, while the spin
flipping frequency ∆ is reduced by a half. Thus it can be expected that the value of Dmax can also be
reduced by a half. Therefore, choosing Dmax = 3 is sufficient to capture the behavior of evolution processes
here. In these examples, due to the small value of Dmax, the memory cost of the DEBPI approach is much
lower even if N is chosen to be greater than ∆k. In detail, the DEBPI approach only requires to store
3∑

D=0

4× 2D
(
D + 15

D

)
= 28420 values, while the i-QuAPI scheme requires 22×10 = 1048576.

6. Conclusion and discussion

We have formulated a PDE system for open quantum systems with truncated memory length in the bath-
influence functional. The PDE system is supplemented with proper initial and boundary conditions, and
truncated with a reasonable closure. Such a formulation allows us to solve the density matrix using classical
PDE-solvers for hyperbolic systems. By this approach, the memory cost can be saved in two possible ways.
First, higher-order schemes can be applied to reduce the number of grid points. Second, in some situations,
we can choose Dmax to be smaller than N to avoid discretization of high-dimensional simplicies. In our
numerical tests, we considered the second-order numerical schemes (the same as i-QuAPI), and illustrated
several cases where Dmax can be chosen small. The higher-order schemes are being studied in our ongoing
work.

While this paper focuses mainly on the spin-boson model, the idea of deriving the governing differential
equations can be generalized to any quantum system with finite states without much difficulty. When S
contains more elements, the representation of the path segments will be slightly more complicated. In detail,
the path segment h cannot be fully determined by the initial state and the locations of state hops. Instead,
it is necessary to specify which state the system hops to at each τk. Nevertheless, the idea to derive the
PDE system and the expression of density matrix stays the same. Roughly speaking, the equation of A(t, h)
holds the form

(41)
∂

∂t
A(t, h) = −W (h)A(t, h) +

∑

ĥ

A(t, ĥ) +
∂

∂τ1
A(t, h),

where τ1 is the location of the first state hop in h, and the path segment ĥ takes all possible paths satisfying

ĥ(τ) = h(τ) for all τ ∈ (0, T ) and

ĥ+(0) = ĥ+(0) and ĥ−(0) 6= ĥ−(0) or ĥ+(0) 6= ĥ+(0) and ĥ−(0) = ĥ−(0).

The equation (41) is essentially the same as (29) in the spin-boson case. However, when the cardinality of S
is larger, the memory cost also grows faster with Dmax and N , requiring more efficient numerical methods
for the simulation. This will be considered in our future works.



26 GESHUO WANG AND ZHENNING CAI

Appendix. Derivation of i-QuAPI Method

A component of the reduced density matrix ρs at time t = N∆t, denoted by 〈s′′|ρs(N∆t)|s′〉, can be
represented by

〈s′′|ρs(N∆t)|s′〉 = trb 〈s′′|e−iHN∆tρ(0)eiHN∆t|s′〉 .
With the completeness relation in a quantum system

∫

S

|s〉〈s| ds = ids,

with S being the set of an orthonormal basis, the reduced density matrix can be written as a path integral
form

〈s′′|ρs(N∆t)|s′〉 =trb

∫

S

ds+0 · · ·
∫

S

ds+N−1

∫

S

ds−0 · · ·
∫

S

ds+N−1

〈
s′′
∣∣e−iH∆t

∣∣s+N−1

〉

〈
s+N−1

∣∣e−iH∆t
∣∣s+N−2

〉
· · ·
〈
s+1
∣∣e−iH∆t

∣∣s+0
〉 〈

s+0
∣∣ρ(0)

∣∣s−0
〉

〈
s−0
∣∣eiH∆t

∣∣s−1
〉
· · ·
〈
s+N−2

∣∣eiH∆t
∣∣s−N−1

〉 〈
s−N−1

∣∣eiH∆t
∣∣s′
〉
.

(42) is called path integral as the states s+0 , · · · , s+N and s−0 , · · · , s−N can be regarded as a path, an integral
over all possible paths are taken here. It is clear that the path has two branches (positive branch and negative
branch).

For the spin-boson model, S = {−1,+1}, therefore, Equation (42) becomes

〈s′′|ρs(N∆t)|s′〉 =trb
∑

s+0 =±1

· · ·
∑

s+
N−1=±1

∑

s−0 =±1

· · ·
∑

s−
N−1=±1

〈
s′′
∣∣e−iH∆t

∣∣s+N−1

〉

〈
s+N−1

∣∣e−iH∆t
∣∣s+N−2

〉
· · ·
〈
s+1
∣∣e−iH∆t

∣∣s+0
〉 〈

s+0
∣∣ρ(0)

∣∣s−0
〉

〈
s−0
∣∣eiH∆t

∣∣s−1
〉
· · ·
〈
s+N−2

∣∣eiH∆t
∣∣s−N−1

〉 〈
s−N−1

∣∣eiH∆t
∣∣s′
〉
.

As for the special Hamiltonian given by (2), Trotter splitting can be used by introducing the following
reference Hamiltonian

(42) H0 =


ǫσ̂z +∆σ̂x −

∑

j

(cj σ̂z)
2

2ω2
j


⊗ idb.

Therefore, the remaining part is

H −H0 =
∑

j


ids ⊗

p̂2j
2

+
1

2
ω2
j

(
ids ⊗ q̂j −

cj
ω2
j

σ̂z ⊗ idb

)2

 .

When the splitting is applied, the reduced density matrix can be written as

〈s′′|ρs(N∆t)|s′〉 =
∑

s+0 =±1

· · ·
∑

s+
N−1=±1

∑

s−0 =±1

· · ·
∑

s−
N−1=±1

〈
s′′
∣∣e−iH∆t

∣∣s+N−1

〉

〈
s+N−1

∣∣e−iH∆t
∣∣s+N−2

〉
· · ·
〈
s+1
∣∣e−iH∆t

∣∣s+0
〉 〈

s+0
∣∣ρs(0)

∣∣s−0
〉

〈
s−0
∣∣eiH∆t

∣∣s−1
〉
· · ·
〈
s+N−2

∣∣eiH∆t
∣∣s−N−1

〉 〈
s−N−1

∣∣eiH∆t
∣∣s′
〉

F (s+0 , s
+
1 , · · · , s+N , s−0 , s

−
1 , · · · , s−N )

with s+N = s′′, s−N = s′ and

F (s+0 , s
+
1 , · · · , s+N , s−0 , s

−
1 , · · · , s−N )

= trb

[
e−i∆t

2 (H−H0(s
′′))e−i∆t(H−H0(s

+
N−1)) · · · e−i∆t(H−H0(s

+
1 ))

e−i∆t
2 (H−H0(s

+
0 ))ρb(0)e

i∆t
2 (H−H0(s

−

0 ))ei∆t(H−H0(s
−

1 )) · · ·

ei∆t(H−H0(s
−

N−1))ei
∆t
2 (H−H0(s

′))
]
.
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The function F is called influence functional, calculating the influence of the environment on the system of
interest. With (42) as reference Hamiltonian, the influence functional can be computed analytically [5][14]
by

(43) F (s+0 , · · · , s+N , s−0 , · · · , s−N ) = exp


−

N∑

j1=0

j1∑

j2=0

(s+j1 − s−j1)(ηj1,j2s
+
j2
− η∗j1,j2s

−
j2
)


 .

In the influence functional (43), η is a complex function and η∗ is its complex conjugate. For different j1, j2,
η has different forms [19]. For example, when 0 < j2 < j1 < N , we have

ηj1,j2 =
2

π

∫ ∞

−∞

dω
J(ω)

ω2

exp(ωβ/2)

sinh(ωβ/2)
sin2(ω∆t/2) exp (−i(j1 − j2)ω∆t)

where

J(ω) =
π

2

∑

j

c2j
mjωj

δ(ω − ωj)

and δ is the Dirac delta function.
The absolute value of η decreases to zero as j1−j2 increases. Thus, when the difference of j1 and j2 is large,

the contribution of ηj1,j2 is small. From this point of view, the influence functional can be approximated by

F (s+0 , · · · , s+N , s−0 , · · · , s−N ) ≈ exp


−

N∑

j1=0

j1∑

j2=max{0,k−∆k}

(s+j1 − s−j1)(ηj1−j2s
+
j2
− η∗j1−j2s

−
j2
)


 .

For simplicity, the notation Sj = (s+j , s
−
j ) is introduced and the notation I(Sj ,Sj′ )

is defined by

I(Sj , Sj′) =

{
e
−(s+

j
−s−

j
)(ηj,j′ s

+

j′
−η∗

j,j′
s−
j′
)
, j − j′ 6= 1

〈
s+j
∣∣e−iH0∆t

∣∣s+j−1

〉 〈
s−j−1

∣∣eiH0∆t
∣∣s−j
〉
e
−(s+j −s−j )(ηj,j′ s

+

j′
−η∗

j,j′
s−
j′
)
, j − j′ = 1

.

With these notations,

ρ̃(SN ;N∆t)

=
∑

SN−1

· · ·
∑

S0

N∏

j1=0

j1∏

j2=0

I(Sj1 , Sj2)
〈
s+0
∣∣ρs(0)

∣∣s−0
〉

=
∑

SN−1

· · ·
∑

S0




N∏

j=∆k

∆k∏

m=0

I(Sj , Sj−m)



(

∆k−1∏

k1=0

k1∏

k2=0

I(Sj1 , Sj2)
〈
s+0
∣∣ρs(0)

∣∣s−0
〉
)

︸ ︷︷ ︸
:=A0(S∆k−1,··· ,S0)

=
∑

SN−1

· · ·
∑

S1




N∑

j=∆k+1

k∑

m=0

I(Sj , Sj−m)


∑

S0

(
∆k∏

m=0

I(S∆k, S∆k−m)

)

︸ ︷︷ ︸
:=Λ(S∆k,··· ,S0)

A0(S∆k−1, · · · , S0)

︸ ︷︷ ︸
:=A1(S∆k,··· ,S1)

=
∑

SN−1

· · ·
∑

S2




N∑

j=∆k+2

k∑

m=0

I(Sj , Sj−m)


∑

S1

∆k∏

m=0

I(S∆k+1, S∆k+1−m)

︸ ︷︷ ︸
:=Λ(S∆k+1,··· ,S1)

A1(S∆k, · · · , S1)

︸ ︷︷ ︸
:=A2(S∆k+1,··· ,S2)

= · · ·

(44)
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An iterative method (i-QuAPI) is designed [13][14] according to (44) as follows.

A0(S∆k−1, · · · , S0) :=

∆k−1∏

k1=0

k∏

k2=0

I(Sk1 , Sk2)
〈
s+0
∣∣ρs(0)

∣∣s−0
〉
;

Λ(Sk, · · · , Sk−∆k) :=
∆k∏

m=0

I(Sk, Sk−m);

Ak+∆k+1(Sk, · · · , Sk−∆k+1) :=
∑

Sk−∆k

Λ(Sk, · · · , Sk−∆k)Ak−∆k(Sk−1, · · · , Sk−∆k).

The density matrix then can be obtained component-wise by
〈
s+N
∣∣ρs(N∆t)

∣∣s−N
〉
=

∑

SN−∆k+1,··· ,SN−1

AN−∆k(SN , · · · , SN−∆k+1).

With a density matrix of the system, the expected value of any observable O of the system can be computed
by

〈O(t)〉 = tr(ρs(t)O).

In spin-boson model, the density matrix ρs(t) is a two-by-two matrix and the observable O is also a two-by-
two matrix.
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