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ARBITRARY PRECISION ALGORITHMS FOR COMPUTING THE
MATRIX COSINE AND ITS FRÉCHET DERIVATIVE∗

AWAD H. AL-MOHY† , NICHOLAS J. HIGHAM‡ , AND XIAOBO LIU‡

Abstract. Existing algorithms for computing the matrix cosine are tightly coupled to a specific
precision of floating-point arithmetic for optimal efficiency so they do not conveniently extend to
an arbitrary precision environment. We develop an algorithm for computing the matrix cosine that
takes the unit roundoff of the working precision as input, and so works in an arbitrary precision. The
algorithm employs a Taylor approximation with scaling and recovering and it can be used with a
Schur decomposition or in a decomposition-free manner. We also derive a framework for computing
the Fréchet derivative, construct an efficient evaluation scheme for computing the cosine and its
Fréchet derivative simultaneously in arbitrary precision, and show how this scheme can be extended
to compute the matrix sine, cosine, and their Fréchet derivatives all together. Numerical experiments
show that the new algorithms behave in a forward stable way over a wide range of precisions. The
transformation-free version of the algorithm for computing the cosine is competitive in accuracy with
the state-of-the-art algorithms in double precision and surpasses existing alternatives in both speed
and accuracy in working precisions higher than double.

Key words. multiprecision algorithm, multiprecision arithmetic, matrix cosine, matrix expo-
nential, matrix function, Fréchet derivative, double angle formula, Taylor approximation, forward
error analysis, MATLAB

AMS subject classifications. 15A16, 65F30, 65F60

1. Introduction. Matrix functions have been the subject of much research be-
cause of their many applications in science and engineering. The matrix exponential
is the most studied function thanks to its crucial role in representing the solutions
of linear first order differential equations. The matrix sine and cosine, which can be
defined for A ∈ Cn×n by their Maclaurin series

cosA = I − A2

2!
+
A4

4!
− A6

6!
+ · · · ,

sinA = A− A3

3!
+
A5

5!
− A7

7!
+ · · · ,

where I denotes the identity matrix of order n, play an analogous role for second
order differential equations. For example, the second order system

(1.1) y′′(t) +Ay(t) = g(t), y(0) = y0, y′(0) = y′0,

which appears in finite element semidiscretization of the wave equation, has the solu-
tion

y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′0 +

∫ t

0

(
√
A)−1 sin

(√
A(t− s)

)
g(s)ds,
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where
√
A denotes any square root of A [38]. For generalizations of the system (1.1)

and other applications see [5] and the references therein.
In recent years there has been a growing interest in multiprecision algorithms for

computing matrix functions. Several algorithms that work in arbitrary precision have
been developed, including algorithms for the matrix exponential [8], [16], the matrix
logarithm [15], and general matrix functions [23]. We note that the cosine and sine
of a matrix can be computed via the the matrix exponential by exploiting the matrix
analogue of Euler’s formula, eiA = cosA+ i sinA, and this idea is implemented in the
mpmath library [29], but complex arithmetic needs to be used even for a real A. The
Multiprecision Computing Toolbox [32] offers functions that can evaluate in arbitrary
precision the sine and cosine of a matrix using the Schur–Parlett algorithm [9]. We are
not aware of any specialized algorithm for computing the matrix cosine in arbitrary
precision.

The need for arbitrary precision algorithms for matrix trigonometric functions
arises from their inclusion in many languages and libraries that attempt to offer
arbitrary precision implementations of various functions with both scalar and matrix
arguments, including the software mentioned above, as well as the Julia language [7]
and Python’s SymPy [31], for example. Furthermore, from the aspect of algorithm
development, a reference solution computed in higher precision is required to estimate
the forward error of algorithms for these matrix functions.

In this work we develop a new arbitrary precision algorithm for computing the
matrix cosine. The algorithm uses a Taylor approximant to cos(2−sA) in conjunction
with the double angle recurrence cos(2A) = 2 cos2A− I, and we refer to this process
as scaling and recovering. The algorithmic parameters s and the degree of the ap-
proximant are determined from a relative forward error bound for the approximant.
The algorithm takes the working precision as an input argument and can compute
the Fréchet derivative Lcos(A,E) (defined in section 5) simultaneously.

We begin in section 2 by reviewing previous work on computing the matrix cosine
and explaining why existing algorithms are not suitable for arbitrary precision arith-
metic. In section 3 we derive a bound on the norm of the forward error of a Taylor
approximant to the matrix cosine. Based on this error bound we develop an algorithm
for evaluating the matrix cosine in arbitrary precision in section 4. In section 5 we
derive a framework for computing Lcos(A,E) by Fréchet differentiating our algorithm
for cosA, and we construct an efficient evaluation scheme for computing cosA and
Lcos(A,E) simultaneously. An algorithm for computing cosA and Lcos(A,E) in ar-
bitrary precision is developed. We also discuss an extension of the evaluation scheme
to the matrix sine and its Fréchet derivative. We then test the algorithms devel-
oped in the previous sections experimentally and compare their performance against
alternative approaches in section 6. Conclusions are drawn in section 7.

Throughout the work we denote by ‖·‖ any consistent matrix norm, by N the set
of nonnegative integers, and by N+ the set of positive integers. We denote by u the
unit roundoff of the floating-point arithmetic.

2. Previous work. The focus in the literature has been on computing the ma-
trix cosine rather than the matrix sine, as the sine can be obtained with a cosine
algorithm by using the identity sinA = cos(A − π

2 I). The most popular and suc-
cessful method for computing the cosine of a matrix is the scaling and recovering
algorithm. It uses a rational or polynomial approximation to cos(2−sA) in conjunc-
tion with scaling and recovering [21, Thm. 12.1]. The algorithm was first suggested by
Serbin and Blalock [39], though they did not propose a concrete scheme for choosing
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the algorithmic parameters.
Higham and Smith [27] develop an algorithm that scales the matrix such that

‖2−sA‖∞ ≤ 1 and employs a diagonal Padé approximant of fixed degree 8, where
ad hoc analysis shows that this choice provides full normwise relative accuracy in
IEEE double precision arithmetic. Diagonal Padé approximants are preferred over
non-diagonal ones, as symmetries in the coefficients of the numerator and denom-
inator can be utilized for efficient evaluation of the approximant. Hargreaves and
Higham [19] derive an algorithm that chooses the degree of the diagonal Padé approx-
imant adaptively to minimize the computational cost subject to achieving a desired
absolute error bound. Since then the strategy of using variable degree approximants
has been widely adopted. Sastre et al. [37] propose an algorithm that uses Taylor
series approximations with sharper absolute error bounds derived using ideas similar
to those in [3, sect. 4]. The derivation of these algorithms is based on forward error
bounds. Al-Mohy, Higham, and Relton [5] develop algorithms that are based on back-
ward error analysis and Padé approximants to sinx and ex, and they can compute
the matrix sine and cosine separately or simultaneously. Another algorithm that can
calculate the two functions simultaneously is proposed by Seydaoglu, Bader, Blanes,
and Casas [40]; it chooses from some Taylor polynomial approximations of fixed de-
gree and relies on precomputed constants. Other algorithms have been developed for
computing the matrix cosine based on Taylor series [6], [35], [36], with improvements
on the error bounds or the cost of evaluation of the approximating polynomials. There
are also algorithms for evaluating the matrix cosine based on approximating functions
other than Taylor and Padé approximants, for example, algorithms based on Bernoulli
matrix polynomials [10] and Hermite matrix polynomials [11].

The algorithms mentioned above require computing symbolically in high precision
certain constants that depend on the working precision, and these constants are crucial
for selecting algorithmic parameters since they appear in the truncation error bounds
or are the coefficients of the approximating functions. For example, the algorithm
of [19, sect. 3] is based on the absolute forward error bound

(2.1) ‖cosA− r2m(A)‖∞ =

∥∥∥∥∥
∞∑

i=2m+1

g2iA
2i

∥∥∥∥∥
∞

≤
∞∑

i=2m+1

|g2i|‖A2‖i∞,

where r2m is the diagonal Padé approximant of degree 2m to the cosine. Then for some
chosen values of m, symbolic and high precision computation are used, respectively,
in computing the coefficients g2i and the quantity

θ2m = max

{
θ :

∞∑
i=2m+1

|g2i|θ2i ≤ τ

}
,

where τ = 2−53 is the unit roundoff of double precision, so that (2.1) ensures an error
not exceeding τ as long as ‖A2‖1/2∞ ≤ θ2m. The same mechanism is used in other
existing algorithms, based on either forward or backward error analysis, for computing
the matrix cosine. Therefore, none of these algorithms conveniently extends to an
arbitrary precision environment since it is impractical to carry out this procedure
when the accuracy at which the function should be evaluated is known only at run
time. Hence a new approach is required for computing the matrix cosine in arbitrary
precision.

3. Forward error analysis for the matrix cosine. Padé approximation has
been widely adopted in algorithms, especially arbitrary precision algorithms, for eval-
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uating matrix functions, including the matrix logarithm [15] and the matrix exponen-
tial [16]. In comparison with the exponential and logarithm functions, relatively few
results are available concerning Padé approximants of the cosine function. In partic-
ular, we are not aware of a proof of existence of the Padé approximants for arbitrary
degrees. Magnus and Wynn [30] give the coefficients of the Padé approximants of the
scalar cosine function in terms of determinants of matrices whose entries are binomial
coefficients, but these expressions are not useful for deriving a general error bound.
For this reason, we employ the scaling and recovering idea and bound the relative for-
ward error of the truncated Taylor approximant to the cosine. The techniques used
in [16, sect. 3] for bounding the forward error of a Taylor approximant as an approxi-
mation to the matrix exponential do not generalize to the matrix cosine, because the
terms in its Taylor expansion alternate in sign, but we can derive computable error
bounds by using the hyperbolic cosine.

Let

(3.1) tc2m(A) :=
m∑
i=0

(−1)i

(2i)!
A2i, tch2m(A) :=

m∑
i=0

1

(2i)!
A2i

denote the Taylor approximants of order 2m to cosA and coshA, respectively and let
B = A2. Then we have

‖cosA− tc2m(A)‖ =

∥∥∥∥∥
∞∑

i=m+1

(−1)i

(2i)!
A2i

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

i=m+1

(−1)i

(2i)!
Bi

∥∥∥∥∥ ≤
∞∑

i=m+1

1

(2i)!
αm(B)i

=

∞∑
i=m+1

1

(2i)!

(√
αm(B)

)2i
= cosh

(√
αm(B)

)
− tch2m

(√
αm(B)

)
(3.2)

by [3, Thm. 4.2(a)], where

αm(B) ∈ Am(B)(3.3)

:=
{

max
(
‖Bd‖1/d, ‖Bd+1‖1/(d+1)

)
: d ∈ N+, d(d− 1) ≤ m+ 1

}
.

For nonnormal matrices this bound can be much smaller than a simpler bound based
on a single power of A, such as [21, eq. (4.9)]. The main concern with the latter bound
is that it can be arbitrarily loose for nonnormal A due to the use of the potentially
arbitrarily weak inequality ‖Ak‖ ≤ ‖A‖k for k ∈ N+ in its derivation, as discussed in
[3, sect. 1], [21, p. 288].

We note that elements in Am(B) are of the form ‖Bd‖1/d for some d ∈ N+, and
the size of Am(B) depends on m. In fact, we could instead apply [3, Thm. 4.2(b)]
in (3.2), as Al-Mohy does in [1, eq. (3.2)], and this would lead to exactly the same
bound. Nadukandi and Higham [33] show that the use of

α̃m(B) := min
{

max
(
‖Ba‖1/a, ‖Bb‖1/b

)
: a, b ∈ N+, gcd(a, b) = 1, ab−a− b < m+1

}
in place of αm(B) results in a more refined bound, but it requires considerably more
computation, which can be undesirable in high precision, as discussed in [16, sect. 3.1].
For this reason we will choose an αm(B) from Am(B) defined in (3.3), but it should be
noted that all the results in this section remain true with αm(B) replaced by α̃m(B).

Ideally, in designing an algorithm for computing the matrix cosine we would like
to use in the bound (3.2) the quantity

αopt
m (B) = min{αm : αm ∈ Am(B) },
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in order to obtain the sharpest bounds, since these bounds are obviously increasing in
αm(B). However, to find αopt

m (B) we would need to search over D := {d ∈ N+ : d(d−
1) ≤ m+ 1}, and this set has b(1 +

√
4m+ 5)/2c elements. This makes computation

of α
opt
m (B) unpractical since the value of m can be large for an algorithm aiming

for an arbitrary precision environment. More importantly, it has been observed [3]
that for nonnormal matrices the sequence {‖Bk‖1/k} is typically roughly decreasing
despite possible considerably nonmonotonic behavior, so it is reasonable and effective
to employ the considerably cheaper approximation to αopt

m (B),

(3.4) α∗m(B) = max
(
‖Bd

∗
‖1/d

∗
, ‖Bd

∗+1‖1/(d
∗+1)

)
, d∗ = max

d
D =

⌊
1 +
√

4m+ 5

2

⌋
,

and this strategy has been shown to be effective for computing the matrix exponential
in arbitrary precision by Fasi and Higham [16].

4. A multiprecision algorithm for the matrix cosine. In this section we
build a novel algorithm for computing the matrix cosine in arbitrary precision floating-
point arithmetic based upon the Taylor approximant tc2m of (3.1) together with the
scaling and recovering idea. There are two algorithmic parameters: m, which relates to
the order of approximation, and s, the number of scalings in X = 2−sA (or Y = 4−sB,
as we work with B = A2), to be determined in order to guarantee that

(4.1) ‖cosX − tc2m(X)‖ . u‖cosX‖.

By (3.2), a sufficient condition for (4.1) to hold is

(4.2) cosh
(√

α∗m(4−sB)
)
− tch2m

(√
α∗m(4−sB)

)
. u‖cos(2−sA)‖.

We employ the Paterson–Stockmeyer method [34], which is the customary choice
in the literature, to evaluate

(4.3) tc2m(X) =

m∑
i=0

(−1)i

(2i)!
X2i =

m∑
i=0

(−1)i

(2i)!
(4−sB)i =: pcm(4−sB),

which is a polynomial (in B = A2) of degree m. It is important to note that, in
choosing the degree m and hence the corresponding approximants, only those that
maximize the approximation degree for a given number of matrix multiplications are
worth considering. For evaluating polynomial approximants pcm to the cosine by means
of the Paterson–Stockmeyer method, the sequence of optimal degrees is [14, eq. (14)]

mi :=

⌊
(i+ 2)2

4

⌋
, i ∈ N.

To evaluate the approximant pcmi(B), it is known that at least the first ν = b√mic
powers of B will be required [18, Thm. 1.7.4]. Hence we can form the first ν powers
of B immediately after the degree m is chosen, which can be used to reduce the
computational cost of evaluating α∗m(4−sB). Note that ‖(4−sB)d‖1/d = 4−s‖Bd‖1/d
and thus α∗m(4−sB) = 4−sα∗m(B), so we could compute the norm of powers of B
and then perform scaling as required. More computational effort can be saved in
finding α∗m(B) by estimating the 1-norm of powers of B since it is enough to evaluate
accurately the order of magnitude of α∗m(B). We adapt the numerical scheme used
by Fasi and Higham [16, Frag. 4.5] for estimating ‖Bd‖1, d ∈ N+. The algorithm
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efficiently computes BdW using available powers of B, where W ∈ Cn×t, with t� n,
and integrates this process with the block 1-norm estimation algorithm normest1
proposed by Higham and Tisseur [28] that repeatedly computes the action of B on W ,
without explicitly forming any powers of B. This algorithm requires only O(n2) flops.

The technique proposed by Fasi and Higham [16, sect. 4.1] can be exploited to
obtain a sharper bound at almost no extra cost, by reusing quantities computed during
previous steps of the algorithm. Since the algorithm considers the approximants in
nondecreasing order of cost, the value of d∗(mi) in (3.4) is nondecreasing in i. Hence,
in the process of seeking suitable a degree parameter we can use a variable αmin to
keep track of the smallest value of α∗mi(B) computed up to now, and update it when
a new value α∗mj (B) < αmin is found for some j > i, and in practical calculation we
use this αmin to replace α∗m(B).

On the other hand, we do not know ‖cos(2−sA)‖ = ‖cosX‖ a priori, so we could
use a lower bound for the norm of cosX, such as those presented in [21, Thm. 12.3]. In
fact, we can even derive a sharper bound by exploiting the result in [3, Thm. 4.2(a)]:
with Y = X2,

‖cosX‖ =

∥∥∥∥∥I +

∞∑
i=1

(−1)i

(2i)!
X2i

∥∥∥∥∥ ≥ 1−

∥∥∥∥∥
∞∑
i=1

(−1)i

(2i)!
Y i

∥∥∥∥∥
≥ 1−

∞∑
i=1

(√
αm(Y )

)2i
(2i)!

= 2− cosh
(√

αm(Y )
)
.

However, to use this bound or those in [21, Thm. 12.3] it is required that θ <
cosh−1(2), for θ =

√
αm(Y ) or θ =

√
‖Y ‖. This condition on the norm of the

scaled matrix Y = 4−sA2 can require a very large s (when ‖A‖ is large), which means
a large number of double angle recurrence steps. This potentially rigid restriction on
s is undesirable, especially for an algorithm aiming for arbitrary precision. Alterna-
tively, an absolute bound can be used in developing the algorithm, for example [19],
[27], [37], and clearly this is reasonable if ‖Y ‖ is not too large. In our algorithm we
truncate the Taylor series to obtain the practical approximation

(4.4) cos(2−sA) ≈
∑̀
i=0

(−1)i

(2i)!
(2−sA)2i =

∑̀
i=0

(−4−s)i

(2i)!
Bi, ` = length(B),

where B = {I,B,B2, . . . } is an array that stores the powers of B = A2, and length(B)
is the number powers in B with positive exponents. This is the best approximation we
currently have to cos(2−sA). In practice, we can evaluate (4.4) in a lower precision (for
example, single or double precision if the working precision is higher than double) since
it suffices to obtain the correct order of magnitude of ‖cos(2−sA)‖ in the bound (4.1),
and in fact this is necessary for better efficiency considering that we have to recompute
the coefficients in (4.4) when s is changed. We update B when it does not contain
the first b

√
mc powers of B, so the value of length(B) varies with the degree m. Since

the estimate (4.4) uses only the powers of B that are available in B, it requires only
O(n2) flops.

The function EvalBound in Fragment 4.1 shows how the bound (4.2) can be
evaluated efficiently using the techniques discussed above. We use some extra precision
in forming the sum in the tch2m term in the error bound (4.2) to guarantee sufficient
accuracy, and we found this strategy makes no noticeable difference to the speed. In
our implementation we only compute and store these scalar coefficients at run time
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Fragment 4.1: Error bound checking for the matrix cosine.

1 function EvalBound(B ∈ Cn×n, m, s ∈ N)
. Check (4.2) using elements in B. Lines 2–3 are executed in precision u,
line 10 is executed in precision u1.2, and the other lines can be executed in a
precision lower than precision u.

2 for i← length(B) + 1 to b
√
mc do

3 Bi = Bi−1B

4 d∗ ← b 1+
√

4m+5
2 c

5 if bd∗ = −∞ then

6 bd∗ ← normest1(λx.EvalPowVec(d∗, x))1/d∗

7 if bd∗+1 = −∞ then

8 bd∗ ← normest1(λx.EvalPowVec(d∗ + 1, x))1/(d∗+1)

9 αmin ← min{max{bd∗ , bd∗+1}, αmin}
10 δnxt ← cosh(

√
4−sαmin)− tch2mi(

√
4−sαmin)

11 M ←
∑length(B)
i=0

(−4−s)i

(2i)! Bi
12 φ← normest1(λx.Mx)
13 return δnxt, φ

14 function EvalPowVec(W ∈ Cn×t, d ∈ N)

. Compute BdW using elements in B.
15 `← length(B)
16 while d > 0 do
17 for i← 1 to bd/`c do
18 W ← B`W
19 d← d mod `
20 `← min{`− 1, d}
21 return W

when the order increases from mi to mi+1, so each of the coefficients is calculated
at most once. Within the 1-norm estimating function normest1 in EvalBound,
we have used the lambda syntax from lambda calculus for an anonymous function:
λx.f(x) denotes a function that replaces all the occurrences of x in the body of f with
the value of its input argument.

For a chosen combination of s and m if the bound (4.2) is not satisfied we can
either increase m from mi to mi+1 to use a Taylor approximant of higher order or
increment the scaling parameter s, to reduce the truncation error of approximation.
Both options will increase the dominant part of the computational cost by one matrix
multiplication. Although increasing s will increase the number of matrix squarings
that will occur during the recovering phase of the algorithm, which is a potentially
significant source of rounding errors for the algorithm, we still need to choose s such
that the norm of X = 2−sA is sufficiently small in order for the Taylor approximation
of cosX to be computed stably and accurately. On the other hand, when ‖2−sA‖ �
1 both the actual error and the bound (3.2) can decrease extremely slowly as m
increases, leading to the use of an approximant of degree much higher then necessary,
which in turns results in loss of accuracy in floating-point arithmetic and unnecessary



8 AWAD H. AL-MOHY, NICHOLAS J. HIGHAM, AND XIAOBO LIU

Fragment 4.2: Modified Paterson–Stockmeyer algorithm for the cosine.

1 function PSEvalCos(B ∈ Cn×n, m, s ∈ N)
. Evaluate

∑m
i=0 ci(4

−sB)i using elements of B.
2 for i← 0 to m do
3 ci ← (−1)i/(2i)!

4 ν ← b
√
mc

5 µ← bm/νc
6 for i← length(B) + 1 to ν do
7 Bi ← Bi−1B

8 C ←
∑m−µν
j=0 cµν+j4

−sjBj
9 for i← µ− 1 down to 0 do

10 C ← 4−sνCBν +
∑ν−1
j=0 cνi+j4

−sjBj
11 return C

computation. It sometimes can be cheaper (and even more accurate) to perform a
stronger scaling on A and use a lower order approximant.

Facing this flexibility in selecting the algorithmic parameters, algorithms aiming
for a fixed precision environment usually choose to consider the approximants only
up to a certain order, or set a scaling threshold η > 0 and keep increasing s until
‖2−sA‖ ≤ η is satisfied. The multiprecision algorithm for the matrix exponential [16]
determines both parameters at run time by monitoring the decay rate of the bound
on the truncation error of the approximant as m increases, and this heuristic proves
to be effective. Let us denote the truncation error bound associated with the Taylor
approximant of order 2mi of this algorithm by

(4.5) δi = cosh
(√

α∗mi(4
−sB)

)
− tch2mi

(√
α∗mi(4

−sB)
)
.

In the algorithm we increment s when δi−1 < δki , k ∈ N+, that is, when the bound on
the absolute error does not decay at least at the order k as m increases from mi−1 to
mi. We found in practice that k = 3 is the best choice for accuracy.

Once a combination of Taylor approximant order m and scaling parameter s
is found, the algorithm computes an approximation to cos(2−sA) by evaluating the
polynomial pcm(4−sB) using the modified Paterson–Stockmeyer method PSEvalCos
given in Fragment 4.2, and finally recovers cosA by applying s steps of the double
angle recurrence. If A is upper quasi-triangular, then in order to reduce the rounding
errors introduced during the recovering phase and improve accuracy of the final result,
the algorithm recomputes the diagonal and first superdiagonal of the intermediate
matrices in the recovering stage from the elements of A, as discussed in [5], and this
is accomplished by RecompDiags in Fragment 4.3. The algorithm can optionally
make use of preprocessing (and postprocessing) techniques as discussed in [19], [27].

We now present the complete precision-independent scaling and recovering algo-
rithm for the matrix cosine, which is given in Algorithm 4.4. In addition to the matrix
A ∈ Cn×n, the algorithm takes the following input arguments.

• The arbitrary precision floating-point parameter u > 0 that specifies the unit
roundoff of the working precision of the algorithm.

• The positive integer mmax determines the maximum order of the approxi-
mants pcm in (4.3) that the algorithm can consider. The algorithm will try
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Fragment 4.3: Recomputation of the diagonals.

1 function RecompDiags(A,C ∈ Cn×n)
. Compute main diagonal and first superdiagonal of C ≈ cosA for upper
triangular or real upper quasitriangular A.

2 for i = 1 to n do
3 if i = n− 1 or i ≤ n− 2 and ai+2,i+1 = 0 then
4 if ai+1,i = 0 then
5 Recompute cii, ci,i+1, ci+1,i+1 using [5, eqs. (3.1), (3.3)].
6 else
7 Recompute cii, ci,i+1, ci+1,i, ci+1,i+1 using [5, eq. (3.6)].

8 i← i+ 1

9 else
10 cii ← cos aii

11 return C

the orders m = mi ascendingly for i = 1 :N such that mN ≤ mmax < mN+1.
In the algorithm the variables B, b, and αmin are assumed to be available within

all the code fragments (that is, their scope is global in the codes). We use the notation
[x, x, . . . ] to denote a vector whose elements are all initialized to x and whose length
is unimportant, and such a vector b is defined to store the approximated values of

‖Bd‖1/d1 , d ∈ N+, so the 1-norm of each power of B is estimated at most once.
Overall, Algorithm 4.4 requires about 2

√
mi + s matrix multiplications, or a total

of (4
√
mi + 2s)n3 flops in the highest order in precision u, where 2

√
mi multiplications

are for forming the required powers of B and evaluating the polynomial pcm(4−sB),
and s multiplications are for performing the final recovering phase.

4.1. Schur variant. If A is normal (A∗A = AA∗) and a multiprecision im-
plementation of the QR algorithm [17, sect. 7.5] is available, then we should simply
diagonalize A in precision u to obtain A = QDQ∗ with Q unitary and D diagonal and
then compute cosA = Q cos(D)Q∗. More generally, for nonnormal A a (real) Schur
decomposition can be computed before invoking our multiprecision algorithm. More
specifically, we compute A = QTQ∗, where Q and T are, respectively, unitary and
upper triangular if A has complex entries and orthogonal and upper quasi-triangular
if A has real entries; then we compute cosA = Q cos(T )Q∗. This Schur variant of the
algorithm requires

(
28 + (4

√
mi + 2s)/3

)
n3 flops in precision u.

5. Computing the Fréchet derivative. The Fréchet derivative of a matrix
function f at A ∈ Cn×n is a linear operator Lf (A, ·) satisfying

f(A+ E)− f(A)− Lf (A,E) = o(‖E‖)

for all E ∈ Cn×n. It appears in an expression for the condition number [21, sect. 3.1]:

cond(f,A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖

=
‖Lf (A)‖‖A‖
‖f(A)‖

,
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Algorithm 4.4: Multiprecision algorithm for the matrix cosine.

Given A ∈ Cn×n this algorithm computes an approximation C to cosA in floating-
point arithmetic with unit roundoff u using a scaling and recovering method
based on Taylor approximants. The pseudocode of EvalBound is given in Frag-
ment 4.1, that of PSEvalCos in Fragment 4.2, and that of RecompDiags in
Fragment 4.3. The function isSchurForm returns true if A is upper triangular
or real and quasi upper triangular, and otherwise false.

1 B ← A2

2 B0 ← I
3 B1 ← B
4 αmin ←∞
5 δpre ←∞
6 b← [−∞,−∞, . . . ]
7 s← 0
8 i← 1
9 [δnxt, φ]← EvalBound(B, mi, s)

10 while δnxt > uφ and i < N do
11 if δpre < δknxt then
12 s← s+ 1
13 else
14 i← i+ 1

15 δpre ← δnxt

16 [δnxt, φ]← EvalBound(B, mi, s)

17 C ← PSEvalCos(B, mi, s)
18 if isSchurForm(A) then
19 C ← RecompDiags(2−sA,C)

20 for j ← 1 to s do
21 C ← 2C2 − I
22 if isSchurForm(A) then
23 C ← RecompDiags(2−s+jA,C)

24 return C

where

‖Lf (A)‖ := max
G6=0

‖Lf (A,G)‖
‖G‖

.

The condition number measures the first order sensitivity of f(A) to small perturba-
tions in A.

Recall that the truncation error for a Taylor approximant of degree 2m to cosX
is

(5.1) cosX − tc2m(X) =

∞∑
i=m+1

ciX
2i, ci :=

(−1)i

(2i)!
.

Fréchet differentiating both sides of (5.1) at X = 2−sA in the direction Es := 2−sE
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gives the truncation error for an approximation to the Fréchet derivative:

(5.2) Lcos(X,Es)− Ltc2m(X,Es) =

∞∑
i=m+1

ciLx2i(X,Es).

From (5.2) we can approximate Lcos(X,Es) by Ltc2m(X,Es) with a controllable trun-
cation error. We will discuss in detail the computation of Ltc2m(X,Es), the Fréchet
derivative of a power series, in the next subsection.

Now we derive the basic framework for computing cosA and Lcos(A,E) simulta-
neously given that the approximated values of cosX ≡ cos(2−sA) and Lcos(X,Es) ≡
Lcos(2

−sA, 2−sE) are available. Fréchet differentiating the double angle formula
cos(2A) = 2 cos2A− I and employing the chain rule, we have the relation

Lcos(2A, 2E) = L2x2−1

(
cosA,Lcos(A,E)

)
.

Then using the linearity of the Fréchet derivative and the sum and product rules [21,
Sec. 3.2], we obtain

Lcos(2A, 2E) = 2
(
cosALcos(A,E) + Lcos(A,E) cosA

)
.

Using this relation we can construct the following recurrence relation, which yields
C0 := cosA and L0 := Lcos(A,E) simultaneously:

Ls = Lcos(2
−sA, 2−sE),

Cs = cos(2−sA),

Lk−1 = 2(CkLk + LkCk)

Ck−1 = 2C2
k − I

}
k = s : −1 : 1.

5.1. Error analysis and evaluation scheme. We can derive an error bound
for the approximation Lcos(X,Es) ≈ Ltc2m(X,Es). Taking norms on both sides of (5.2)
gives

‖Lcos(X,Es)− Ltc2m(X,Es)‖ ≤
∞∑

i=m+1

2i|ci|‖Es‖‖X‖2i−1 = ‖Es‖
∞∑
i=m

‖X‖2i+1

(2i+ 1)!

= ‖Es‖
(

sinh(‖X‖)−
m−1∑
i=0

‖X‖2i+1

(2i+ 1)!

)
,(5.3)

where we have used the result ‖Lxi(X,Es)‖ ≤ i‖Es‖‖X‖i−1 [2, Thm. 3.2]. One
advantage of this forward error bound for the Fréchet derivative of tc2m is that it can
be used in a multiprecision environment. Note that the error bound is based on ‖X‖,
whereas the error bound for tc2m itself is based on α∗m(X2). Since the bound based
on ‖X‖ can be arbitrarily weak (see the discussion in section 3) we will base our
algorithm for computing cosA and Lcos(A,E) on the αm-based bound (4.2). We will
test experimentally whether this produces an accurate Fréchet derivative. A similar
situation holds in the works [4] for the matrix logarithm and [22] for the matrix
fractional powers, where the algorithms (designed for double precision) are based
on backward αm-based error bounds for the functions themselves. Of course, if the
Fréchet derivatives are being used for condition number estimation then an accurate
derivative is not required,
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Fragment 5.1: Modified Paterson–Stockmeyer scheme for the matrix cosine
and its Fréchet derivative.

1 function PSEvalCosLc(A,B,E ∈ Cn×n, m, s ∈ N)
. Compute simultaneously C ≈ cos(2−sA) and L ≈ Lcos(2

−sA, 2−sE).
2 for i = 0 to m do
3 ci ← (−1)i/(2i)!

4 ν ← b
√
mc

5 µ← bm/νc
6 for i← length(B) + 1 to ν do
7 Bi ← Bi−1B

8 for i← 0 to µ− 1 do

9 Zi ←
∑ν−1
j=0 cνi+j4

−sjBj
10 Zµ ←

∑m−µν
j=0 cνi+j4

−sjBj
11 M1 ← 4−s(AE + EA)
12 for j ← 2 to ν do
13 Mj ← 4−sMj−1B + 4−s(j−1)Bj−1M1

14 N1 ←Mν

15 P ← N1

16 for i← 2 to µ do
17 P ← 4−sνBνP
18 Ni ← 4−sνNi−1Bν + P

19 C ← Zµ
20 L←

∑m−µν
j=1 cνi+jMj

21 for i← µ− 1 down to 0 do
22 C ← 4−sνCBν + Zi
23 L← 4−sνLBν +

∑ν−1
j=1 cνi+jMj

24 L← L+
∑µ
i=1ZiNi

25 return C, L

Now we derive an evaluation scheme for computing cosX and Lcos(X,Es) in a
way that reuses matrix operations from the computation of cosX in the computation
of Lcos(X,Es). Fréchet differentiating both sides of tc2m(X) = pcm(Y ) from (4.3),
where Y = X2, at X in direction Es and using the chain rule, we have

Ltc2m(X,Es) = Lpcm
(
X2, Lx2(X,Es)

)
= Lpcm(Y,XEs + EsX).

Recall that pcm(Y ) is evaluated by the Paterson–Stockmeyer method. To be more
specific, we rewrite the polynomial as

(5.4) pcm(Y ) =

µ∑
i=0

Zi(Y
ν)i, µ = bm/νc,

where

Zi =

{∑ν−1
j=0 cνi+jY

j , i = 0, . . . , µ− 1,∑m−µν
j=0 cνi+jY

j , i = µ.
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Note that the powers of Y = 4−sB up to the νth are available by ν matrix scalings
given that we have formed those powers of B. Fréchet differentiating both sides
of (5.4) at Y in direction Ẽs := XEs+EsX and employing the product rule, we have

Lpcm(Y, Ẽs) =

µ∑
i=0

Lzi(Y, Ẽs)(Y
ν)i +

µ∑
i=1

ZiMνi,

where

Lzi(Y, Ẽs) =

{∑ν−1
j=1 cνi+jMj , i = 0, . . . , µ− 1,∑m−µν
j=1 cνi+jMj , i = µ,

and Mj := Lyi(Y, Ẽs) satisfies the recurrence relation

(5.5) Mj = M`1Y
`2 + Y `1M`2 , M1 = Ẽs,

where j = `1 + `2 with positive integers `1 and `2 [2, Thm. 3.2]. Hence, it is ef-
ficient to compute explicitly and store Zi in computing pcm(Y ) ≈ cos(2−sA) as we

can reuse these coefficient matrices for computing Lpcm(Y, Ẽs). In addition, Mj for
j = 1, 2, . . . , ν − 1 and j = ν, 2ν, . . . , µν are needed. Using (5.5) we can compute

Mj = Mj−1Y + Y j−1M1, j = 2 : ν,

Miν = M(i−1)νY
ν + Y (i−1)νMν , i = 2 : µ,(5.6)

where all the required powers of Y are available if both the right-hand sides of (5.4)
and (5.6) are evaluated via explicit powers. However, we found in practice that
evaluating the right-hand side of (5.4) via explicit powers produces a less accurate
approximation for cos(2−sA) than using Horner’s method. We hence use Horner’s
method and form the extra powers Y iν , i = 2, . . . , µ − 1 implicitly when required
in (5.6).

We summarize in Fragment 5.1 our scheme for computing simultaneously cos(2−sA)
and Lcos(2

−sA, 2−sE) where we have introduced the arrays Zi = Zi, i = 0, . . . , µ,
Mj = Mj , j = 1, . . . , ν, and Ni = Miν , i = 1, . . . , µ.

Exploiting Fragment 5.1, we obtain Algorithm 5.2, the overall algorithm for com-
puting cosA and Lcos(A,E) simultaneously. The total cost of Algorithm 5.2 in pre-
cision u in the highest order is the (4

√
mi + 2s)n3 flops cost of Algorithm 4.4 plus the

extra cost for computing Lcos(A,E), which consists of about 6
√
mi matrix multipli-

cations for computing the required coefficient matrices Mj and forming the approxi-
mated Lcos(2

−sA, 2−sE), and 2s matrix multiplications in the recovering recurrence
for Lcos(A,E), namely an extra cost of (12

√
mi + 4s)n3 flops. This algorithm also

requires about 3
√
min

2 additional memory locations for the storage of the Zi and Mi

for the computation of Lcos(A,E).
If a Schur decomposition T = Q∗AQ is computed before invoking Algorithm 5.2,

then for the Fréchet derivative we need apply to the direction E the same transforma-
tion and undo the transformation at the end [21, Prob. 3.2], arriving at Lcos(A,E) =
QLcos(T,Q

∗EQ)Q∗. If a real Schur decomposition is computed and E is full, the
Schur variant of Algorithm 5.2 requires an extra cost of

(
8 + (12

√
mi + 4s)/2

)
n3 flops

in precision u for computing the Fréchet derivative. For normal A we can simply
employ an explicit formula obtained from the Daleckĭı–Krĕın theorem [21, Thm. 3.11]
for computing the Fréchet derivative.

In some situations, such as in condition estimation, when several Fréchet deriva-
tives Lcos(A,E) are needed at a fixed A and different direction we need only compute
the parameters s and m once since they depend only on A.
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Algorithm 5.2: Multiprecision algorithm for the matrix cosine and its
Fréchet derivative.

Given A ∈ Cn×n and E ∈ Cn×n this algorithm computes simultaneously C ≈
cosA and L ≈ Lcos(A,E) in floating-point arithmetic with unit roundoff u using
a scaling and recovering method based on Taylor approximants. The pseudocode
of PSEvalCosLc is given in Fragment 5.1, and that of RecompDiags in Frag-
ment 4.3.

1 Execute lines 1–16 in Algorithm 4.4.
2 [C,L]← PSEvalCosLc(A,B,E, mi, s)
3 if isSchurForm(A) then
4 C ← RecompDiags(2−sA,C)

5 for j ← 1 to s do
6 L← 2(CL+ LC)
7 C ← 2C2 − I
8 if isSchurForm(A) then
9 C ← RecompDiags(2−s+jA,C)

10 return C, L

5.2. Extension to the sine and its Fréchet derivative. It is straightforward
to bound the truncation error of a Taylor approximant to the matrix sine function in
a similar way to (3.2), by employing the hyperbolic sine. We have

‖sinA− ts2m+1(A)‖ ≤ ‖A‖

∥∥∥∥∥
∞∑

i=m+1

(−1)i

(2i+ 1)!
Bi

∥∥∥∥∥ ≤ ‖A‖√
αm(B)

∞∑
i=m+1

(√
αm(B)

)2i+1

(2i+ 1)!

=
‖A‖√
αm(B)

(
sinh

(√
αm(B)

)
− tsh2m+1

(√
αm(B)

))
,(5.7)

where

(5.8) ts2m+1(A) :=

m∑
i=0

(−1)i

(2i+ 1)!
A2i+1, tsh2m+1(A) :=

m∑
i=0

1

(2i+ 1)!
A2i+1

are the Taylor approximants of order 2m+1 to sinA and sinhA, respectively. Based on
the ts2m+1 of (5.8) together with the triple angle recurrence sin(3A) = 3 sinA−4 sin3A
we can design a multiprecision algorithm for the matrix sine similarly to that in
section 4. Moreover, an algorithm for computing the matrix sine and cosine at the
same time can be easily developed exploiting the idea in [5], where computational
savings are possible by reusing the powers of B = A2 in the matrix array B.

On the other hand, we can evaluate the matrix sine and its Fréchet derivative
simultaneously without computing cosA. Fréchet differentiating the triple angle for-
mula sin(3A) = sinA(3I − 4 sin2A) and employing the product rule, we arrive at

Lsin(3A, 3E) = Lsin(A,E)
(
3I − 4 sin2A

)
(5.9)

− 4 sinA
(
sinALsin(A,E) + Lsin(A,E) sinA

)
.

If we scale A by 3s for some s ∈ N, using (5.9) we obtain the following relation which
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produces S0 := sinA and L̃0 := Lsin(A,E) simultaneously:

L̃s = Lsin(3−sA, 3−sE), Ss = sin(3−sA),

L̃k−1 = L̃k(3I − 4S2
k)− 4Sk(SkL̃k + L̃kSk)

Sk−1 = Sk(3I − 4S2
k)

}
k = s : −1 : 1,

where Sk can be evaluated by a Taylor approximant with truncation error bounded
above by (5.7), and an approximated L̃k is obtainable by Fréchet differentiating Sk
in the direction 3−sE.

Ultimately, it is possible to construct an algorithm to compute efficiently the
matrix cosine and sine functions and their Fréchet derivatives all together. Fréchet
differentiating both sides of the double angle formulae

cos(2A) = I − 2 sin2A, sin(2A) = 2 sinA cosA

gives

Lcos(2A, 2E) = −2
(
sinALsin(A,E) + Lsin(A,E) sinA

)
,

Lsin(2A, 2E) = 2
(
sinALcos(A,E) + Lsin(A,E) cosA

)
,

from which we can obtain the following recurrence for computing C0 = cosA, S0 =
sinA, L0 = Lcos(A,E), and L̃0 = Lsin(A,E) all together.

Ls = Lsin(2−sA, 2−sE), L̃s = Lsin(2−sA, 2−sE),

Cs = cos(2−sA), Ss = sin(2−sA),

Lk−1 = −2(SkL̃k + L̃kSk)

L̃k−1 = 2(SkLk + L̃kCk)

Sk−1 = 2SkCk

Ck−1 = I − 2S2
k

 k = s : −1 : 1.

6. Numerical experiments. All our experiments are performed using the 64-
bit version of MATLAB 2021a on a laptop equipped with an Intel i7-6700HQ processor
running at 2.60GHz and with 16GB of RAM. The code uses the Advanpix Multipreci-
sion Computing Toolbox (version 4.8.3.14463) [32], which allows the user to specify the
number of decimal digits d of working precision by using the command mp.Digits(d).

The test matrices, whose size ranges between 4 and 41, are nonnormal and are
selected from Anymatrix [24], [25] and the literature of matrix functions [5], [16], [27];
those from the matrix function literature are collected in an Anymatrix group that is
available from https://github.com/Xiaobo-Liu/matrices-mp-cosm. Normal matrices
are excluded since they can be easily handled by diagonalization, as we have discussed
in the previous sections. Most of test matrices have only real elements and are set to
be of size 16 × 16. To examine the algorithms for complex matrices we also test the
above matrices multiplied by the imaginary unit i. In total 198 matrices are used in the
experiments, and we denote by F the set containing these matrices. The MATLAB
code for our algorithms and experiments is available from https://github.com/Xiaobo-
Liu/mp-cosm.

We compare the following codes for computing the cosine. The first three codes
are for double precision only, and are used to test whether our algorithm is competitive
in double precision.

https://github.com/Xiaobo-Liu/matrices-mp-cosm
https://github.com/Xiaobo-Liu/mp-cosm
https://github.com/Xiaobo-Liu/mp-cosm
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• cosm, the algorithm by Al-Mohy, Higham, and Relton [5, Alg. 4.1], which is
intended for double precision only.

• cosm tay, the algorithm by Sastre et al. [35], which uses the scaling and re-
covering method based on truncated Taylor series, and is intended for double
precision only.

• cosm pol, the algorithm by Sastre et al. [36], which uses Taylor polynomial
approximations of fixed degree with precomputed coefficients, and is intended
for double precision only.

The next four codes are for arbitrary precision.
• cosm adv, the (overloaded) cosm function provided by the Advanpix Multi-

precision Computing Toolbox [32].
• cosm exp, the algorithm [21, Alg. 12.7] that computes the cosine via the

identity involving the exponential

(6.1) cosA =

{
Re(eiA), if A is real,
1
2 (eiA + e−iA), if A is complex,

where the exponential is computed by expm [3] and the multiprecision algo-
rithm for the matrix exponential [16], respectively, in double precision and
other precisions.

• cosm mp, our implementation of Algorithm 4.4 with mmax = 500.
• cosm mp s, our implementation of the Schur variant of Algorithm 4.4 with
mmax = 500 (the real Schur decomposition is used where possible).

We found in practice that the preprocessing techniques in general made little dif-
ference to accuracy of our algorithm (this is also found in [19], for example). Therefore,
we did not perform preprocessing in the tests. We also compared cosm mp with its
counterpart based on an absolute error bound and found that the former is faster
and more accurate in practice. In our implementation of Algorithm 4.4 we set k = 3,
which controls the switch between increasing m and s as the truncation error decays,
and we chose the lower precision in Fragment 4.1 to be double precision.

We assess the quality of a computed solution X̃ by an algorithm running with
d digits of precision in terms of the 1-norm relative forward error ‖X − X̃‖1/‖X‖1,
where the reference solution X is computed in 2d digits of precision using cosm mp

with mmax = 2500. We gauge the forward stability of the algorithms by comparing
the forward error with κcos(A)u, where κcos(A) is the 1-norm condition number [21,
Chap. 3] of the matrix cosine of A. We estimate it in double precision by applying
the funm condest1 function provided by the Matrix Function Toolbox [20] to cosm.

To improve the plots of forward error, we map any errors outside the displayed
range onto the nearest edge (top or bottom) of the plot. We also present the results in
the form of performance profiles [13], and use the technique of Dingle and Higham [12]
to rescale errors smaller than u.

6.1. Accuracy of the computed cosine in double precision. Our first ex-
periments compare the accuracy of cosm mp and cosm mp s with cosm, cosm exp,
cosm tay, cosm pol, and cosm adv in IEEE double precision, with cosm adv running
with 16 decimal digits of precision simulated by Advanpix [32].

Figure 6.1 presents the comparison in accuracy between the algorithms on the
test matrices, sorted by decreasing condition number. In the performance profiles,
the y-coordinates of a given method represents the frequency of matrices for which its
relative error is within a factor θ of the error of the algorithm that produces the most
accurate result. We observe that our implementation of cosm mp in double precision
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Fig. 6.1. Left: forward error of the algorithms on the matrices in F in double precision, where
the solid line is κcos(A)u. Right: corresponding performance profiles.

is competitive in accuracy with the most accurate algorithms that are optimized for
double precision. We also note that among the algorithms cosm adv is overall the
least accurate and can be unstable, as it sometimes provides a forward error far above
κcos(A)u.

6.2. Accuracy in higher precision. Now we examine the accuracy of our
algorithms in higher precision. We compare the relative forward errors of cosm adv,
cosm exp, cosm mp, and cosm mp s running at 256 and 1024 decimal digits of precision
on the test matrices, and report the same data in the form of performance profiles.

As reported in Figure 6.2, cosm mp delivers superior accuracy to its counterparts
and gives the best accuracy in more than 60 percent of the cases. The exponential-
based algorithm cosm exp is only slightly less accurate than cosm mp. The Schur-based
algorithm cosm mp s is distinctively less accurate than its Schur-free counterpart. We
also note that cosm adv achieves the worst overall accuracy in the experiments and
shows signs of forward instability, especially when the number of decimal digits is
increased from 256 to 1024, as it gives errors much larger than κcos(A)u in many
cases.

6.3. Speed comparison for computing the cosine. We also compared the
execution times of our implementations of cosm mp and cosm mp s with the other
algorithms in double and higher precisions. For this purpose it is sensible to test the
algorithms on matrices of different sizes, so we take from F the matrices whose size
is variable in the tests. We denote the new set of 104 matrices by V.

Figure 6.3 shows that, in double precision, cosm tay, cosm pol, cosm exp, and
cosm are the fastest algorithms and have close performance in computation time.
These double-precision-oriented algorithms employ a rational approximant of degree
chosen from a fixed set based on error bounds with precomputed coefficients and are
highly optimized in selecting the degree and scaling parameter, so in general cosm mp

and cosm mp s are not expected to be as efficient. However, from the performance
profiles we observe that cosm mp has relatively better performance as n increases
from 16 to 100. This is because the O(n2) flops required by cosm mp in evaluating
the error bound, which is extra compared with the above double-precision-oriented
algorithms, are expensive for small matrices but become negligible for large n. The
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Fig. 6.2. Left: forward error of the algorithms on the matrices in F in d digits of precision,
where the solid line is κcos(A)u. Right: corresponding performance profiles. Top: d = 256. Bottom:
d = 1024.

Schur-based algorithm cosm mp s becomes relatively slower as n grows. We also note
that cosm adv is appreciably slower than the rest of the algorithms in both cases.

Then we compare the execution times of cosm adv, cosm exp, cosm mp, and
cosm mp s in precisions higher than double. Figure 6.4 reports the execution times
and corresponding performance profiles of these algorithms in 256 digits of precision,
where matrices of size n = 16 and n = 100 are used. It is observed that cosm mp is
substantially faster than the other algorithms, being the fastest algorithm on about
80 percent of the matrices in both sets. The Schur-based algorithm cosm mp s is in
general faster than cosm exp for n = 16, but its performance deteriorates for n = 100.
cosm adv is the least efficient algorithm whose behavior is unsteady as it can be much
slower than other algorithms on certain matrices. We repeated the above experiments
in a working precision of 1024 digits, finding similar behavior of the algorithms.

6.4. Accuracy of the computed Fréchet derivative. In this section we ex-
amine the accuracy of Algorithm 5.2 for computing the Fréchet derivative in multi-
precision arithmetic on the 198 matrices in set F . For each A, we used a different
E, generated to have pseudorandom elements drawn from the standard normal dis-
tribution and normalised such that ‖E‖1 = 1. We evaluate in the 1-norm the relative
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Fig. 6.3. Execution times (in seconds) and the corresponding performance profile of the algo-
rithms for computing matrices in V in double precision on matrices of different size. The execution
times of cosm adv is not plotted because their appreciably larger magnitude makes it destructive and
inconvenient to be compared against the others.

forward error of the computed Fréchet derivative. To obtain the reference solution
Lcos(A,E) we apply Algorithm 4.4 with mmax = 2500 in twice the working precision
to the 2n× 2n matrix [A E

0 A ] and exploit the property, for arbitrary f [21, eq. (3.16)],

(6.2) f

([
A E
0 A

])
=

[
f(A) Lf (A,E)

0 f(A)

]
.

We tested the following four schemes for computing the Fréchet derivative:
• cosm fre blk, Algorithm 4.4 with mmax = 500 applied to the block 2 × 2

matrix in (6.2).
• cosm fre mp, our implementation of Algorithm 5.2 with mmax = 500.
• cosm fre mp s, our implementation of the Schur variant of Algorithm 5.2

with mmax = 500.
• cosm fre exp, which computes Lcos(A,E) = i

2 (Lexp(iA,E)−Lexp(−iA,E)),
which is obtained by applying the chain rule to the complex case of (6.1), by
invoking the algorithm [2] for computing the Fréchet derivative of the matrix
exponential, and is intended for double precision only.
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Fig. 6.4. Execution time (in seconds) and corresponding performance profiles of the algorithms
in 256 digits of precision on matrices of different sizes.
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Fig. 6.5. Left: Forward error in Lcos(A,E) on the matrices in F in double precision, where
the solid line is κL(A,E)u. Right: Corresponding performance profiles.
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Fig. 6.6. Left: Forward error in Lcos(A,E) on the matrices in F in 256 digits of precision,
where the solid line is κL(A,E)u. Right: Corresponding performance profiles.

As in the previous experiments in the implementation of Algorithm 4.4 and Algo-
rithm 5.2 we set k = 3, which controls the switch between increasing m and s as the
truncation error decays. We also measure the forward stability of these algorithms by
comparing the error with condL(A,E)u, where condL(A,E) is the condition number
of the Fréchet derivative, defined as

condL(A,E) = lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆E‖≤ε‖E‖

‖Lcos(A+ ∆A,E + ∆E)− Lcos(A,E)‖
ε‖Lcos(A,E)‖

.

We estimate condL(A,E) using an algorithm of Higham and Relton [26].
We observe from Figure 6.5 that cosm fre mp and cosm fre blk are competitive

in terms of accuracy. This also reflects the robustness of Algorithm 4.4 for computing
the matrix cosine. However, cosm fre blk has eight times the cost and four times the
storage requirement of cosm fre mp, and its performance may depend on the scaling
of the perturbation E, which is undesirable [22, sect. 4.3]. All the algorithms except
cosm fre exp behave in a forward stable manner in most of cases. The exponential-
based algorithm cosm fre exp is in general the least accurate and can be unstable on
some very well-conditioned problems.

Finally, we examine the accuracy of the algorithms in precisions higher than
double. Figure 6.6 shows a similar trend to that in the double precision. The Schur-
free algorithms cosm fre mp and cosm fre blk are most accurate and have close
performance, and all the three algorithms are reasonably forward stable. We repeated
the above experiments in a working precision of 1024 digits, finding similar behavior
of the algorithms.

7. Conclusions. Existing algorithms for computing the matrix cosine are all
designed for double precision arithmetic and typically require certain precomputed
constants that are specific to double precision arithmetic, so they do not conveniently
extend to an arbitrary precision environment. In this work we have developed mul-
tiprecision algorithms that take the unit roundoff u and matrices A and E as input
and compute cosA and the Fréchet derivative Lcos(A,E). The algorithms employ a
forward error bound on the Taylor approximant to cosA that combines the hyper-
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bolic cosine function with the quantity
√
αm(A2). We have also derived a framework

for computing the Fréchet derivative, constructed an efficient evaluation scheme for
computing the cosine and its Fréchet derivative simultaneously in arbitrary precision,
and shown how this scheme can be extended to compute the matrix sine, cosine, and
their Fréchet derivatives all together.

Experiments show that our new algorithms behave in a forward stable manner in
floating-point arithmetic. The transformation-free version of the new algorithm for
computing the cosine is competitive in accuracy with the state-of-the-art algorithms in
double precision and is the fastest and most accurate among all candidates in working
precisions higher than double. The fact that the Fréchet derivative computation in
Algorithm 5.2 is based on an error bound that is valid only for the cosA computation
does not appear to affect the accuracy of the computed Fréchet derivative. The new
algorithms have been shown to have excellent accuracy on various test matrices as
well as their variants multiplied by the imaginary unit i, so the algorithms are also
good candidates for computing the matrix hyperbolic cosine function and its Fréchet
derivative from the identity coshA = cos(iA).

The analysis and techniques here can be adapted for evaluating other matrix
trigonometric and hyperbolic functions in arbitrary precision arithmetic, such as those
treated in [1] and the wave-kernel functions investigated in [33] and their Fréchet
derivatives. Another possible future direction is to extend our algorithms to compute
the action of these functions on a matrix in arbitrary precision as it is actually the
matrix-vector products that are required in the solutions of wave equations.
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[6] P. Alonso, J. Ibánez, J. Sastre, J. Peinado, and E. Defez, Efficient and accurate algo-
rithms for computing matrix trigonometric functions, J. Comput. Appl. Math., 309 (2017),
pp. 325–332, https://doi.org/10.1016/j.cam.2016.05.015.

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to nu-
merical computing, SIAM Rev., 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671.

[8] M. Caliari and F. Zivcovich, On-the-fly backward error estimate for matrix exponential
approximation by Taylor algorithm, J. Comput. Appl. Math., 346 (2019), pp. 532–548,
https://doi.org/10.1016/j.cam.2018.07.042.

[9] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix func-
tions, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485, https://doi.org/10.1137/
S0895479802410815.
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