
PRACTICAL LEVERAGE-BASED SAMPLING FOR LOW-RANK
TENSOR DECOMPOSITION∗

BRETT W. LARSEN† AND TAMARA G. KOLDA‡

Abstract. The low-rank canonical polyadic tensor decomposition is useful in data analysis and
can be computed by solving a sequence of overdetermined least squares subproblems. Motivated
by consideration of sparse tensors, we propose sketching each subproblem using leverage scores to
select a subset of the rows, with probabilistic guarantees on the solution accuracy. We randomly
sample rows proportional to leverage score upper bounds that can be efficiently computed using
the special Khatri-Rao subproblem structure inherent in tensor decomposition. Crucially, for a
(d + 1)-way tensor, the number of rows in the sketched system is O(rd/ε) for a decomposition of
rank r and ε-accuracy in the least squares solve, independent of both the size and the number of
nonzeros in the tensor. Along the way, we provide a practical solution to the generic matrix sketching
problem of sampling overabundance for high-leverage-score rows, proposing to include such rows
deterministically and combine repeated samples in the sketched system; we conjecture that this can
lead to improved theoretical bounds. Numerical results on real-world large-scale tensors show the
method is significantly faster than deterministic methods at nearly the same level of accuracy.

Key words. tensor decomposition, CANDECOMP/PARAFAC (CP), canonical polyadic (CP),
matrix sketching, leverage score sampling, randomized numerical linear algebra (RandNLA)

1. Introduction. Low-rank canonical polyadic or CANDECOMP/PARAFAC
(CP) tensor decomposition [7, 17], is a popular unsupervised learning method akin to
low-rank matrix decomposition and principal component analysis (PCA). A low-rank
tensor factorization identifies factor matrices that provide the best low-rank multi-
linear representation of a higher-order tensor. Tensor decomposition is ubiquitous in
data analysis with applications to social networks [30, 32], ride sharing [41], cyber
security [28], criminology [29], text clustering [9], online behaviors [34], etc. We refer
the reader to several surveys [1, 20, 35] for more information.

In this work, we consider the problem of computing the CP tensor decomposition
for sparse tensors using an alternating least squares (ALS) approach. Bader and
Kolda [4] show that the cost per least squares solve for a sparse tensor is proportional
to the number of nonzeros. However, in many cases, even that can be too expensive
because some tensors have billions of nonzeros. Cheng et al. [8] showed that it is
possible to use matrix sketching in the three-way sparse case. We propose a different
application of matrix sketching, targeting a different step in the least squares solve
(explained in detail below), achieving an improved sampling bound. In addition, we
present a detailed, practical algorithm along with new methodologies for handling the
overabundance of high-probability rows based on combining repeat rows and a hybrid
strategy for combining deterministic and random samples.

1.1. CP least squares problem. We focus immediately on the prototypical
least squares problem, deferring detailed definitions and derivations until section 2.
Let X be a (d+1)-way tensor of size n1 × n2 × · · · × nd+1. The goal of CP is to
compute d+ 1 factors matrices, denoted {A1, . . . ,Ad+1 }, that can be assembled into
a low-rank model of X. Each iteration of CP-ALS solves a sequence of (d+1) least

∗This work has been supported in part by the Department of Energy Office of Science Advanced
Scientific Computing Research Applied Mathematics Program. Additionally, the work of BL was sup-
ported in part by the Department of Energy Computational Sciences Graduate Fellowship program
(DE-FG02-97ER25308).
†Stanford University, Stanford, CA (bwlarsen@stanford.edu)
‡MathSci.ai, Dublin, CA (tgkolda@mathsci.ai)

1

ar
X

iv
:2

00
6.

16
43

8v
3

 [
m

at
h.

N
A

]
 3

 J
an

 2
02

2

mailto:bwlarsen@stanford.edu
mailto:tgkolda@mathsci.ai

2 BRETT W. LARSEN AND TAMARA G. KOLDA

squares problems. Without loss of generality, we consider the least squares problem
for computing the (d+1)st factor matrix with {A1, . . . ,Ad } fixed:

(1)

min
B
‖ZBᵀ −Xᵀ‖2F subject to B ∈ Rn×r with

Z = Ad � · · · �A1 ∈ RN×r, Ak ∈ Rnk×r for k ∈ [d], N =

d∏
k=1

nk,

X ∈ Rn×N , and r, n� N.

The symbol � denotes the Khatri-Rao product (KRP); see section 2. The matrix X
is the mode-(d+1) unfolding of the input tensor. The matrix B is the (d+1)st factor
matrix and n = nd+1. If X is sparse, then nnz(X) � N , and sparse tensors are the
primary focus of our work.

Because r � N , the least squares problem (1) is tall and skinny, making it a
candidate for sketching. Ignoring the structure of both Z and X, solving (1) costs
O(Nnr + Nr2) floating point operations (FLOPS) as the QR decomposition of Z is
computed once for a cost of O(Nr2) and then applied n times. We can alternatively
exploit the KRP structure of Z to compute the solution at the same cost of O(Nnr)
via the normal equations [20]. A main advantage of the latter approach is that the
cost reduces to O(nnz(X) r) when X is sparse [4].

Instead of solving the least squares problem (1) directly, we consider a sketched
version of the form

(2) min
B
‖ΩZBᵀ −ΩXᵀ‖2F , where Ω ∈ Rs×N

and Ω has only one nonzero per row, which means that it selects a subset of rows in
the least squares problem. The cost of solving the subsampled least squares problem
is O(snr+sr2), where we assume N � s > max {n, r }. In the case where X is sparse,
the O(snr) complexity can be be reduced by using sparse-matrix multiplication. If
we sample rows proportional to the products of the leverage scores (see Definition 5)
of the constituent factor matrix rows, then s = O(rd/ε) rows are required for an
ε-accurate solution with high probability and for ε sufficiently small; see Theorem 8.
Moreover, we compute Z̃ ≡ ΩZ and X̃

ᵀ
≡ ΩXᵀ without every forming Ω, Z, or

X explicitly. This means the complexity of the sketched least squares problem is
O(max {n, r } rd+1/ε) for a (d+ 1)-way tensor, with a further reduction in the sparse
case possible using sparse-matrix multiplication.

1.2. Related work. A variety of randomized algorithms have been applied to
the CP decompositions in previous work. A Kronecker fast Johnson-Lindenstrauss
transform (KFJLT) sketching approach was proposed in [6] and proven to be a
Johnson-Lindenstrauss transform in [19] (see also [25, 18]). The KFJLT reduces the
per-iteration cost to O(snr + sr2) where s � N is the number of samples. Unfor-
tunately, the KFJLT approach is not applicable in the sparse case. Even when the
tensor X is sparse, this only makes the Xᵀ in the least squares problem sparse, and
the matrix Z is still dense because it is a (dense) KRP. Forming Z would require
O(Nr) flops and storage before it could be multiplied by a sketching matrix. The
KFJLT approach avoids forming Z; instead, it separately multiplies each factor ma-
trix (Ak) in the KRP by an FJLT and then only forms those rows of Z that are in the
sketch. Importantly, this approach necessitates special preprocessing in the form of
multiplying X by an FFT in each mode, destroying sparsity if it exists. For instance,

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 3

the smallest sparse tensor we use in our experiments (the “Uber” tensor) needs only
0.14 GB of storage for its sparse representation, but the KFJLT-preprocessed dense
version would need 68 GB of storage. This is our motivation for the alternative to
the KFJLT. Nevertheless, although this work focuses on sparse tensors, our proposed
leverage score sampling is a viable approach for dense tensors as we show numerically
in Appendix C. According to [19], the number of samples required for the KFJLT is
s = O(log2d−1 r logN/ε2), so our sample complexity is also improved.

Also for dense tensors, one approach to the CP decomposition is to randomly
compress the tensor and then decompose the compressed version. Zhou, Cichocki,
and Xie [44] used the randomized range finder to estimate the basis for the Tucker
decomposition and then compute the CP decomposition of the Tucker core. ParaS-
ketch by Yang, Zamzam, and Sidiropoulos [42] uses sketching to parallelize the al-
gorithm; a small sketch of the tensor is independently constructed multiple times,
decomposed in parallel, and combined. An alternative approach proposed by Wang,
Tung, Smola, and Anandkumar [39] is to construct a sketch of the tensor (called
TensorSketch in analogy to CountSketch) and then use this sketch to compute the
MTTKRP; the number of samples required for general tensors, however, is not de-
rived. Randomized algorithms have also been applied to decompositions other than
CP, including the Tucker decomposition [12, 24, 43], the Tucker decomposition with
streaming data [38, 3], and the CUR decomposition [23, 37].

The most similar work to ours is Cheng et al. [8], described briefly here. As
mentioned above, the KRP structure of Z can be exploited to translate (1) into an
equivalent least squares problem of the form

min
B
‖BV − ZᵀX‖2F where V = (Aᵀ

1A1) ~ · · ·~ (Aᵀ
dAd) ∈ Rr×r,

where ~ represents the Hadamard product. The difference is that Cheng et al. sketch
the matrix product ZᵀX rather than the full least squares problem, and as a result,
our theory and sampling schemes differ. For example, the theory of Cheng et al.
requires samples based on rows of the unfolded tensor X and leverage scores of the
factor matrices that comprise Z, where we use only the latter and our sampling has
no direct dependency on the rows of X. They only prove their result for third-order
tensors, but their result should generalize to s = O(rd log n/ε2) for the (d + 1)-way
case. Our proposed approach uses fewer samples since we have s = O(rd/ε).

After the initial version of this work was posted, Aggour, Gittens, and Bülent [2]
proposed a sketching framework for CP that chooses the number of samples per sketch
in order to guarantee high-accuracy solutions and a corresponding reduction in the
norm at each step. They develop a methodology to adjust the number of samples over
time to ensure the appropriate accuracy in the solutions, and this method requires
computing some full solutions in order to validate the accuracy and determine when
the number of samples needs to be increased. We do not compare to this method
because it is not applicable to the large-scale sparse tensors under consideration here.
They focus mainly on dense tensors and consider only one sparse tensor of size 120×
918× 2,881 with approximately 85,000 nonzeros. They report times over 300 seconds
for their method applied to this sparse problem, but they do not compare to the
standard CP-ALS. For a sparse tensor of that size and density, the standard CP-ALS
requires approximately 0.1 seconds per iteration on a laptop computer1, and no more
than O(10 sec.) overall to solve such a problem. Such small problems do not require

1Intel(R) Core(TM) i7-10510U CPU 1.80 GHz with 16 GB RAM running MATLAB

4 BRETT W. LARSEN AND TAMARA G. KOLDA

sketching as we propose here since the standard CP-ALS method is already extremely
fast, i.e., O(nnz(X)r) operations per least squares solve.

1.3. Our contributions. Randomized numerical linear algebra has the poten-
tial to significantly accelerate the solution to the least squares subproblems in CP-
ALS. In the sparse case, we would ideally sample rows in the least squares problem
according to leverage scores. We cannot calculate the leverage scores directly, but we
can instead upper bound them using the structure of the KRP and efficiently sample
proportional to these bounds. Our contributions are as follows:
• We detail CP-ARLS-LEV, a practical method for leverage-score randomized sam-

pling in the context of CP-ALS; see subsection 6.2.
• We prove that the proposed method obtains an ε-accurate solution with high

probability with s = O(rd/ε) rows for suitably small epsilon; see Theorem 8. The
number of samples is independent of the number of rows in the system and the
number of nonzeros in the data tensor.
• For concentrated sampling probabilities that result in an overabundance of high-

probability rows, we propose two novel methods in section 4: (1) combining
repeated rows, and (2) including high-probability rows deterministically. These
methods can be used in any sketching scenario, not just for tensor decomposition.
• We present detailed numerical experiments in MATLAB showing the advantages

of our proposed approach in section 7. For instance, compared to CP-ALS, we
achieve a speed-up of up to 16 times on the large Reddit tensor which has 4.7
billion nonzeros, reducing the compute time from about 4 days to 6 hours.

2. Background on least squares problems in CP-ALS and KRPs. Equa-
tion (1) represents the prototypical least squares problem in CP-ALS. We have as-
sumed that we are solving the (d+1)st subproblem for notational convenience, but all
(d+1) subproblems have precisely the same format. For instance, if we were solving
the least squares subproblem for first factor matrix (A1), then (1) would change only
in that n = n1, X is the mode-1 unfolding of X, and Z = Ad+1 � · · · �A2 ∈ RN×r

with N =
∏d+1
k=2 nk. Henceforth, without loss of generality, we continue to assume

that we are solving the (d+1)st subproblem as in (1). For simplicity of discussion, we
assume throughout that rank(Z) = rank(A1) = · · · = rank(Ad) = r.

The KRP plays a key role in our discussion, so we provide a precise definition.
If Z = Ad � · · · � A1, then there is a bijective mapping between row i of Z and a
d-tuple of rows (i1, . . . , id) in the factor matrices where

(3) Z(i, :) = A1(i1, :) ~ · · ·~ Ad(id, :).

Specifically, we refer to (i1, . . . , id) ∈ [n1] ⊗ · · · ⊗ [nd] as the multi-index and i ∈ [N]
as the linear index where the bijective mapping is

(4) i = i1 +

d∑
k=2

(
k−1∏
`=1

nk

)
(ik − 1).

3. Background on sketching for least squares problems. For detailed in-
formation on leverage score sampling in matrix sketching, we refer the reader to the
surveys [22, 40]. Here we provide key concepts that are needed in this work.

Our goal is to find a sampling matrix Ω so that ΩX can be computed efficiently
when X is sparse. To accomplish this, we limit our attention to choices for Ω where
each row has a single nonzero. As discussed in the introduction, solving the least

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 5

squares problem (1) directly costs O(Nr2+Nnr). Our goal is to eliminate dependence
on N . In this section, we review the theory which explains how to reduce the cost to
O(sr2 + snr) where s depends in part on how we perform the sampling (the O(snr)
complexity can be further reduced by exploiting the sparsity of X). This removes one
dependence on N , and in section 5, we explain how to avoid explicitly forming the
KRP or calculating the leverage scores, removing the remaining dependence on N .

3.1. Weighted sampling. Assuming we choose rows according to some proba-
bility distribution, we show how to weight the rows so that the subsampled norm is
unbiased.

Definition 1. We say p ∈ [0, 1]N is a probability distribution if
∑N
i=1 pi = 1.

Definition 2. For a random variable ξ ∈ [N], we say ξ ∼ multinomial(p) if
p ∈ [0, 1]N is a probability distribution and Pr(ξ = i) = pi.

We can define a matrix that randomly samples rows from a matrix (or elements
from a vector) with weights as follows. The following definition can be found, e.g., in
[40, Defn. 16] or [13, Alg. 1].

Definition 3. We say Ω ∈ Rs×N ∼ randsample(s,p) if s ∈ N, p ∈ [0, 1]N

is a probability distribution, and the entries on Ω are defined as follows. Let ξj ∼
multinomial(p) for j = 1, . . . , s; then

ω(j, i) =

{
1√
spi

if ξj = i,

0 otherwise,
for all (j, i) ∈ [s]× [N].

It is straightforward to show that such a sampling matrix is unbiased, so we leave
the proof of the next lemma as an exercise for the reader.

Lemma 4. Let x ∈ RN . Let p ∈ [0, 1]N be probability distribution such that pi > 0
if xi 6= 0 and let Ω ∼ randsample(s,p). Then E‖Ωx‖22 = ‖x‖22.

The challenge of sketching is to design a sampling matrix Ω that can be efficiently
computed yet bounds the distortion of the sketched solution with as few samples as
possible. There is a vast literature on different methods for constructing sketches,
but here we focus on row sampling in which a sketch provides a procedure for how to
select and weight s rows of the original matrix. Doing this effectively often requires
an understanding of the structure of the data, and to that end, we define the leverage
scores of a matrix in the next subsection.

3.2. Leverage scores and sampling probabilities. The distribution selected
for p determines the quality of the estimate in a way that depends on the leverage
scores of Z.

Definition 5 (Leverage Scores [11]). Let Z ∈ RN×r with N > r, and let
Q ∈ RN×r be any orthogonal basis for the column space of Z. The leverage scores of
the rows of Z are given by

`i(Z) = ‖Q(i, :)‖22 for all i ∈ { 1, . . . , N } .

The coherence is the maximum leverage score, denoted µ(Z) = maxi∈[N] `i(Z).

The leverage scores indicate the relative importance of rows in the matrix Z. It
is known that `i(Z) ≤ 1 for all i ∈ [N],

∑
i∈[N] `i(Z) = r, and µ(Z) ∈ [r/N, 1] [40].

The matrix Z is called incoherent if µ(Z) ≈ r/N .

6 BRETT W. LARSEN AND TAMARA G. KOLDA

If we sample based on leverage scores, a sketched system can achieve an ε-accurate
solution, as stated in the following theorem. Specifically, the number of samples
required to obtain an ε-accurate solution with probability 1− δ is

s = (r/β) max {C log(r/δ), 1/(δε) }

where C is a constant. The quantity β connects the leverage scores and the sampling
probabilities, and β is sometimes referred to as the misestimation factor. We generally
treat δ as a constant and assume ε is sufficiently small so that ε−1 ≥ Cδ log(r/δ). In
this case, we can write s = O(r/(βε)).

Theorem 6. Consider the least squares problem minB∈Rr×n ‖ZBᵀ−Xᵀ‖2 where
Z ∈ RN×r with r � N , rank(Z) = r, and X ∈ Rn×N . Let p ∈ [0, 1]N be a probability
distribution and assume there exists a fixed β ∈ (0, 1] such that

β ≤ min
i∈[N]

pir

`i(Z)
for all i ∈ [N].

For any ε, δ ∈ (0, 1), set s = (r/β) max {C log(r/δ), 1/(δε) } where C = 144/(1 −
1/
√

2)2 and let Ω = randsample(s,p). Define B∗ ≡ arg minB∈Rr×n ‖ZBᵀ −Xᵀ‖2.
Then B̃∗ ≡ arg minB∈Rr×n ‖ΩZBᵀ −ΩXᵀ‖2F satisfies

‖ZB̃
ᵀ
∗ −Xᵀ‖2F ≤ (1 + ε)‖ZBᵀ

∗ −Xᵀ‖2F

with probability at least 1− δ.
To the best of our knowledge, this precise result is new so we provide its proof

in Appendix A. From this result, we can see that the user should ideally specify p so
that β is maximal, i.e., pi = `i(Z)/r for all i ∈ [N] would yield β = 1. But computing
the true leverage bounds is too expensive. Instead, we estimate them and get a bound
that yields β = 1/rd as explained in subsection 5.1.

4. Tools for sketching with concentrated sampling probabilities. In this
section, we discuss two novel approaches to improve the computational cost of sketch-
ing for matrices with concentrated sampling probabilities, i.e., a small subset of the
rows accounts for a significant portion of the probability mass. In these cases, a small
subset of rows are repeatedly re-sampled which leads to a larger number of required
samples and is inefficient. In subsection 4.1, we show that one simple speedup is to
combine (and appropriately reweight) repeated rows, reducing the size of the sampled
least squares problem without changing the solution. In subsection 4.2, we propose a
novel hybrid sampling method in which we deterministically include a relatively small
number of high-probability rows and then sample randomly from the remaining rows.

These results assume no special structure in the least squares problem. Addition-
ally, they can be implemented in an efficient solver for arbitrary sampling probability
distributions, i.e., they do not require a priori knowledge that the probabilities are
concentrated. If the probabilities are close to uniform, then the solver is essentially
unchanged. This is crucial in the case of solving a series of least squares problems
which may each have different characteristics. In our case for the CP tensor factoriza-
tion, the factor matrices are initialized randomly (with near-uniform sampling prob-
abilities) and often have much more structured factored matrices (with concentrated
sampling probabilities) as the method converges. We show numerical improvements
yielded by these methods in subsections 7.1 and 7.2.

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 7

4.1. Combine repeated rows. If the random sampling of a matrix selects the
same rows repeatedly, it is possible to combine repeated entries. This results in a
smaller matrix that yields an equivalent sampled system. Consider the definition of
Ω in Definition 3. Let s̄ be the number of unique values in the set Ξ ≡ { ξ1, . . . , ξs },
let ξ̄j denote the kth unique value for k ∈ [s̄], and let cj be the number of times that
ξ̄j appeared in Ξ. Define Ω̄ ∈ Rs̄×N as follows:

(5) ω̄(j, i) =

{√
cj
spi

if ξ̄j = i

0 otherwise
for all (j, i) ∈ [s̄]× [N].

It can be shown that ‖Ω̄x‖2 = ‖Ωx‖2 for all x ∈ RN . Unless otherwise noted, we
combine repeated rows in our experiments.

4.2. Hybrid deterministic and random sampling. One potential alterna-
tive to probability sampling is to sort by descending probability and deterministically
construct a matrix sketch using the top s rows. For instance Papailiopoulos, Kyril-
lidis, and Boutsidis [31] theoretically analyzed the quality of such approximations and
show they perform comparably to a randomized approach if the leverage scores fall
off according to a moderately steep power law.

In this section we propose a more flexible alternative in which a subset of the high-
est probability rows are included deterministically and the remaining rows are chosen
randomly, proportional to their original probabilities. Hybrid methods combining de-
terministic and randomized methods have also been considered in the context of the
CUR decomposition [27]. We combine deterministic and random sampling for KRP
matrices by constructing a sampling matrix of the following form:

Ω =

[
Ωdet

Ωrnd

]
∈ Rs×N .

Note that this matrix is never actually formed explicitly, as detailed in section 6.
Let D ⊂ [N] be the set of indices that are included deterministically with sdet =

|D|. We presume that D contains the highest-probability indices which would be
more likely to be repeated randomly, but our analysis regarding the reweighting of
the remainder does not depend on this. In particular, it still applies if only a subset
of the highest probability rows are included. Let kj denote the jth member of D,
j ∈ [sdet]. Then we have the corresponding deterministic row sampling matrix

(6) ωdet(j, i) =

{
1 if i = kj

0 otherwise
for all (j, i) ∈ [sdet]× [N].

We randomly sample the remaining rows from [N] \ D. Define pdet =
∑
i∈D pi.

The probability of selecting item i ∈ [N] \ D is rescaled to pi/(1− pdet). (We do not
compute these explicitly, as detailed in subsection 5.3.) Then we have

ωrnd(j, i) =

{√
1−pdet
spi

if ξj = i

0 otherwise.

4.3. Combining rows for the hybrid deterministic and random sam-
pling. We can also combine repeated rows in Ωrnd. Let s̄rnd be the number of unique

8 BRETT W. LARSEN AND TAMARA G. KOLDA

randomly sampled row indices. As discussed in subsection 4.1, let ξ̄j be the jth unique
row index. Then we can define Ω̄rnd ∈ Rs̄rnd×N as follows:

(7) ω̄(j, i) =

{√
cj
s

1−pdet
pi

if ξ̄j = i

0 otherwise
for all (j, i) ∈ [s̄rnd]× [N].

4.4. The nonviable alternative of sampling without replacement. It
might seem that an alternative to the hybrid deterministic and random sampling
method is to just increase the number of samples until the number of unique rows is
sufficiently large. In other words, why not sample without replacement? The problem
with this approach is that the samples are no longer independent, and determining
the appropriate weighting of the samples without the independence assumption is
infeasible. Without the correct weighting, the sampled residual is no longer an unbi-
ased estimator of the true residual. The hybrid method is the closest we can get to
this general idea of sampling without replacement. We include high-probability rows
deterministically so that the remainder are low enough probability that there are rela-
tively few repeats. In fact, once we compute pdet, we can estimate how many samples
will be rejected, which gives an estimate of the total number of samples (accepted
and rejected) needed to achieve roughly the desired number of accepted samples.

5. Efficient leverage score sampling for KRP matrices. Our aim is to use
sketching for least squares where the matrix is a KRP matrix of the form Z = Ad�· · ·�
A1 ∈ RN×r as defined in section 2. We cannot afford to explicitly form Z or explicitly
compute its leverage scores since either would cost O(Nr2). In subsection 5.1, we
review how to upper bound the leverage scores and use that to compute sampling
probabilities so that β in Theorem 6 is β = 1/rd−1. Our main result in Theorem 8
shows that the number of samples needed for sampling KRP matrices is s = O(rd/ε).
In subsection 5.2, we describe how to sample rows according to the probabilities
established in the previous section without forming the probabilities or Z explicitly.
In subsection 5.3, we describe how to do the deterministic inclusion proposed in
subsection 4.2 without explicitly computing all the probabilities.

5.1. Sampling probabilities for KRP matrices and main theorem. It is
possible to obtain an upper bound on the leverage scores for Z by using the leverage
scores for the factor matrices, as follows. The result appears as [8, Thm. 3.3] and [6,
Lemma 4].

Lemma 7 (Leverage Score Bounds for KRP [8, 6]). Let Z = Ad � · · · �A1 ∈
RN×r. Letting (i1, . . . , id) be the multi-index corresponding to i as defined in (4), the

leverage scores can be bounded as `i(Z) ≤ ¯̀
i(Z) ≡

∏d
k=1 `ik(Ak).

Our main result for sketching the tensor least squares problem (1) follows. For
sufficiently small ε, s = O(rd/ε) samples yields an ε-accurate residual with high prob-
ability. The dependence on 1/ε is similar to what is achieved by CountSketch in the
matrix case (d = 2) [40, Theorem 23].

Theorem 8 (Tensor Least Squares Sketching with Leverage Scores). Let Z =
Ad � · · · � A1 ∈ RN×r with r < N and rank(Z) = r, X ∈ Rn×N , and B∗ ≡
arg minB∈Rr×n ‖ZBᵀ −Xᵀ‖2. Let p ∈ [0, 1]N be defined as

(8) pi =
¯̀
i(Z)

rd
where ¯̀

i(Z) ≡
d∏
k=1

`ik(Ak) for all i ∈ [N].

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 9

For any ε, δ ∈ (0, 1), set s = rd max {C log(r/δ), 1/(δε) } where C = 144/(1− 1/
√

2)2

and let Ω = randsample(s,p). Then B̃∗ ≡ arg minB∈Rr×n ‖ΩZBᵀ−ΩX‖2F satisfies

‖ZB̃
ᵀ
∗ −Xᵀ‖2F ≤ (1 + ε)‖ZBᵀ

∗ −Xᵀ‖2F
with probability at least 1− δ.

Proof. From (8) and Lemma 7, we have

pir

`i(Z)
=

(¯̀
i(Z)/rd) r

`i(Z)
≥ 1

rd−1
for all i ∈ [N].

Thus, setting β = 1/rd−1 satisfies the condition β ≤ mini∈[N] pir/`i(Z) in Theorem 6
and yields our result.

An advantage of leverage-score sampling is bounding β so that we can get theoret-
ical bounds, but it also outperforms uniform sampling and two-norm-based sampling
in experiments as we show in Appendix B.

5.2. Implicit random row sampling for KRP matrices. Calculating the
leverage scores for factor matrix Ak is inexpensive, costing O(r2nk); however, com-
puting the sampling probabilities in (8) requires the Kronecker product of the lever-
ages scores at a cost of O(N). To avoid this O(N) expense, we sample from the
distribution implicitly by sampling each mode independently, which is equivalent per
the following result.

Lemma 9. Let Ak ∈ Rnk×r for r ∈ [d], and let `(Ak) be the vector of leverage
scores for Ak. Let ik ∼ multinomial(`(Ak)/r) for k ∈ [d]. The probability of
selecting the multi-index (i1, . . . , id) is equal to

pi =
¯̀
i(Z)

rd
where ¯̀

i(Z) ≡
d∏
k=1

`ik(Ak)

and i ∈ [N] is the linear index corresponding to (i1, . . . , id) with N ≡
∏d
k=1 nk.

Row i of Z can be assembled in O(rd) work by taking the Hadamard product of
the rows of the factor matrices specified by the multi-index.

5.3. Implicit computation of high-probability rows for deterministic in-
clusion. As explained in subsection 4.2, it can be useful to deterministically include
all rows whose sampling probability is above a specified threshold, τ . However, it
would be prohibitively expensive to find those above the threshold by explicitly com-
puting all N probabilities. Instead, we perform a coarse-grained elimination of most
candidate rows and then only compute the probabilities on a small subset of all rows.
Note that while this method can be run for arbitrary values of τ , we aim to chose τ
such that sdet is O(1).

For each factor matrix, define the normalized leverage scores pk = `(Ak)/r where
the ikth entry is denoted as (pk)ik . Recall that the probability of sampling row Z(i, :)
is given by

pi =

∏d
k=1 `ik(Ak)

rd
=

d∏
k=1

(pk)ik for all i ∈ [N],

where i is the linear index associated with subindices (i1, . . . , id). The key insight is
that only a subset of rows in each Ak could possibly contribute to a row of Z with a
sampling probability greater than τ .

10 BRETT W. LARSEN AND TAMARA G. KOLDA

Our goal is to identify the set D = { i ∈ [N] | pi > τ }. Define

αk = max
ik∈[nk]

(pk)ik , α∗ =

d∏
k=1

αk = max
i∈[N]

pi, and D̄k = { ik ∈ [nk] | (pk)ik > ταk/α∗ } .

It is easy to show that if ik 6∈ D̄k, then pi ≤ τ for any linear index i with row ik in its
constituent subindices. Hence, we can conclude

D ⊆ D̄1 ⊗ · · · ⊗ D̄d.

This means we need only check a small number of combinations. If n̄k = |D̄k|, then

we need only check
∏d
k=1 n̄k � N possibilities. It is easy to see that n̄k < 1/τ , so we

can limit the number of possibilities to consider by the choice of τ . We have found
that τ = 1/s is effective in practice. Technically, this only bounds the number of
combinations that must be checked by sd. However, if such a problem is encountered,
one can increase τ (which is chosen arbitrarily) so that the number of combinations
to check is reduced. In practice, we did not encounter a situation of needing to check
sd samples, so we used τ = 1/s in all least squares solves of all of experiments. More
generally, we assume τ is sufficient small so that sdet < s.

Once we have obtained the deterministic indices, we need to sample the remaining
rows randomly as described in subsection 4.2 for hybrid sampling. Because we will not
have explicit access to every sample’s probability to rescale, we use rejection sampling.
Suppose ξj be the jth random sample, sampled according to the original probabilities
in p. We reject the random sample ξj if ξj ∈ D and resample until ξj 6∈ D. This
yields that the probability of selection ξj = pi/(1− pdet), as desired. We continue to
sample in this manner until we have srnd = s− sdet successful random samples.

The problem of determining which combination of independent random variables
has a probability greater than a set threshold has also been studied in the context of
cryptography. Here a key is defined to be a string of the form X1, . . . , Xm where each
entry Xi can take on one of n values. We are also supplied with a matrix of probabil-
ities M such that Mij = Pr[Xi = j] and the assignment of each Xi. The problem of
key rank asks for a given probability p, how many keys have probability greater than
p and has been addressed in [15] and [26]. If the key assignments with probability
greater than p are also to be returned, the problem is called key enumeration which
has been addressed in [33]. Thus, key rank is similar to our problem of calculating
sdet and key enumeration to finding the members of D.

6. Alternating randomized least squares with leverage score sampling.
In this section, we explain how all the algorithm components come together. The
sampling procedure to find the indices and weights (i.e., Ω) to construct the reduced
system is detailed in subsection 6.1. Note that we avoid forming Ω explicitly. Instead,
we form Z̃ ≡ ΩZ and X̃

ᵀ
≡ ΩXᵀ directly. The full CP algorithm that cycles through

all modes of the tensors and uses randomized sampling with the leverage scores is given
in subsection 6.2. The computations are extremely efficient, and memory movement
to extract the right-hand-side from the large tensor X actually dominates cost in
practice. We explain our method for reducing those costs in subsection 6.3. Finally,
the fit calculation is generally too expensive to compute exactly for tensors with
billions of nonzeros, so we estimate the fit as described in subsection 6.4.

6.1. Finding indices and weights. The first and most important step is iden-
tifying rows and associated weights for inclusion in the random reduced subproblem.

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 11

Algorithm 1 Hybrid Deterministic and Random KRP Indices by Leverage Score

1: function SkrpLev(p1, . . . ,pd, s, τ) . pk ≡ `(Ak)/r
2: (idet, sdet, pdet)← DetSkrp(p1, . . . ,pd, τ) . Find { i ∈ [N] | pi > τ }
3: srnd ← s− sdet
4: (irnd, wrnd)← RndSkrp(p1, . . . ,pd, srnd, τ, pdet) . See Algorithm 2
5: (irnd, wrnd, s̄rnd)← CombineRepeats(irnd, wrnd) . After rejection sampling
6: idx← cat(idet, irnd)
7: wgt← cat(1sdet , wrnd) . Weights for deterministic indices is 1
8: s← sdet + s̄rnd
9: return (idx, wgt, s) . Return indices and weights

10: end function

Algorithm 1 outlines procedure SkrpLev for finding these. The inputs are the nor-
malized leverage scores for each factor matrix (pk = `(Ak)/r for k = 1, . . . , d), the
number of samples (s), and the deterministic threshold (τ). A few notes are in order.

• Function DetSkrp, called in Line 2, computes hybrid deterministic indices

idet =

{
i ∈ [N]

∣∣∣∣∣ pi =

d∏
k=1

(pk)ik > τ

}
, sdet = |idet|, and pdet =

∑
i∈idet

pi.

without explicitly computing all the probabilities, per subsection 5.3. We assume
that sdet < s. If not, we take the s highest probabilities that are found. Setting
τ = 1 means that no samples are included deterministically (idet = ∅, sdet =
0, pdet = 0).
• Function RndSkrp, called in Line 4, is detailed in Algorithm 2. It randomly

samples indices i ∼ multinomial(p) where pi =
∏d
k=1(pk)ik for all i ∈ [N]. Any

sample with pi > τ is rejected, and the weights are correspondingly adjusted by
multiplying them by

√
1− pdet. The same index may be sampled multiple times.

Our actual implementation samples and rejects indices in bulk, oversampling to
ensure that we still have at least srnd indices after the rejection is complete.
• Function CombineRepeats combines multiple indices as described in subsec-

tion 4.1. If row i appeared ci times in irnd, then its weight is scaled by
√
ci. The

count s̄rnd is the number of unique indices in that was produced by RndSkrp.

6.2. Full algorithm. The CP tensor decomposition of rank r for an order-(d+1)
tensor is defined by (d + 1) factor matrices A1, . . . ,Ad+1 that minimizes the sum of
the squares error between the data tensor X and CP model M. We use the shorthand
M = JA1,A2, . . . ,Ad+1K wherem(i1, . . . , id+1) =

∑r
j=1

∏d
k=1 ak(ik, j). The standard

CP-ALS algorithm solves for each factor matrix in turn (inner iterations), keeping the
others fixed. Each least squares problem is of the form shown in (1). Although (1) is
specific to solving for Ad+1, this is really just a notational convenience. Each outer
iteration, we compute the proportion of the data described by the model, i.e.,

(9) fit = 1− ‖X−M‖
‖X‖

.

The method halts when the fit ceases to improve by at least 10−4. We refer the reader
to [20] for further details and references on CP-ALS.

Our randomized variant CP-ARLS-LEV is presented in Algorithm 3. The inputs
are the order-(d + 1) tensor, X; the desired rank, r ∈ N; the number of samples for

12 BRETT W. LARSEN AND TAMARA G. KOLDA

Algorithm 2 Random KRP Indices by Leverage Score

1: function RndSkrp(p1, . . . ,pd, srnd, τ, pdet) . pdet ≡
∑
pi>τ

pi
2: j ← 0
3: while j < srnd do
4: for k = 1, . . . , d do . Sample random index i ≡ (i1, . . . , ik) ∈ [N]
5: ik ← multinomial(pk)
6: end for
7: pi ←

∏d
k=1(pk)ik

8: if pi ≤ τ then . Reject if pi > τ
9: irnd(j)← i

10: wrnd(j)←
√

1−pdet
pi srnd

. Weight adjusted for rejected indices

11: j ← j + 1
12: end if
13: end while
14: return (irnd, wrnd)
15: end function

each least squares problem, s ∈ N; the deterministic cutoff, τ ∈ [0, 1] (defaults to 1 for
random and 1/s for hybrid); the number of outer iterations per epoch, η ∈ N (which
defaults to 5); the number of failed epochs allowed before convergence, π (which
defaults to 3); and the initial guesses for the factor matrices. We group the iterations
into epochs of η outer iterations since the method does not necessarily improve with
every step due to the randomness. Further, we may not want to quit until the fit
fails to improve for π epochs. In many cases, computing the fit exactly would be to
expensive, so we use the approximate fit as documented in subsection 6.4.

We presented the canonical least squares problem in (1) in terms of the specific
least squares problem for mode d+ 1, but the CP-ALS method requires that we solve
such a problem for every mode. This is an important implementation detail but does
not otherwise require any change in thinking. At inner iteration k, for instance, we
can call the SkrpLev methods with d leverage scores vectors — the only difference
is that we leave out the kth vector of leverage scores rather than the (d + 1)st. We
let s̄ denote the actual number of sampled rows, which may be less than s due to
combining repeated rows. The function KrpSamp builds the sampled KRP matrix
given the factor matrices, indices of the rows to be combined, and corresponding
weights. The work to construct Z̃ is O(s̄dr). The function TnsrSamp extracts the
appropriate rows of the unfolded matrix as described in subsection 6.3. (Note that
we do not explicitly provide algorithms for KrpSamp or TnsrSamp.) The solution
of the least squares problem costs O(s̄r2 + s̄nr), where again the O(s̄nr) complexity
can be reduced by exploiting the sparsity of the sampled tensor. We use the same
s for every mode of the tensor, and making s mode dependent is a topic for future
work; see, e.g., [2]. The end-to-end complexity is presented in Appendix D.

6.3. Efficient sampling from sparse tensor. A final consideration for effi-
ciency is quickly compiling the right hand side, X̃. Recall that X is the (d+ 1)-mode
unfolding of the (d + 1)-way tensor X. The tensor X is sparse, so we store only
the nonzeros. We use coordinate format which stores the coordinates (i1, . . . , id+1)
and value xi1...,id+1

for each nonzero [4], for a total storage of (d + 2) nnz(X) for a
(d+ 1)-way tensor X.

The mode-(d + 1) unfolding of X produces a matrix of size n × N where N =∏d
k=1 nk and n = nd+1. We need to select and reweight the s columns of X (rows of

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 13

Algorithm 3 CP via Alternating Randomized Least Squares with Leverage Scores

1: function CP-ARLS-LEV(X, r, s, τ , η, π, tol, {Ak })
2: for k = 1, . . . , d+ 1 do
3: pk ← `(Ak)/r . Compute scaled leverage scores for initial guess
4: end for
5: repeat
6: for ` = 1, . . . , η do . Group outer iterations into epochs
7: for k = 1, . . . , d+ 1 do . Cycle through tensor modes
8: (idx, wgt, s̄)← SkrpLev(p1, . . . ,pk−1,pk+1, . . . ,pd+1, s, τ) . s̄ ≤ s
9: Z̃← KrpSamp(A1, . . . ,Ak−1,Ak+1, . . . ,Ad+1, idx, wgt) . Z̃ ∈ Rs̄×r

10: X̃← TnsrSamp(X, k, idx, wgt) . X̃ ∈ Rs̄×nk

11: Ak ← arg minB∈Rnk×r ‖Z̃Bᵀ − X̃
ᵀ‖

12: pk ← `(Ak)/r
13: end for
14: end for
15: Compute fit (exact or approximate) . Computed only after each epoch
16: until fit has not improved by more than tol for π subsequent epochs
17: return JA1,A2, . . . ,Ad+1K
18: end function

Xᵀ) that correspond to the selected rows of Z, per Algorithm 1. In this way, we can
quickly build the sparse matrix X̃ as follows:

X̃(i, j) =

{
wgt(j)x(i1, . . . , id, id+1) if idx(j) = (i1, . . . , id) and i = id+1

0 otherwise.

We typically store the entries of idx as linear indices, so, for efficiency, we recommend
to precompute and store the linearized indices corresponding to (i1, . . . , id). Further,
we operate on all (d+1) modes, so these should be precomputed for every mode. This
requires (d+ 1) nnz(X) additional storage.

6.4. Estimating the fit. The tensor fit (9) is used in the stopping condition for
CP-ARLS-LEV. Unfortunately, calculating the fit costs O(r nnz(X)) and can therefore
take many times longer than an epoch. Instead, we estimate the fit based on a random
sample of tensor elements as in [6]. Since we are focused on sparse tensors, we have
the additional difficulty that a uniform sample returns predominantly zero entries, by
the definition of sparsity, and is likely to lead to an inaccurate estimate of the fit.
To correct this, we use a technique called stratified sampling to sample a specified
proportion of zero and nonzero entries [21]. Let sfit be the user-specified number
of samples and α ∈ [0, 1] be the fraction of nonzero elements (by default we use
α = 0.5). We sample dαsfite nonzero entries uniformly at random and b(1−α)sfitc zero
entries elements uniformly at random. The zeros are selected via rejection sampling
as described in [21]. The result is a set of sfit linear indices, denoted by F . If we
define F = ‖X−M‖2, then the fit (9) is 1−

√
F/‖X‖. We estimate F as

(10)

F̂ =
∑
i∈F

φi(mi − xi)2 where φi =

{
nnz(X)/dαsfite if xi 6= 0,

(nd+1 − nnz(X))/b(1− α)sfitc if xi = 0,

where mi and xi are the ith entries of M and X, respectively. The M is updated at

each step of the algorithm. For the estimated fit, we use 1 −
√
F̂ /‖X‖. We sample

14 BRETT W. LARSEN AND TAMARA G. KOLDA

Name Size Nonzeros Density
Uber 183 × 24 × 1,140 × 1,717 3,309,490 0.038%
Amazon 4,821,207 × 1,774,269 × 1,805,187 1,741,809,018 1.1 ×10−8%
Reddit 8,211,298 × 176,962 × 8,116,559 4,687,474,081 4.0 ×10−8%

Table 1: Large-scale tensors used in experiments

the elements of the tensor once at the beginning of the algorithm and then use that
sample for all subsequent estimates.

7. Numerical results. We present experiments to demonstrate the benefits of
combining repeated rows in sketching algorithms (subsection 7.1), differences between
random and hybrid sampling (subsection 7.2), comparisons between our proposed and
standard methods (subsections 7.3 to 7.5), and example factors for a massive tensor
(subsection 7.5). The methods we compare are
• Random: Proposed CP-ARLS-LEV method (Algorithm 3) using τ = 1 (i.e., no

deterministic inclusion of rows), η = 5, π = 3, and tol = 10−4

• Hybrid: Proposed CP-ARLS-LEV method, same as above except τ = 1/s (i.e.,
high-probability rows included deterministically)

• Standard: CP-ALS method with standard settings, including tol = 10−4

• SPALS: Our implementation of the method proposed in [8]. We mirror the set-
tings for CP-ARLS-LEV as much as possible, using η = 5, π = 3, and tol = 10−4.

The experiments are based on three large-scale sparse tensors from FROSTT [36],
the largest having nearly 5B nonzeros, whose sizes are given in Table 1. Briefly, we
describe the tensors below.
• Uber: 4-way count tensor of New York City Uber pickups in April–August 2014,

183 days × 24 hours × 1.1K latitudes × 1.7K longitudes with 3M nonzeros.
• Amazon: 3-way count tensor based on user review text of 5M users × 2M words
× 2M reviews with 2B nonzeros.

• Reddit: 3-way log-count2 tensor of social network postings of 8M users × 200K
subreddits × 8M words with 5B nonzeros.

Factor matrices are initialized by drawing each entry from a standard Gaussian dis-
tribution. We explore the randomized range finder initialization in Appendix F.

All experiments were run using MATLAB (Version 2018a) using the Tensor Tool-
box for MATLAB [5]. We used three computational environments: (A) a Dual Socket
Intel E5-2683v3 2.00 GHz CPU (28 total cores) with 256 GB memory, (B) a Dual
Socket AMD Epyc 7601 2.20 GHz CPU (64 total cores) with 1 TB memory, and (C)
a Dual Socket AMD EPYC 7452 (64 total cores) with 256 GB memory.

As mentioned in some earlier sections, we provide additional results in the appen-
dices and supplements. Comparisons of leverage-score-based sampling to uniform and
length-squared-based sampling is provided in Appendix B. Comparisons to CP-ARLS
for dense tensors [6] is provided in Appendix C.

7.1. Combining repeated rows. We show that combining repeated rows (sub-
section 4.1) can significantly decrease the time dedicated to solving the sampled sys-
tem. This does not change the sampling methodology nor the solution; instead, it
merely introduces a preprocessing step that removes redundancies in the linear system.

2This tensor has been modified from the raw count tensor provided by FROSTT. Each entry is
log(c+ 1) where c is the count. Note that the zeros are unchanged. This is a standard weighting in
text analysis. The primary effect is that the largest entries are damped.

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 15

0 20 40
0

0.1

0.2

0.3

0.4

iteration

fr
a
ct

io
n

re
p

ea
t

sa
m

p
le

s

(a) Amazon

0 20 40 60 80
0

0.2

0.4

iteration

fr
a
ct

io
n

re
p

ea
t

sa
m

p
le

s

mode 1

mode 2

mode 3

mode 4

(b) Uber

Fig. 1: Fraction of repeated row samples, i.e., (s− s̄)/s, at each iteration and for each
mode of a single run of CP-ARLS-Lev (Random) on two tensors using s = 217 rows.

N
R

C
R

N
H

C
H

0

0.5

1

method

ti
m

e
(s

)

N
R

C
R

N
H

C
H

0

1

2

·107

method

n
o
n

ze
ro

en
tr

ie
s

(a) Mode 1: N = 3 ×
1012, n = 5 × 106. For hybrid,
sdet = 14959 and pdet = 0.52.

N
R

C
R

N
H

C
H

0

20

40

60

80

method

ti
m

e
(s

)

N
R

C
R

N
H

C
H

0

0.5

1

·109

method

n
o
n

ze
ro

en
tr

ie
s

(b) Mode 2: N = 9 × 1012, n =
2 × 106. For hybrid, sdet =

10396 and pdet = 0.41.

N
R

C
R

N
H

C
H

0

1

2

3

method

ti
m

e
(s

)

N
R

C
R

N
H

C
H

0

2

4

6

·107

method
n

o
n

ze
ro

en
tr

ie
s

(c) Mode 3: N = 9 × 1012, n =
2 × 106. For hybrid,

sdet = 7055 and pdet = 0.25.

Fig. 2: Comparing combing rows (C) with not combining (N) for both random (R)
and hybrid (H) sampling schemes for least squares sketching. We report both the
combined reweight and solution time (blue) and number of nonzeroes in the sampled
right-hand side (red), which closely correlate. The matrix is of size N × 10, with n
right-hand sides, based on modes 1–3 of the Amazon tensor and factor matrices from
a solution of rank r = 10. The methods sample s = 217 rows, random uses τ = 1, and
hybrid uses τ = 1/s. The results are averaged across 10 runs. Note that each mode
is on a different scale.

We rarely see repeated rows with random factor matrices since they are incoherent,
but we often see repeated rows as we converge toward a solution because the leverage
scores are skewed.

Figure 1 demonstrates the prevalence of repeated rows as the factor matrices
converge towards a solution. We run CP-ARLS-Lev (Random) once each for Ama-
zon and Uber, recording the proportion of repeats for each mode in each iteration.
The fraction repeats becomes substantial after only a few iterations, motivating the
combination of repeat rows.

16 BRETT W. LARSEN AND TAMARA G. KOLDA

To show the impact of combining rows for solving the least squares problem, we
use the solution factor matrices for the Amazon tensor from a run of CP-ALS with
rank r = 10 (producing a final fit of 0.3055), using computational environment (B).
Figure 2 shows the results for problems of the form in (1) with d = 2, r = 10, and
different values of N and n, for both the random and hybrid leverage score sampling
schemes. (Note that we have not provided sufficient information here to compare
the random and hybrid schemes — comparing those two methods is explored in the
next subsection.) First, the time to solution, plotted in blue, is always improved by
combining rows. The difference is particularly dramatic for the random method in
mode 2. Second, although all the systems are roughly the same size (N = O(1012) and
n = O(106)), the solution time depends on the number of nonzeros in the right-hand
side, which is plotted in red. Combing rows also reduces the nonzeros and correlates
closely to the improvements in time. Third, the reductions are much smaller for the
hybrid sampling since deterministic inclusion of high-probability rows results in fewer
repeats.

In general, the dominant cost for each subproblem is usually in the setup for the
least squares solve. Specifically, extracting the sampled fibers (discussed in subsec-
tion 6.3) from the sparse tensor costs approximately 14s for mode 1, 25s for mode 2,
and 11s seconds for mode 3. In our implementation, this step has small variance in
cost between the four methods as we find the unique fiber indices before extracting
the relevant fibers of the tensor. But as mode 2 in our experiments show, without
combining repeats or hybrid sampling the solve can eclipse the fiber extraction and
greatly increase the overall runtime.

As there is essentially no downside to combing rows, we recommend that combin-
ing rows should be a default in any leverage-score based sampling scheme. Henceforth,
CP-ARLS-LEV (random and hybrid) does so in all experiments.

7.2. Comparing random and hybrid sampling. We consider a specific least
squares problem to illustrate the differences between random and hybrid sampling.
We use the Uber tensor and solve for the first factor matrix on environment (A),
fixing the factors for modes 2–4 to a solution produced by CP-ALS. This corresponds
to a least squares problem of the form (1) with N = 46,977,120 rows, r = 10 columns,
and n = 183 right-hand sides. The example was chosen for two reasons: (1) It is
small enough to compute the true solution, which would be too expensive for the
larger tensors. (2) It shows a marked difference between random and hybrid sampling
because it has concentrated leverage score structure.

Figure 3a shows the relative residual difference between the sampled solution and
the exact solution as the number of samples increases from 27 to 219. Specifically,
using the notation of Theorem 8, the y-axis corresponds to∣∣∣‖ZB̃

ᵀ
∗ −Xᵀ‖2F − ‖ZBᵀ

∗ −Xᵀ‖2F
∣∣∣

max { 1, ‖ZBᵀ
∗ −Xᵀ‖2F }

.

We compare random sampling method and the hybrid-deterministic sampling with
τ = 1/s. For each number of samples, we solve the least squares problem 10 times,
and the error bars indicate the range of values obtained while the solid line denotes
the median. Note that the maximum number of samples, s = 219, represents only
1.1% of the rows in the matrix and achieves an accuracy of 10−4. For this problem,
hybrid sampling clearly improves over random sampling, obtaining approximately 2
more digits of accuracy for s = 219 samples. Figure 3b show the fraction of the

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 17

0 2 4

·105

10−6

10−3

100

number of samples, s

re
la

ti
v
e

d
iff

er
en

ce

random

hybrid

(a) Relative difference versus
true residual, solid line

indicates median of 10 runs

2
7

2
9

2
11

2
13

2
15

2
17

2
19

0

5

10

15

20

number of samples, s

d
et

er
m

in
is

ti
c

p
er

ce
n
t

(b) Percent of hybrid
sample that is determin-

istic, i.e., 100 · sdet/s

2
7

2
9

2
11

2
13

2
15

2
17

2
19

0

0.2

0.4

0.6

0.8

1

number of samples, s

d
et

er
m

in
is

ti
c

p
ro

b
a
b

il
it

y

(c) Deterministic probability,
i.e., pdet =

∑
pi≥τ pi

Fig. 3: Single least squares problem with N = 46,977,120 rows, r = 10 columns, and
n = 183 right-hand sides, corresponding to solving for the first factor matrix in the
Uber problem (d = 3). Random uses τ = 1 and hybrid uses τ = 1/s.

hybrid sample that is deterministically included (sdet/s), which peaks at less than
20%. Figure 3c shows the fraction of the total sampling probability contained in
these samples (pdet), which goes as high as 90%. Note that these values are the same
across all runs as they are deterministic based on the threshold τ . If we look at the case
of s = 219, this means that 15% of the rows that are included deterministically would
account for approximately 90% of the sampled rows in the random method. Hence,
we are getting better “sample efficiency” in terms of the number of unique samples
with the hybrid method, but the trade-off is added computational cost in terms of
computing pdet (can be somewhat expensive) and the rejection sampling (relatively
inexpensive). The next sections explore some tradeoffs between these approaches.

7.3. Equivocal performance on small tensor. We consider the rank r =
25 CP tensor decomposition using matrix sketching on the Uber tensor. This is a
relatively small tensor, so we can compute its fit exactly.

Figure 4 shows results of ten run each for CP-ARLS-LEV (random and hybrid)
for sample sizes s ∈ { 215, 216, 217 } and CP-ALS (standard), run in computational
environment (A). Figure 4a presents box plots to compare the final fit and total run
time; Figure 4b shows the median performance for each method; individual runs are
shown in Appendix E. For each value of s, hybrid deterministic sampling improved
the median final fit as compared to random, but hybrid is slower than random. For
s = 217, both randomized algorithms achieve a slightly better final fit than the stan-
dard method. In this case, the random method is substantially faster than the stan-
dard method, but the hybrid method is somewhat slower. As this is a relatively small
problem, we did not expect much improvement in time but instead use this to demon-
strate the correctness of the sampling method and how it improves as the number of
samples increases.

7.4. Order of magnitude speed improvement on massive sparse ten-
sors. This section demonstrates how CP-ARLS-LEV scales favorably for massive

18 BRETT W. LARSEN AND TAMARA G. KOLDA

0.186 0.188 0.190

Random s = 215

Hybrid s = 215

Random s = 216

Hybrid s = 216

Random s = 217

Hybrid s = 217

Standard

fit

100 200 300 400

time (s)

(a) Box plot of final fit and total time over 10 runs.

0 50 100 150 200 250 300 350 400
0.170

0.175

0.180

0.185

0.190

time (s)

fi
t

Random s = 215

Hybrid s = 215

Random s = 216

Hybrid s = 216

Random s = 217

Hybrid s = 217

Standard

(b) Median fit (computed exactly) across 10 runs plotted for all methods.

Fig. 4: Comparison of CP-ARLS-LEV (random and hybrid) with varying number of
samples s ∈ { 215, 216, 217 } and CP-ALS (standard) to compute a rank r = 25 CP
decomposition of the Uber tensor with 3.3 million nonzeros. Random uses τ = 1
and hybrid uses τ = 1/s. Each experiment is run 10 times.

sparse tensors. Figure 5 shows results for the Amazon tensor, run in computational
environment (C), and Figure 6 shows results for the Reddit tensor, run in compu-
tational environment (B). For both tensors, the CP-ARLS-LEV runs (random and
hybrid) use an estimated fit as described in subsection 6.4 with sfit = 227 stratified
samples, evenly divided between zeros and nonzeros, The same sampled entries are
used across all runs for consistent comparisons, and the estimated fit plots are bias
corrected by the difference between the final true fit and final estimated fit, i.e., this
difference was subtracted from all data points so that the final fit in the graph of an
individual run is equal to the true fit.

The Amazon runs in Figure 5a show summary results from five runs each of
CP-ALS (standard) versus three randomized methods, CP-ARLS-LEV (random and
hybrid) and SPALS, each with s ∈ { 216, 217 } samples. For Amazon, a standard run
requires approximately 5 hours. Random (CP-ARLS-LEV) is the fastest at less than
25 minutes, achieving a 13X speed-up as compared to Standard (CP-ALS); however,
the median and best fits are approximately 0.5% worse than the standard method
for the lower number of samples. Hybrid (CP-ARLS-LEV) is second fastest at less
than 37 minutes, with an 8X speed-up as compared to the standard method and an
improved final fit for s = 217 samples. It is a bit slower than the Random method
because of the extra computations to determine pdet and do extra sampling, but the

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 19

Mean Time Per Median Best
Method Time (s) Speedup Epoch (s) Fit Fit

Hybrid s = 216 2.21e+03 8.42 220.8 0.3384 0.3388
Hybrid s = 217 2.13e+03 8.74 249.7 0.3392 0.3398

Random s = 216 1.38e+03 13.46 209.5 0.3374 0.3380
Random s = 217 1.47e+03 12.64 231.6 0.3385 0.3390
SPALS s = 216 7.60e+03 2.45 1069.9 0.3349 0.3353
SPALS s = 217 8.34e+03 2.23 1210.6 0.3369 0.3377

Standard 1.86e+04 1.00 N/A 0.3393 0.3397

(a) Statistics for 5 runs. Total time and speedup do not include
finding the true fit for runs of the random and hybrid meth-

ods, which was only done to compare to the standard method.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·104

0.330

0.335

0.340

time (s)

fi
t

Hybrid s = 216

Hybrid s = 217

SPALS s = 216

SPALS s = 217

Standard

(b) Individual runs with (bias-corrected) estimated fit plotted for hybrid and
true fit for standard and SPALS. The dotted lines represent the individual
runs with markers indicating epoch (5 iterations) for the randomized meth-

ods and one iteration for the standard method. The solid lines show medians.

Fig. 5: Comparison of CP-ARLS-LEV (random and hybrid), SPALS, and CP-ALS
(standard) to compute a rank r = 25 CP decomposition of the Amazon tensor with
1.7 billion nonzeros. Each experiment is run 5 times.

advantage is higher fit values. SPALS is the slowest randomized methods at 2 hours
but still has a speedup of more than 2X compared to the standard method. If we
were to implement the “practical” improvements used for CP-ARLS-LEV (combine
repeats, hybrid sampling, estimated fit), then we expect the timing for SPALS would
be more competitive. However, SPALS still has the lowest fit, more than 1% worse
than the standard method. This is arguably not surprising given SPALS theoreti-
cally requires log n/ε more samples than CP-ARLS-LEV. Each method varies in the
number of iterations required to terminate, so we also report the average epoch time
to facilitate comparison. We see that the epochs are always fastest for the random
method. Figure 5b plots the times versus the fit for Hybrid (CP-ARLS-LEV), SPALS,
and Standard (CP-ALS). We omit Random (CP-ARLS-LEV) because the plots are
very similar to Hybrid.

Recall that the complexity for a least squares solve for CP-ALS with a sparse
tensor is O(nnz(X)r). In comparison, the complexity of CP-ARLS-LEV is O(sr2) for
the QR factorization plus the cost to multiply Q-matrix of size r× s times the sparse
matrix X̃

ᵀ
of size s × n, which costs O(r nnz(X̃)). So, we only achieve a speedup

if max { sr, nnz(X̃) } � nnz(X). In general, we do not know nnz(X̃), but we have
some results on the number of nonzeros from Figure 2, which yield nnz(X)/ nnz(X̃) ≈

20 BRETT W. LARSEN AND TAMARA G. KOLDA

Mean Time Per Median Best
Method Time (s) Speedup Epoch (s) Fit Fit

Random s = 217 2.16 × 104 16.27 1832.6 0.0585 0.0590
Hybrid s = 217 2.92 × 104 12.00 2231.0 0.0585 0.0589

Standard 3.51 × 105 1.00 N/A 0.0588 0.0593

(a) Median statistics and best fit across 10 runs. Total time and
speedup do not include finding the true fit for runs of the random-
ized methods, which was done to compare to the Standard method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0.045

0.050

0.055

0.060

time (s)

fi
t

Hybrid s = 217

Standard

(b) Individual runs with the bias-corrected estimated fit plotted for CP-ARLS-LEV and
true fit plotted for CP-ALS. We omit the random run because it is similar to hybrid.

Fig. 6: Comparison of CP-ARLS-LEV (random and hybrid) with number of samples
s = 217 and CP-ALS (standard) to compute a rank r = 25 CP decomposition of
the Reddit tensor with 4.68 billion nonzeros. Random uses τ = 1 and hybrid uses
τ = 1/s. Each experiment is run 10 times. The dotted lines represent the individual
runs with markers indicating epoch (5 iterations) for the randomized methods and
one iteration for the standard method. The solid lines show medians.

O(10), which is what we observe in terms of the speed-ups.
The Reddit runs in Figure 6a displays statistics for ten runs each of CP-ALS

(standard) and the randomized methods CP-ARLS-LEV (random and hybrid) with
s = 217 samples. For Reddit, we have 6 hours for random and 8 hours for hybrid
methods versus 4 days for the standard method, yielding more than a 12X speedup.
As with Amazon, we also report the average epoch time to facilitate comparison
between the random and hybrid methods and again see that the epochs are always
faster for the random method. The best fits are essentially equivalent across all
methods. Figure 6b shows the estimated fit versus time for the hybrid method, and
the true fit versus time for standard method. We omit the random method because
the plots look nearly identical to the hybrid method.

7.5. Example factors for massive tensor. It is useful to show that tensor fac-
tors have a meaningful interpretation to prove these computations are indeed worth-
while. For this reason, this section shows several examples factors for the Reddit
tensor as computed by CP-ARLS-LEV. The complete set of factors is provided in an
ancillary file3. Reddit is a community forum wherein users comment within subred-
dits related to their interests. The number of users associated with a subreddit can
vary widely, with r/AskReddit and r/funny being two are the larger subreddits. A
few notes about the data processing are in order: common stop words were removed
and the remaining worked were stemmed (e.g., “people” becomes “peopl”); users,
subreddits, and words with fewer than five entries were removed.

3See the ancillary file titled “Reddit Factors.”

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 21

Fig. 7: Reddit Factor 6/25: Politics and World News

We give some examples of the components computed for this tensor in Figures 7
to 9. A component is the collection of matched matrix columns, i.e., component j
is A1(:, j), A2(:, j), and A3(:, j). We cannot show the entirety of any component
since the smallest dimension is 176k. Instead, we show the top-25 highest-magnitude
subreddits, the top-25 highest-magnitude words, and the top 1000 highest-magnitude
users as bar charts. The length of a bar represents the magnitude and the color
represents the overall prevalence in the data, on a scale of zero to one. In this
manner, blue colors indicate rarer words or subreddits and are of interest since they
are less likely to appear in many factors.
• Figure 7 shows component 6 (of 25) which is focused on non-U.S. news. The

word factor includes rarer words like countries (stemmed to “countri”) and world.
One can see the top subreddits include “worldnews”, “europe”, “unitedkingdom”,
“canada”, “australia”, “syriancivilwar”, “india”, “Israel”, “UkraineConflict”, and
“Scotland”.
• Figure 8 shows component 18 (of 25) focused on soccer and sports. The top words

include “player”, “team”, “leagu” (stemmed version of league), “goal”, “fan”, and
“club”. The top subreddits include “soccer”, “reddevils”, “Gunners”, “FIFA”,
“LiverpoolIFC”, etc.
• Figure 9 shows component 19 (of 25) focused on movies and television, with a

lean toward science fiction and fantasy. The top words include “movi[e]”, “film”,
“watch”, and “charact[er]”. The top subreddits include “movies”, “television”,
“StarWars”, “gameofthrones”, “marvelstudios”, etc.

8. Conclusions. We propose CP-ARLS-LEV, a randomized algorithm which
applies leverage score-based sketching to the overdetermined least squares problem
in CP-ALS. This approach offers an alternative to CP-ARLS-MIX [6] which cannot
be used on sparse tensors because the required FFTs destroy the tensor’s sparsity.
A numerical comparison on dense tensors is provided in Appendix C. The strong
performance of CP-ARLS-MIX may hint that its theoretical sample complexity can

22 BRETT W. LARSEN AND TAMARA G. KOLDA

Fig. 8: Reddit Factor 18/25: Soccer

Fig. 9: Reddit Factor 19/25: Film and Television

be improved.
Our proposed method has a better sample complexity than SPALS [8], an al-

ternate randomized algorithm. Additionally, our experiments on the Amazon tensor
with 1.7 billion nonzeros showed that CP-ARLS-LEV was faster and achieved a better
solution.

The improvements in speed come down in part to several practical improvements.
A few high-probability rows can result in excessive repeats in the sampled matrix.
We developed two methodologies that are generally useful for leverage-score matrix

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 23

sketching. First, we combine repeated rows so that the linear system to be solved is
smaller. Second, we have a method for deterministically including high-probability
rows so that we achieve more unique samples overall. Another issue is in checking
convergence, which requires computing least squares error, which has cost almost
equivalent to solving the least squares problem. Instead of computing the fit exactly,
we borrow the technique of estimating the fit with a limited number of samples from
[6]. In our numerical results, we show that CP-ARLS-LEV implemented with all these
techniques yields an order of magnitude speed ups on large-scale sparse tensors.

The paper leaves open many exciting theoretical directions. What is the optimal
way to pick the number of samples (per mode even) and the deterministic threshold?
In general, these were chosen in this paper through numerical experiments. Is it
possible to show that hybrid sampling improves the β factor in the leverage score
estimates or to give a bound on the improvement in the ε-accuracy? And is there a
more robust stopping condition for the algorithm than estimated fit? Especially on
the large tensors, obtaining a low-variance estimate of the fit required an extremely
large number of samples.

Finally, CP-ARLS-LEV has another advantage over CP-ALS in that it can be
used on large distributed datasets. Say one wanted to decompose a tensor that had
to be stored across multiple nodes. Each iteration of CP-ALS requires solving a
system involving the entire tensor, but using CP-ARLS-LEV one could store all the
factor matrices on one node and sample based off the associated leverage scores. The
node could then gather the sampled fibers from the distributed tensor and solve the
much smaller sampled system on one node. Implementing this distributed algorithm
and parallelizing much of the current implementation is a direction of future work.

Appendix A. Proof of Theorem 6. For ease of reference to existing literature,
we use standard least squares notation as follows. Consider the overdetermined matrix
least squares problem defined by the design matrix A ∈ RN×r, with N > r and
rank(A) = r, and the matrix B ∈ RN×n. Define the optimal squared residual to be

(11) R2 , min
X∈Rr×n

‖AX−B‖2F .

The SVD of the design matrix is A = UAΣAVA
ᵀ, so UA is an orthonormal basis for

the d-dimensional column space of A. Let U⊥A be an orthonormal basis for the (N−r)-
dimensional subspace orthogonal to the column space of A. We define B⊥ to be the
projection of the the columns of B onto this orthogonal subspace: B⊥ , U⊥AU⊥TA B.
This matrix is important because the residual of the least squares problem is its
Frobenious norm; X can be chosen so that each column in AX exactly matches the
part of the corresponding column in B in the column space of A but cannot, by
definition, match anything in the range spanned by U⊥A:

R2 = min
X∈Rr×n

‖AX−B‖2F = ‖U⊥AU⊥TA B‖2F = ‖B⊥‖2F

Denoting the solution to the least squares problem by by Xopt yields B = AXopt+B⊥.
Now consider the sketching problem defined by a matrix S ∈ Rs×N :

(12) min
X∈Rr×n

‖SAX− SB‖2F .

Following the technique in Drineas et al. [14], we split the proof into two parts. In
Appendix A.1, we prove bounds on both the residual and the solution of the sketched

24 BRETT W. LARSEN AND TAMARA G. KOLDA

system for a specific sketching matrix S that satisfies certain structural conditions.
The proofs follow deterministically and do not consider the random aspect of the
sketching matrix generation. In Appendix A.2, we then consider that S is drawn from
a distribution over matrices D, i.e., S ∼ D, and prove that the required structural
conditions hold with high probability if the number of samples is large enough. Finally,
the proof is completed by connecting these parts so that the bounds on the residual
and solution hold with high probability.

A.1. Properties of sketching matrix under structural conditions. The
main results mirror Lemma 1 and 2 in [14]. The structure is also similar to Theorem
23 in Woodruff [40], except that work uses CountSketch, a different type of sketching.

We begin by assuming that our design matrix satisfies two structural conditions:

σ2
min(SUA) ≥ 1/

√
2, and(SC1)

‖UT
ASTSB⊥‖2F ≤ εR2/2.(SC2)

We first consider bounds with no constraints on the matrix B. The first result is
analogous to [14, Lemma 1] except that we prove it for the matrix least squares case.
We omit the proof because it follows the same logic as the vector case.

Theorem 10. For the overdetermined least squares problem (12), assume the
sketch matrix S satisfies (SC1) and (SC2) for some ε ∈ (0, 1). Then the solution to

the sketched problem, denoted X̃opt, satisfies the following two bounds:

‖AX̃opt −B‖2F ≤ (1 + ε)‖AXopt −B‖2F , and

‖Xopt − X̃opt‖2F ≤
ε‖AXopt −B‖2F

σ2
min(A)

.

We can obtain a tighter bound on the solution matrix if we assume a constant
fraction of the columns of B is in the column space of A. This is typically a rea-
sonable assumption for real-world least squares problems as the fit is only practically
interesting if this is true. We again omit the proof because it follows the same logic
as the vector case.

Theorem 11 ([14]). For the overdetermined least squares problem (12), assume
the sketch matrix S satisfies (SC1) and (SC2) for some ε ∈ (0, 1). Furthermore,
assume that ‖UAUT

AB‖F ≥ γ‖B‖F for some fixed γ ∈ (0, 1]. Then the solution to

the sketched problem, denoted X̃opt, satisfies the following bound:

‖Xopt − X̃opt‖2F ≤ ε2κ(A)2(γ−2 − 1)‖Xopt‖2F ,

where κ(A) denotes the condition number of the matrix A.

A.2. Proof that sketching matrix meets structural conditions. In this
section, we show that the methodology for choosing the columns via the leverage-
score-based sampling scheme yields the desired bounds. The first structural condition
(SC1) can be shown as a corollary to the following result in Woodruff [40]:

Lemma 12 ([40]). Consider A ∈ RN×r, its SVD UAΣAVT
A, and row leverage

scores `i(A). Let `(A) be an overestimate of the leverage score such that for some
positive β ≤ 1, we have pi

(
`(A)

)
≥ β · pi

(
`(A)

)
for all i ∈ [N]. Construct row

sampling and rescaling matrix S ∈ Rs×N by importance sampling according to the
leverage score overestimates, `(A). If s > 144r ln(2r/δ)/(βε2), then the following
holds with probability at least 1− δ simultaneously for all i: 1− ε ≤ σ2

i (SUA) ≤ 1 + ε.

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 25

Fixing ε = 1− 1/
√

2 in Lemma 12 yields the Corollary we require.

Lemma 13. Consider A ∈ RN×r, its SVD UAΣAVT
A, and row leverage scores

`i(A). Let `(A) be an overestimate of the leverage score such that for some positive
β ≤ 1, we have pi

(
`(A)

)
≥ β · pi

(
`(A)

)
for all i ∈ [N]. Construct row sampling

and rescaling matrix S ∈ Rs×N by importance sampling according to the leverage
score overestimates, `(A). If s > Cr ln(2r/δ)/β with C = 144/(1 − 1/

√
2)2, then

σ2
min(SUA) ≥ 1/2 with probability at least 1− δ.

The second structural condition (SC2) can be proven using results for randomized
matrix-matrix multiplication. Consider the matrix product UT

AB⊥. This projects the
part of the columns of B outside of the column space of A onto the column space
of A and thus by definition is equal to the all zeros matrix 0r×n (we have assumed
rank(A) = r). This condition requires us to bound how well the sampled product
UT

ASTSB⊥ approximates the original product. We can do this via the following
lemma from Drineas, Kannan, and Mahoney [10].

Lemma 14 ([10]). Consider two matrices of the form A ∈ Rn×m and B ∈ Rn×p
and let s denote the number of samples. We form an approximation of the product
AᵀB as follows. Choose s rows, denoted {ξ(1), . . . , ξ(s)}, according to the probability
distribution defined by p ∈ [0, 1]n with the property that there exists β > 0 such that
pk ≥ β‖A(k, :)‖2/‖A‖2F for all k ∈ [n]. Then form the approximate product

1

s

s∑
t=1

1

pξ(t)
A(ξ(t), :)TB(ξ(t), :) , (SA)TSB,

where we define S to be the random row sampling and rescaling operator. We then
have the following guarantee on the quality of the approximate product:

E
[
‖ATB− (SA)TSB‖2F

]
≤ 1

βs
‖A‖2F ‖B‖2F .

We can apply Lemma 14 to bound the probability of (SC2) holding.

Lemma 15. Consider full rank A ∈ RN×r, its SVD UAΣAVT
A, and row leverage

scores `i(A). Define the probability distribution p ∈ [0, 1]n and assume there exists β ∈
(0, 1] such that pi ≥ β`i(A)/d for all i ∈ [N]. Construct row sampling and rescaling
matrix S ∈ Rs×N by importance sampling by the leverage score overestimates. Then
provided s ≥ 2r

βδε , the property ‖UT
ASTSB⊥‖2F ≤ εR2/2 holds with probability δ.

Proof. Apply Lemma 14 to obtain a bound on the expected value:

E
[
‖UT

ASTSB⊥‖2F
]

= E
[
‖0r×n −UT

ASTSB⊥‖2F
]
,

= E
[
‖UAB⊥ −UT

ASTSB⊥‖2F
]
,

≤ 1

βs
‖UA‖2F ‖B

⊥‖2F =
r

βs
‖B⊥‖2F =

r

βs
R2.

Markov’s inequality states that for non-negative random variable X and scalar t > 0,
we can bound the probability that X ≥ t as Pr[X ≥ t] ≤ E[X]/t. We can apply this
inequality to bound the probability that the sketching matrix violates (SC2):

PrS∼D

[
‖UT

ASTSB⊥‖2F ≥
ε‖B⊥‖2F

2

]
≤

2E
[
‖UT

ASTSB⊥‖2F
]

ε‖B⊥‖2F
≤ 2r

βεs

26 BRETT W. LARSEN AND TAMARA G. KOLDA

where in the last step we have used our bound the expected value. Thus if we set the
right-hand side equal to δ, we obtain that the probability that (SC2) holds is greater
than or equal to 1−δ as desired. Solving for s yields that we thus must have s ≥ 2r

βδε .

A.3. Main Theorem. We combine the above results to prove Theorem 6 in the
main text, here written in the standard least squares notation.

Theorem 16. Consider the least squares problem minX∈Rr×n ‖AX−B‖2 where
A ∈ RN×r with r � N and rank(A) = r and B ∈ RN×n. Let p ∈ [0, 1]N be a
probability distribution and assume there exists a fixed β ∈ (0, 1] such that

β ≤ min
i∈[N]

pir

`i(A)
for all i ∈ [N].

For any ε, δ ∈ (0, 1), set

s = (r/β) max {C log(r/δ), 1/(δε) } where C = 144/(1− 1/
√

2)2,

and let S = randsample(s,p). Define Xopt ≡ arg minX∈Rr×n ‖AX − B‖2. Then

X̃opt ≡ arg minX∈Rr×n ‖SAX−SB‖2F satisfies ‖AX̃opt−B‖2F ≤ (1+ε)‖AXopt−B‖2F
with probability at least 1− δ.

Proof. Applying Lemma 13, we have that (SC1) holds with probability 1− δ/2 if
s = Cr log(r/δ)/β. Applying Lemma 15, we have that (SC2) holds with probability
1 − δ/2 if s = r/(βδε). Hence, a union bound says that (SC1) and (SC2) both hold
with probability 1 − δ if s = (r/β) max {C log(r/δ), 1/(δε) }. Combining this with
Theorem 10 yields the result.

Appendix B. Comparison of Sampling Methods. Figure 10 compares
CP-ARLS-LEV (random) using three different sampling methods: uniform sam-
pling, length squared sampling, and leverage score sampling. As with leverage score
sampling, we use an the analogous bound on the `2-norm squared of the rows of
the KRP. Let Z = Ad � · · · � A1 ∈ RN×r. Letting (i1, . . . , id) be the multi-
index corresponding to i as defined in (4), the `2-norm squared can be bounded as

‖Z(i, :)‖22 ≤
∏d
k=1 ‖Ak(ik, :)‖22. The experiments are run with the same setup as Sub-

section 7.3 on environment (A). We find a r = 25 CP tensor decomposition, compute
the true fit every epoch of 5 iterations, and terminate after the fit fails to improve by
more than 10−4 for 3 epochs. From Figure 10, we can see that uniform sampling is
not competitive. Length-squared sampling is arguably competitive, but the fit is not
as high as leverage-score sampling.

Appendix C. Comparison on Dense Tensor. We consider the performance
of CP-ARLS-LEV (random, i.e., τ = 1) on a synthetic dense tensor as compared to
both the standard CP-ALS method and CP-ARLS [6]. We consider CP-ARLS with
mixing (-MIX) and plain uniform sampling without mixing (-UNI). Only the method
with mixing is guaranteed to work. We show only the results of CP-ARLS-LEV using
the random method (τ = 1) since the hybrid method (τ = 1/s) is similar.

Figure 11 plots total run time on the x-axis and the factor match score4 corre-
sponding to the best fit of the ten runs on the y-axis. We describe the specifics of
the data generation in Appendix C.1 and the specifics of the experimental setup in

4Because this problem is synthetic, we know the true factor matrices and therefore can report
the factor match score which says how similar the obtained solution is to the true solution; a factor
match score of 1.0 is a perfect match.

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 27

0 100 200
0.05

0.10

0.15

0.20

time (s)

fi
t Uniform

Length Squared

Leverage Scores

(a) s = 216

0 100 200
0.05

0.10

0.15

0.20

time (s)

fi
t Uniform

Length Squared

Leverage Scores

(b) s = 217

Fig. 10: Comparison of CP-ARLS-LEV (random, τ = 1) using different sampling
methods (uniform, length squared, and leverage scores) to compute a rank r = 25
CP decomposition of the Uber tensor with 3.3 million nonzeros. The dotted lines
represent the individual runs with markers indicating epoch (5 iterations).

0 50 100 150 200 250 300 350 400

0.7

0.8

0.9

1

Total Time for 10 Runs (s)

F
a
ct

o
r

M
a
tc

h
S

co
re

o
f

B
es

t
F

it

s = 27 CP-ALS (standard)

s = 28 CP-ARLS-LEV (random)

s = 29 CP-ARLS-MIX

s = 210 CP-ARLS-UNI

s = 211

Fig. 11: Comparing methods on a 500× 500× 500 synthetic dense tensor engineered
such that the factor matrices have a few rows with concentrated leverage scores. Each
method is run 10 times from random initializations (the same 10 initializations were
used across all methods).

Appendix C.2. The tensor has been constructed so that the subproblems are coher-
ent (difficult for CP-ARLS-UNI), which has the side effect of making several of the
factors highly collinear (difficult for CP-ALS). As a result, CP-ALS only achieves a
factor match score around 0.814, and all the other methods achieve better scores in
less time (CP-ARLS-LEV with s = 29, CP-ARLS-MIX with s = 28, CP-ARLS-UNI
with s = 210). CP-ARLS-UNI actually gets worse for s = 211 samples. Between
CP-ARLS-LEV and CP-ARLS-MIX, the latter had superior performance, achieving
higher scores in less time, and this is further emphasized by looking at the fraction of
runs that achieved a score above 0.93. CP-ARLS-MIX was successful, i.e. achieved
a score greater than or equal to 0.93, 80% of time with s = 29 samples, 70% with
s = 210 samples, and 30% with s = 211 samples. CP-ARLS-LEV was only successful
10% of the time with s = 211 samples. Thus, while CP-ARLS-LEV is a viable choice
for dense tensors, the experiments give the advantage to CP-ARLS-MIX.

28 BRETT W. LARSEN AND TAMARA G. KOLDA

C.1. Data generation. For our experiment, we used a synthetic 500 × 500 ×
500 tensor. We begin by generating three factor matrices of size 500× 25 with inde-
pendent standard Gaussian entries. The first three columns of each factor matrix are
set to 0 and then seeded with a small number of non-zeros based on user-specified pa-
rameters: spread and magnitude. The spread specifies how many non-zeros elements
are added to each of these first three columns; these non-zero elements are chosen
such that each row has no more than one non-zero in the first three columns. We use
a spread of 5 such the first five rows are non-zero in the first column, the second set of
five rows are non-zero in the second column, and the third set of five rows are non-zero
in the third column. The leverage scores corresponding to each column’s contribution
to the column space are thus spread over at most 5 rows, giving 15 total rows with
very high leverage score. The magnitude specifies the size of these non-zero elements
(set to 3 in our experiments) and then has a small amount of independent noise added
chosen uniformly between 0 and 0.05. Finally, we construct the associated rank 25
tensor and add 5% Gaussian noise to the elements.

C.2. Experimental setup. The experiments were run on environment (A) us-
ing MATLAB (Version 2018a) and the Tensor Toolbox for MATLAB [5]. CP-ALS
used the default settings except that tol = 10−5 and the maximum number of itera-
tions was set to 250. For all the randomized algorithms, the epoch size η was set to 5
and the algorithm terminated once π = 5 epochs failed to improve the estimated fit by
tol = 10−4. We created 10 random initializations and used the same initializations
for all experiments. Each algorithm and sample combination were run from these 10
random initialization and the total time of all 10 runs was recorded. We computed
the factor match score for the run that had the highest fit value.

Appendix D. End-to-end Complexity of Algorithm. Here we summarize
the costs of the CP-ARLS-LEV. Recall that the tensor X is of order (d+ 1) and size
n1×n2×· · ·×nd+1, the target rank is r, the number of samples per least squares solve
is s, and the number of samples used to (optionally) estimate the fit is sfit. We assume
d is a constant for the purposes of complexity calculations, and let n̄ = maxk nk. For
a sparse tensor, nnz(X) is the number of nonzeros in X, with nnz(X) = O(

∏
k nk) if

X is dense. Line numbers refer to Algorithm 3 unless otherwise noted.

D.1. Preprocessing. We get a speedup in the extraction of the fibers from
the tensor X by precomputing linear indices for each unfolding and for each nonzero
(see subsection 6.3) at a one-time cost of O(nnz(X)).

We also need to compute the leverage scores. This is computed for the initial
factor matrices at a cost of O(r2n̄) for all the factor matrices.

D.2. Per-epoch costs. Each epoch comprises η outer iterations, with costs
detailed below. The only other cost per epoch is computing the fit. Computing the
exact fit costs O(r nnzX), which can easily the dominant cost for larger problems,
even if it is only computed once per epoch. For the sparse problems with billions of
nonzeros, an estimated fit is used as described in subsection 6.4 and costs O(rsfit)
operations.

D.3. Per-iteration costs. Each outer iteration comprises d+1 inner iterations,
indexed by k. Inner iteration k has the following costs:

• Computing the sampled indices and weights (Line 8): If τ = 1 (corresponding
to what we refer to as random sampling in the experiments), generating
indices in Line 5 of Algorithm 2 is the main computation and costs O(sn̄)

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 29

operations. If τ < 1, there is also the cost of computing the deterministic
indices, with a worst-case of O(sd) computations; however, this is an optional
step that can be aborted if it proves overly expensive. Combining repeated
indices in Line 5 of Algorithm 1 requires O(s log s) computations to sort and
find duplicates.

• Computing the sampled KRP (Line 9): O(sr)
• (Dominating memory movements) Computing the sampled tensor (Line

10): This requires finding nonzeros corresponding to the sampled rows us-
ing the precomputed linear indices. The main price we pay here is memory
movement to extract up to O(sn̄) nonzeros.

• (Dominating computations) Solving the sampled least squares system
(Line 11): This is the solution of an s× r system with n̄ right-hand sides, so
the work is O(sr2) operations to form the QR factorization O(srn̄) operations
to multiply the right-hand sides by the Q-matrix. If the right-hand side is
sparse, the Q-matrix can be applied via sparse matrix vector multiplication
(SpMV) and the cost becomes O(r nnz(X̃)) where X̃ is the flattened sampled
tensor.

• Computing updated sampling probabilities (line 12): O(r2n̄) to compute the
QR factorization of Ak

Appendix E. Detailed Runs on Uber Tensor. Figure 12 provides the full
run data for the experiments discussed in subsection 7.3 and summarized in Figure 4.
The dotted lines are the individual runs and the solid lines are the median over the
interpolated runs. The standard method is included for ease of comparison. Each
marker for random and hybrid represents one epoch of five outer iterations, and each
marker for CP-ALS (standard) corresponds to one outer iteration.

Appendix F. Initialization via Randomized Range Finder for Enron
Tensor.

This supplement uses the Enron tensor from FROSTT to illustrate how perfor-
mance can be improved for some tensors via randomized range finder (RRF) initial-
ization. The quality of the randomized least squares is adversely affected by the norm
of the right hand side that is outside the range of the matrix, which we denote as
X⊥. A random initialization could result in large X⊥, hurting the performance of
the run. We show that this can be fixed by simply initializing with a random linear
combination of the fibers in the matricized tensor, a method referred to in the litera-
ture as RRF [16]. (It can also be that X⊥ is large because the method does not have
multilinear structure, but this is a property of the tensor that would generally lead
to sub par performance of any method on the problem.)

The Enron tensor is of size 6,066 × 5,699 × 244,268 × 1,176 and has 54,202,099
nonzeros. It is the 4-way log-count5 tensor of emails comprising 6K senders × 6K
receivers × 244K words × 1K days. For each of the run of CP-ARLS-LEV, we used
hybrid sampling with τ = 1/s and an estimated fit as described in subsection 6.4
with sfit = 225 stratified samples, evenly divided between zeros and nonzeros. The
tensor elements were only sampled once and shared across all epochs and runs for
consistency of reporting. For both methods, the stopping tolerance was 10−4, and the
experiments were run on computational environment (A).

5This tensor has been modified from the raw count tensor provided by FROSTT. Each entry is
log(c+ 1) where c is the count. Note that the zeros are unchanged. This is a standard weighting in
text analysis. The primary effect is that the largest entries are damped.

30 BRETT W. LARSEN AND TAMARA G. KOLDA

0 50 100 150 200 250 300 350
0.170

0.172

0.174

0.176

0.178

0.180

0.182

0.184

0.186

0.188

0.190

time (s)

fi
t

Hybrid s = 215

Hybrid s = 216

Hybrid s = 217

Random s = 215

Random s = 216

Random s = 217

Standard

Fig. 12: Comparison of CP-ARLS-LEV (random and hybrid) with varying number
of samples s ∈ { 215, 216, 217 } and CP-ALS (standard) to compute a rank r = 25
CP decomposition of the Uber tensor with 3.3 million nonzeros. The dotted lines
represent the individual runs with markers indicating epoch (5 iterations) for the
randomized methods and one iteration for the standard method. The solid lines show
medians.

Figure 13 shows the difference between runs with a random initialization and runs
initialized via RRF on the Enron tensor. As before, the random initialization draws
from a standard Gaussian for each element of the factor matrix. Runs initialized
via RRF formed the initial factor matrix from a random linear combination of the
matricized fibers. This was done by first drawing sinit fibers uniformly from the
nonzero fibers of the matricized tensor, in this case using sinit = 105. As CP-ARLS-
LEV already forms the linear indices of elements along each mode unfolding as a
preprocessing step, sampling and extracting the fibers is an efficient computation.
These are then multiplied by a random Gaussian matrix Ω ∈ Rsinit×r in order to form a
random linear combination of the sampled fibers for each column of the factor matrix.
By forming the columns of our initialization out of the columns of the matricized
tensor we tend to decrease the magnitude of X⊥, or the part of X that is perpendicular
to the column space of our factor matrix.

The left panel of Figure 13 shows the fit values across 10 runs for each initialization
method for sample size s = 218 and s = 219; 10 runs of CP-ALS are also included for
comparison. The experiments show that the RRF greatly improves the fit found by

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 31

0.07 0.08 0.09 0.10

Gaussian s = 218

RRF s = 218

Gaussian s = 219

RRF s = 219

Standard

fit

0 1 2 3

·104time (s)

Fig. 13: Comparison of different methods of initialization for CP-ARLS-LEV hybrid
(τ = 1/s) on the Enron tensor with 54.2 million nonzeros and rank r = 25. Each box
plot represents 10 runs, and the experiments show that initializing via the Random-
ized Range Finder (RRF) with sinit = 105 provides a significant improvement in fit
compared to Gaussian initialization.

CP-ARLS-LEV and that the fit is only comparable to CP-ALS if the RRF method
is used. The right panel of Figure 13 shows that the total run time is roughly the
same for either initialization method. Furthermore, the median runtime with RRF
initialization for s = 218 samples is 5.78 times faster and for s = 219 samples is 4.39
times faster than the median runtime for CP-ALS.

Acknowledgments. We would like to thank the referees and editors for useful
feedback that has greatly strengthened the results, the experiments, and the presenta-
tion. In particular, we thank the referee that provided careful feedback on the proof of
Theorem 6, enabling reduction of the number of samples from s = O(r log n/(βε2)) to
s = O(r/(βε)). We would like to thank Daniel Martin for pointing us to the relevant
problems of key rank and key enumeration in cryptography and providing us with the
relevant references [15, 26, 33]. Thanks to Jimmy Peng for feedback on earlier draft.

REFERENCES

[1] E. Acar and B. Yener, Unsupervised multiway data analysis: A literature survey, IEEE
Transactions on Knowledge and Data Engineering, 21 (2009), pp. 6–20, doi:10.1109/TKDE.
2008.112.

[2] K. S. Aggour, A. Gittens, and B. Yener, Adaptive sketching for fast and convergent canon-
ical polyadic decomposition, in International Conference on Machine Learning (PMLR),
2020, http://proceedings.mlr.press/v119/gittens20a.html.

[3] S. Ahmadi-Asl, S. Abukhovich, M. G. Asante-Mensah, A. Cichocki, A. H. Phan,
T. Tanaka, and I. Oseledets, Randomized algorithms for computation of Tucker de-
composition and higher order SVD (HOSVD), IEEE Access, 9 (2021), pp. 28684–28706,
doi:10.1109/access.2021.3058103.

[4] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and fac-
tored tensors, SIAM Journal on Scientific Computing, 30 (2007), pp. 205–231, doi:
10.1137/060676489.

[5] B. W. Bader, T. G. Kolda, et al., MATLAB Tensor Toolbox Version 3.1. Available online,
June 2019, https://www.tensortoolbox.org.

[6] C. Battaglino, G. Ballard, and T. G. Kolda, A practical randomized CP tensor decom-
position, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 876–901,
doi:10.1137/17M1112303, arXiv:1701.06600.

[7] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling
via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319, doi:10.1007/BF02310791.

http://dx.doi.org/10.1109/TKDE.2008.112
http://dx.doi.org/10.1109/TKDE.2008.112
http://proceedings.mlr.press/v119/gittens20a.html
http://dx.doi.org/10.1109/access.2021.3058103
http://dx.doi.org/10.1137/060676489
http://dx.doi.org/10.1137/060676489
https://www.tensortoolbox.org
http://dx.doi.org/10.1137/17M1112303
http://arxiv.org/abs/1701.06600
http://dx.doi.org/10.1007/BF02310791

32 BRETT W. LARSEN AND TAMARA G. KOLDA

[8] D. Cheng, R. Peng, I. Perros, and Y. Liu, SPALS: Fast alternating least squares
via implicit leverage scores sampling, in NIPS’16, 2016, https://papers.nips.cc/paper/
6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf.

[9] G. Drakopoulos, A. Kanavos, I. Karydis, S. Sioutas, and A. G Vrahatis, Tensor-based
semantically-aware topic clustering of biomedical documents, Computation, 5 (2017), p. 34,
doi:10.3390/computation5030034.

[10] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices I:
Approximating matrix multiplication, SIAM Journal on Computing, 36 (2006), pp. 132–
157, doi:10.1137/s0097539704442684.

[11] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff, Fast approximation
of matrix coherence and statistical leverage, Journal of Machine Learning Research, 13
(2012), pp. 3475–3506, http://www.jmlr.org/papers/v13/drineas12a.html.

[12] P. Drineas and M. W. Mahoney, A randomized algorithm for a tensor-based generalization of
the singular value decomposition, Linear Algebra and its Applications, 420 (2007), pp. 553–
571, doi:10.1016/j.laa.2006.08.023.

[13] P. Drineas and M. W. Mahoney, Lectures on randomized numerical linear algebra, 2017,
arXiv:1712.08880.

[14] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, Faster least
squares approximation, Numerische mathematik, 117 (2011), pp. 219–249, doi:10.1007/
s00211-010-0331-6.

[15] C. Glowacz, V. Grosso, R. Poussier, J. Schüth, and F.-X. Standaert, Simpler and more
efficient rank estimation for side-channel security assessment, in International Workshop
on Fast Software Encryption, Springer, 2015, pp. 117–129, doi:10.1007/978-3-662-48116-5
6.

[16] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288, doi:10.1137/090771806, http://dx.doi.org/10.1137/090771806.

[17] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis, UCLA working papers in phonetics, 16 (1970),
pp. 1–84. Available at http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.

[18] M. A. Iwen, D. Needell, E. Rebrova, and A. Zare, Lower memory oblivious (tensor) sub-
space embeddings with fewer random bits: Modewise methods for least squares, SIAM Jour-
nal on Matrix Analysis and Applications, 42 (2021), pp. 376–416, doi:10.1137/19M1308116.

[19] R. Jin, T. G. Kolda, and R. Ward, Faster Johnson-Lindenstrauss transforms via Kronecker
products, Information and Inference: A Journal of the IMA, (2020), doi:10.1093/imaiai/
iaaa028, arXiv:1909.04801.

[20] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51
(2009), pp. 455–500, doi:10.1137/07070111X.

[21] T. G. Kolda and D. Hong, Stochastic gradients for large-scale tensor decomposition,
SIAM Journal on Mathematics of Data Science, 2 (2020), pp. 1066–1095, doi:10.1137/
19m1266265, arXiv:1906.01687.

[22] M. W. Mahoney, Randomized algorithms for matrices and data, Foundations and Trends in
Machine Learning, 3 (2011), pp. 123–224, doi:10.1561/2200000035, arXiv:1104.5557.

[23] M. W. Mahoney, M. Maggioni, and P. Drineas, Tensor-cur decompositions for tensor-based
data, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 957–987.

[24] O. A. Malik and S. Becker, Low-rank tucker decomposition of large ten-
sors using TensorSketch, in Advances in Neural Information Processing Sys-
tems, 2018, pp. 10096–10106, https://proceedings.neurips.cc/paper/2018/hash/
45a766fa266ea2ebeb6680fa139d2a3d-Abstract.html.

[25] O. A. Malik and S. Becker, Guarantees for the Kronecker fast Johnson–Lindenstrauss trans-
form using a coherence and sampling argument, Linear Algebra and its Applications, 602
(2020), pp. 120–137, doi:10.1016/j.laa.2020.05.004.

[26] D. P. Martin, J. F. O’connell, E. Oswald, and M. Stam, Counting keys in parallel
after a side channel attack, in International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Springer, 2015, pp. 313–337, doi:10.1007/
978-3-662-48800-3 13.

[27] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra: Foundations
and algorithms, Acta Numerica, 29 (2020), pp. 403–572, doi:10.1017/s0962492920000021,
arXiv:2002.01387.

[28] K. Maruhashi, F. Guo, and C. Faloutsos, Multiaspectforensics: Pattern mining on large-
scale heterogeneous networks with tensor analysis, in 2011 International Conference on
Advances in Social Networks Analysis and Mining, IEEE, 2011, pp. 203–210, doi:10.1109/

https://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
https://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
http://dx.doi.org/10.3390/computation5030034
http://dx.doi.org/10.1137/s0097539704442684
http://www.jmlr.org/papers/v13/drineas12a.html
http://dx.doi.org/10.1016/j.laa.2006.08.023
http://arxiv.org/abs/1712.08880
http://dx.doi.org/10.1007/s00211-010-0331-6
http://dx.doi.org/10.1007/s00211-010-0331-6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1137/090771806
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://dx.doi.org/10.1137/19M1308116
http://dx.doi.org/10.1093/imaiai/iaaa028
http://dx.doi.org/10.1093/imaiai/iaaa028
http://arxiv.org/abs/1909.04801
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/19m1266265
http://dx.doi.org/10.1137/19m1266265
http://arxiv.org/abs/1906.01687
http://dx.doi.org/10.1561/2200000035
http://arxiv.org/abs/1104.5557
https://proceedings.neurips.cc/paper/2018/hash/45a766fa266ea2ebeb6680fa139d2a3d-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/45a766fa266ea2ebeb6680fa139d2a3d-Abstract.html
http://dx.doi.org/10.1016/j.laa.2020.05.004
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1017/s0962492920000021
http://arxiv.org/abs/2002.01387
http://dx.doi.org/10.1109/ASONAM.2011.80
http://dx.doi.org/10.1109/ASONAM.2011.80

LEVERAGE-BASED SAMPLING FOR TENSOR DECOMPOSITION 33

ASONAM.2011.80.
[29] Y. Mu, W. Ding, M. Morabito, and D. Tao, Empirical discriminative tensor analysis for

crime forecasting, in International Conference on Knowledge Science, Engineering and
Management, Springer, 2011, pp. 293–304, doi:10.1007/978-3-642-25975-3 26.

[30] M. Nakatsuji, Q. Zhang, X. Lu, B. Makni, and J. A. Hendler, Semantic social network
analysis by cross-domain tensor factorization, IEEE Transactions on Computational Social
Systems, 4 (2017), pp. 207–217, doi:10.1109/TCSS.2017.2732685.

[31] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis, Provable deterministic leverage score
sampling, in Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2014, pp. 997–1006, doi:10.1145/2623330.2623698.

[32] E. E. Papalexakis, K. Pelechrinis, and C. Faloutsos, Location based social network analy-
sis using tensors and signal processing tools, in 2015 IEEE 6th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), IEEE, 2015,
pp. 93–96, doi:10.1109/CAMSAP.2015.7383744.

[33] R. Poussier, F.-X. Standaert, and V. Grosso, Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach, in International Conference on Cryp-
tographic Hardware and Embedded Systems, Springer, 2016, pp. 61–81, doi:10.1007/
978-3-662-53140-2 4.

[34] A. Sapienza, A. Bessi, and E. Ferrara, Non-negative tensor factorization for human be-
havioral pattern mining in online games, Information, 9 (2018), p. 66, doi:10.3390/
info9030066.

[35] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE
Transactions on Signal Processing, 65 (2017), pp. 3551–3582, doi:10.1109/TSP.2017.
2690524, arXiv:1607.01668.

[36] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis, FROSTT: The
formidable repository of open sparse tensors and tools, 2017, http://frostt.io/.

[37] Z. Song, D. P. Woodruff, and P. Zhong, Relative error tensor low rank approximation,
in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’19, Philadelphia, PA, USA, 2019, Society for Industrial and Applied Mathematics,
pp. 2772–2789, http://dl.acm.org/citation.cfm?id=3310435.3310607.

[38] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, Low-rank Tucker approximation of a
tensor from streaming data, SIAM Journal on Mathematics of Data Science, 2 (2019),
pp. 1123–1150, doi:10.1137/19M1257718.

[39] Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar, Fast and guar-
anteed tensor decomposition via sketching, in Advances in Neural Informa-
tion Processing Systems, 2015, pp. 991–999, http://papers.nips.cc/paper/
5944-fast-and-guaranteed-tensor-decomposition-via-sketching.pdf.

[40] D. P. Woodruff, Sketching as a tool for numerical linear algebra, FNT in Theoretical Com-
puter Science, 10 (2014), pp. 1–157, doi:10.1561/0400000060, arXiv:1411.4357.

[41] Y. Yan, Y. Tao, J. Xu, S. Ren, and H. Lin, Visual analytics of bike-sharing data based
on tensor factorization, Journal of Visualization, 21 (2018), pp. 495–509, doi:10.1007/
s12650-017-0463-1.

[42] B. Yang, A. Zamzam, and N. D. Sidiropoulos, Parasketch: Parallel tensor factorization
via sketching, in Proceedings of the 2018 SIAM International Conference on Data Mining,
SIAM, 2018, pp. 396–404, doi:10.1137/1.9781611975321.45.

[43] A. R. Zhang, Y. Luo, G. Raskutti, and M. Yuan, ISLET: Fast and optimal low-rank tensor
regression via importance sketching, SIAM Journal on Mathematics of Data Science, 2
(2020), pp. 444–479, doi:10.1137/19M126476X.

[44] G. Zhou, A. Cichocki, and S. Xie, Decomposition of big tensors with low multilinear rank,
Dec. 2014, arXiv:1412.1885.

http://dx.doi.org/10.1109/ASONAM.2011.80
http://dx.doi.org/10.1109/ASONAM.2011.80
http://dx.doi.org/10.1007/978-3-642-25975-3_26
http://dx.doi.org/10.1109/TCSS.2017.2732685
http://dx.doi.org/10.1145/2623330.2623698
http://dx.doi.org/10.1109/CAMSAP.2015.7383744
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.3390/info9030066
http://dx.doi.org/10.3390/info9030066
http://dx.doi.org/10.1109/TSP.2017.2690524
http://dx.doi.org/10.1109/TSP.2017.2690524
http://arxiv.org/abs/1607.01668
http://frostt.io/
http://dl.acm.org/citation.cfm?id=3310435.3310607
http://dx.doi.org/10.1137/19M1257718
http://papers.nips.cc/paper/5944-fast-and-guaranteed-tensor-decomposition-via-sketching.pdf
http://papers.nips.cc/paper/5944-fast-and-guaranteed-tensor-decomposition-via-sketching.pdf
http://dx.doi.org/10.1561/0400000060
http://arxiv.org/abs/1411.4357
http://dx.doi.org/10.1007/s12650-017-0463-1
http://dx.doi.org/10.1007/s12650-017-0463-1
http://dx.doi.org/10.1137/1.9781611975321.45
http://dx.doi.org/10.1137/19M126476X
http://arxiv.org/abs/1412.1885

	1 Introduction
	1.1 CP least squares problem
	1.2 Related work
	1.3 Our contributions

	2 Background on least squares problems in and KRPs
	3 Background on sketching for least squares problems
	3.1 Weighted sampling
	3.2 Leverage scores and sampling probabilities

	4 Tools for sketching with concentrated sampling probabilities
	4.1 Combine repeated rows
	4.2 Hybrid deterministic and random sampling
	4.3 Combining rows for the hybrid deterministic and random sampling
	4.4 The nonviable alternative of sampling without replacement

	5 Efficient leverage score sampling for KRP matrices
	5.1 Sampling probabilities for KRP matrices and main theorem
	5.2 Implicit random row sampling for KRP matrices
	5.3 Implicit computation of high-probability rows for deterministic inclusion

	6 Alternating randomized least squares with leverage score sampling
	6.1 Finding indices and weights
	6.2 Full algorithm
	6.3 Efficient sampling from sparse tensor
	6.4 Estimating the fit

	7 Numerical results
	7.1 Combining repeated rows
	7.2 Comparing random and hybrid sampling
	7.3 Equivocal performance on small tensor
	7.4 Order of magnitude speed improvement on massive sparse tensors
	7.5 Example factors for massive tensor

	8 Conclusions
	Appendix A. Proof of thm:sketching
	A.1 Properties of sketching matrix under structural conditions
	A.2 Proof that sketching matrix meets structural conditions
	A.3 Main Theorem

	Appendix B. Comparison of Sampling Methods
	Appendix C. Comparison on Dense Tensor
	C.1 Data generation
	C.2 Experimental setup

	Appendix D. End-to-end Complexity of Algorithm
	D.1 Preprocessing
	D.2 Per-epoch costs
	D.3 Per-iteration costs

	Appendix E. Detailed Runs on Uber Tensor
	Appendix F. Initialization via Randomized Range Finder for Enron Tensor
	Acknowledgments
	References

