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Abstract

This paper is concerned with a class of mean-field type coupled forward-backward stochastic
differential equations (MF-FBSDEs, for short), in which the coupling appears in integral terms,
terminal terms, and initial terms. Inspired by various mean-field type linear-quadratic (MF-LQ,
for short) optimal control problems, we proposed a type of randomized domination-monotonicity
conditions, under which and the usual Lipschitz condition, we obtain a well-posedness result on
MF-FBSDEs in the sense of square integrability including the unique solvability, an estimate of
the solution, and the related continuous dependence property of the solution on the coefficients.
The result of MF-FBSDEs in turn extends MF-LQ problems in the literature to a general situation
where the initial states or the terminal states are also controlled at the same time, and gives explicit
expressions of the related unique optimal controls.

Key words: forward-backward stochastic differential equation, stochastic linear-quadratic problem,
stochastic optimal control, mean-field, domination-monotonicity condition
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1 Introduction

Historically, as a kind of mean-field type stochastic differential equations (MF-SDE, for short), the re-
search on McKean-Vlasov SDEs started from the pioneering works of Kac [10] and McKean [15]. In
the past fifteen years, accompanying the research boom of mean-field games led by Huang et al. [9] and
Lasry and Lions [11], the MF-SDEs gained a rapid development. Especially, mean-field type backward
SDEs (MF-BSDEs, for short), which admit a typical structure different from the corresponding forward
equations, were introduced and studied by Buckdahn et al. [3,4]. Due to the requirements of both theory
and applications, a (forward) MF-SDE and an MF-BSDE were coupled together to form a system called
an MF-FBSDE, and were studied by many scholars; see Carmona and Delarue [6,7], Bensoussan et al. [2],
Wei et al. [21], and so on.

In this paper, we consider the following MF-FBSDE:





dx(s) = b
(
s, θ(s),Et[θ(s)]

)
ds+

d∑

i=1

σi
(
s, θ(s),Et[θ(s)]

)
dWi(s), s ∈ [t, T ],

dy(s) = g
(
s, θ(s),Et[θ(s)]

)
ds+

d∑

i=1

zi(s) dWi(s), s ∈ [t, T ],

x(t) = Ψ
(
y(t)

)
, y(T ) = Φ

(
x(T ),Et[x(T )]

)
,

(1.1)

where Et[·] ≡ E[·|Ft] is the conditional expectation with respect to Ft, θ(·) := (x(·)⊤, y(·)⊤, z(·)⊤)⊤
with z(·) = (z1(·)⊤, z2(·)⊤, . . . , zd(·)⊤)⊤ is the unknown process, and W (·) := (W1(·),W2(·), . . . ,Wd(·))⊤
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is a d-dimensional Brownian motion. Here and hereafter, the superscript ⊤ denotes the transpose
of a vector or a matrix. For convenience, we also denote Γ(·) := (g(·)⊤, b(·)⊤, σ(·)⊤)⊤ and σ(·) :=
(σ1(·)⊤, σ2(·)⊤, . . . , σd(·)⊤)⊤. Then, all of the coefficients of MF-FBSDE (1.1) are collected by (Ψ,Φ,Γ).

To our best knowledge, in the literature on MF-FBSDEs, the coupling between forward variable
x(·) and backward variables (y(·), z(·)) only appeared in the integral coefficient Γ(·) and the terminal
coefficient Φ(·), while the initial coefficient Ψ(·) was always in the decoupled form, i.e., Ψ(·) ≡ xt which
is a given Ft-measurable random variable. In comparison, the coupling occurs in all three coefficients
(Ψ,Φ,Γ) of (1.1). The present paper is the first time to consider this general situation.

It is well known that, if only the uniformly Lipschitz continuity of the coefficients is proposed, MF-
FBSDE (1.1) (even in the absence of initial coupling and/or mean-field terms) may be unsolvable on
an arbitrarily large time interval (see a counterexample in Antonelli [1]). Carmona and Delarue [6]
introduced some assumptions including the uniform ellipticity and the boundedness of the coefficient
σ(·), and for the first time obtained an existence result on large intervals for coupled MF-FBSDEs.
In their second paper [7], they introduced the convexity assumption to get a unique solvability result.
Moreover, Bensoussan et al. [2] proposed a kind of monotonicity conditions and improve the result in [7].
In the present paper, we will introduce a type of domination-monotonicity conditions to ensure the
global solvability of MF-FBSDEs. Such conditions can be regarded as a generalization of monotonicity
conditions in [2]. We also note that a special and linear case was studied in Wei et al. [21].

The domination-monotonicity conditions are actually rooted in various MF-LQ optimal control prob-
lems; see Yong [23], Ni et al. [16], Sun [18], Li et al. [13], Wang [20], and Li et al. [12], for example.
Let us explain this point in detail. When we apply the Pontryagin type maximum principle approach
to study the necessary condition of an MF-LQ problem, by introducing an adjoint equation, the op-
timal control will be closely linked with a mean-field type Hamiltonian system (which is actually an
MF-FBSDE, see (4.14) and (4.21)). Moreover, by imposing some uniformly positive definiteness condi-
tion (see Condition (MF-FLQ-PD) and Condition (MF-BLQ-PD) in Section 4), the necessary condition
is also sufficient. Taking MF-LQ problems as an understanding background and intuitive guidance, we
propose the domination-monotonicity conditions for the nonlinear MF-FBSDE (1.1). The features and
novelties of such conditions are summarized as the following three points:

(i) The domination-monotonicity conditions (see Assumption (H4) and Remark 3.7) accurately corre-
spond to the expression forms of optimal controls and the related uniformly positive definiteness
conditions in the four classes of MF-LQ problems (see Proposition 4.2, Proposition 4.4 and Remark
4.5).

(ii) Compared with monotonicity conditions in [2], the introduction of matrices and matrix-valued func-
tions in our domination-monotonicity conditions increases flexibility and extensiveness. In detail,
due to their introduction, on the one hand, a new kind of domination conditions are created which
strengthen the Lipschitiz condition; on the other hand, at the same time it also weakens the mono-
tonicity conditions in [2]. The flexible selection of matrices and matrix-valued functions provides us
with more possibilities.

(iii) Compared with the classical case without involving mean-field terms (see [25]), the domination-
monotonicity conditions in this paper present a randomized form (see (3.4) and (3.5)). This is
a response to the difficulty caused by the mean-field terms. We notice that this randomization
technique has been used in [2].

In this paper, we will develop the method of continuation, which is originally introduced by Hu and
Peng [8], Yong [22], and Peng and Wu [17] when they studied the classical coupled FBSDEs without
mean-field terms, and obtain the well-posedness of MF-FBSDE (1.1) in the sense of square integrability
including the existence and uniqueness of the solution, an estimate, and the related continuous dependence
property of the solution on the coefficients (see Theorem 3.4). In order to overcome the technical difficulty
brought with the mean-field terms, besides the randomization technique stated in the above Point (iii),
we will also employ a decomposition technique of random variables: ξ = (ξ − Et[ξ]) + Et[ξ] which is
originally introduced by Yong [23]. We notice that although this decomposition is simple, it has the
advantage that its first part has zero conditional expectation and the second part is Ft-measurable. Due
to this, it is often adopted to deal with many mean-field type problems (see Lin et al. [14] and Tian et
al. [19], for example). But, the difficulty has still not been completely overcome. Then, we have to assume
that the matrices and matrix-valued processes involved in the domination-monotonicity conditions are
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deterministic. We are finally able to overcome the difficulty and complete all analyses and proofs in this
paper.

As an application of the unique solvability result of MF-FBSDE (1.1), we re-examined several MF-
LQ problems. It is worth noting that, in MF-LQ problems in the literature, control is only applied to
the drift and diffusion terms of the controlled systems; while in the present paper, corresponding to the
feature that the couplings appear in both Ψ(·) and Φ(·) of MF-FBSDE (1.1), control can also be applied
to the initial values of forward MF-LQ problems (see the forward controlled system (4.1), for example)
and the terminal values of backward MF-LQ problems (see the backward controlled system (4.15)) at the
same time. These extensions are interesting in their own right. As conclusions, the unique solvability of
MF-FBSDE (1.1) under domination-monotonicity conditions implies that of Hamiltonian systems arising
from these generalized MF-LQ problems, and further implies the existence and uniqueness of optimal
controls.

The rest of this paper is organized as follows. In Section 2, we define some notations and give
the preliminaries about MF-SDEs and MF-BSDEs. In Section 3, we rigorously state the domination-
monotonicity conditions in detail, then under them, we prove the well-posedness of MF-FBSDE (1.1). In
Section 4, we apply the results of MF-FBSDEs obtained in the previous section to study some generalized
MF-LQ problems, and obtain the explicit expressions of the unique optimal controls based on the related
mean-field type Hamiltonian systems. Some proofs for the results of MF-SDEs and MF-BSDEs are put
in Appendix A.

2 Notations and preliminaries

Let Rn be the n-dimensional Euclidean space equipped with the Euclidean inner product 〈·, ·〉. The
induced Euclidean norm is denoted by | · |. Let Rm×n be the set of all (m× n) matrices and Sn ⊂ Rn×n

be the subset consisting of all (n × n) symmetric matrices. In this paper, we use the operator norm of
matrices:

‖A‖ := sup
Rn∋x 6=0

|Ax|
|x| for any A ∈ R

m×n.

Let 0 < T < ∞ be a fixed time horizon. Let (Ω,F ,F,P) be a complete filtered probability space
on which a d-dimensional standard Brownian motion W (·) is defined and F = {Fs, 0 ≤ s ≤ T } is the
natural filtration of W (·) augmented by all P-null sets. We also set F = FT .

Let 0 ≤ t < T and q = 1, 2. We introduce some Banach (or Hilbert in case of L2
Ft
(Ω;Rn) or

L2
F
(t, T ;Rn)) spaces as follows:

• L2
Ft
(Ω;Rn) is the set of all Ft-measurable random variables ξ : Ω → Rn such that

‖ξ‖L2
Ft

(Ω;Rn) :=
{
E
[
|ξ|2
]}1/2

<∞.

• L2
F
(Ω;Lq([t, T ];Rn)) is the set of all F-progressively measurable processes f : [t, T ]× Ω → Rn such

that

‖f(·)‖L2
F
(Ω;Lq([t,T ];Rn)) :=

{
E

[(∫ T

t

|f(s)|q ds
)2/q]}1/2

<∞.

When q = 1, we denote L2
F
(Ω;L([t, T ];Rn)) = L2

F
(Ω;L1([t, T ];Rn)). When q = 2, we denote

L2
F
(t, T ;Rn) = L2

F
(Ω;L2([t, T ];Rn)).

• L2
F
(Ω;C([t, T ];Rn)) is the set of all F-progressively measurable processes f : [t, T ]× Ω → Rn such

that for almost all ω ∈ Ω, s 7→ f(s, ω) is continuous and

‖f(·)‖L2
F
(Ω;C([t,T ];Rn)) :=

{
E

[
sup

s∈[t,T ]

|f(s)|2
]}1/2

<∞.

Now, we turn to consider an MF-SDE:




dx(s) = b
(
s, x(s),Et[x(s)]

)
ds+

d∑

i=1

σi
(
s, x(s),Et[x(s)]

)
dWi(s), s ∈ [t, T ],

x(t) = xt.

(2.1)
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For convenience, we denote σ(·) := (σ1(·)⊤, σ2(·)⊤, . . . , σd(·)⊤)⊤. The coefficients (xt, b, σ) are assumed
to satisfy the following

Assumption (H1). (i) For any x, x′ ∈ Rn, the processes b(·, x, x′) and σ(·, x, x′) are F-progressively
measurable. Moreover, xt ∈ L2

Ft
(Ω;Rn), b(·, 0, 0) ∈ L2

F
(Ω;L([t, T ];Rn)) and σ(·, 0, 0) ∈ L2

F
(t, T ;Rnd).

(ii) The mappings b and σ are uniformly Lipschitz continuous with respect to (x, x′), i.e., there exists a
constant L > 0 such that

∣∣b(s, x, x′)− b(s, x̄, x̄′)
∣∣+
∣∣σ(s, x, x′)− σ(s, x̄, x̄′)

∣∣ ≤ L
(
|x− x̄|+ |x′ − x̄′|

)
,

for any x, x̄, x′, x̄′ ∈ Rn and almost all (s, ω) ∈ [t, T ]× Ω.

We have the following result.

Proposition 2.1. Under Assumption (H1), MF-SDE (2.1) with coefficients (xt, b, σ) admits a unique
solution x(·) ∈ L2

F
(Ω;C([t, T ];Rn)). Moreover, we have the following estimate:

Et

[
sup

s∈[t,T ]

|x(s)|2
]
≤ K

{
|xt|2 + Et

[(∫ T

t

∣∣b(s, 0, 0)
∣∣ds
)2

+

∫ T

t

∣∣σ(s, 0, 0)
∣∣2 ds

]}
, (2.2)

where K := K(T − t, L) > 0 is a constant depending on (T − t) and the Lipschitz constant of the
mappings b and σ. Furthermore, let (x̄t, b̄, σ̄) be another set of coefficients, and assume that x̄(·) ∈
L2
F
(Ω;C([t, T ];Rn)) is a solution to the MF-SDE with (x̄t, b̄, σ̄). We continue to assume that x̄t ∈

L2
Ft
(Ω;Rn), b̄(·, x̄(·),Et[x̄(·)]) ∈ L2

F
(Ω;L([t, T ];Rn)) and σ̄(·, x̄(·),Et[x̄(·)]) ∈ L2

F
(t, T ;Rnd). Then,

Et

[
sup

s∈[t,T ]

|x(s)− x̄(s)|2
]
≤ K

{
|xt − x̄t|2 + Et

[(∫ T

t

∣∣∣b
(
s, x̄(s),Et[x̄(s)]

)

− b̄
(
s, x̄(s),Et[x̄(s)]

)∣∣∣ ds
)2

+

∫ T

t

∣∣∣σ
(
s, x̄(s),Et[x̄(s)]

)
− σ̄

(
s, x̄(s),Et[x̄(s)]

)∣∣∣
2

ds

]}
,

(2.3)

where K is the same constant as in (2.2).

The results in Proposition 2.1 are standard. We believe that they are not new. However, we are
not able to find an exact reference, then we give a proof and put it in Appendix A.1 for the readers’
convenience.

Next, we consider an MF-BSDE as follows:





dy(s) = g
(
s, y(s),Et[y(s)], z(s),Et[z(s)]

)
ds+

d∑

i=1

zi(s) dWi(s), s ∈ [t, T ],

y(T ) = yT ,

(2.4)

where z(·) := (z1(·)⊤, z2(·)⊤, . . . , zd(·)⊤)⊤. For the coefficients (yT , g) of MF-BSDE (2.4), we introduce
the following

Assumption (H2). (i) For any y, y′ ∈ Rn and z, z′ ∈ Rnd, the process g(·, y, y′, z, z′) is F-progressively
measurable. Moreover, yT ∈ L2

FT
(Ω;Rn) and g(·, 0, 0, 0, 0) ∈ L2

F
(Ω;L([t, T ];Rn)).

(ii) The mapping g is uniformly Lipschitz continuous with respect to (y, y′, z, z′), i.e., there exists a
constant L > 0 such that

∣∣g
(
s, y, y′, z, z′

)
− g
(
s, ȳ, ȳ′, z̄, z̄′

)∣∣ ≤ L
(
|y − ȳ|+ |y′ − ȳ′|+ |z − z̄|+ |z′ − z̄′|

)
.

for any y, ȳ, y′, ȳ′ ∈ Rn, any z, z̄, z′, z̄′ ∈ Rnd and almost all (s, ω) ∈ [t, T ]× Ω.

Proposition 2.2. Under Assumption (H2), MF-BSDE (2.4) with coefficients (yT , g) admits a unique
solution (y(·), z(·)) ∈ L2

F
(Ω;C([t, T ];Rn))× L2

F
(t, T ;Rnd). Moreover, we have the following estimate:

Et

[
sup

s∈[t,T ]

|y(s)|2 +
∫ T

t

|z(s)|2 ds
]
≤ KEt

[
|yT |2 +

(∫ T

t

∣∣g
(
s, 0, 0, 0, 0

)∣∣ds
)2]

, (2.5)
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where K := K(T−t, L) > 0 is a constant depending on (T−t) and the Lipschitz constant of the mapping g.
Furthermore, let (ȳt, ḡ) be another set of coefficients, and assume that (ȳ(·), z̄(·)) ∈ L2

F
(Ω;C([t, T ];Rn))×

L2
F
(t, T ;Rnd) is a solution to the MF-BSDE with (ȳT , ḡ). We continue to assume that ȳT ∈ L2

FT
(Ω;Rn)

and ḡ(·, ȳ(·),Et[ȳ(·)], z̄(·),Et[z̄(·)]) ∈ L2
F
(Ω;L([t, T ];Rn)). Then,

Et

[
sup

s∈[t,T ]

∣∣y(s)− ȳ(s)
∣∣2 +

∫ T

t

∣∣z(s)− z̄(s)
∣∣2 ds

]
≤ KEt

{∣∣yT − ȳT
∣∣2

+

(∫ T

t

∣∣∣g
(
s, ȳ(s),Et[ȳ(s)], z̄(s),Et[z̄(s)]

)
− ḡ
(
s, ȳ(s),Et[ȳ(s)], z̄(s),Et[z̄(s)]

)∣∣∣ ds
)2}

,

(2.6)

where K is the same constant as in (2.5).

The proof of the above Proposition 2.2 can be found in Appendix A.2.
At the end of this section, we continue to introduce some other spaces which will be used in our

following analysis.

• L∞(t, T ;Rm×n) is the set of all Lebesgue measurable functions A : [t, T ] → Rm×n such that

‖A(·)‖L∞(t,T ;Rm×n) := esssup
s∈[t,T ]

‖A(s)‖ <∞.

Some product spaces are also introduced:

• M2
F
(t, T ;Rn(2+d)) := L2

F
(Ω;C([t, T ];Rn)) × L2

F
(Ω;C([t, T ];Rn)) × L2

F
(t, T ;Rnd). For any θ(·) =

(x(·)⊤, y(·)⊤, z(·)⊤) ∈M2
F
(t, T ;Rn(2+d)), its norm is given by

‖θ(·)‖M2
F
(t,T ;Rn(2+d)) :=

{
E

[
sup

s∈[t,T ]

|x(s)|2 + sup
s∈[t,T ]

|y(s)|2 +
∫ T

t

|z(s)|2 ds
]}1/2

.

• M2
F
(t, T ;Rn(2+d)) := L2

F
(Ω;L([t, T ];Rn)) × L2

F
(Ω;L([t, T ];Rn)) × L2

F
(t, T ;Rnd). For any ρ(·) =

(ϕ(·)⊤, ψ(·)⊤, γ(·)⊤)⊤, its norm is

‖ρ(·)‖M2
F
(t,T ;Rn(2+d)) :=

{
E

[(∫ T

t

|ϕ(s)| ds
)2

+

(∫ T

t

|ψ(s)| ds
)2

+

∫ T

t

|γ(s)|2 ds
]}1/2

.

• H[t, T ] := L2
Ft
(Ω;Rn) × L2

FT
(Ω;Rn) ×M2

F
(t, T ;Rn(2+d)). For any (ξ, η, ρ(·)) ∈ H[t, T ], its norm is

given by

‖(ξ, η, ρ(·))‖H[t,T ] :=
{
‖ξ‖2L2

Ft
(Ω;Rn) + ‖η‖2L2

FT
(Ω;Rn) + ‖ρ(·)‖2

M2
F
(t,T ;Rn(2+d))

}1/2

.

3 MF-FBSDEs with domination-monotonicity conditions

In this section, we devote ourselves to investigating MF-FBSDE (1.1). Similar to MF-SDEs and MF-
BSDEs, we introduce the following assumptions on the coefficients (Ψ,Φ,Γ):

Assumption (H3). (i) For any y ∈ Rn, Ψ(y) is Ft-measurable. For any x, x′ ∈ Rn, Φ(x, x′) is FT -
measurable. For any θ, θ′ ∈ R

n(2+d), Γ(·, θ, θ′) is F-progressivelymeasurable. Moreover, (Ψ(0),Φ(0, 0),Γ(·, 0, 0)) ∈
H[t, T ].

(ii) The mappings Ψ, Φ and Γ are uniformly Lipschitz continuous with respect to y, (x, x′) and (θ, θ′)
respectively, i.e., the exists a constant L > 0 such that





∣∣Ψ(y)−Ψ(ȳ)
∣∣ ≤ L|y − ȳ|,

∣∣Φ(x, x′)− Φ(x̄, x̄′)
∣∣ ≤ L

(
|x− x̄|+ |x′ − x̄′|

)
,

∣∣Γ(s, θ, θ′)− Γ(s, θ̄, θ̄′)
∣∣ ≤ L

(
|θ − θ̄|+ |θ′ − θ̄′|

)
,

for any y, ȳ, x, x̄, x′, x̄′ ∈ R
n, any θ, θ̄, θ′, θ̄′ ∈ R

n(2+d) and almost all (s, ω) ∈ [t, T ]× Ω.
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Besides the above Assumption (H3), the following domination-monotonicity conditions are also im-
posed:

Assumption (H4). There exist two constants µ ≥ 0, ν ≥ 0, three matrices H ∈ Rm1×n, P, P̃ ∈ Rm2×n,

and six matrix-valued processes A(·), Ã(·), B(·), B̃(·) ∈ L∞(t, T ;Rm3×n), C(·) = (C1(·), C2(·), . . . , Cd(·)),
C̃(·) = (C̃1(·), C̃2(·), . . . , C̃d(·)) with Ci(·), C̃i(·) ∈ L∞(t, T ;Rm3×n) (where m1,m2,m3 ∈ N are given)
such that the following conditions hold:

(i) One of the following two cases holds. Case A: µ > 0 and ν = 0. Case B: µ = 0 and ν > 0.

(ii) (Domination conditions). For any x, x̄, x′, x̄′, y, ȳ, y′, ȳ′ ∈ Rn, any z, z̄, z′, z̄′ ∈ Rnd, and almost all
(s, ω) ∈ [t, T ]×Ω, with the notations x̂ = x− x̄, x̂′ = x′− x̄′, ŷ = y− ȳ, ŷ′ = y′− ȳ′, ẑ = z− z̄, ẑ′ = z′− z̄′,
and f = b, σ, we have





|Ψ(y)−Ψ(ȳ)| ≤ 1

µ
|Hŷ|,

∣∣Φ(x, x′)− Φ(x̄, x̄′)
∣∣ ≤ 1

ν

∣∣∣∣
(
P (x̂− x̂′)

P̃ x̂′

)∣∣∣∣ ,

∣∣g(s, x, x′, y, y′, z, z′)− g(s, x̄, x̄′, y, y′, z, z′)
∣∣ ≤ 1

ν

∣∣∣∣
(
A(s)(x̂ − x̂′)

Ã(s)x̂′

)∣∣∣∣ ,

∣∣f(s, x, x′, y, y′, z, z′)− f(s, x, x′, ȳ, ȳ′, z̄, z̄′)
∣∣ ≤ 1

µ

∣∣∣∣
(
B(s)(ŷ − ŷ′) + C(s)(ẑ − ẑ′)

B̃(s)ŷ′ + C̃(s)ẑ′

)∣∣∣∣ .

(3.1)

Here, we have a bit of abusive notations, i.e., when µ = 0 (resp. ν = 0), 1/µ (resp. 1/ν) means +∞. In
other words, if µ = 0 or ν = 0, the corresponding domination conditions will vanish.

(iii) (Monotonicity conditions). For any y, ȳ ∈ Rn and almost all ω ∈ Ω,

〈Ψ(y)−Ψ(ȳ), ŷ〉 ≤ −µ|Hŷ|2. (3.2)

For any random variable X , we use the notations

X(1) := X − Et[X ] and X(2) := Et[X ]. (3.3)

For any X, X̄ ∈ L2
FT

(Ω;Rn),

Et

[〈(
Φ
(
X,Et[X ]

)(1) − Φ
(
X̄,Et[X̄]

)(1)

Φ
(
X,Et[X ]

)(2) − Φ
(
X̄,Et[X̄]

)(2)

)
,

(
X̂(1)

X̂(2)

)〉]
≥ νEt



∣∣∣∣∣

(
PX̂(1)

P̃ X̂(2)

)∣∣∣∣∣

2

 . (3.4)

For almost all s ∈ [t, T ] and any Θ := (X⊤, Y ⊤, Z⊤)⊤, Θ̄ := (X⊤, Y ⊤, Z⊤)⊤ ∈ L2
Fs
(Ω;Rn(2+d)),

Et

[〈(
Γ
(
s,Θ,Et[Θ]

)(1) − Γ
(
s, Θ̄,Et[Θ̄]

)(1)

Γ
(
s,Θ,Et[Θ]

)(2) − Γ
(
s, Θ̄,Et[Θ̄]

)(2)

)
,

(
Θ̂(1)

Θ̂(2)

)〉]

≤ − νEt



∣∣∣∣∣

(
A(s)X̂(1)

Ã(s)X̂(2)

)∣∣∣∣∣

2

− µEt



∣∣∣∣∣

(
B(s)Ŷ (1) + C(s)Ẑ(1)

B̃(s)Ŷ (2) + C̃(s)Ẑ(2)

)∣∣∣∣∣

2

 .

(3.5)

The domination and monotonicity conditions in Assumption (H4), especially (3.4) and (3.5) in some
form of randomization, are a bit complicated and not easy to understand. Therefore, we would like to
give a remark and two examples to get some feeling. Firstly, the following remark shows a special case
of Assumption (H4).

Remark 3.1. We introduce

Assumption (H4-S) (Coefficients without mean-field terms). Let the coefficients Φ and Γ are inde-
pendent of x′ and θ′, respectively. There exist two constants µ ≥ 0, ν ≥ 0, two matrices H ∈ Rm1×n,
P ∈ Rm2×n, and three matrix-valued processes A(·), B(·), C(·) ∈ L∞(t, T ;Rm3×n) (where m1,m2,m3 ∈ N

are given) such that the following conditions hold:
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(i) One of the following two cases holds. Case A: µ > 0 and ν = 0. Case B: µ = 0 and ν > 0.

(ii) (Domination conditions). For any x, x̄, y, ȳ ∈ Rn, any z, z̄ ∈ Rnd, and almost all (s, ω) ∈ [t, T ]× Ω,
we have 




|Ψ(y)−Ψ(ȳ)| ≤ 1

µ
|Hŷ|,

∣∣Φ(x)− Φ(x̄)
∣∣ ≤ 1

ν
|P x̂|,

∣∣g(s, x, y, z)− g(s, x̄, y, z)
∣∣ ≤ 1

ν
|A(s)x̂|,

∣∣f(s, x, y, z)− f(s, x, ȳ, z̄)
∣∣ ≤ 1

µ

∣∣B(s)ŷ + C(s)ẑ
∣∣.

(3.6)

(iii) (Monotonicity conditions). For any x, x̄, y, ȳ ∈ Rn, any θ, θ̄ ∈ Rn(2+d), and almost all (s, ω) ∈
[t, T ]× Ω, we have





〈Ψ(y)−Ψ(ȳ), ŷ〉 ≤ −µ|Hŷ|2,
〈Φ(x) − Φ(x̄), x̂〉 ≥ ν|P x̂|2,
〈Γ(s, θ)− Γ(s, θ̄), θ̂〉 ≤ −ν|A(s)x̂|2 − µ

∣∣B(s)ŷ + C(s)ẑ
∣∣2.

(3.7)

A straightforward verification shows that the above Assumption (H4-S) implies Assumption (H4). We
notice that Assumption (H4-S) and its special cases have been extensively studied in the literature, such
as [8, 17, 22, 25] and so on. The present paper can be regarded as an extension of these studies in the
mean-field case.

Now, we give an example of a decoupled linear MF-FBSDE where the coefficients satisfy Assumptions
(H3) and (H4).

Example 3.2. Let µ ≥ 0 and ν ≥ 0 be two constants satisfying Assumption (H4)-(i), H ∈ Rm1×n, P, P̃ ∈
Rm2×n be three matrices, and A(·), Ã(·), B(·), B̃(·) ∈ L∞(t, T ;Rm3×n), C(·) = (C1(·), C2(·), . . . , Cd(·)),
C̃(·) = (C̃1(·), C̃2(·), . . . , C̃d(·)) with Ci(·), C̃i(·) ∈ L∞(t, T ;Rm3×n) be six matrix-valued processes. For
any y, x, x′ ∈ R

n, any θ, θ′ ∈ R
n(2+d) and any (s, ω) ∈ [t, T ]× Ω, we define





Ψ0(y) = −µH⊤Hy,

Φ0(x, x′) = ν
{
P⊤P (x− x′) + P̃⊤P̃ x′

}
,

g0(s, θ, θ′) = −ν
{
A(s)⊤A(s)(x − x′) + Ã(s)⊤Ã(s)x′

}
,

b0(s, θ, θ′) = −µ
{
B(s)⊤

[
B(s)(y − y′) + C(s)(z − z′)

]
+ B̃(s)⊤

[
B̃(s)y′ + C̃(s)z′

]}
,

σ0(s, θ, θ′) = −µ
{
C(s)⊤

[
B(s)(y − y′) + C(s)(z − z′)

]
+ C̃(s)⊤

[
B̃(s)y′ + C̃(s)z′

]}
.

(3.8)

Similarly, we denote Γ0 := ((g0)⊤, (b0)⊤, (σ0)⊤)⊤. When Case A in Assumption (H4)-(i) holds, we assume
that

1

µ2
≥ max

{
‖H‖,

∥∥∥∥
(
B(·)
B̃(·)

)∥∥∥∥
L∞(t,T ;R2m3×n)

,

∥∥∥∥
(
C(·)
C̃(·)

)∥∥∥∥
L∞(t,T ;R2m3×nd)

}
. (3.9)

Then Assumptions (H4)-(ii) and (H4)-(iii) also hold for (Ψ0,Φ0,Γ0) which are defined by (3.8). Moreover,
in this case, Assumption (H3) holds for (Ψ0,Φ0,Γ0) with the Lipschitz constant

L ≥ µmax
{
‖H‖2,

∥∥(B(·), C(·)
)∥∥2

L∞(t,T ;Rm3×n(1+d))
+
∥∥∥
(
B̃(·), C̃(·)

)∥∥∥
2

L∞(t,T ;Rm3×n(1+d))

}
. (3.10)

When Case B in Assumption (H4)-(i) holds, we assume that

1

ν2
≥ max

{∥∥∥∥
(
P

P̃

)∥∥∥∥ ,
∥∥∥∥
(
A(·)
Ã(·)

)∥∥∥∥
L∞(t,T ;R2m3×n)

}
. (3.11)
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Then Assumptions (H4)-(ii) and (H4)-(iii) also hold. Moreover, in this case, Assumption (H3) holds with
the Lipschitz constant

L ≥ νmax
{
‖P‖2 + ‖P̃‖2, ‖A(·)‖2L∞(t,T ;Rm3×n) +

∥∥∥Ã(·)
∥∥∥
2

L∞(t,T ;Rm3×n)

}
. (3.12)

The above Example 3.2 will be useful in our following analysis of this section. Another two coupled
linear examples coming from the Hamiltonian systems of LQ control problems will be provided in Section
4. Next, we shall give a nonlinear example.

Example 3.3. Let n = d = 1. Let k1 ≥ 1 and k2 ≥ 1 be two constants. For any y, x, x′ ∈ R and any
θ, θ′ ∈ R3, we define

{
Ψ(y) = −k1y + sin y, b(θ, θ′) ≡ b(y, y′) = −k1y + sin y′, σ(θ, θ′) ≡ σ(z, z′) = −k1z + sin z′,

Φ(x, x′) = k2x+ sinx′, g(θ, θ′) ≡ g(x, x′) = −k2x+ sinx′.

Let H = P = P̃ = 1 and

A = Ã =



1
0
0


 , B = B̃ =



0
1
0


 , C = C̃ =



0
0
1


 .

With the same notations in Assumption (H4), we firstly try to derive the monotonicity conditions:

〈(
Γ
(
s,Θ,Et[Θ]

)(1) − Γ
(
s, Θ̄,Et[Θ̄]

)(1)

Γ
(
s,Θ,Et[Θ]

)(2) − Γ
(
s, Θ̄,Et[Θ̄]

)(2)

)
,

(
Θ̂(1)

Θ̂(2)

)〉

≤ − k2
∣∣X̂(1)

∣∣2 − k1

[∣∣Ŷ (1)
∣∣2 +

∣∣Ẑ(1)
∣∣2
]
− (k2 − 1)

∣∣X̂(2)
∣∣2 − (k1 − 1)

[∣∣Ŷ (2)
∣∣2 +

∣∣Ẑ(2)
∣∣2
]

≤ − (k2 − 1)
[∣∣X̂(1)

∣∣2 +
∣∣X̂(2)

∣∣2
]
− (k1 − 1)

[
Ŷ (1)

∣∣2 +
∣∣Ẑ(1)

∣∣2 +
∣∣Ŷ (2)

∣∣2 +
∣∣Ẑ(2)

∣∣2
]

= − (k2 − 1)

∣∣∣∣∣

(
AX̂(1)

ÃX̂(2)

)∣∣∣∣∣

2

− (k1 − 1)

∣∣∣∣∣

(
BŶ (1) + CẐ(1)

B̃Ŷ (2) + C̃Ẑ(2)

)∣∣∣∣∣

2

.

Similarly, 〈
Ψ(y)−Ψ(ȳ), ŷ

〉
≤ −(k1 − 1)|Hŷ|2,

〈(
Φ
(
X,Et[X ]

)(1) − Φ
(
X̄,Et[X̄ ]

)(1)

Φ
(
X,Et[X ]

)(2) − Φ
(
X̄,Et[X̄ ]

)(2)

)
,

(
X̂(1)

X̂(2)

)〉
≥ (k2 − 1)

∣∣∣∣∣

(
PX̂(1)

P̃ X̂(2)

)∣∣∣∣∣

2

.

Secondly, we try to calculate the domination conditions:





|Ψ(y)−Ψ(ȳ)| ≤ (k1 + 1)|Hŷ|,
∣∣Φ(x, x′)− Φ(x̄, x̄′)

∣∣ ≤ 2(k2 + 1)

∣∣∣∣
(
P (x̂− x̂′)

P̃ x̂′

)∣∣∣∣ ,

∣∣g(x, x′)− g(x̄, x̄′)
∣∣ ≤ 2(k2 + 1)

∣∣∣∣
(
A(x̂ − x̂′)

Ãx̂′

)∣∣∣∣ ,

∣∣b(y, y′)− b(ȳ, ȳ′)
∣∣+
∣∣σ(z, z′)− σ(z̄, z̄′)

∣∣ ≤ 2(k1 + 1)

∣∣∣∣
(
B(ŷ − ŷ′) + C(ẑ − ẑ′)

B̃ŷ′ + C̃ẑ′

)∣∣∣∣ .

Based on the above calculation, we get the following results. On the one hand, when k1 > 1 and
k2 ≥ 1, selecting 0 < µ ≤ min{k1 − 1, 1/(2(k1 + 1))} and ν = 0 leads to Assumptions (H4)-(i)-
Case A, (H4)-(ii) and (H4)-(iii). On the other hand, when k1 ≥ 1 and k2 > 1, we choose µ = 0 and
0 < ν ≤ min{k2 − 1, 1/(2(k2 + 1))} to get Assumptions (H4)-(i)-Case B, (H4)-(ii) and (H4)-(iii).

Now, we are in the position to give the main results of this section.
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Theorem 3.4. Let Assumptions (H3) and (H4) hold for a set of coefficients (Ψ,Φ,Γ). Then MF-FBSDE
(1.1) admits a unique solution θ(·) ∈M2

F
(t, T ;Rn(2+d)). Moreover, the following estimate holds:

Et

[
sup

s∈[t,T ]

|x(s)|2 + sup
s∈[t,T ]

|y(s)|2 +
∫ T

t

|z(s)|2 ds
]
≤ KEt

[
I
]
, (3.13)

where

I = |Ψ(0)|2 + |Φ(0, 0)|2 +
(∫ T

t

|g(s, 0, 0)| ds
)2

+

(∫ T

t

|b(s, 0, 0)| ds
)2

+

∫ T

t

|σ(s, 0, 0)|2 ds, (3.14)

and K > 0 is a constant depending on (T − t), the Lipschitz constant, µ, ν, and the bound of all H,

P , P̃ , A(·), Ã(·), B(·), B̃(·), C(·), C̃(·). Furthermore, Let (Ψ̄, Φ̄, Γ̄) be another set of coefficients and
θ̄(·) ∈M2

F
(t, T ;R(n+2)d) be a solution to the MF-FBSDE with the coefficients (Ψ̄, Φ̄, Γ̄). We assume that

(Ψ̄(ȳ(t)), Φ̄(x̄(T ),Et[x̄(T )]), Γ̄(·, θ̄(·),Et[θ̄(·)])) ∈ H[t, T ]. Then, we have

Et

[
sup

s∈[t,T ]

|x̂(s)|2 + sup
s∈[t,T ]

|ŷ(s)|2 +
∫ T

t

|ẑ(s)|2 ds
]
≤ KEt

[̂
I
]
, (3.15)

where x̂(·) = x(·) − x̄(·), ŷ(·) = y(·)− ȳ(·), ẑ(·) = z(·)− z̄(·),

Î =
∣∣Ψ(ȳ(t))− Ψ̄(ȳ(t))

∣∣2 +
∣∣Φ
(
x̄(T ),Et[x̄(T )]

)
− Φ̄

(
x̄(T ),Et[x̄(T )]

)∣∣2

+

(∫ T

t

∣∣g
(
s, θ̄(s),Et[θ̄(s)]

)
− ḡ
(
s, θ̄(s),Et[θ̄(s)]

)∣∣ ds
)2

+

(∫ T

t

∣∣b
(
s, θ̄(s),Et[θ̄(s)]

)
− b̄
(
s, θ̄(s),Et[θ̄(s)]

)∣∣ds
)2

+

∫ T

t

∣∣σ
(
s, θ̄(s),Et[θ̄(s)]

)
− σ̄

(
s, θ̄(s),Et[θ̄(s)]

)∣∣2 ds,

(3.16)

and K is the same constant as in (3.13).

Next, we are going to prove Theorem 3.4 by virtue of the method of continuation. Let us introduce
the convex combination of (Ψ,Φ,Γ) and (Ψ0,Φ0,Γ0) (see (3.8)):

(
Ψα,Φα,Γα

)
:= α

(
Ψ,Φ,Γ

)
+ (1− α)

(
Ψ0,Φ0,Γ0

)
, α ∈ [0, 1]. (3.17)

For any (ξ, η, ρ(·)) ∈ H[t, T ] with ρ(·) = (ϕ(·)⊤, ψ(·)⊤, γ(·)⊤)⊤ and γ(·) = (γ1(·)⊤, γ2(·)⊤, . . . , γd(·)⊤)⊤,
we continue to introduce a family of MF-FBSDEs parameterized by α ∈ [0, 1] as follows:





dxα(s) =
{
bα
(
s, θα(s),Et[θ

α(s)]
)
+ ψ(s)

}
ds

+

d∑

i=1

{
σα
i

(
s, θα(s),Et[θ

α(s)]
)
+ γi(s)

}
dWi(s), s ∈ [t, T ],

dyα(s) =
{
gα
(
s, θα(s),Et[θ

α(s)]
)
+ ϕ(s)

}
ds+

d∑

i=1

zαi (s) dWi(s), s ∈ [t, T ],

xα(t) = Ψα
(
yα(t)

)
+ ξ, yα(T ) = Φα

(
xα(T ),Et[x

α(T )]
)
+ η.

(3.18)

Without loss of generality, we assume that the Lipschitz constant L of the original coefficients (Ψ,Φ,Γ)
is big enough and the constant µ in Assumption (H4)-(i)-Case A and the constant ν in Assumption
(H4)-(i)-Case B are small enough such that the inequalities (3.9), (3.10), (3.11), (3.12) hold true. Then,
a straightforward calculation shows that, for any α ∈ [0, 1], the new coefficients (Ψα,Φα,Γα) (see the
definition (3.17)) also satisfy Assumptions (H3) and (H4) with the same Lipschitz constant L, µ, ν, H ,

P , P̃ , A(·), Ã(·), B(·), B̃(·), C(·), and C̃(·) as the original coefficients (Ψ,Φ,Γ).

9



When α = 0, we substitute (3.8) into MF-FBSDE (3.18) to get





dx0 =
{
− µ

[
B⊤
(
By0(1) + Cz0(1)

)
+ B̃⊤

(
B̃y0(2) + C̃z0(2)

)]
+ ψ

}
ds

+

d∑

i=1

{
− µ

[
C⊤

i

(
By0(1) + Cz0(1)

)
+ C̃⊤

i

(
B̃y0(2) + C̃z0(2)

)]
+ γi

}
dWi, s ∈ [t, T ],

dy0 =
{
− ν
[
A⊤Ax0(1) + Ã⊤Ãx0(2)

]
+ ϕ

}
ds+

d∑

i=1

z0i dWi, s ∈ [t, T ],

x0(t) = −µH⊤Hy0(t) + ξ, y0(T ) = ν
[
P⊤Px0(T )(1) + P̃⊤P̃ x0(T )(2)

]
+ η,

(3.19)

where the argument s is suppressed and the decompositions (see (3.3)) of the corresponding random
variables are used for simplicity of notations. Let us discuss in two situations. (i) When Assumption
(H4)-(i)-Case A holds true (i.e., µ > 0 and ν = 0), MF-FBSDE (3.19) is in a decoupled form. In fact,
we can solve the MF-BSDE first to get (y0(·), z0(·)). Then we substitute (y0(·), z0(·)) into the MF-SDE
and solve x0(·). (ii) When Assumption (H4)-(i)-Case B holds true (i.e., µ = 0 and ν > 0), MF-FBSDE
(3.19) is also in a decoupled form. The difference is that, in this case, we first solve the MF-SDE and
then MF-BSDE. In summary, under Assumptions (H3) and (H4), MF-FBSDE (3.19) admits a unique
solution θ0(·) ∈M2

F
(t, T ;Rn(2+d)).

When α = 1 and (ξ, η, ρ(·)) vanish, MF-FBSDE (3.18) coincides with MF-FBSDE (1.1) that we care
about. Next, we will show that if for some α0 ∈ [0, 1), MF-FBSDE (3.18) is uniquely solvable for any
(ξ, η, ρ(·)) ∈ H[t, T ], then there exists a fixed step length δ0 > 0 such that for any α ∈ [α0, α0 + δ0],
the same conclusion also holds. For this aim, we firstly establish a priori estimate for the solution to
MF-FBSDE (3.18).

Lemma 3.5. Let Assumptions (H3) and (H4) hold for a given set of coefficients (Ψ,Φ,Γ). Let α ∈ [0, 1]
and (ξ, η, ρ(·)), (ξ̄, η̄, ρ̄(·)) ∈ H[t, T ]. Suppose that θ(·), θ̄(·) ∈ M2

F
(t, T ;Rn(2+d)) satisfy MF-FBSDEs

(3.18) with coefficients (Ψα + ξ,Φα + η,Γα + ρ) and (Ψα + ξ̄,Φα + η̄,Γα + ρ̄), respectively. Then the
following estimate holds:

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ(s)
∣∣2 ds

]
≤ KEt

[
Ĵ
]
, (3.20)

where

Ĵ =
∣∣ξ̂
∣∣2 +

∣∣η̂
∣∣2 +

(∫ T

t

∣∣ϕ̂(s)
∣∣ ds
)2

+

(∫ T

t

∣∣ψ̂(s)
∣∣ ds
)2

+

∫ T

t

∣∣γ̂(s)
∣∣2 ds, (3.21)

and x̂(·) = x(·) − x̄(·), ξ̂ = ξ − ξ̄, etc. Here K > 0 is a constant depending on (T − t), the Lipschitz

constant L, µ, ν, and the bounds of all H, P , P̃ , A(·), Ã(·), B(·), B̃(·), C(·), and C̃(·).

Proof. By the estimate (2.3) for MF-SDEs, we have (the argument s is suppressed and the decompositions
(3.3) are used for simplicity)

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2
]
≤ KEt

{∣∣∣α
(
Ψ(y(t))−Ψ(ȳ(t))

)
− (1− α)µH⊤Hŷ(t) + ξ̂

∣∣∣
2

+

(∫ T

t

∣∣∣α
(
b
(
x̄,Et[x̄], y,Et[y], z,Et[z]

)
− b
(
θ̄,Et[θ̄]

))

− (1− α)µ
[
B⊤
(
Bŷ(1) + Cẑ(1)

)
+ B̃⊤

(
B̃ŷ(2) + C̃ẑ(2)

)]
+ ψ̂

∣∣∣ ds
)2

+

∫ T

t

∣∣∣α
(
σ
(
x̄,Et[x̄], y,Et[y], z,Et[z]

)
− σ

(
θ̄,Et[θ̄]

))

− (1− α)µ
[
C⊤
(
Bŷ(1) + Cẑ(1)

)
+ C̃⊤

(
B̃ŷ(2) + C̃ẑ(2)

)]
+ γ̂
∣∣∣
2

ds

}
,

(3.22)

where the constant K > 0 could be changed line to line. Similarly, applying the estimate (2.6) for
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MF-BSDEs leads to

Et

[
sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]

≤ KEt

{∣∣∣α
(
Φ
(
x(T ),Et[x(T )]

)
− Φ

(
x̄(T ),Et[x̄(T )]

))

+ (1− α)ν
[
P⊤P x̂(T )(1) + P̃⊤P̃ x̂(T )(2)

]
+ η̂
∣∣∣
2

+

(∫ T

t

∣∣∣α
(
g
(
x,Et[x], ȳ,Et[ȳ], z̄,Et[z̄]

)
− g
(
θ̄,Et[θ̄]

))

− (1− α)ν
[
A⊤Ax̂(1) + Ã⊤Ãx̂(2)

]
+ ϕ̂

∣∣∣ ds
)2}

.

(3.23)

Moreover, we also apply Itô’s formula to 〈x̂(·), ŷ(·)〉 to yield

I1 + Et

[〈
η̂, x̂(T )

〉]
= I2 +

〈
ξ̂, ŷ(t)

〉
+

∫ T

t

{
I3 + Et

[〈
ρ̂, θ̂

〉]}
ds, (3.24)

where
I1 = αEt

[〈
Φ
(
x(T ),Et[x(T )]

)
− Φ

(
x̄(T ),Et[x̄(T )]

)
, x̂(T )

〉]

+ (1− α)νEt

[〈
P⊤P x̂(T )(1) + P̃⊤P̃ x̂(T )(2), x̂(T )

〉]
,

I2 = α
〈
Ψ
(
y(t)

)
−Ψ

(
ȳ(t)

)
, ŷ(t)

〉
− (1− α)µ

〈
H⊤Hŷ(t), ŷ(t)

〉
,

and

I3 = αEt

[〈
Γ
(
θ,Et[θ]

)
− Γ

(
θ̄,Et[θ̄]

)
, θ̂
〉]

− (1 − α)Et

[
ν
〈
A⊤Ax̂(1) + Ã⊤Ãx̂(2), x̂

〉

+ µ
〈
B⊤
(
Bŷ(1) + Cẑ(1)

)
+ B̃⊤

(
B̃ŷ(2) + C̃ẑ(2)

)
, ŷ
〉

+ µ
〈
C⊤
(
Bŷ(1) + Cẑ(1)

)
+ C̃⊤

(
B̃ŷ(2) + C̃ẑ(2)

)
, ẑ
〉]
.

The monotonicity conditions(3.4), (3.2) and (3.5) lead to

I1 = αEt

[〈(
Φ
(
x(T ),Et[x(T )]

)(1) − Φ
(
x̄(T ),Et[x̄(T )]

)(1)

Φ
(
x(T ),Et[x(T )]

)(2) − Φ
(
x̄(T ),Et[x̄(T )]

)(2)

)
,

(
x̂(T )(1)

x̂(T )(2)

)〉]

+ (1− α)νEt

[∣∣∣∣
(
P x̂(T )(1)

P̃ x̂(T )(2)

)∣∣∣∣
2
]
≥ νEt

[∣∣∣∣
(
P x̂(T )(1)

P̃ x̂(T )(2)

)∣∣∣∣
2
]
,

I2 ≤ −µ
∣∣Hŷ(t)

∣∣2

and

I3 = αEt

[〈(
Γ
(
θ,Et[θ]

)(1) − Γ
(
θ̄,Et[θ̄]

)(1)

Γ
(
θ,Et[θ]

)(2) − Γ
(
θ̄,Et[θ̄]

)(2)

)
,

(
θ̂(1)

θ̂(2)

)〉]

− (1 − α)νEt

[∣∣∣∣
(
Ax̂(1)

Ãx̂(2)

)∣∣∣∣
2
]
− (1− α)µEt

[∣∣∣∣
(
Bŷ(1) + Cẑ(1)

B̃ŷ(2) + C̃ẑ(2)

)∣∣∣∣
2
]

≤ − νEt

[∣∣∣∣
(
Ax̂(1)

Ãx̂(2)

)∣∣∣∣
2
]
− µEt

[∣∣∣∣
(
Bŷ(1) + Cẑ(1)

B̃ŷ(2) + C̃ẑ(2)

)∣∣∣∣
2
]
.

Therefore, (3.24) is reduced to

Et

{
µ
∣∣Hŷ(t)

∣∣2 + ν

∣∣∣∣
(
P x̂(T )(1)

P̃ x̂(T )(2)

)∣∣∣∣
2

+

∫ T

t

[
ν

∣∣∣∣
(
Ax̂(1)

Ãx̂(2)

)∣∣∣∣
2

+ µ

∣∣∣∣
(
Bŷ(1) + Cẑ(1)

B̃ŷ(2) + C̃ẑ(2)

)∣∣∣∣
2
]
ds

}

≤ Et

{〈
ξ̂, ŷ(t)

〉
−
〈
η̂, x̂(T )

〉
+

∫ T

t

〈
ρ̂, θ̂

〉
ds

}
.

(3.25)
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We will divide the remaining proof into two cases according to Assumption (H4)-(i).
Case A: µ > 0 and ν = 0. By applying the domination conditions (3.1) to the estimate (3.22), we

have

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2
]
≤ KEt

{∣∣Hŷ(t)
∣∣2 +

∫ T

t

∣∣∣∣
(
Bŷ(1) + Cẑ(1)

B̃ŷ(2) + C̃ẑ(2)

)∣∣∣∣
2

ds

+
∣∣ξ̂
∣∣2 +

(∫ T

t

∣∣ψ̂
∣∣ ds
)2

+

∫ T

t

∣∣γ̂
∣∣2 ds

}
.

(3.26)

Applying the Lipschitz condition to (3.23) leads to

Et

[
sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]
≤ KEt

{
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 +

∣∣η̂
∣∣2 +

(∫ T

t

∣∣ϕ̂
∣∣ds
)2}

. (3.27)

Combining (3.26) and (3.27) yields

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]

≤ KEt

{∣∣Hŷ(t)
∣∣2 +

∫ T

t

∣∣∣∣
(
Bŷ(1) + Cẑ(1)

B̃ŷ(2) + C̃ẑ(2)

)∣∣∣∣
2

ds+ Ĵ

}
,

(3.28)

where Ĵ is defined by (3.21). We continue to combine (3.28) and (3.25) to have

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]

≤ K1Et

{
Ĵ +

〈
ξ̂, ŷ(t)

〉
−
〈
η̂, x̂(T )

〉
+

∫ T

t

〈
ρ̂, θ̂

〉
ds

}

≤ Et

{
K1Ĵ +K2

1

[∣∣ξ̂
∣∣2 +

∣∣η̂
∣∣2 +

(∫ T

t

∣∣ϕ̂
∣∣ ds
)2

+

(∫ T

t

∣∣ψ̂
∣∣ ds
)2]

+
K2

1

2

∫ T

t

∣∣γ̂
∣∣2 ds+ 1

2

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]}
,

(3.29)

where the inequality ab ≤ 1
4εa

2 + εb2 for any ε > 0 and any a, b ∈ R was used. Clearly, the above (3.29)
implies the desired estimate (3.20). We finish the proof in this case.

Case B: µ = 0 and ν > 0. In this case, we apply the domination conditions (3.1) to the estimate
(3.23) to get

Et

[
sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]

≤ KEt

{ ∣∣∣∣
(
P x̂(T )(1)

P̃ x̂(T )(2)

)∣∣∣∣
2

+

∫ T

t

∣∣∣∣
(
Ax̂(1)

Ãx̂(2)

)∣∣∣∣
2

ds+
∣∣η̂
∣∣2 +

(∫ T

t

∣∣ϕ̂
∣∣ ds
)2}

.

(3.30)

By the Lipschitz conditions on the coefficients Ψ, b and σ, we deduce from (3.22) to have

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2
]
≤ KEt

{
sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

+
∣∣ξ̂
∣∣2 +

(∫ T

t

∣∣ψ̂
∣∣ds
)2

+

∫ T

t

∣∣γ̂
∣∣2 ds

}
.

(3.31)

Then, (3.31) and (3.30) work together to yield

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]

≤ KEt

{ ∣∣∣∣
(
P x̂(T )(1)

P̃ x̂(T )(2)

)∣∣∣∣
2

+

∫ T

t

∣∣∣∣
(
Ax̂(1)

Ãx̂(2)

)∣∣∣∣
2

ds+ Ĵ

}
,

(3.32)
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where Ĵ is defined by (3.21). Then, combining (3.32) and (3.25) leads to

Et

[
sup

s∈[t,T ]

∣∣x̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣ŷ(s)
∣∣2 +

∫ T

t

∣∣ẑ
∣∣2 ds

]

≤ K2Et

{
Ĵ +

〈
ξ̂, ŷ(t)

〉
−
〈
η̂, x̂(T )

〉
+

∫ T

t

〈
ρ̂, θ̂

〉
ds

}
.

(3.33)

By an argument similar to (3.29), we know that the above inequality implies the desired priori estimate
(3.20). The whole proof of the lemma is completed.

With the help of Lemma 3.5, we provide the following continuation lemma.

Lemma 3.6. Let Assumptions (H3) and (H4) hold. If for some α0 ∈ [0, 1), MF-FBSDE (3.18) is
uniquely solvable in M2

F
(t, T ;Rn(2+d)) for any given (ξ, η, ρ(·)) ∈ H[t, T ], then there exists an absolute

constant δ0 > 0 such that the same conclusion also holds for α = α0 + δ where δ ∈ (0, δ0] and α ≤ 1.

Proof. Let δ0 > 0 be determined below, and δ ∈ (0, δ0]. For any θ(·) ∈ M2
F
(t, T ;Rn(2+d)), we consider

the following MF-FBSDE (compared to (3.18) with α = α0 + δ):





dX(s) =
{
bα0
(
s,Θ(s),Et[Θ(s)]

)
+ ψ̃(s)

}
ds

+

d∑

i=1

{
σα0

i

(
s,Θ(s),Et[Θ(s)]

)
+ γ̃i(s)

}
dWi(s), s ∈ [t, T ],

dY (s) =
{
gα0
(
s,Θ(s),Et[Θ(s)]

)
+ ϕ̃(s)

}
ds+

d∑

i=1

Zi(s) dWi(s), s ∈ [t, T ],

X(t) = Ψα0
(
Y (t)

)
+ ξ̃, Y (T ) = Φα0

(
X(T ),Et[X(T )]

)
+ η̃,

(3.34)

where 



ξ̃ := δ
[
Ψ(y(t))−Ψ0(y(t))

]
+ ξ,

η̃ := δ
[
Φ
(
x(T ),Et[x(T )]

)
− Φ0

(
x(T ),Et[x(T )]

)]
+ η,

ρ̃(·) := δ
[
Γ
(
·, θ(·),Et[θ(·)]

)
− Γ0

(
·, θ(·),Et[θ(·)]

]
+ ρ(·),

(3.35)

and (Ψ0,Φ0,Γ0) is given by (3.8). It is easy to verify that (ξ̃, η̃, ρ̃(·)) ∈ H[t, T ]. Then, by our assumption,
MF-FBSDE (3.34) admits a unique solution Θ(·) ∈ M2

F
(t, T ;Rn(2+d)). Noting the arbitrariness of θ(·),

we have established a mapping

Θ(·) = Tα0+δ

(
θ(·)
)
:M2

F
(t, T ;Rn(2+d)) →M2

F
(t, T ;Rn(2+d)).

In the following, we shall prove that this mapping is a contraction when δ is small.
Let θ(·), θ̄(·) ∈ M2

F
(t, T ;Rn(2+d)) and denote Θ(·) = Tα0+δ(θ(·)), Θ̄(·) = Tα0+δ(θ̄(·)). Moreover,

denote θ̂(·) = θ(·)− θ̄(·), Θ̂(·) = Θ(·)− Θ̄(·), etc. By applying Lemma 3.5, we have

∥∥Θ̂(·)
∥∥2
M2

F
(t,T ;Rn(2+d))

= E

[
sup

s∈[t,T ]

∣∣X̂(s)
∣∣2 + sup

s∈[t,T ]

∣∣Ŷ (s)
∣∣2 +

∫ T

t

∣∣Ẑ(s)
∣∣2 ds

]

≤ Kδ2E

{∣∣∣
[
Ψ
(
y(t)

)
−Ψ

(
ȳ(t)

)]
−
[
Ψ0
(
y(t)

)
−Ψ0

(
ȳ(t)

)]∣∣∣
2

+
∣∣∣
[
Φ
(
x(T ),Et[x(T )]

)
− Φ

(
x̄(T ),Et[x̄(T )]

)]
−
[
Φ0
(
x(T ),Et[x(T )]

)
− Φ0

(
x̄(T ),Et[x̄(T )]

)]∣∣∣
2

+

(∫ T

t

∣∣∣
[
g
(
θ,Et[θ]

)
− g
(
θ̄,Et[θ̄]

)]
−
[
g0
(
θ,Et[θ]

)
− g0

(
θ̄,Et[θ̄]

)]∣∣∣ds
)2

+

(∫ T

t

∣∣∣
[
b
(
θ,Et[θ]

)
− b
(
θ̄,Et[θ̄]

)]
−
[
b0
(
θ,Et[θ]

)
− b0

(
θ̄,Et[θ̄]

)]∣∣∣ds
)2

+

∫ T

t

∣∣∣
[
σ
(
θ,Et[θ]

)
− σ

(
θ̄,Et[θ̄]

)]
−
[
σ0
(
θ,Et[θ]

)
− σ0

(
θ̄,Et[θ̄]

)]∣∣∣
2

ds

}
.
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Then, due to the Lipschitz continuity of the coefficients (Ψ,Φ,Γ) and (Ψ0,Φ0,Γ0), there exists a constant
K3 > 0 independent of α0 and δ such that

∥∥Θ̂(·)
∥∥2
M2

F
(t,T ;Rn(2+d))

≤ K3δ
2
∥∥θ̂(·)

∥∥2
M2

F
(t,T ;Rn(2+d))

.

Choose δ0 = 1/(2
√
K3). Then, for any δ ∈ (0, δ0], the above inequality implies that Tα0+δ is a contraction

mapping. Consequently, it admits a unique fixed point which is just the unique solution to MF-FBSDE
(3.18) with α = α0 + δ. The proof is completed.

Proof of Theorem 3.4. Firstly, the unique solvability of MF-FBSDE (1.1) in the space M2
F
(t, T ;Rn(2+d))

is obtained by virtue of the unique solvability of MF-FBSDE (3.19) and Lemma 3.6. Secondly, by letting
α = 1, (ξ, η, ρ(·)) = (0, 0, 0) and

(
ξ̄, η̄, ρ̄(·)

)
=
(
Ψ̄
(
ȳ(t)

)
−Ψ

(
ȳ(t)

)
, Φ̄
(
x̄(T ),Et[x̄(T )]

)
− Φ

(
x̄(T ),Et[x̄(T )]

)
,

Γ̄
(
·, θ̄(·),Et[θ̄(·)]

)
− Γ

(
·, θ̄(·),Et[θ̄(·)]

))
,

we obtain (3.15) from (3.20). Finally, by selecting (Ψ̄, Φ̄, Γ̄) = (0, 0, 0), we get (3.13) from (3.15) and
complete the proof.

Now, we give a remark to end this section.

Remark 3.7. There exists a symmetrical version of the monotonicity conditions in Assumption (H4)-
(iii) as follows:

Assumption (H4)-(iii)′. For any y, ȳ ∈ Rn and almost all ω ∈ Ω,

〈Ψ(y)−Ψ(ȳ), ŷ〉 ≥ µ|Hŷ|2. (3.36)

For any X, X̄ ∈ L2
FT

(Ω;Rn),

Et

[〈(
Φ
(
X,Et[X ]

)(1) − Φ
(
X̄,Et[X̄]

)(1)

Φ
(
X,Et[X ]

)(2) − Φ
(
X̄,Et[X̄]

)(2)

)
,

(
X̂(1)

X̂(2)

)〉]
≤ −νEt



∣∣∣∣∣

(
PX̂(1)

P̃ X̂(2)

)∣∣∣∣∣

2

 . (3.37)

For almost all s ∈ [t, T ] and any Θ := (X⊤, Y ⊤, Z⊤)⊤, Θ̄ := (X⊤, Y ⊤, Z⊤)⊤ ∈ L2
Fs
(Ω;Rn(2+d)),

Et

[〈(
Γ
(
s,Θ,Et[Θ]

)(1) − Γ
(
s, Θ̄,Et[Θ̄]

)(1)

Γ
(
s,Θ,Et[Θ]

)(2) − Γ
(
s, Θ̄,Et[Θ̄]

)(2)

)
,

(
Θ̂(1)

Θ̂(2)

)〉]

≥ νEt



∣∣∣∣∣

(
A(s)X̂(1)

Ã(s)X̂(2)

)∣∣∣∣∣

2

+ µEt



∣∣∣∣∣

(
B(s)Ŷ (1) + C(s)Ẑ(1)

B̃(s)Ŷ (2) + C̃(s)Ẑ(2)

)∣∣∣∣∣

2

 .

(3.38)

In fact, it is easy to verify that, if θ(·) = (x(·)⊤, y(·)⊤, z(·)⊤)⊤ ∈ M2
F
(t, T ;Rn(2+d)) is a solution to

MF-FBSDE (1.1) with the coefficients (Ψ,Φ,Γ), then

θ̃(·) = (x̃(·)⊤, ỹ(·)⊤, z̃(·)⊤)⊤ :=
(
x(·)⊤,−y(·)⊤,−z(·)⊤

)⊤
(3.39)

is a solution to another MF-FBSDE with the coefficients

Ψ̃(ỹ) := Ψ(−ỹ), Φ̃(x̃, x̃′) := −Φ(x̃, x̃′),

Γ̃(s, θ̃, θ̃′) =
(
− g
(
s, x̃,−ỹ,−z̃, x̃′,−ỹ′,−z̃′

)⊤
, b
(
s, x̃,−ỹ,−z̃, x̃′,−ỹ′,−z̃′

)⊤
,

σ
(
s, x̃,−ỹ,−z̃, x̃′,−ỹ′,−z̃′

)⊤)⊤
.

We continue to verify that, if the coefficients (Ψ,Φ,Γ) satisfy Assumption (H4)-(iii) (resp. Assumption

(H4)-(iii)′), then the coefficients (Ψ̃, Φ̃, Γ̃) will satisfy Assumption (H4)-(iii)′ (resp. Assumption (H4)-
(iii)). By virtue of the invertible transformation (3.39), all conclusions in this section are also valid when
Assumption (H4)-(iii) is replaced by Assumption (H4)-(iii)′.
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4 Application to MF-LQ problems

In this section, we shall consider some LQ optimal control problems driven by an MF-SDE and an
MF-BSDE respectively. The Hamiltonian systems arising from these LQ problems will be found to be
MF-FBSDEs with domination-monotonicity conditions, then they are uniquely solvable by Theorem 3.4.
In fact, to study the (unique) solvability of Hamiltonian systems is one of our research motivations.

4.1 Forward MF-LQ control problem

In the first LQ problem, we consider the following linear controlled MF-SDE:





dx(s) =
{
A(s)x(s) + Ā(s)Et[x(s)] +B(s)u(s) + B̄(s)Et[u(s)] + α(s)

}
ds

+

d∑

i=1

{
Ci(s)x(s) + C̄i(s)Et[x(s)] +Di(s)u(s) + D̄i(s)Et[u(s)] + βi(s)

}
dWi(s),

s ∈ [t, T ],

x(t) = Hξ + xt,

(4.1)

where A(·), Ā(·), Ci(·), C̄i(·) ∈ L∞(t, T ;Rn×n), B(·), B̄(·), Di(·), D̄i(·) ∈ L∞(t, T ;Rn×m), H ∈ Rn×n,
α(·) ∈ L2

F
(Ω;L([t, T ];Rn)), βi(·) ∈ L2

F
(t, T ;Rn), and xt ∈ L2

Ft
(Ω;Rn) (i = 1, 2, . . . , d). The pair (ξ, u(·)) ∈

L2
Ft
(Ω;Rn)×L2

F
(t, T ;Rm) is called an admissible control. By Proposition 2.1, for any admissible control

(ξ, u(·)) ∈ L2
Ft
(Ω;Rn) × L2

F
(t, T ;Rm), MF-SDE (4.1) admits a unique solution x(·) ≡ x(·; ξ, u(·)) ∈

L2
F
(Ω;C([t, T ];Rn)) which is called the admissible state process under (ξ, u(·)). Moreover, (x(·), ξ, u(·))

is called an admissible triple. For convenience, we denote C(·) := (C1(·)⊤, C2(·)⊤, . . . , Cd(·)⊤)⊤ and
D(·) := (D1(·)⊤, D2(·)⊤, . . . , Dd(·)⊤)⊤.

We notice that, in most of literature on LQ optimal control problems (see Yong and Zhou [24] for
the problems driven by SDEs and [12, 16, 18, 20, 23] for the problems driven by MF-SDEs), the initial
condition is fixed to be x(t) = xt. Clearly, this is a special case of our research, i.e. H = 0. Here,
we consider a general situation, i.e., we can select ξ ∈ L2

Ft
(Ω;Rn) to change the initial value x(t). The

introduction of matrix H enables our formulation to be better meet the various actual applications. For
example, if

H =




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ,

then we can only change the value of the first component of x(t).
Besides the controlled system (4.1), we are also given an objective functional in a quadratic form:

J
(
ξ, u(·)

)
=

1

2
Et

{
〈Mξ, ξ〉+ 〈Gx(T ), x(T )〉+

〈
ḠEt[x(T )], Et[x(T )]

〉

+

∫ T

t

[
〈Q(s)x(s), x(s)〉 +

〈
Q̄(s)Et[x(s)], Et[x(s)]

〉

+ 〈R(s)u(s), u(s)〉+
〈
R̄(s)Et[u(s)], Et[u(s)]

〉]
ds

}
,

(4.2)

where M,G, Ḡ ∈ Sn, Q(·), Q̄(·) ∈ L∞(t, T ; Sn) and R(·), R̄(·) ∈ L∞(t, T ; Sm). Clearly, for any (ξ, u(·)) ∈
L2
Ft
(Ω;Rn)× L2

F
(t, T ;Rm), J(ξ, u(·)) is well-defined.

We propose a mean-field type forward LQ (MF-FLQ, for short) control problem as follows:

Problem (MF-FLQ). Find an admissible control (ξ∗, u∗(·)) ∈ L2
Ft
(Ω;Rn)× L2

F
(t, T ;Rm) such that

J
(
ξ∗, u∗(·)

)
= essinf

(ξ,u(·))∈L2
Ft

(Ω;Rn)×L2
F
(t,T ;Rm)

J
(
ξ, u(·)

)
. (4.3)

(ξ∗, u∗(·)) satisfying (4.3) is called an optimal control, x∗(·) ≡ x(·; ξ∗, u∗(·)) is called the corresponding
optimal state process, and (x∗(·), ξ∗, u∗(·)) is called an optimal triple.
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As usual, for a matrix M ∈ Sn, when M is positive semi-definite (resp. positive definite, negative
semi-definite, negative definite), we denote M ≥ 0 (resp. > 0, ≤ 0, < 0). Moreover, for a mapping
M : [t, T ] → Sn, we denote M(·) ≥ 0 (resp. > 0, ≤ 0, < 0) when M(s) ≥ 0 (resp. > 0, ≤ 0, < 0) for
almost all s ∈ [t, T ]. When there exists a constant δ > 0 such thatM(·)−δIn ≥ 0 (resp. M(·)+δIn ≤ 0),
we denote M(·) ≫ 0 (resp. M(·) ≪ 0). Now, we introduce the following assumption called the uniformly
positive definiteness condition (PD, for short) for the weighting matrices in the objective functional:

Condition (MF-FLQ-PD). M > 0, G ≥ 0, G + Ḡ ≥ 0, Q(·) ≥ 0, Q(·) + Q̄(·) ≥ 0, R(·) ≫ 0, and
R(·) + R̄(·) ≫ 0.

Lemma 4.1. Let Condition (MF-FLQ-PD) hold. Let (x∗(·), ξ∗, u∗(·)) be an admissible triple. Denote
by (y(·), z(·)) ∈ L2

F
(Ω;C([t, T ];Rn))× L2

F
(t, T ;Rnd) the unique solution to the following MF-BSDE:





dy(s) = −
{
A(s)⊤y(s) + Ā(s)⊤Et[y(s)] + C(s)⊤z(s) + C̄(s)⊤Et[z(s)]

+Q(s)x∗(s) + Q̄(s)Et[x
∗(s)]

}
ds+

d∑

i=1

zi(s) dWi(s), s ∈ [t, T ],

y(T ) = Gx∗(T ) + ḠEt[x
∗(T )].

(4.4)

Then, (ξ∗, u∗(·)) is an optimal control of Problem (MF-FLQ) if and only if

{
Mξ∗ +H⊤y(t) = 0,

R(·)u∗(·) + R̄(·)Et[u
∗(·)] +B(·)⊤y(·) + B̄(·)⊤Et[y(·)] +D(·)⊤z(·) + D̄(·)⊤Et[z(·)] = 0.

(4.5)

Proof. Let (x∗(·), ξ∗, u∗(·)) be an admissible triple. For any (ξ, u(·)) ∈ L2
Ft
(Ω;Rn)×L2

F
(t, T ;Rm) and ε ∈

R, denote by xε(·) the admissible state process under (ξ∗+εξ, u∗(·)+εu(·)). Let x1(·) = (xε(·)−x∗(·))/ε.
Then it is the unique solution to the following MF-SDE:





dx1(s) =
{
A(s)x1(s) + Ā(s)Et[x1(s)] +B(s)u(s) + B̄(s)Et[u(s)]

}
ds

+

d∑

i=1

{
Ci(s)x1(s) + C̄i(s)Et[x1(s)] +Di(s)u(s) + D̄i(s)Et[u(s)]

}
dWi(s), s ∈ [t, T ],

x1(t) = Hξ.

(4.6)

Applying Itô’s formula to 〈x1(·), y(·)〉 leads to (the argument s is suppressed for simplicity)

Et

{〈
x1(T ), Gx

∗(T ) + ḠEt[x
∗(T )]

〉
+

∫ T

t

〈
x1, Qx

∗ + Q̄Et[x
∗]
〉
ds

}

= Et

{
〈Hξ, y(t)〉+

∫ T

t

〈
u, B⊤y + B̄⊤

Et[y] +D⊤z + D̄⊤
Et[z]

〉
ds

}
.

(4.7)

Now, we calculate the difference:

J
(
ξ∗ + εξ, u∗(·) + εu(·)

)
− J

(
ξ∗, u∗(·)

)
= εI1 +

ε2

2
I2,

where

I1 = Et

{
〈Mξ∗, ξ〉+ 〈Gx∗(T ), x1(T )〉+ 〈ḠEt[x

∗(T )], Et[x
∗(T )]〉

+

∫ T

t

[
〈Qx∗, x1〉+ 〈Q̄Et[x

∗], Et[x1]〉+ 〈Ru∗, u〉+ 〈R̄Et[u
∗], Et[u]〉

]
ds

}

= Et

{
〈Mξ∗, ξ〉+

〈
Gx∗(T ) + ḠEt[x

∗(T )], x1(T )
〉

+

∫ T

t

[〈
Qx∗ + Q̄Et[x

∗], x1
〉
+
〈
Ru∗ + R̄Et[u

∗], u
〉]

ds

}
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and

I2 = Et

{
〈Mξ, ξ〉+ 〈Gx1(T ), x1(T )〉+ 〈ḠEt[x1(T )], Et[x1(T )]〉

+

∫ T

t

[
〈Qx1, x1〉+ 〈Q̄Et[x1], Et[x1]〉+ 〈Ru, u〉+ 〈R̄Et[u], Et[u]〉

]
ds

}

= Et

{〈
G
(
x1(T )− Et[x1(T )]

)
, x1(T )− Et[x1(T )]

〉
+
〈
(G+ Ḡ)Et[x1(T )], Et[x1(T )]

〉

+ 〈Mξ, ξ〉+
∫ T

t

[〈
Q
(
x1 − Et[x1]

)
, x1 − Et[x1]

〉
+
〈
(Q+ Q̄)Et[x1], Et[x1]

〉

+
〈
R
(
u− Et[u]

)
, u− Et[u]

〉
+
〈
(R + R̄)Et[u], Et[u]

〉]
ds

}
.

By substituting (4.7) into the above expression of I1, we have

I1 = Et

{〈
ξ, Mξ∗ +H⊤y(t)

〉
+

∫ T

t

〈
u, Ru∗ + R̄Et[u

∗] +B⊤y + B̄⊤
Et[y] +D⊤z + D̄⊤

Et[z]
〉
ds

}
.

With the previous preparations, now we prove the sufficiency. In fact, when (4.5) hold, we have I1 = 0.
Moreover, Condition (MF-FLQ-PD) implies that I2 ≥ 0. Therefore,

J
(
ξ∗ + εξ, u∗(·) + εu(·)

)
− J

(
ξ∗, u∗(·)

)
≥ 0. (4.8)

By the arbitrariness of (ξ, u(·)), we prove that (ξ∗, u∗(·)) is an optimal control of Problem (MF-FLQ).
Next, we will prove the necessity. When (ξ∗, u∗(·)) is optimal, the inequality (4.8) hold for all (ξ, u(·)) ∈

L2
Ft
(Ω;Rn)×L2

F
(t, T ;Rm) and all ε ∈ R. On the one hand, when ε > 0, we have I1+(ε/2)I2 ≥ 0. Sending

ε→ 0+ leads to
I1 ≥ 0, for all (ξ, u(·)) ∈ L2

Ft
(Ω;Rn)× L2

F
(t, T ;Rm). (4.9)

On the other hand, when ε < 0, a similar analysis yields

I1 ≤ 0, for all (ξ, u(·)) ∈ L2
Ft
(Ω;Rn)× L2

F
(t, T ;Rm). (4.10)

Combine (4.9) and (4.10) to get

I1 = 0, for all (ξ, u(·)) ∈ L2
Ft
(Ω;Rn)× L2

F
(t, T ;Rm).

Finally, due to the arbitrariness of (ξ, u(·)), the above equation implies (4.5). The proof is finished.

For convenience, we denote

R̃(·) = R(·) + R̄(·), B̃(·) = B(·) + B̄(·), D̃(·) = D(·) + D̄(·). (4.11)

We notice that, Condition (MF-FLQ-PD) implies that the matrix M and the matrix-valued processes

R(·) and R̃(·) are invertible. Moreover, R(·)−1 and R̃(·)−1 are uniformly bounded. Then, we can solve
(4.5) as

ξ∗ = −M−1H⊤y(t) (4.12)

and

u∗(·) = −R(·)−1
{
B(·)⊤

(
y(·)− Et[y(·)]

)
+D(·)⊤

(
z(·)− Et[z(·)]

)}

− R̃(·)−1
{
B̃(·)⊤Et[y(·)] + D̃(·)⊤Et[z(·)]

}
.

(4.13)

Now, we substitute (4.12) and (4.13) into the state equation (4.1), and form a system together with
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MF-BSDE (4.4) (the argument s is suppressed for simplicity):




dx∗ =

{
Ax∗ + ĀEt[x

∗]−BR−1
{
B⊤
(
y − Et[y]

)
+D⊤

(
z − Et[z]

)}

− B̃R̃−1
{
B̃⊤

Et[y] + D̃⊤
Et[z]

}
+ α

}
ds

+

d∑

i=1

{
Cix

∗ + C̄iEt[x
∗]−DiR

−1
{
B⊤
(
y − Et[y]

)
+D⊤

(
z − Et[z]

)}

− D̃iR̃
−1
{
B̃⊤

Et[y] + D̃⊤
Et[z]

}
+ βi

}
dWi, s ∈ [t, T ],

dy = −
{
A⊤y + Ā⊤

Et[y] + C⊤z + C̄⊤
Et[z] +Qx∗ + Q̄Et[x

∗]
}
ds

+

d∑

i=1

zi dWi, s ∈ [t, T ],

x∗(t) = −HM−1H⊤y(t) + xt, y(T ) = Gx∗(T ) + ḠEt[x
∗(T )].

(4.14)

The above system is called a Hamiltonian system in the terminology of control theory, which is actually
an MF-FBSDE.

Now, we give the main result of this subsection.

Proposition 4.2. Under Condition (MF-FLQ-PD), the Hamiltonian system (4.14) admits a unique
solution θ(·) = (x∗(·)⊤, y(·)⊤, z(·)⊤)⊤ ∈ M2

F
(t, T ;Rn(2+d)). Moreover, (ξ∗, u∗(·)) defined by (4.12) and

(4.13) is the unique optimal control of Problem (MF-FLQ).

Proof. Firstly, under Condition (MF-FLQ-PD), it is verified that the coefficients of MF-FBSDE (4.14)
satisfy Assumptions (H3), (H4)-(i)-Case A, (H4)-(ii), and (H4)-(iii). Then, Theorem 3.4 shows that
(4.14) admits a unique solution θ(·) = (x∗(·)⊤, y(·)⊤, z(·)⊤)⊤ ∈ M2

F
(t, T ;Rn(2+d)). Secondly, by Lemma

4.1, the unique solvability of (4.14) implies the existence and uniqueness of optimal control of Problem
(MF-FLQ). Moreover, the unique optimal control must be given by (4.12) and (4.13).

4.2 Backward MF-LQ control Problem

In the second LQ problem, the controlled system is given by a linear MF-BSDE:




dy(s) =
{
A(s)y(s) + Ā(s)Et[y(s)] +B(s)z(s) + B̄(s)Et[z(s)]

+ C(s)u(s) + C̄(s)Et[u(s)] + α(s)
}
ds+

d∑

i=1

zi(s) dWi(s), s ∈ [t, T ],

y(T ) = Pη + P̄Et[η] + yT .

(4.15)

In this subsection, we will adopt the decompositionB(·) = (B1(·), B2(·), . . . , Bd(·)) and B̄(·) = (B̄1(·), B̄2(·), . . . , B̄d(·)).
In (4.15), we assume thatA(·), Ā(·), Bi(·), B̄i(·) ∈ L∞(t, T ;Rn×n) (i = 1, 2, . . . , d), C(·), C̄(·) ∈ L∞(t, T ;Rn×m),
P, P̄ ∈ R

n×n, α(·) ∈ L2
F
(Ω;L(t, T ;Rn)), and yT ∈ L2

FT
(Ω;Rn). The pair (η, u(·)) ∈ L2

FT
(Ω;Rn) ×

L2
F
(t, T ;Rm) is called an admissible control. By Proposition 2.2, for any admissible control (η, u(·)) ∈

L2
FT

(Ω;Rn)×L2
F
(t, T ;Rm), MF-BSDE (4.15) admits a unique solution (y(·), z(·)) ≡ (y(·; η, u(·)), z(·; η, u(·))) ∈

L2
F
(Ω;C([t, T ];Rn))×L2

F
(t, T ;Rnd) which is called the admissible state process under (η, u(·)). Moreover,

(y(·), z(·), η, u(·)) is called an admissible quadruple. We notice that, the backward controlled system with-
out terminal control η has been studied by Li et al. [13]. Here, we consider the general situation (4.15).
In order to evaluate admissible controls, we are also given an objective functional in a quadratic form:

J
(
η, u(·)

)
=

1

2
Et

{
〈My(t), y(t)〉+ 〈Gη, η〉+

〈
ḠEt[η], Et[η]

〉

+

∫ T

t

[
〈Q(s)y(s), y(s)〉+

〈
Q̄(s)Et[y(s)], Et[y(s)]

〉
+ 〈L(s)z(s), z(s)〉

+
〈
L̄(s)Et[z(s)], Et[z(s)]

〉
+ 〈R(s)u(s), u(s)〉+

〈
R̄(s)Et[u(s)], E[u(s)]

〉]
ds

}
,

(4.16)
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whereM,G, Ḡ ∈ Sn, Q(·), Q̄(·) ∈ L∞(t, T ; Sn), L(·) := diag{L1(·), L2(·), . . . , Ld(·)}, L̄(·) := diag{L̄1(·), L̄2(·), . . . , L̄d(·)}
with Li(·), L̄i(·) ∈ L∞(t, T ; Sn) (i = 1, 2, . . . , d), and R(·), R̄(·) ∈ L∞(t, T ; Sm). Clearly, for any (η, u(·)) ∈
L2
Ft
(Ω;Rn) × L2

F
(t, T ;Rm), J(η, u(·)) is well-defined. Now, we propose a mean-field type backward LQ

(MF-BLQ, for short) control problem as follows:

Problem (MF-BLQ). Find an admissible control (η∗, u∗(·)) ∈ L2
FT

(Ω;Rn)× L2
F
(t, T ;Rm) such that

J
(
η∗, u∗(·)

)
= essinf

(η,u(·))∈L2
FT

(Ω;Rn)×L2
F
(t,T ;Rm)

J
(
η, u(·)

)
. (4.17)

(η∗, u∗(·)) satisfying (4.17) is called an optimal control, (y∗(·), z∗(·)) ≡ (y(·; η∗, u∗(·)), z(·; η∗, u∗(·))) is
called the corresponding optimal state process, and (y∗(·), z∗(·), η∗, u∗(·)) is called an optimal quadruple.

Similar to the previous subsection, we introduce the following uniformly positive definiteness condition
for the weighting matrices in the objective functional:

Condition (MF-BLQ-PD). M ≥ 0, G > 0, G + Ḡ > 0, Q(·) ≥ 0, Q(·) + Q̄(·) ≥ 0, L(·) ≥ 0,
L(·) + L̄(·) ≥ 0, R(·) ≫ 0, and R(·) + R̄(·) ≫ 0.

Lemma 4.3. Let Condition (MF-BLQ-PD) hold. Let (y∗(·), z∗(·), η∗, u∗(·)) be an admissible quadruple.
Denote by x(·) ∈ L2

F
(Ω;C([t, T ];Rn)) the unique solution to the following MF-SDE:





dx(s) = −
{
A(s)⊤x(s) + Ā(s)⊤Et[x(s)] +Q(s)y∗(s) + Q̄(s)Et[y

∗(s)]
}
ds

−
d∑

i=1

{
Bi(s)

⊤x(s) + B̄i(s)
⊤
Et[x(s)] + Li(s)z

∗
i (s) + L̄i(s)Et[z

∗
i (s)]

}
dWi(s),

s ∈ [t, T ],

x(t) = −My∗(t).

(4.18)

Then, (η∗, u∗(·)) is an optimal control of Problem (MF-BLQ) if and only if

{
Gη∗ + ḠEt[η

∗]− P⊤x(T )− P̄⊤
Et[x(T )] = 0,

R(·)u∗(·) + R̄(·)Et[u
∗(·)] + C(·)⊤x(·) + C̄(·)⊤Et[x(·)] = 0.

(4.19)

The proof of the above Lemma 4.3 is similar to that of Lemma 4.1. Then we omit it.
Let us denote

G̃ = G+ Ḡ, P̃ = P + P̄ , R̃(·) = R(·) + R̄(·), C̃(·) = C(·) + C̄(·).

Then, under Condition (MF-BLQ-PD), (4.19) can be rewritten in an explicit form:

{
η∗ = G−1P⊤

(
x(T )− Et[x(T )]

)
+ G̃−1P̃⊤

Et[x(T )],

u∗(·) = −R(·)−1C(·)⊤
(
x(·) − Et[x(·)]

)
− R̃(·)−1C̃(·)⊤Et[x(·)].

(4.20)

Substituting (4.20) into the state equation (4.15) and combining with MF-SDE (4.18) yield the following
Hamiltonian system (the argument s is suppressed for simplicity):





dx = −
{
A⊤x+ Ā⊤

Et[x] +Qy∗ + Q̄Et[y
∗]
}
ds

−
d∑

i=1

{
B⊤

i x+ B̄⊤
i Et[x] + Liz

∗
i + L̄iEt[z

∗
i ]
}
dWi, s ∈ [t, T ],

dy∗ =
{
Ay∗ + ĀEt[y

∗] +Bz∗ + B̄Et[z
∗]− CR−1C⊤

(
x− Et[x]

)

− C̃R̃−1C̃⊤
Et[x] + α

}
ds+

d∑

i=1

z∗i dWi, s ∈ [t, T ],

x(t) = −My∗(t), y∗(T ) = PG−1P⊤
(
x(T )− Et[x(T )]

)
+ P̃ G̃−1P̃⊤

Et[x(T )].

(4.21)

We give the main result of this subsection.
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Proposition 4.4. Under Condition (MF-BLQ-PD), the Hamiltonian system (4.21) admits a unique
solution θ(·) = (x(·)⊤, y∗(·)⊤, z∗(·)⊤)⊤ ∈M2

F
(t, T ;Rn(2+d)). Moreover, (η∗, u∗(·)) defined by (4.20) is the

unique optimal control of Problem (MF-BLQ).

Proof. Under Condition (MF-BLQ-PD), we verify that the coefficients of MF-FBSDE (4.21) satisfy As-
sumptions (H3), (H4)-(i)-Case B, (H4)-(ii), and (H4)-(iii). Then, Theorem 3.4 shows that (4.21) admits
a unique solution in the space M2

F
(t, T ;Rn(2+d)). Similar to the proof of Proposition 4.2, the remaining

of this proof is implied by Lemma 4.3.

As an echo of Remark 3.7, we give the following remark. Due to the similarity, the details will be
omitted.

Remark 4.5. If the essential infimum in Problem (MF-FLQ) (resp. Problem (MF-BLQ)) is replaced
with the essential supremum, and at the same time Condition (MF-FLQ-PD) (resp. Condition (MF-
BLQ-PD)) is replaced with the corresponding uniformly negative definiteness condition, then we will have
similar conclusions to Proposition 4.2 (resp. Proposition 4.4). We notice the difference is: In the related
assumptions satisfied by the Hamiltonian system arising from the new MF-LQ problem, Assumption
(H4)-(iii) will be replaced by Assumption (H4)-(iii)′.
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[9] M. Huang, R.P. Malhamé, and P.E. Caines, Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (3)
(2006) 221–251.

[10] M. Kac, Foundations of kinetic theory, in: Proceedings of the Third Berkeley Symposium on Math-

ematical Statistics and Probability, vol. III, 1956, pp. 171-197.

[11] J.M. Lasry and P.L. Lions, Mean field games, Jpn. J. Math., 2 (1) (2007) 229–260.

[12] N. Li, X. Li, and Z. Yu, Indefinite mean-field type linear-quadratic stochastic optimal control problems,
Automatica, 122 (2020), 109267, 10 pp.

[13] X. Li, J. Sun, and J. Xiong, Linear quadratic optimal control problems for mean-field backward
stochastic differential equations, Appl. Math. Optim., 80 (2019), no. 1, 223–250.

[14] Y. Lin, X. Jiang, and W. Zhang, An open-loop Stackelberg strategy for the linear quadratic mean-field
stochastic differential game, IEEE Trans. Automat. Control, 64 (2019), no. 1, 97-110.

20



[15] H.P. McKean, Propagation of chaos for a class of non-linear parabolic equations, Lect. Ser. Differ.

Equ., 7 (1967) 41–57.

[16] Y. Ni, X. Li, and J. Zhang, Indefinite mean-field stochastic linear-quadratic optimal control: from
finite horizon to infinite horizon, IEEE Trans. Automat. Control, 61 (2016), no. 11, 3269–3284.

[17] S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications
to optimal control, SIAM J. Control Optim., 37 (1999), no. 3, 825–843.

[18] J. Sun, Mean-field stochastic linear quadratic optimal control problems: open-loop solvabilities,
ESAIM Control Optim. Calc. Var., 23 (2017), no. 3, 1099–1127.

[19] R. Tian, Z. Yu, and R. Zhang, A closed-loop saddle point for zero-sum linear-quadratic stochastic
differential games with mean-field type, Systems Control Lett., 136 (2020), 104624, 11 pp.

[20] T. Wang, Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear
quadratic problems. I, Math. Control Relat. Fields, 9 (2019), no. 2, 385–409.

[21] Q. Wei, J. Yong, and Z. Yu, Linear quadratic stochastic optimal control problems with operator
coefficients: open-loop solutions, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 17, 38 pp.

[22] J. Yong, Finding adapted solutions of forward-backward stochastic differential equations: method of
continuation, Probab. Theory Related Fields, 107 (1997), no. 4, 537–572.

[23] J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations,
SIAM J. Control Optim., 51 (2013), no. 4, 2809–2838.

[24] J. Yong and X. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, Springer-Verlag,
New York, 1999.

[25] Z. Yu, On forward-backward stochastic differential equations in a domination-monotonicity frame-
work, submitted.

Appendix A Proofs of Proposition 2.1 and Proposition 2.2

In this appendix, we devote ourselves to proving Proposition 2.1 and Proposition 2.2.

A.1 Proof of Proposition 2.1

We split the whole proof into three steps.
Step 1: Unique solvability. Let [t′, T ′] ⊂ [t, T ] and xt′ ∈ L2

Ft′(Ω;Rn). For any x(·) ∈ L2
F
(Ω;C([t′, T ′];Rn)),

we introduce the following SDE:





dX(s) = b
(
s,X(s),Et[x(s)]

)
ds+

d∑

i=1

σi
(
s,X(s),Et[x(s)]

)
dWi(s), s ∈ [t′, T ′],

X(t′) = xt′ .

(A.1)

Since the mappings b and σ are Lipschitz continuous with respect to x′, b(·, 0, 0) ∈ L2
F
(Ω;L([t, T ];Rn))

and σ(·, 0, 0) ∈ L2
F
(t, T ;Rnd), then it is easy to verify that b(·, 0,Et[x(·)]) ∈ L2

F
(Ω;L([t′, T ′];Rn)) and

σ(·, 0,Et[x(·)]) ∈ L2
F
(t′, T ′;Rnd). Therefore, the classical theory of SDEs implies that (A.1) admits a

unique solution X(·) ∈ L2
F
(Ω;C([t′, T ′];Rn)). Due to the arbitrariness of x(·), we have actually con-

structed a mapping TF : L2
F
(Ω;C([t′, T ′];Rn)) → L2

F
(Ω;C([t′, T ′];Rn)):

TF (x(·)) = X(·).

Let x(·), x̄(·) ∈ L2
F
(Ω;C([t′, T ′];Rn)) and X(·) = TF (x(·)), X̄(·) = TF (x̄(·)). Denote x̂(·) = x(·)− x̄(·)

and X̂(·) = X(·)− X̄(·). Then the continuous dependence property of the solution on the coefficients in
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the classical theory of SDEs shows

E

[
sup

s∈[t′,T ′]

∣∣X̂(s)
∣∣2
]
≤ KFE

{(∫ T ′

t′

∣∣∣b
(
s, X̄(s),Et[x(s)]

)
− b
(
s, X̄(s),Et[x̄(s)]

)∣∣∣ ds
)2

+

∫ T ′

t′

∣∣∣σ
(
s, X̄(s),Et[x(s)]

)
− σ

(
s, X̄(s),Et[x̄(s)]

)∣∣∣
2

ds

}
,

(A.2)

where KF := KF (T − t, L) > 0 is a constant depending on (T − t) and the Lipschitz constant of the
mappings b and σ with respect to x. Moreover, the Lipschitz continuity of b and σ with respect ot x′ was
also used to yield

E

[
sup

s∈[t′,T ′]

∣∣X̂(s)
∣∣2
]
≤ KFL

2
E

{(∫ T ′

t′
Et

[
|x̂(s)|

]
ds

)2

+

∫ T ′

t′

(
Et

[
|x̂(s)|

])2
ds

}

≤ 2KFL
2(T ′ − t′)max

{
(T ′ − t′), 1

}
E

[
sup

s∈[t′,T ′]

∣∣x̂(s)
∣∣2
]
.

Let

δF = min

{
1,

1

8KFL2

}
. (A.3)

Then, when T ′ − t′ ≤ δF , the above inequality implies

∥∥X̂(·)
∥∥
L2

F
(Ω;C([t′,T ′];Rn))

≤ 1

2

∥∥x̂(·)
∥∥
L2

F
(Ω;C([t′,T ′];Rn))

,

i.e., the mapping TF is a contraction. Due to Banach’s contraction mapping theorem, it admits a unique
fixed point which is the unique solution to the following MF-SDE:





dx(s) = b
(
s, x(s),Et[x(s)]

)
ds+

d∑

i=1

σi
(
s, x(s),Et[x(s)]

)
dWi(s), s ∈ [t′, T ′],

x(t′) = xt′ .

(A.4)

Now, we turn our attention to MF-SDE (2.1). Based on the previous study, we divide the whole
interval into

NF = inf

{
N̄ ∈ N

∣∣∣∣ N̄ ≥ T − t

δF

}
(A.5)

sub-intervals with δF defined by (A.3) as the step length. Then, we derive that MF-SDE (2.1) admits a
unique solution x(·) ∈ L2

F
(Ω;C([t, T ];Rn)).

Step 2: Estimate (2.2). For any s ∈ [t, T ], the classical estimate of SDEs leads to

Et

[
sup

r∈[t,s]

|x(r)|2
]

≤ KF

{
|xt|2 + Et

[(∫ s

t

∣∣∣b
(
r, 0,Et[x(r)]

)∣∣∣dr
)2

+

∫ s

t

∣∣∣σ
(
r, 0,Et[x(r)]

)∣∣∣
2

dr

]}

≤ MF + 2KFL
2
Et

[(∫ s

t

Et[|x(r)|] dr
)2

+

∫ s

t

(
Et[|x(r)|]

)2
dr

]
,

where KF is the same constant as in (A.2) and

MF := 2KF

{
|xt|2 + Et

[(∫ T

t

∣∣b(r, 0, 0)
∣∣dr
)2

+

∫ T

t

∣∣σ(r, 0, 0)
∣∣2 dr

]}
. (A.6)

We continue to derive

Et

[
sup

r∈[t,s]

|x(r)|2
]
≤MF + 2KFL

2(T − t+ 1)

∫ s

t

Et

[
sup

u∈[t,r]

|x(u)|2
]
dr.
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Then, Gronwall’s inequality leads to the desired estimate (2.2).
Step 3: Estimate (2.3). Denote x̂t := xt − x̄t and

b̂(s, x, x′) := b
(
s, x+ x̄(s), x′ + Et[x̄(s)]

)
− b̄
(
s, x̄(s),Et[x̄(s)]

)
,

σ̂(s, x, x′) := σ
(
s, x+ x̄(s), x′ + Et[x̄(s)]

)
− σ̄

(
s, x̄(s),Et[x̄(s)]

)

for all (s, ω, x, x′) ∈ [t, T ]× Ω × Rn × Rn. It is easy to verify that the new defined coefficients (x̂t, b̂, σ̂)
also satisfy Assumption (H1) with the same Lipschitz constant. Therefore, by the proved Step 1, the
following MF-SDE





dx̂(s) = b̂
(
s, x̂(s),Et[x̂(s)]

)
ds+

d∑

i=1

σ̂i
(
s, x̂(s),Et[x̂(s)]

)
dWi(s), s ∈ [t, T ],

x̂(t) = x̂t

(A.7)

admits a unique solution. Moreover, we directly verify that the unique solution happens to be x̂(·) =
x(·) − x̄(·). Finally, by the proved Step 2, the estimate (2.2) is applied to MF-SDE (A.7) to yield (2.3).
The proof is finished.

A.2 Proof of Proposition 2.2

Similar to the proof of Proposition 2.1, here we also split the whole proof into three steps.
Step 1: Unique solvability. This step is similar to Step 1 in the proof of Proposition 2.1. Then,

we would like to omit it.
Step 2: Estimate (2.5). For any [t′, T ′] ⊂ [t, T ], by the classical estimate of BSDEs, we have

Et

[
sup

s∈[t′,T ′]

|y(s)|2 +
∫ T ′

t′
|z(s)|2 ds

]

≤ KBEt

{∣∣y(T ′)
∣∣2 +

(∫ T ′

t′

∣∣∣g
(
s, 0,Et[y(s)], 0,Et[z(s)]

)∣∣∣ds
)2}

≤ 3KBEt

{∣∣y(T ′)
∣∣2 +

(∫ T ′

t′

∣∣∣g
(
s, 0, 0, 0, 0

)∣∣∣ds
)2

+ L2(T ′ − t′)2 sup
s∈[t′,T ′]

|y(s)|2 + L2(T ′ − t′)

∫ T ′

t′
|z(s)|2 ds

}
,

where KB := KB(T − t, L) > 0 is a constant depending on (T − t) and the Lipschitz constant of g with
respect to (y, z). Let

δB := min

{
1,

1

6KBL2

}
. (A.8)

Then, when T ′ − t′ ≤ δB, the above inequality implies

Et

[
sup

s∈[t′,T ′]

|y(s)|2 +
∫ T ′

t′
|z(s)|2 ds

]
≤ 6KBEt

{∣∣y(T ′)
∣∣2 +

(∫ T ′

t′

∣∣∣g
(
s, 0, 0, 0, 0

)∣∣∣ ds
)2}

. (A.9)

Now, we divide the whole interval [t, T ] into

NB = inf

{
N̄ ∈ N

∣∣∣∣ N̄ ≥ T − t

δB

}
(A.10)

sub-intervals with δB defined by (A.8) as the step length. Denote the split points by t = t0 < t1 < t2 <
· · · < tNB−1 < tNB

= T . Then, for each k = 0, 1, . . . , NB − 1, from (A.9), we have

Et

[
sup

s∈[tk,tk+1]

|y(s)|2 +
∫ tk+1

tk

|z(s)|2 ds
]
≤ 6KBEt

{∣∣y(tk+1)
∣∣2 +

(∫ tk+1

tk

∣∣∣g
(
s, 0, 0, 0, 0

)∣∣∣ds
)2}

. (A.11)
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Without loss of generality, we can assume that 6KB ≥ 1 (otherwise, we can use K̃B := max{KB, 1/6}
instead of KB). For k = NB − 1, NB − 2, . . . , 0, by some recursive but straightforward calculations from
(A.11), we have

Et

[
sup

s∈[tk,tk+1]

|y(s)|2 +
∫ tk+1

tk

|z(s)|2 ds
]

≤ (6KB)
NB−k

Et

{
|yT |2 +

(∫ T

tk

∣∣∣g(s, 0, 0, 0, 0)
∣∣∣ds
)2}

≤ (6KB)
NB−k

Et

{
|yT |2 +

(∫ T

t

∣∣∣g(s, 0, 0, 0, 0)
∣∣∣ds
)2}

.

(A.12)

Since

sup
s∈[t,T ]

|y(s)|2 ≤
N−1∑

k=0

sup
s∈[tk,tk+1]

|y(s)|2 and

∫ T

t

|z(s)|2 ds =
N−1∑

k=0

∫ tk+1

tk

|z(s)|2 ds,

we sum up (A.12) from k = 0 to k = NB − 1 to get

Et

[
sup

s∈[t,T ]

|y(s)|2+
∫ T

t

|z(s)|2 ds
]
≤
(NB−1∑

k=0

(6KB)
NB−k

)
Et

[
|yT |2+

(∫ T

t

∣∣g
(
s, 0, 0, 0, 0

)∣∣ ds
)2]

. (A.13)

The estimate (2.5) for MF-BSDEs is proved.
Step 3: Estimate (2.6). This step is similar to Step 3 in the proof of Proposition 2.1. We omit it.
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