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ON PORT-HAMILTONIAN APPROXIMATION OF A

NONLINEAR FLOW PROBLEM ON NETWORKS∗

BJÖRN LILJEGREN-SAILER† AND NICOLE MARHEINEKE†

Abstract. This paper deals with the systematic development of structure-preserving approx-
imations for a class of nonlinear partial differential equations on networks. The class includes, for
example, gas pipe network systems described by barotropic Euler equations. Our approach is guided
throughout by energy-based modeling concepts (port-Hamiltonian formalism, theory of Legendre
transformation), which provide a convenient and general line of reasoning. Under mild assump-
tions on the approximation, local conservation of mass, an energy bound, and the inheritance of
the port-Hamiltonian structure can be shown. Our approach is not limited to conventional space
discretization but also covers complexity reduction of the nonlinearities by inexact integration. Thus,
it can serve as a basis for structure-preserving model reduction. Combined with an energy-stable
time integration, we demonstrate the applicability and good stability properties using the example
of the Euler equations on networks.
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Key words. port-Hamiltonian systems; structure-preserving scheme; Legendre transformation;
Galerkin projection

1. Introduction. Structure-preserving discretization is an active research area
in the last decades. By preserving or mimicking relevant geometric structures such
as, e.g., conservation laws, dissipative relations, or symplecticities, unphysical solution
behavior and numerical instabilities can be avoided in many cases, cf. [42, 18, 14, 2].
The model problem we consider in this paper describes nonlinear flows on networks.
It covers a hierarchy of models used to describe gas network systems, including par-
ticularly the barotropic Euler equations [52, 20, 21, 25, 19], but also p-systems [61, 51]
and more general symmetrizable hyperbolic systems [36, 53]. Further applications are
in the contexts [40, 48], e.g., in the modeling of electric transmission lines. The net-
work is assumed to be described by a directed graph. Each edge ω of the graph can be
identified with an interval. Given a strictly convex smooth function h : R2 → R and a
non-negative function r̃ : R2 → R, the edgewise states

¯
zω = [zω1 ; z

ω
2 ] : [0, T ]× ω → R

2

are governed by

∂tz
ω
1 (t, x) = −∂x∇2h(

¯
zω(t, x)),

∂tz
ω
2 (t, x) = −∂x∇1h(

¯
zω(t, x)) − r̃(

¯
zω(t, x))∇2h(

¯
zω(t, x)),

with ∇ih(
¯
zω(t, x)) = ∂zih([z1; z2])|[z1;z2]=

¯
zω(t,x) for i = 1, 2. The expressions M(

¯
z) =

∑

ω∈E

∫

ω
zω1 dx and H̃(

¯
z) =

∑

ω∈E

∫

ω
h(
¯
zω)dx, with E the set of all edges, represent

the total mass and the Hamiltonian of the system. Fundamental properties of the
hyperbolic model problem are that, under appropriate coupling conditions on the
edgewise equations, conservation of mass and dissipation of the Hamiltonian (energy
dissipation) hold up to the exchange with the boundary. Moreover, the convective
terms can be related to a certain skew symmetric geometric structure. Our aim is to
derive a structure-preserving approximation approach, which is applicable for both
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conventional space discretization and projection-based (Galerkin) model order reduc-
tion with additional complexity reduction. The latter denotes a sparse approximation
of nonlinear terms (also known as hyper-reduction). Note that we use the expression
model reduction as an umbrella term for model order- and complexity-reduction.

There exists a rich literature on structure-preserving discretization. The mimetic
finite difference and finite element methods [6, 41] are designed to mimic conservation
laws and dissipative relations on the discrete level. These approaches typically involve
the separate approximation of operators and geometric objects and do therefore not
completely fit in the Galerkin framework, or are tailored towards specific discrete
structures or problems, see e.g., [21, 58, 26, 25] in the gas network context. Many
entropy-stable methods are based on a flux-centered point of view and the so-called
entropy-flux pair. This is the case for finite volume methods [42, 39] or methods using
summation-by-parts approximation [29, 63]. These methods are particularly well-
suited in the presence of shocks. The summation-by-parts methods have the additional
advantage that inexact integration can be taken into account, but they are not purely
projection-based and heavily rely on the flux-interpretation, which complicates their
adaption for model reduction. A contribution in this direction we are aware of is
[16]. For systems in Lagrangian form, structure-preserving Galerkin approximations
are studied in [13, 27]. The Hamiltonian formulation is dual to the Lagrangian one
[18, 30], and the so-called Legendre transformation links the Hamiltonian and the
Lagrangian functions of a system [59, 68].

For the approximation of our model problem, we consider the port-Hamiltonian
framework, a generalization of the Hamiltonian formalism, which is particularly well-
suited for network problems. It has its origins in the analysis of finite-dimensional
connected systems [47, 48, 65, 64] but has been extended to the infinite-dimensional
setting of partial differential equations [7, 31] and has been systematically generalized
to constrained dynamical systems [9, 64]. The lumped port-Hamiltonian approxima-
tion of infinite-dimensional systems has also gained interest recently. Most contribu-
tions in this direction either focus on linear systems [34, 67] or are tailored to very
specific discrete structures such as mimetic discretizations [29, 28, 56]. There exist
a few works on structure-preserving model reduction of nonlinear port-Hamiltonian
systems, most of them consider the finite-dimensional case, see [17, 2, 3, 57]. A com-
prehensive literature is available for standard model reduction. cf., e.g., [8, 10, 27, 13].

In this paper, we propose a conforming Galerkin ansatz, which respects the Hamil-
tonian and geometric structure of our nonlinear flow problem. On the one hand, we
make use of compatibility conditions on the ansatz spaces, which also play a funda-
mental role in mimetic finite element methods and symplectic model reduction [57, 2].
On the other hand, a certain variable transformation related to the Hamiltonian of
the system and its systematic analysis using the theory on the partial Legendre trans-
formation is crucial in our approach. To the best of the authors’ knowledge, the
latter has not yet been used in this extend in the context. The use of structured vari-
able transformations widens the range of formulations, for which structure-preserving
Galerkin approximations can be derived with purely variational arguments. Moreover,
complexity reduction of nonlinear terms by inexact quadrature can be included with-
out much difficulty, similar to other Galerkin-based approaches [22, 27]. We present
a complete modeling work flow consisting of the following steps: Port-Hamiltonian
modeling of our flow problem on networks; analytical investigation of a variable trans-
formation induced by the partial Legendre transformation; approximation in space by
Galerkin projection and quadrature-based complexity reduction (hyper-reduction);
energy-stable time discretization.
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The structure of this paper is as follows: The underlying energy-based modeling
concepts, i.e., the port-Hamiltonian formalism and the partial Legendre transforma-
tion, are shortly introduced in Section 2. In Section 3 we present our model problem
together with an appropriate parametrization of the solution and a variational princi-
ple. The latter provides the basis for the structure-preserving approximations derived
in Section 4. The approximations inherit, among others, port-Hamiltonian structure,
which is revealed by their structured coordinate representations in Section 5. An
energy-stable time discretization is presented in Section 6 and the applicability of our
approach is numerically demonstrated for the barotropic Euler equations in two test
cases in Section 7. Our conclusion and outlook give a summary and point towards
possible directions for future research. The appendix extends our approach to systems
with an additional dissipation term as well as with edge weighting.

Notation. In this paper matrices, vectors and scalars are indicated by capital
boldfaced, small boldfaced and normal letters, respectively, whereby vector-expres-
sions always refer to column vectors. Given two vectors a ∈ R

n and b ∈ R
m, we

write [a;b] ∈ R
n+m for the concatenation to a new (column) vector. For m = n

the Euclidean scalar product is denoted by a · b. We distinguish between function-
valued vector spaces (e.g., L2, V) and real-valued spaces and sets (e.g., RN , S) in the
typesetting.

Given a scalar field h : Rn → R and a partitioning of the argument into vector-
components z = [z1; z2] with zi ∈ R

ni , n1 + n2 = n, we often structure the gradient
∇h and Hessian ∇2h in sub-blocks, i.e.,

∇h =

[

∇1h
∇2h

]

, ∇2h =

[

∇11h ∇12h
∇21h ∇22h

]

, ∇ih : Rn → R
ni , ∇ijh : Rn → R

ni×nj .

The solutions of the partial differential equations in this paper depend on time t
and space x, e.g., z(t, x) ∈ R. When it is convenient, we interpret them as functions in
time with values in a function space, e.g., z(t) ∈ L2. The grouping of solution compo-
nents in a vector is underscored to distinguish it from an ordinary vector (coordinate
representation).

2. Modeling concepts for structured systems. In this section, we briefly
present some basic concepts for characterizing properties in a structured system. The
concepts are applicable on the continuous level of our model problem as well as on the
space-discrete level of its approximations. The core is the port-Hamiltonian framework
that encodes geometric structures in an algebraic way. The geometric structures
typically reflect fundamental physical properties, hence it is desirable to preserve them
throughout all approximation steps. The partial Legendre transformation allows us to
systematically investigate certain variable transformations related to the Hamiltonian
of the system.

2.1. Port-Hamiltonian systems. In recent years, the port-Hamiltonian frame-
work has been found in many different areas of applications, see, e.g., [48, 64, 31, 9, 40].
Central is the Hamiltonian that is often related to an energy or entropy function in
applications. In the finite-dimensional setting, H : Rn → R is typically assumed to
be convex and continuously differentiable. An important class of port-Hamiltonian
systems with state z ∈ R

n reads as follows, [64, 9]:

3



Find z ∈ C1([0, T ];Rn), e ∈ C([0, T ];Rp) and f ∈ C1([0, T ];Rp) such that

d

dt
z(t) =

(

J̄(z(t)) − R̄(z(t))
)

∇H(z(t)) +Ke(t)

f(t) = KT∇H(z(t)), z(0) = z0.
(2.1)

Here, the matrix J̄(z) is anti-symmetric (i.e., J̄(z) = −J̄(z)T ), R̄(z) is symmet-
ric positive semi-definite (i.e., R̄(z) = R̄(z)T has non-negative eigenvalues), and
K ∈ R

n×p. The choice of closing conditions depends on the application. Given an in-
put u : [0, T ] → R

p, the system (2.1) can, e.g., be closed by the equations e(t) = u(t),
or f(t) = u(t). In the first case, the system reduces to an ordinary differential equa-
tion for z, whereas the second case yields a differential-algebraic equation of index 2.
In the port-Hamiltonian wording, z is called the energy variable, ∇H(z) the effort
variable, and e and f the boundary effort and boundary flow, respectively. The sys-
tem structure readily implies, among others, that the Hamiltonian is dissipated over
time up to exchange with the boundary, i.e., for t ≥ 0

d

dt
H(z(t)) ≤ e(t) · f(t).

2.2. Partial Legendre transformation. The Legendre transformation plays
an important role in classical mechanics, as it represents a link between the Lagrangian
and the Hamiltonian modeling framework [68]. Further, there exists a rich theory on
the implication of the Legendre transformation for duality principles, which are, e.g.,
used in nonlinear optimization [60]. In this paper we deal with a slight generalization
of the standard approach, the so-called partial Legendre transformation [59]. Ac-
cordingly, we consider the following partitioning of a vector, z = [z1; z2] ∈ R

n with
zi ∈ R

ni , n = n1 + n2.

Definition 2.1 (Partial Legendre transformation). Let S = S1 × S2 ⊂ R
n be a

convex set with Si ⊂ R
ni , n = n1 + n2. The partial Legendre transformation of the

function h : S → R with respect to the second (sub-vector) component is defined as
g : S → R,

g(a) = sup
z2∈{z̄2:[a1;z̄2]∈S}

a2 · z2 − h([a1; z2]), a = [a1; a2].

For differentiable functions a coordinate transformation can be associated to the Le-
gendre transformation.

Theorem 2.2. Let S, h and g be given as in Definition 2.1. Let, additionally,
z2 7→ h([z̄1; z2]) be strictly convex and continuously differentiable for fixed z̄1 ∈ S1.
Then, a2 7→ g([z̄1; a2]) is strictly convex, differentiable and ẑ : D(ẑ) → S with

ẑ(a) = [a1;∇2g(a)], for a = [a1; a2] and D(ẑ) = {a ∈ R
n : ẑ(a) ∈ S}

is a homeomorphism. Moreover, it holds g(a) = a2 · ∇2g(a)− h([a1;∇2g(a)]).

Proof. The function φ : a2 7→ g([z̄1; a2]) can be considered as the Legendre trans-
formation of z2 7→ h([z̄1; z2]) for any fixed z̄1. According to [59, Theorem 11.13],
thus φ inherits strict convexity and continuous differentiability and the gradients of
the two mappings are inverse functions of each other, i.e., ∇2h(z)|z=ẑ([z̄1 ;a2]) = a2
for [z̄1; a2] ∈ D(ẑ) holds. For bijectivity of ẑ, it remains to show injectivity, i.e.,
ẑ(ă) 6= ẑ(ã) holds for any ă, ã ∈ D(ẑ) with ă 6= ã. If the first (sub-vector) com-
ponents differ (ă1 6= ã1), this holds trivially. Let us therefore assume ă1 = ã1 and
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ă2 6= ã2. From the strict convexity of φ, (∇2g([ă1; ă2])−∇2g([ă1; ã2])) · (ă2− ã2) > 0
follows, hence ∇2g(ă) 6= ∇2g(ã) and, consequently, also ẑ(ă) 6= ẑ(ã). Finally, the fact
that φ is a Legendre transformation of a parametrized function also yields the equal-
ity g(a) = a2 · ∇2g(a) − h([a1;∇2g(a)]) under the posed smoothness assumptions,
cf. [60].

By considering a2 7→ g([z̄1; a2]) as a function parametrized in z̄1, the function h can
be characterized as the partial Legendre transformation of g by standard results on
Legendre transformations, cf. [59, 60].

Lemma 2.3. Under the assumptions of Theorem 2.2, the relations h(ẑ(a)) =
∇2g(a) · a2 − g(a) and ∇1g(a) = −∇1h(z)|z=ẑ(a) are valid for a = [a1; a2].

3. Model problem. A class of nonlinear flows on networks is described by our
model problem that covers, e.g., the barotropic Euler equations or electromagnetic
waves. We write it in a specific form using a variable transformation that is related to
a partial Legendre transformation. This is advantageous since parts of the coupling
conditions become linear, which significantly simplifies the handling of network as-
pects. Moreover, it is key in the analysis of a variational principle. We show that the
variational principle encodes an energy bound, local mass conservation and inherits a
gradient structure strongly connected to the Hamiltonian of our model problem.

3.1. Network description. Concerning the network aspects, we rely on the
framework of [26, 24]. Let a network be described by a directed graph G = (N , E)
with set of nodes N = {ν1, . . . , νl} and edges E = {ω1, . . . , ωk} ⊂ N × N . To every
edge ω, we associate a length ℓω. The set of all edges adjacent to the node ν is denoted
by E(ν) = {ω ∈ E : ω = (ν, ν̄), or ω = (ν̄, ν)}. For ω ∈ E(ν), the incidence mapping
nω[ν] is defined by

nω[ν] =

{

1 for ω = (ν, ν̄) for some ν̄ ∈ N

−1 for ω = (ν̄, ν) for some ν̄ ∈ N .

The nodes are grouped into interior nodes N0 ⊂ N and boundary nodes N∂ = N\N0,
for an illustration of the network notation see Fig. 1.

On the network, function spaces are constructed by compositions of standard
Sobolev spaces for every edge. The spatial domain is given as the union of edges
Ω = {x : x ∈ ω, for ω ∈ E}. Note that every edge ω can be identified with an interval
(0, lω) which is tacitly employed in the upcoming expressions. The space of square-
integrable functions on E reads L2(E) =

{

b : Ω → R with b|ω ∈ L2(ω) for all ω ∈ E
}

,
where the subscript .|ω indicates the restriction of a function to the edge ω. The

respective scalar product and norm read 〈b, b̃〉 =
∑

ω∈E

∫

ω
b b̃ dx and ||b|| =

√

〈b, b〉

for b, b̃ ∈ L2(E). The weak (broken) derivative operator for functions on the network
is defined by (∂xb)|ω = ∂xb|ω for ω ∈ E . The space of functions with square-integrable

weak broken derivative is given as H1
pw(E) =

{

b ∈ L2(E) : ∂xb ∈ L2(E)
}

. Accordingly,

Ck
pw(E) =

{

b : Ω → R with b|ω ∈ Ck(ω) for all ω ∈ E
}

denotes the space of piecewise
smooth functions for k ≥ 0.

The domains for boundary and coupling conditions are the sets of nodes N∂

and N0. For b ∈ H1
pw(E) we indicate node evaluations with squared brackets, i.e.,

b|ω[ν] ∈ R for ν ∈ N . They are well-defined by means of the trace theorem, [11].
Note that b|ω[ν] and b|ω̃[ν] may in general differ for ω 6= ω̃ ∈ E . Following [24], a
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ν1 ν2

ν3

ν4

ω1

ω2

ω
3

Fig. 1. Left: Illustration of graph notation for G = (N , E) with nodes N = {ν1, ν2, ν3, ν4} and
edges E = {ω1, ω2, ω3} defined by ω1 = (ν1, ν2), ω2 = (ν2, ν3) and ω3 = (ν2, ν4). Thus, N0 = {ν2},
N∂ = {ν1, ν3, ν4} and E(ν2) = {ω1, ω2, ω3}. Further, nω1 [ν1] = nω2 [ν2] = nω3 [ν2] = 1 and
nω1 [ν2] = nω2 [ν3] = nω3 [ν4] = −1.
Right: Topology for gas pipeline network used in the numerical studies (Section 7.2). The larger red
nodes νi, i = 1, ..., 6, correspond to boundary nodes. The spatial domain of the pipes ωj, j = 1, ...,8,
i.e., the path from ν1 to ν3, is highlighted by a dotted brown line.

Sobolev space incorporating a certain coupling condition at inner nodes is defined as

H1
div(E) = {b ∈ H1

pw(E) :
∑

ω∈E(ν)

nω[ν]b|ω[ν] = 0, for ν ∈ N0}.

The boundary nodes N∂ = {ν1, . . . , νp} are assumed to be connected to exactly one
edge each. Thus, a boundary operator T : H1

pw(E) → R
p can be defined by [T b]i =

nω[νi]b|ω[νi] for ω ∈ E(νi), i = 1, . . . , p and b ∈ H1
pw(E).

3.2. Strong form and variable transformation. As model problem we con-
sider a class of prototypical nonlinear partial differential equations for a flow on a
network: The state

¯
z = [z1; z2] : [0, T ]× Ω → R

2 is governed by

∂t
¯
z(t, x) =

[

−∂x
−∂x −r̃(

¯
z(t, x))

]

∇h(
¯
z(t, x)), x ∈ Ω, t ∈ (0, T ](3.1a)

with r̃ : R2 → R such that r̃(
¯
z(t, x)) ≥ 0. The solution components are interconnected

by the coupling conditions

∑

ω∈E(ν)

nω[ν]∇2h(
¯
z|ω(t, ν)) = 0, ∇1h(

¯
z|ω(t, ν)) = ∇1h(

¯
z|ω̃(t, ν))(3.1b)

for ω, ω̃ ∈ E(ν), at ν ∈ N0. The system is closed by initial and boundary conditions
of the form

¯
z(0, x) =

¯
z0(x) for x ∈ Ω, t̃ν(

¯
z(t, ν), uν(t)) = 0(3.1c)

for t ∈ [0, T ], ν ∈ N∂ . We particularly assume one boundary data uν : [0, T ] → R

per boundary node ν ∈ N∂ to be given, where t̃ν denotes an appropriately chosen
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real-valued function. We refer to h as the Hamiltonian density and to

M(
¯
z) = 〈z1, 1〉 =

∑

ω∈E

∫

ω

z1dx, H̃(
¯
z) = 〈h(

¯
z), 1〉 =

∑

ω∈E

∫

ω

h(
¯
z)dx(3.1d)

as the (total) mass and the Hamiltonian, respectively. If (3.1) has a strong solution,
the following two relations can be shown

d

dt
M(

¯
z) =

∑

ν∈N∂ , ω∈E(ν)

nω[ν]∇2h(
¯
z|ω [ν]),(3.2a)

d

dt
H̃(

¯
z) ≤

∑

ν∈N∂ , ω∈E(ν)

nω[ν]∇1h(
¯
z|ω [ν])∇2h(

¯
z|ω[ν]).(3.2b)

In our application (3.2a) has the interpretation of mass conservation, and (3.2b) is
referred to as energy dissipation and

¯
z as energy variable from now on. Note that

the structural properties also depend on the use of appropriate coupling conditions,
in our case (3.1b) relates to conservation of the mass and the Hamiltonian at inner
nodes, cf. [58, 52].

Throughout our analysis, we assume that (3.1) has a smooth and unique solution.
This assumption typically holds in the context of gas networks, which are governed by
friction-dominated regimes [23, 33, 61], i.e., large r̃(·). Moreover, in many applications
there is an additional dissipation term, see Appendix A. Our approximation scheme is
constructed such that it mimics (3.2) on a discrete level, which enhances its stability
in comparison to standard methods. The type of boundary conditions has no special
influence on the proposed approximation ansatz, but many choices can be included
very naturally.

Assumption 3.1. The domain S ⊂ R
2 of the Hamiltonian density h : S → R is

an open convex set. Moreover, h is twice continuously differentiable with symmetric
positive definite Hessian ∇2h(z) for all z ∈ S.

Lemma 3.2. Let g be the partial Legendre transformation of the Hamiltonian den-
sity h with respect to the second component. Under Assumption 3.1, the variable
transformation

ẑ : D(ẑ) → S, ẑ : a 7→ [a1;∇2g(a)] with a = [a1; a2]

and its inverse are continuously differentiable.

Proof. Theorem 2.2 is applicable, which implies that

â : z 7→ [z1;∇2h(z)], for z = [z1; z2] ∈ S

is the inverse of ẑ. By Assumption 3.1 the derivative d
dz
â(z) is continuous, and a

direct calculation shows that its eigenvalues λ1 = 1 and λ2 = ∇22h(z) are strictly
positive due to the positive definiteness of ∇2h(z). Therefore, the derivative of ẑ is
also a continuous function and reads

d

da
ẑ(a) =

(

d

dz
â(z)−1

)

|z=ẑ(a)

=

[

1 0

−∇12h(ẑ(a))
∇22h(ẑ(a))

1
∇22h(ẑ(a))

]

,

which follows from applying the implicit function theorem on â locally for each z ∈ S.
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Because of Assumption 3.1, our model problem (3.1) is of strictly hyperbolic type.
The underlying system matrix has one positive and one negative eigenvalue, such
that one boundary condition per boundary node is required for a well-posed setup.
We refer to [43, 42] for details. Change of variables have played a crucial role in the
theoretical and numerical analysis of hyperbolic systems, see e.g., [53, 36, 15, 39].
The variable-transformed formulation considered in this work is related to the partial
Legendre transformation of the Hamiltonian density.

Corollary 3.3 (Partial Legendre-transformed strong form). Let
¯
a = [a1; a2] ∈

C1([0, T ]; C1
pw(E) × C1

pw(E)) satisfy

∂t

[

a1(t)
∇2g(

¯
a(t))

]

=

[

−∂x
−∂x −r(

¯
a(t))

] [

−∇1g(
¯
a(t))

a2(t)

]

, x ∈ Ω, t ∈ [0, T ](3.3a)

∑

ω∈E(ν)

nω[ν]a2|ω(t)[ν] = 0, ∇1g(
¯
a|ω(t)[ν] = ∇1g(

¯
a|ω̃(t)[ν], ω, ω̃ ∈ E(ν)(3.3b)

(supplemented with closing conditions according to (3.1c)), where r(
¯
a(t)) = r̃(ẑ(

¯
a(t)))

is non-negative and g the partial Legendre transformation of h. Then ẑ(
¯
a) fulfills

(3.1a)-(3.1b), and the Hamiltonian H of the system is given by

H(
¯
a(t)) = 〈∇2g(

¯
a(t))a2(t)− g(

¯
a(t)), 1〉.(3.3c)

Note that here and in the following, the solution is interpreted as a function in time
with values in a function space. Moreover, by slight abuse of notation, the point-
evaluations

¯
a|ω(t, ν) ∈ R

2 are written as
¯
a|ω(t)[ν].

remark 3.4. The Hamiltonian H as function of
¯
a is characterized in terms of

the Legendre transformation g in (3.3c), cf. Lemma 2.3. The more direct charac-
terization in the energy variable with respect to the Hamiltonian density h reads
H(

¯
a) = H̃(ẑ(

¯
a)) = 〈h(ẑ(

¯
a), 1〉. Note that Assumption 3.1 implies structural prop-

erties, e.g., strict convexity, on H̃ rather than on H.

remark 3.5. Due to the variable transformation the first coupling condition in
(3.1b) becomes linear in the variable a2, although the model problem is of a general
nonlinear form. This simplifies the handling of the network aspects, since we can use
linear ansatz spaces in our approach, similar to [21]. Note that the incorporation, and
beforehand, the identification of consistent coupling conditions for our model problem
is a non-trivial issue, cf. [58, 52].

3.3. Variational principle.

Theorem 3.6. A strong solution
¯
a ∈ C1([0, T ]; C1

pw(E) × C1
pw(E)) of the trans-

formed model problem fulfills for all b1 ∈ L2(E), b2 ∈ H1
div(E) the variational principle

〈∂ta1(t), b1〉 = −〈∂xa2(t), b1〉

〈∂t∇2g(
¯
a(t)), b2〉 = −〈∇1g(

¯
a(t)), ∂xb2〉+ e(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉

f(t) = T a2(t),

where the functions e, f : [0, T ] → R
p with one entry for each boundary node νi ∈ N∂ ,

p = |N∂ |, satisfy

ei = −∇1g(
¯
a|ω[νi]), fi = nω[νi]a2|ω[νi], for ω ∈ E(νi), i = 1, . . . , p.

8



Proof. By testing the second equation of (3.3a) with b2 ∈ H1
div(E), integrating it

over one edge ω = (ν, ν̃) ∈ E and using integration by parts, we obtain

〈∂t∇2g(
¯
a(t), b2〉ω = −〈∇1g(

¯
a(t)), ∂xb2〉ω − 〈r(

¯
a(t))a2(t), b2〉ω

+
[

−∇1g(
¯
a|ω(t)[x])(−b2|ω [x])

]ν̃

x=ν
.

Here, the subscript .ω indicates the restriction onto the edge ω. Repeating the calcula-
tion for all edges and then summing up all equations, the interface terms at the inner
nodes drop out, as b2 ∈ H1

div(E). This gives the second equation of the variational
principle. The other equations follow similarly.

We use the variational principle to show local mass conservation and the energy
dissipation equality.

Theorem 3.7 (Structural properties). Let
¯
a ∈ C1([0, T ]; C1

pw(E) × C1
pw(E)) ful-

fill the variational principle of Theorem 3.6 for some e ∈ C([0, T ];Rp) and f ∈
C1([0, T ];Rp). Then it holds for [wa, wb] ⊂ ω, ω ∈ E and the point evaluations
a2|ω[wa], a2|ω[wb] of a2 that

d

dt

∫

[wa,wb]

a1(t)dx = a2|ω(t)[wa]− a2|ω(t)[wb],
d

dt
M(

¯
a(t)) =

∑

i: νi∈N∂

fi(t),

d

dt
H(

¯
a(t)) = e(t) · f(t)− 〈r(

¯
a(t))a2(t), a2(t)〉 ≤ e(t) · f(t).

Proof. The first relation, the local mass conservation, follows from testing the first
equation of the variational principle (Theorem 3.6) with b1 = χ[wa,wb], the indicator
function of the domain [wa, wb]. That is,

d

dt

∫

[wa,wb]

a1dx = 〈∂ta1, χ[wa,wb]〉 = −〈∂xa2, χ[wa,wb]〉 = a2|ω[wa]− a2|ω[wb].

The second equation, the global mass conservation, results from summing up the
individual masses on the edges.

As a preliminary step for the energy dissipation equality, we prove the existence
of ξ(

¯
a) for solutions

¯
a of the variational principle with ξ(

¯
a(t)) ∈ L2(E) such that

〈−∇1g(
¯
a), b1〉 = 〈ξ(

¯
a), b1〉 for b1 ∈ L2(E).(3.4)

As
¯
a fulfills the variational principle, 〈−∇1g(

¯
a), ∂xb2〉 has to be bounded for all b2 ∈

H1
div(E) and t ∈ [0, T ] due to the second equation of Theorem 3.6. The compatibility

L2(E) ⊂
{

ξ : It exists ζ ∈ H1
div(E) with ∂xζ = ξ

}

follows from the definition of the
broken derivative ∂x. This shows, in turn, , which that b1 7→ 〈∇1h(ẑ(

¯
a)), b1〉 is an

element of the dual space of L2(E). Thus, the existence of ξ(
¯
a) fulfilling (3.4) follows

from the Riesz representation theorem, as L2(E) with 〈·, ·〉 is a Hilbert space.
Let us now turn to the proof of the energy dissipation. A formal application of

the chain rule leads to

d

dt
H(

¯
a) =

d

dt
〈∇2g(

¯
a)a2 − g(

¯
a), 1〉 =

∫

Ω

[

−∇1g(
¯
a)

a2

]

·

[

∂ta1
∂t∇2g(

¯
a)

]

dx

= 〈∂ta1,−∇1g(
¯
a)〉+ 〈∂t∇2g(

¯
a), a2〉.
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By (3.4) we have 〈∂ta1,−∇1g(
¯
a)〉 = 〈∂ta1, ξ(

¯
a)〉 and 〈ξ(

¯
a), ∂xb2〉=〈−∇1g(

¯
a), ∂xb2〉.

Using the variational principle with
¯
b = [ξ(

¯
a); a2] yields

〈∂ta1,−∇1g(
¯
a)〉 + 〈∂t∇2g(

¯
a), a2〉

= −〈∂xa2, ξ(
¯
a)〉 − 〈∇1g(

¯
a), ∂xa2〉+ e · T a2 − 〈r(

¯
a)a2, a2〉 = e · f − 〈r(

¯
a), a22〉 ≤ e · f

due to the non-negativity of r, which finishes the proof.

remark 3.8. The proof of the energy dissipation relies on the fact that for any
function

¯
a fulfilling the variational principle (Theorem 3.6), [−∇1g(

¯
a); a2] can be iden-

tified with the gradient of the Hamiltonian H̃(
¯
z)|

¯
z=ẑ(a) = 〈h(

¯
z)|

¯
z=ẑ(a), 1〉 with respect

to the energy variable
¯
z. In the infinite-dimensional case, gradients of functionals,

i.e., identifications of their derivative with an appropriately smooth function, do not
exist for all choices of function spaces, cf. [68, 12]. The gradient structure is a non-
trivial property that our special variational principle has. It plays a fundamental role
for the structure-preserving properties of our proposed approximation approach.

For each boundary node νi ∈ N∂ , we assume a boundary data uνi : [0, T ] → R to
be given and pose a boundary condition of the form ki(ei, fi, uνi) = 0. This equation
only depends on the boundary effort ei and the boundary flow fi (Theorem 3.6). For a
more concise notation, we collect all boundary conditions in a vector-valued function
k : Rp × R

p × R
p → R

p, which yields

k(e, f ,u) = 0, with u = [uν1 ;uν2 ; . . . ;uνp ].

Note that the type of boundary condition affects the necessary regularity assumptions
on the boundary data. To obtain for example a continuously differentiable solution

¯
a, it can be seen that a boundary condition of the type fi = uνi requires at least
continuously differentiable data uνi , whereas for a boundary condition of the type
ei = uνi continuity can be sufficient.

In addition, the initial condition of the model problem are stated as
¯
a(0) =

¯
a0.

4. Spatial approximation approach. The introduced variational principle is
the basis for our structure-preserving spatial approximation approach which covers
Galerkin projection and additional complexity reduction of the nonlinear terms. Local
mass conservation and an energy bound for the approximations as well as a gradient
structure related to the Hamiltonian of the system are kept under mild assumptions.

4.1. Galerkin approximation. The Galerkin approximation consists of a pro-
jection onto a suitable finite-dimensional ansatz space. It is applicable to a finite
element discretization, but also in a more general setting, such as projection-based
model reduction. Similar to the previous works [24, 26, 25] for linear and semilinear
variants of our model problem, we impose few compatibility conditions as the only
restriction.

Assumption 4.1 (Compatibility of spaces). Let V = V1×V2 ⊂ L2(E)×H1
div(E)

be a finite-dimensional subspace that fulfills the compatibility conditions
(A1) V1 = ∂xV2, with ∂xV2 = {ξ : It exists ζ ∈ V2 with ∂xζ = ξ}.
(A2) {b2 ∈ H1

div(E) : ∂xb2 = 0} ⊂ V2.

remark 4.2. In this paper only condition (A1) is explicitly used. Nonetheless,
(A2) should be included as the analysis of the related steady state problem reveals, see
[24, 25] for the linear and semilinear case.

The proposed Galerkin approximation for our model problem reads as follows.
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System 4.3. Assumption 4.1 is supposed to hold. Given initial and boundary
data,

¯
a0 ∈ V and uν : [0, T ] → R for ν ∈ N∂, find

¯
a ∈ C1([0, T ];V1 × V2),

f ∈ C1([0, T ];Rp) and e ∈ C([0, T ];Rp) that solve

〈∂ta1(t), b1〉 = −〈∂xa2(t), b1〉(4.1a)

〈∂t∇2g(
¯
a(t)), b2〉 = −〈∇1g(

¯
a(t)), ∂xb2〉+ e(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉(4.1b)

f(t) = T a2(t)(4.1c)

for all b1 ∈ V1, b2 ∈ V2 and fulfill
¯
a(0) =

¯
a0 and k(e, f ,u) = 0.

The compatibility conditions on our ansatz spaces (Assumption 4.1) guarantee several
structural properties for our Galerkin approximation.

Lemma 4.4. Let
¯
a be a solution of System 4.3, then the derivative of the func-

tional G : V → R,
¯
a 7→ 〈g(

¯
a), 1〉 associated to the partial Legendre transformation can

be identified with a function in V in the sense that there exists [ξ(
¯
a(t)); ξ̃(

¯
a(t))] ∈ V

for t ∈ [0, T ], such that for b1 ∈ V1, b2 ∈ V2 it holds

〈ξ(
¯
a(t)), b1〉 = 〈−∇1g(

¯
a(t)), b1〉, 〈ξ̃(

¯
a(t)), b2〉 = 〈∂t∇2g(

¯
a(t)), b2〉.

Proof. If
¯
a fulfills (4.1), the expression 〈−∇1g(

¯
a(t), b̃〉 is well-defined for any b̃ ∈

∂xV2. Thus, it is well-defined for any b̃ ∈ V1 due to the compatibility condition
V1 ⊂ ∂xV2. By that, b1 7→ 〈−∇1g(

¯
a), b1〉 is an element of the dual space of V1, which

can be identified with a ξ(
¯
a) ∈ V1 by the Riesz representation theorem. The claim on

the existence of ξ̃(
¯
a) follows similarly by using that V2 with 〈·, ·〉 is a Hilbert space.

Thus, our approximation inherits the gradient structure of the model problem. Here,
in the finite-dimensional setting, the result is slightly stronger than in the infinite-
dimensional setting, where H1

div(E) with 〈·, ·〉 is not a Hilbert space, cf. Remark 3.8.

Theorem 4.5. Let
¯
a be a solution of System 4.3. Then the following two prop-

erties, related to local mass conservation and energy dissipation, are fulfilled for
t ∈ [0, T ],

∂ta1(t) = −∂xa2(t),

d

dt
H(

¯
a(t)) = e(t) · f(t)− 〈r(

¯
a(t))a2(t), a2(t)〉 ≤ e(t) · f(t).

Proof. The first relation implies that mass conservation holds in a pointwise sense,
i.e., locally. To show it, note that by construction of the ansatz spaces ∂ta1(t),
∂xa2(t) ∈ V1 for t ∈ [0, T ] holds. Thus, the variational principle with b1 = ∂ta1(t) +
∂xa2(t) gives

〈∂ta1(t), ∂ta1(t) + ∂xa2(t)〉 = 〈−∂xa2(t), ∂ta1(t) + ∂xa2(t)〉.

Subtracting the right-hand side reveals that the L2-norm of ∂ta1(t) + ∂xa2(t) is zero,
i.e., ∂ta1(t) = −∂xa2(t).

The proof of the energy dissipation equality is the same as that of Theorem 3.7,
except for replacing the spaces L2(E) andH1

div(E) by V1 and V2 and using Lemma 4.4.

There are a few possibilities for constructing a suitable finite-dimensional approxima-
tion space V in the sense of Assumption 4.1, cf. [25, 26]. We generate one by means of
mixed finite elements. We divide the edges ω ∈ E into sub-parts Tω,k, k = 1, . . . , Jω
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and consider the polynomial spaces

Qq(Tω,k;R) =







φ : Tω,k → R : φ(x) =

q
∑

j=0

xjξj , for x ∈ Tω,k, with ξj ∈ R







.

The sub-parts Tω,k induce a partitioning TE of the full network, on which we define
the piecewise polynomial spaces

Qq(TE) =
{

φ : Ω → R : φ|Tω,k
∈ Qq(Tω,k), for k = 1, . . . , Jω, ω ∈ E

}

,

Pq(TE) = Qq(TE) ∩H1
div(E).

Particularly, Pq(TE) inherits the coupling conditions encoded in H1
div(E), which pre-

defines one degree of freedom per inner node ν ∈ N0. The choice V1 = Qq(TE) and
V2 = Pq+1(TE) for any q ≥ 0 yields a pair of compatible spaces.

4.2. Complexity reduction. System 4.3 features nonlinearities in the balance
equation (4.1b) due to the partial Legendre transformation g and the model func-
tion r. Depending on the model problem and the choice of the Galerkin ansatz space
V , an additional complexity reduction can become necessary for an efficient numerical
realization. We propose a quadrature-type approximation that preserves the struc-
tural properties. In particular, we allow for inexact integration, which is, e.g., crucial
in the design of online-efficient reduced order models, cf. [27, 4], but also may be
convenient for high-order finite elements.

Given appropriate quadrature points xi ∈ Ω and quadrature weights wi for i ∈ I
with I describing an index set, we introduce the complexity-reduced approximations
〈·, ·〉c and || · ||c of the L2-scalar product 〈·, ·〉 and L2-norm || · || as

〈b, b̄〉c =
∑

i∈I

wib[xi]b̄[xi], ||b||c =
√

〈b, b〉c,

where b[xi] refers to point evaluations of b. The following assumption ensures that
the quadrature rule is well-defined and stable and that || · ||c is a norm on V1 and V2.

Assumption 4.6. For i ∈ I, the evaluations b[xi] are well-defined for b ∈ V1∪V2,
and the quadrature weights are positive, wi > 0. Moreover, there exists a constant
C̃ > 0 such that

1

C̃
||b||c ≤ ||b|| ≤ C̃||b||c, for b ∈ V1 ∪ V2.

Our complexity reduction of System 4.3 modifies only the nonlinear balance equa-
tion (4.1b), it is replaced by

〈∂t∇2g(
¯
a(t)), b2〉c = 〈−∇1g(

¯
a(t)), ∂xb2〉c + e(t) · T b2 − 〈r(

¯
a(t))a2(t), b2〉c

for b2 ∈ V2. Further, we consider the adjusted functional Gc :
¯
a 7→ 〈g(

¯
a), 1〉c associ-

ated to the partial Legendre transformation and the complexity-reduced Hamiltonian
Hc(

¯
a) = 〈∇2g(

¯
a)a2 − g(

¯
a), 1〉c. The gradient structure is kept, since the derivative of

Gc can be identified with [ξ(
¯
a(t)); ξ̃(

¯
a(t))] ∈ V for t ∈ [0, T ] in the sense that

〈ξ(
¯
a(t)), b1〉 = 〈−∇1g(

¯
a(t)), b1〉c, 〈ξ̃(

¯
a(t)), b2〉 = 〈∂t∇2g(

¯
a(t)), b2〉c
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holds for b1 ∈ V1, b2 ∈ V2. Note that b1 7→ 〈−∇1g(
¯
a), b1〉c and b2 7→ 〈∂t∇2g(

¯
a), b2〉c

are bounded linear functionals, i.e., elements of the dual space of V1 and V2, respec-
tively. This holds for any choice of inner product, in particular also for the L2-inner
product used above. The energy dissipation equality becomes

d

dt
Hc(

¯
a(t)) = e(t) · f(t)− 〈r(

¯
a(t))a2(t), a2(t)〉c ≤ e(t) · f(t).

The proof of the structural properties follows straightforward the arguments of Lem-
ma 4.4 and Theorem 4.5 using Assumption 4.6 on the equivalence of the norms. The
local mass conservation is not affected by the complexity reduction at all.

remark 4.7. Methods from literature on model reduction for port-Hamiltonian
systems typically employ interpolation-type complexity reduction by DEIM. This yields
either approximations, which are only port-Hamiltonian up to an approximation error
[2, 3], or the Hamiltonian structure is enforced by an additional symmetrization step
[17], which sacrifices fidelity. For comparisons with our structure-preserving approach
we refer to our follow-up paper [46].

5. Structured representations. In this section we make the transition from
the function space setting to the algebraic setting and derive structured coordinate
representations for the approximations. The coordinate representations can be trans-
formed into the standard port-Hamiltonian form (2.1). They are natural discrete
counterparts to the formulations of the continuous model (3.3), and the underlying
Hamiltonian does not degenerate.

Let {b1i , . . . , b
ni

i } be the basis of the approximation space Vi, dim(Vi) = ni, for i =
1, 2 with n = n1 + n2. The bijective mapping between the coordinate representation
a = [a1; a2] ∈ R

n, ai = [a1i ; . . . ; a
ni

i ] ∈ R
ni and the function

¯
a = [a1; a2] ∈ V is given

by

Ψ : Rn → V , Ψ(a) =

[

∑n1

j=1 b
j
1a

j
1

∑n2

j=1 b
j
2a

j
2

]

=

[

a1
a2

]

=
¯
a.(5.1)

5.1. Representation of Galerkin approximation. For the functional G :
V → R, G(

¯
a) = 〈g(

¯
a), 1〉 associated to the partial Legendre transformation g of the

Hamiltonian density h, we introduce the coordinate representation G : Rn → R and
a weighted gradient ∇MG : Rn → R

n of block-structure ∇MG = [∇M

1 G;∇M

2 G] by

G(a) = G (Ψ(a)),

∇M

i G(a) = M−1
i ∇iG(a) = M−1

i

[

∂a1

i
G(a); . . . ; ∂

a
ni
i
G(a)

]

∈ R
ni ,

M =

[

M1

M2

]

, Mi ∈ R
ni×ni , i = 1, 2,

where ∂
a
j
i
G(a) =

〈

∇ig(
¯
a)|

¯
a=Ψ(a), b

j
i

〉

holds by the chain rule. The matrix M is as-

sumed to be symmetric positive definite. The weighted gradient and its sub-blocks
relate to gradients with respect to the inner products induced by M and Mi, respec-
tively, cf. [1, 49]. By choosing M as the mass matrix we can express the gradient
structure observed in Lemma 4.4 in the algebraic setting.
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Corollary 5.1. Let the following system matrices be given

Mi =
[

〈bki , b
j
i 〉
]

j,k=1,...,ni

, i = 1, 2, M =

[

M1

M2

]

,

J =
[

〈−∂xb
k
2 , b

j
1〉
]

j=1,...,n1, k=1,...,n2

, R(a) =
[

〈r(Ψ(a))bk2 , b
j
2〉
]

j,k=1,...,n2

,

K2 =
[

T b12| . . . |T bn2

2

]T
, K =

[

0n1,p

K2

]

,

then System 4.3 can be equivalently stated as:
Given initial and boundary data, a0 ∈ R

n and uν : [0, T ] → R for ν ∈ N∂, find
a ∈ C1([0, T ];Rn), f ∈ C1([0, T ];Rp) and e ∈ C([0, T ];Rp) that solve

M
d

dt

[

a1(t)
∇M

2 G(a(t))

]

=

[

J

−JT −R(a(t))

] [

−∇M

1 G(a(t))
a2(t)

]

+Ke(t)

f(t) = KTa(t)

(5.2)

and fulfill a(0) = a0 and k(e(t), f(t),u(t)) = 0 for t ∈ [0, T ]. Moreover, the Hamil-
tonian of the system reads H(a) = ∇2G(a) · a2 −G(a).

Using Lemma 4.4 and the upper definitions, the validity of Corollary 5.1 can be
shown. Given the weighted L2-inner product 〈·, ·〉M , for which the basis vectors of V1,
{b11, . . . , b

n1

1 }, are orthonormal, it follows for bk2 ∈ V2 by Assumption 4.1 that

〈∇1g(
¯
a), ∂xb

k
2〉 =

〈

n1
∑

j=1

〈∇1g(
¯
a), bj1〉M bj1, ∂xb

k
2

〉

=

n1
∑

j=1

〈bj1, ∂xb
k
2〉 〈∇1g(

¯
a), bj1〉M ,

where 〈∇1g(
¯
a), bj1〉M = [∇M

1 G(a)]j with mass matrix M. The expression relates to
the term JT∇M

1 G(a(t)) in (5.2). Analogously, the structured algebraic representation
of the integral expression with ∇2g(

¯
a) can be derived. Note that the block matrices

[

0 J

−JT 0

]

and

[

0 0

0 R(a)

]

,

which can be found in (5.2), are skew-symmetric and symmetric positive semi-definite,
respectively, due to the non-negativity of r.

Theorem 5.2. Let An ⊂ R
n be an open convex set on the domain of G. Then,

the mapping ẑ : An → W with

ẑ(a) = [a1;∇
M

2 G(a)], for a = [a1; a2] ∈ R
n1+n2 and W = ẑ(An) ⊂ R

n

is bijective. Let a be a solution of (5.2), then ẑ(a) solves a system in standard port-
Hamiltonian form, cf. (2.1), with the Hamiltonian given as the partial Legendre trans-
formation of G.

Proof. For any fixed ā1 the function Φ : a2 7→ G([ā1; a2]) is strictly convex on
every convex open set on its domain, since for ă2 6= ã2 (and Ψ as in (5.1))

(∇Φ(ă2)−∇Φ(ã2)) · (ă2 − ã2)

=

n2
∑

j=1

(〈

∇2g(
¯
a)|

¯
a=Ψ([ā1;ă2]) −∇2g(

¯
a)|

¯
a=Ψ([ā1;ã2]), b

j
2

〉

(ăj2 − ã
j
2)
)

= 〈∇2g([ā1; ă2]) −∇2g([ā1; ã2]), ă2 − ã2〉 > 0,

due to the strict convexity of g with respect to its second component as consequence
of Assumption 3.1. The bijectivity of ẑ follows then from Theorem 2.2. The port-
Hamiltonian system is obtained from (5.2) via this coordinate transformation.
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5.2. Representation of complexity reduced system. An equivalence trans-
formation of our approximation to a port-Hamiltonian system in standard form and
a counterpart to Theorem 5.2 also exist for our complexity reduced system. Because
of the strong similarity to the case without complexity reduction, we only highlight
the differences. The structured coordinate representation belonging to the complexity
reduction equals (5.2) except of the expressions G and R that are replaced by

Gc(a) = Gc (Ψ(a)) = 〈g(Ψ(a)), 1〉c, Rc(a) =
[

〈r(Ψ(a))bk2 , b
j
2〉c

]

j,k=1,...,n2

.

The respective Hamiltonian is Hc(a) = ∇2Gc(a) · a2 −Gc(a). The coordinate trans-
formation into standard port-Hamiltonian form is given by ẑc(a) = [a1;∇M

2 Gc(a)]
for a = [a1; a2]. Its bijectivity can be concluded analogously as in the proof of The-
orem 5.2. Note that for the strict convexity of Φ : a2 7→ Gc([ā1; a2]) for fixed ā1,
Assumption 4.6 is needed. We can argue that for ă2 6= ã2

(∇Φ(ă2)−∇Φ(ã2)) · (ă2 − ã2) = 〈∇2g([ā1; ă2])−∇2g([ā1; ã2]), ă2 − ã2〉c

=
∑

i∈I

wi (∇2g([ā1; ă2])[xi]−∇2g([ā1; ã2])[xi]) (ă2[xi]− ã2[xi]) > 0

is valid, because the quadrature weights are positive (wi > 0) and there exists at least
one quadrature point xj , j ∈ I with (ă2[xj ]− ã2[xj ]) 6= 0. The latter follows from

∑

i∈I

wi (ă2[xi]− ã2[xi])
2 = ||ă2 − ã2||

2
c ≥

1

C̃2
||ă2 − ã2||

2 > 0,

using ă2 − ã2 ∈ V2 and the equivalence of || · ||c and || · || on V2. The strict convexity
of g yields

(∇2g([ā1; ă2])[xj ]−∇2g([ā1; ã2])[xj ]) (ă2[xj ]− ã2[xj ]) > 0,

(i.e., strict positivity at xj) and ensures non-negativity at all other quadrature points
xi, i ∈ I.

6. Time discretization. The underlying Hamiltonian structure of our space
approximation can be exploited for analysis and control purposes but also for the
derivation of energy-stable or energy-preserving time discretization schemes. Proba-
bly the simplest energy-stable scheme is provided by the implicit Euler-type method
discussed in the following.

We consider an equidistant time grid tk = k∆t ∈ [0, T ], k = 0, ...,K, K = T/∆t

with grid size ∆t and indicate the temporal approximations by a respective super-
index, e.g., ak ≈ a(tk).

System 6.1 (Implicit Euler-type scheme). Given initial data a0 ∈ R
n and

boundary data uk
νi

∈ R for νi ∈ N∂, find ak = [ak1 ; a
k
2 ] ∈ R

n and fk = [fk
ν1
; . . . ; fk

νp
],

ek = [ekν1 ; . . . ; e
k
νp
] ∈ R

p for k > 0 by solving

1

∆t

M

([

ak1
∇M

2 G(ak)

]

−

[

ak−1
1

∇M
2 G(ak−1)

])

=

[

J

−JT −R(ak)

] [

−∇M
1 G(ak)
ak2

]

+Kek

fk = KTak

with closing conditions a0 = a0 and k(ek, fk,uk) = 0.
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System 6.1 can be interpreted as an implicit Euler discretization in the energy vari-
able z and thus is of first-order convergence in time. A time-discrete counterpart to
the energy bound from Theorem 4.5 can be derived. To do so, we make use of the
next auxiliary result, which follows from the strict convexity of the Hamiltonian with
respect to the energy variable.

Lemma 6.2. For the Hamiltonian H and the functional G given as in Corol-
lary 5.1, it holds for a 6= ā that

H(a)−H(ā) <

[

−∇1G(a)
a2

]

·

([

a1
∇2G(a)

]

−

[

ā1
∇2G(ā)

])

, a =

[

a1
a2

]

, ā =

[

ā1
ā2

]

.

Proof. By Theorem 5.2, the coordinate transformation ẑ : An → R
n to the energy

variable is well-defined. The functional H̃ : Rn → R, H̃ (̂z(a)) = H(a) thus represents
the Hamiltonian as a function of the energy variable. As it is strictly convex by
construction (due to Assumption 3.1), it holds

H̃(z̄)− H̃(z) > ∇H̃(z) · (z̄− z) , for z, z̄ ∈ ẑ(An), z 6= z̄.

The claimed inequality is equivalent to the latter one with z = ẑ(a), z̄ = ẑ(ā), as can
be seen by further employing that ∇H̃(z)|z=ẑ(a) = [−∇1G(a); a2], cf. Lemma 2.3.

Theorem 6.3 (Energy-dissipation inequality). For any solution of System 6.1,
it holds for 0 ≤ ℓ < k ≤ K and aℓ 6= ak,

H(ak)−H(aℓ) < ∆t





k
∑

j=ℓ+1

ej · f j − (aj2)
TR(aj)aj2



 ≤ ∆t

k
∑

j=ℓ+1

ej · f j .

Proof. Clearly, it is sufficient to consider the case ℓ = k − 1, as ℓ < k − 1 can be
directly concluded from it. By Lemma 6.2 it holds

H(ak)−H(ak−1) <

[

−∇1G(ak)
ak2

]

·

([

ak1
∇2G(ak)

]

−

[

ak−1
1

∇2G(ak−1)

])

.

Testing System 6.1 with b = [−∇1G(ak); ak2 ] and using ∇M

i G(ak) = M−1
i ∇iG(ak) for

i = 1, 2, and KT [ã1; a
k
2 ] = KT

2 a
k
2 = fk (which holds independently of ã1), it follows

1

∆t

[

−∇1G(ak)
ak2

]

·

([

ak1
∇2G(ak)

]

−

[

ak−1
1

∇2G(ak−1)

])

=

[

−∇M
1 G(ak)
ak2

]

·

([

J

−JT −R(ak)

] [

−∇M
1 G(ak)
ak2

]

+Kek
)

= ek · fk − (ak2)
TR(ak)ak2 ≤ ek · fk,

due to the positive semi-definiteness of R(a). Setting together the two inequalities
yields the assertion.

The proposed time discretization is energy-dissipative. In contrast to the energy
dissipation equality in the time-continuous case (Theorem 4.5) we face here a dissi-
pation inequality. The difference is due to the numerical dissipation of the implicit
Euler-type method, which isD(tk) = H(a0)−H(ak)+∆t(

∑k

j=1 e
j ·f j−(aj2)

TR(aj)aj2).
Certainly, more sophisticated energy-stable or energy-preserving schemes can also be
derived under the use of the underlying Hamiltonian structure, cf., [43, 50, 35, 18],
but this is beyond the scope of this paper.

16



7. Application. The one-dimensional barotropic Euler equations and various
simplifications of them are important representatives of our model problem. They are
used, e.g., for gas network simulations, cf., [43, 25, 52]. In this section we demonstrate
the feasibility of our approximation approach at the examples of an undamped dam-
break test case with a shock and of a larger network in a friction-dominated regime
relevant for pipelines in a gas transport network. For the last example, weighted edges
must be considered which requires corresponding minor adjustments to the presented
results, as we will briefly comment.

7.1. Barotropic Euler equations. We consider the barotropic Euler equations
with an additional friction term as an example for our model problem. Flow density
and velocity ρ, v : [0, T ]× Ω → R are governed by

∂tρ+ ∂x (ρv) = 0, ∂tv + ∂x
v2

2
+

1

ρ
∂xp(ρ) = −

λ

2D
|v|v, x ∈ Ω, t ∈ [0, T ],(7.1)

where the pressure p is only a function of density. Furthermore, λ describes the friction
factor that might be state-dependent and D the constant diameter of the pipe. In
networks the circular cross-sectional pipe area A = π/4D2 usually acts as a weighting
term for the respective edge ω ∈ E , see Appendix B. Following [55, 66], we introduce P
as a pressure potential that is characterized by the relation P ′′(ρ) = p′(ρ)/ρ. Examples
for compatible pairs of p and P are given in the test cases. Using the entropy as
Hamiltonian H, system (7.1) can be formally rewritten in our standard form (3.1) for
the energy variable

¯
z = [ρ; v], i.e.,

∂t

[

ρ
v

]

=

[

−∂x
−∂x −r̃([ρ; v])

]

∇h([ρ; v])

with Hamiltonian density h([ρ; v]) = ρv2/2+P (ρ) and non-negative friction-associated
function r̃([ρ; v]) = λ|v|/(2Dρ). The coupling conditions for ν ∈ N0 take the form

∑

ω∈E(ν)

nω[ν](ρv)|ω [ν] = 0, P ′(ρ|ω)[ν] +
v|ω[ν]

2

2
= P ′(ρ|ω̃)[ν] +

v|ω̃[ν]
2

2

for ω, ω̃ ∈ E(ν). The coupling conditions are entropy-preserving. Note that it is not
trivial to find the entropy-preserving conditions without energy-based modeling or
other sophisticated analytic tools, cf., [58, 21, 52]. The system is closed by appropriate
initial and boundary conditions that are specified in the test cases.

In our approach, the system is parametrized in the variables z1 = ρ and ∇2h(z) =
ρv, i.e.,

¯
a = [ρ;m] with m = ρv denoting the mass flux. In the hyperbolic theory these

variables are a natural choice for the barotropic Euler equations that is typically used
when a conservative formulation is discretized, cf., [42, 66, 20, 58]. Although we do
not approach the problem from the hyperbolic point of view, we use the variables as
we rely on the port-Hamiltonian framework. Our proposed space discretization reads
as follows.

System 7.1. Find
¯
a = [ρ;m] ∈ C1([0, T ];V1 × V2), f ∈ C1([0, T ];Rp) and e ∈

C([0, T ];Rp) such that

〈∂tρ, b1〉 = −〈∂xm, b1〉
〈

∂t
m

ρ
, b2

〉

=

〈

P ′(ρ) +
m2

2ρ2
, ∂xb2

〉

+ e · T b2 − 〈r([ρ;m])m, b2〉

f = T m
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Fig. 2. Dam-break test case. Spatial representation of solution behavior for three snapshots in
time, generated with V1 = Q0(TE ), V2 = P1(TE ), ∆x = 0.001 and ∆t = 0.005.

with r([ρ;m]) = λ|m|/(2Dρ2) hold for all b1 ∈ V1 and b2 ∈ V2. The system is
closed with initial and boundary conditions,

¯
a(0) =

¯
a0 and k(e(t), f(t),u(t)) = 0 for

t ∈ [0, T ], for given
¯
a0 ∈ V and uν : [0, T ] → R for ν ∈ N∂. In the case of complexity

reduction, the inner products 〈·, ·〉 in the second equation are replaced by 〈·, ·〉c.

remark 7.2. Note that the preservation of port-Hamiltonian structure is a suffi-
cient but not a necessary condition for a discrete energy bound (as in Theorem 4.5)
to hold. A similar Galerkin approximation for the barotropic Euler equations that
fulfills an energy bound but does not preserve this structure can be found in [21]. The
underlying variational principle differs in the second equation, which reads in [21]
〈

∂t
m

ρ
+

m∂tρ

2ρ2
, b2

〉

=

〈

P ′(ρ) +
m2

2ρ2
, ∂xb2

〉

+ e · T b2 −

〈

r([ρ;m])m+
m

2ρ2
∂xm, b2

〉

.

In the reference no complexity reduction is considered and the derivation of an energy-
stable time discretization seems to be more involved due to the loss of port-Hamiltonian
structure. Note that port-Hamiltonian structure is also desirable for other reasons,
e.g., for relative error estimates [30], or when using control theory [47, 64, 40].

7.2. Numerical studies. Our numerical studies are performed with mixed fi-
nite elements in space and the proposed implicit Euler-type time discretization (Sys-
tem 6.1) with a uniform step size. The resulting nonlinear algebraic systems are
solved by the Newton’s method. When using finite elements of the lowest order, i.e.,
V1 = Q0(TE), V2 = P1(TE), the nonlinear integrals can be evaluated analytically, as
they consist of polynomial expressions for the example. Higher-order finite elements
are supplemented with complexity reduction by Gaussian quadrature of sufficiently
high degree for Assumption 4.6 to hold. All results have been generated using MATLAB

Version 9.1.0 (R2016b) on an Intel Core i5-7500 CPU with 16.0GB RAM. For better
reproducibility, the code and the benchmark data are provided in [44].

7.2.1. Dam-break test case. The undamped benchmark example on one edge
is taken from [42, 21] and referred to as dam-break problem. We use it here as
a numerical stability test for our approach and therefore purposely omit to add a
shock-capturing mechanism. For the latter we refer to, e.g., [63, 42] and note that
(numerical) dissipation can be included in our analysis without difficulty, see Appen-
dix A. The model parameters are chosen as λ = 0, A = 1 and p(ρ) = 0.5ρ2, which
corresponds to the isentropic Euler equations with pressure potential P (ρ) = p(ρ).
The spatial domain is Ω = [−5, 5], and the initial and boundary conditions read

ρ(0, x) = 2− sgn(x), m(0, x) = 0 x ∈ Ω, and m(t,−5) = m(t, 5) = 0, t ≥ 0.
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Fig. 4. Dam-break test case. Spatial representation of solution at T = 2 obtained by higher-
order finite elements for varying element sizes ∆x with zoom into region around shock (∆t = 0.005).

As end time we take T = 2. The initial state has a discontinuity in the density ρ
at x = 0, which propagates from left to right as a shock wave, whereas a rarefaction
wave moves in the opposite direction, see Fig. 2 for an illustration.

For this setup, we compare our method with the finite element discretization
proposed in [21] (cf., Remark 7.2), using the spaces V1 = Q0(TE) and V2 = P1(TE),
see Fig. 3. Both space discretizations show a first-order convergence outside the region
of the shock (x ∈ [−5, 0)) and overall very similar approximation quality. But our
method is less dissipative, e.g., for ∆x = 0.05 an energy loss of less than 1.4% is
observed, i.e., H(

¯
a(2)) ≈ 0.986H(

¯
a(0)), in contrast to the other one with a loss of

more than 1.6%.
Further, we use the dam-break problem to showcase the entropy stability for

higher-order discretization combined with inexact integration. Figure 4 exemplarily
illustrates the results for the end time T = 2 and the choice V1 = Q3(TE), V2 = P4(TE)
supplemented with a five-point Gaussian quadrature of the nonlinear integrals. The
size of the elements ∆x is varied, otherwise the same parameters as above are used. As
to be expected due to the Gibbs phenomenon [63, 6], oscillations occur near the shock
when the solution is under-resolved, which is the case for ∆x = 0.1 in this example.
Nonetheless, the discrete solution stays bounded because of the entropy stability our
method inherits. For the smaller grid sizes ∆x = 0.02 and ∆x = 0.01, the numerical
dissipation coming from the time discretization seems to be sufficient to filter out the
high frequency oscillations almost completely, as can be seen in the enlarged image
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Fig. 5. Gas pipeline network. Temporal evolution of solution resulting from input profile u,
for two choices of friction factor λ. Illustrated for ends of pipes ω2, ω4 and ω7 (from left to right).
Top: Density ρ. Bottom: Mass flow Am.

around the shock in Fig. 4.

7.2.2. Gas pipeline network. In the second example, we consider the isother-
mal Euler equations in a friction-dominated regime relevant in the context of gas
transport networks, cf. [62, 38, 20]. Each edge represents a cross-sectionally averaged
pipe, where the reference values for density and mass flow are taken as ρ⋆ = 1 [kgm−3]
and (Am)⋆ = 1 [kg s−1]. We use an isothermal law for the pressure p [Pa]

p(ρ) = RT
ρ

1−RTαρ

with T = 283 [K], R = 518 [J(kgK)−1] and α = −3 · 10−8 [Pa−1], which implies
the pressure potential P (ρ) = RTρ log ((1 −RTαρ)ρ⋆/ρ). The friction factor λ is set
constant over the whole network. With λ = 0.01 we choose a small, but typical value
for gas networks. For illustration purposes we additionally consider λ = 0.003 being
much smaller than observed in gas network modeling. The used pipeline network is
visualized in Fig. 1. It consists of 38 pipes with diameters Dω between 0.4 and 1 [m]
and lengths lω between 5 to 74 [km]. The total pipe length of the network is 1008 [km].
The topology is a slight modification of [62, GasLib-40], whereby the compressors are
replaced by pipes. Consequently, there is no compensation of the energy loss related
to friction inside of the network. For the realization of network simulations with
active elements, a coupling of the sub-components over their boundary efforts and
flows can be used. We refer to [45] for details and to [44], where a simulation script
for a network with a compressor is provided. The circular cross-sectional pipe areas
Aω act as edge weights for ω ∈ E (cf. Appendix B). At the six boundary nodes νi,
i = 1, ..., 6 we prescribe the following boundary conditions

ρ(t, ν1) = (65 + u(t)) ρ⋆, ρ(t, ν2) = (50 + u(t)) ρ⋆, ρ(t, ν4) = (60− u(t)) ρ⋆,

ρ(t, ν5) = 60 ρ⋆, ρ(t, ν6) = 45 ρ⋆, Am(t, ν3) = −100 (Am)⋆,
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with the time-varying input u,

u(t) =











10 t/t⋆, 0 ≤ t < t⋆

10 (2− t/t⋆), t⋆ ≤ t < 1.5t⋆

5, 1.5t⋆ ≤ t,

with reference time t⋆ = 1 [h]. As initial condition the stationary solution belonging
to the boundary conditions at t = 0 is taken. The end time is T = 5 t⋆.

The space discretization is performed by means of the lowest-order finite elements
with a uniform mesh on each pipe. The maximal length of a finite element satisfies
∆x ≤ 200 [m], which yields 10 156 degrees of freedom in space. The time step is
chosen as ∆t = 1 [s], i.e., in total 18 000 steps for the simulation time of 5 hours.
For this setup, the runtime on our machine is about 35 minutes per simulation. The
computational cost is dominated by the nonlinear solves needed in each time step.
The resulting density and mass flow are presented along the pipes ωj , j = 1, ..., 8,
that build a path from the supplier node ν1 to the consumer node ν3 (see Fig. 1).
To illustrate the impact of the damping on the temporal evolution, the solution at
fixed space points along the path is plotted in Fig. 5. Stronger damping effects and
lower peaks are observed for the larger, realistic friction factor (λ = 0.01). Moreover,
the sharp input profile u is more clearly transferred to the mass flow, whereas the
dynamics of the density is smoothed out stronger. The simulation time the moving
profile needs to travel from the end of pipe ω2 to the end of pipe ω7 is about 0.5t⋆
for density and mass flow. For t ≥ 3t⋆ the state seems to be almost at rest in the
considered spatial domain for both choices of λ, whereby the equilibrium is reached
slightly faster for the model with the application-relevant friction factor (λ = 0.01).
For this model, we also visualize the solution in space in Fig. 6, using time snapshots
along the path. The pipe junctions are indicated by vertical lines. Note that the mass
flow is discontinuous at junctions with more than two pipes, which is in accordance
to the coupling conditions (3.1b). As the spatial representation illustrates, no shocks
are to be expected in the considered friction-dominated regime, and the solution has
a rather simple structure in space. The latter motivates the use of model reduction
techniques to speed up gas network simulations, cf., [43, 32, 19], which in contrast
to finite element methods rely on ansatz functions with global support over the full
network.

The results of this paper lay the theoretical foundation for generalizing our model
order reduction approach [26] for the linear damped wave equation to a model order-
and complexity-reduction approach for a general nonlinear flow problem class. In
our follow-up paper [46], the algorithmic aspects related to snapshot-based model
reduction in our structure-preserving framework are investigated.

8. Conclusion and outlook. For many practically relevant dynamical systems,
an underlying Hamiltonian structure can be identified. In this paper we proposed a
structure-preserving approximation approach relying on a port-Hamiltonian formula-
tion for a class of nonlinear flows on networks. Its basis is a variational principle that
inherits the Hamiltonian structure. Further, the parametrization of the solution takes
a prominent role. We take a mix of energy and co-energy variables and thus avoid to
fully change to the co-energy variables (which are equal to the entropy variables for
the Euler equations). To treat the parametrization and the nonlinearities in a sys-
tematic manner, we employ the theory on Legendre transformations. Apart from the
port-Hamiltonian structure, our approximations ensure local mass conservation and
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Fig. 6. Gas pipeline network, friction factor λ = 0.01. Solution along the pipes ωj, j = 1, ...,8,
path from ν1 to ν3 (cf. Fig. 1) for various times. Pipe junctions are indicated by vertical red lines.

an energy bound under mild assumptions. In particular, quite general Galerkin pro-
jections and complexity reduction of nonlinearities by a quadrature-type ansatz are
covered by our analysis. We showcased the applicability and good stability properties
of our approximation at the example of the barotropic Euler equations. However, our
approach can also be applied to any p-system and other symmetrizable hyperbolic
systems in two variables, e.g., in the context of electromagnetic waves.

The results of this paper can also be used as a theoretical basis for structure-
preserving model reduction methods, e.g., for gas network systems. Note that the
realization of compatible reduced models involves some non-trivial algorithmic issues.
In parts, they are similar to the ones occurring in symplectic model order reduction
[57, 2, 3], some are covered in our former works [43, 25, 26]. A thorough discussion
of the algorithmic aspects related to snapshot-based model order- and complexity-
reduction in our framework can be found in our follow-up paper [46]. Another in-
teresting direction for future research is the extension and adaption of our approach
to other classes of model problems and more involved applications, e.g., to multi-
dimensional systems with a similar underlying Hamiltonian structure [30, 5, 61], or
thermal Euler equations with additional dissipation terms [54, 37].

Data Availability. The MATLAB code used to generate the presented numerical
results and some supplementary tests, including a simulation of a network with a
compressor, can be found under the DOI 10.5281/zenodo.6372667, see [44].

Appendix A. Inclusion of dissipation. Our model problem (3.1) is of
hyperbolic type. This changes when dissipation effects in form of a second-order de-
rivative in space are included. We assume them to be described by a non-negative
term d : R

2 → R
+, similar as in [21]. In generalization to (3.1), let the state

¯
z : [0, T ]× Ω → R

2 be governed by

∂t
¯
z(t, x) =

[

−∂x
−∂x −r(

¯
z(t, x))

]

∇zh(
¯
z(t, x)) +

[

0
∂x (d(

¯
z(t, x))∂x∇2h(

¯
z(t, x)))

]

with coupling conditions at ν ∈ N0 given by

∑

ω∈E(ν)

nω[ν]∇z2h(¯
z|ω(t, ν)) = 0, s(

¯
z|ω(t, ν)) = s(

¯
z|ω̃(t, ν)) for ω, ω̃ ∈ E(ν),

where s(
¯
z) = ∇1h(

¯
z) − d(

¯
z)∂x∇2h(

¯
z) for

¯
z = [z1; z2] ∈ C1

pw(E). To close the system,
initial conditions and one boundary condition per boundary node ν ∈ N∂ have to
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be prescribed, similarly to the case without dissipation. Sufficiently smooth solutions
can be shown to fulfill the energy dissipation equality

d

dt
H̃(

¯
z) =

∑

ν∈N∂ , ω∈E(ν)

nω[ν]s(
¯
z|ω [ν])∇2h(

¯
z|ω[ν]) − 〈r(

¯
z), (∇2h(

¯
z))2〉 − 〈d(

¯
z), (∂x∇2h(

¯
z))2〉

≤
∑

ν∈N∂ , ω∈E(ν)

nω[ν]s(
¯
z|ω [ν])∇2h(

¯
z|ω [ν]).

Our spatial approximation approach is transferable to this problem. Respective dis-
crete energy bounds and port-Hamiltonian structure can be shown with very minor
adjustments to our derivations from the main part.

Appendix B. Edge weights. Pipelines in gas transport networks are typically
modeled with cross-sectionally averaged dynamics. Hence, we include the cross-sec-
tional pipe area Aω for ω ∈ E as edge weight in our approach. Note that the edge
weighting affects all integral-related expressions and definitions from Section 3.1. The
inner product 〈·, ·〉 becomes 〈b, b̃〉 =

∑

ω∈E A
ω
∫

ω
b[x]b̃[x]dx and the incidence mapping

nω[ν] =

{

Aω for ω = (ν, ν̄) for some ν̄ ∈ N

−Aω for ω = (ν̄, ν) for some ν̄ ∈ N ,

which modifies boundary and coupling conditions, and thus the boundary operator
T : H1

pw(E) → R
p and the function space Hdiv(E). Moreover, the Hamiltonian is

altered to H(
¯
z) = 〈h(

¯
z), 1〉 =

∑

ω∈E A
ω
∫

ω
h(
¯
z)dx.
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