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GRADUAL-IMPULSIVE CONTROL FOR CONTINUOUS-TIME
MARKOV DECISION PROCESSES WITH TOTAL UNDISCOUNTED

COSTS AND CONSTRAINTS: LINEAR PROGRAMMING
APPROACH VIA A REDUCTION METHOD\ast 

ALEXEY PIUNOVSKIY\dagger AND YI ZHANG\ddagger 

Abstract. We consider the constrained optimal control problem for a continuous-time Markov
decision process (CTMDP) with gradual-impulsive control. The performance criteria are the expected
total undiscounted costs (from the running cost and the impulsive cost). We justify fully a reduction
method, and close an open issue in the previous literature. The reduction method induces an
equivalent but simpler standard CTMDP model with gradual control only, based on which, we
establish effectively, under rather natural conditions, a linear programming approach for solving the
concerned constrained optimal control problem.

Key words. continuous-time Markov decision processes, gradual-impulsive control, linear pro-
gramming approach, reduction method

AMS subject classifications. 90C40, 60J76

DOI. 10.1137/21M1444060

1. Introduction. The present paper investigates continuous-time Markov deci-
sion processes (CTMDPs) in Borel state and action spaces, where the decision maker
can control the process via its local characteristics (transition rate), and also can con-
trol directly the state of the process. Such a model is called the gradual-impulsive
(control) model. For the gradual-impulsive CTMDP model, we are concerned with
the following constrained optimal control problem: the expected total undiscounted
cost is to be minimized, subject to other performance measures (objectives) in the
same form not exceeding predetermined levels.

The gradual-impulsive CTMDP model is quite general. It has two important
submodels. One is the standard CTMDP model, in which the decision maker only
controls the transition rate of the process. The other one is the impulsive control
model, in which the decision maker can only control instantaneously the state of the
process. Each of them has a vast literature: for standard CTMDP models, see the
monographs [16, 18, 25] and the more recent one [21], which is influenced by [12, 13];
for the impulsive control model, see e.g., [7, 15, 24]. (The latter references actually
dealt with a more general class of processes than what is of concern here, namely,
piecewise deterministic processes (PDPs); see [6].) The optimal stopping problem
is an important example of impulsive control models, where the decision maker can
decide when to stop the process, applying the impulse once and for all; see e.g., [2, 4].
Compared to the aforementioned two submodels, there is relatively less literature on
gradual-impulsive CTMDP models; see e.g., [9, 10, 23, 26, 28, 29].
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1893

Most of the previous literature on gradual-impulsive CTMDP models allows one
to apply at most one impulse at a given time moment, and the effect of the impulse
is often deterministic, as in the recent work [19]. In the gradual-impulsive CTMDP
model considered in this paper an impulse can be applied at any time moment, and
one can apply multiple impulses at a single time moment. Such gradual-impulsive
CTMDP models were considered in [28, 29] and more recently in [9, 10]. The analysis
in [9, 10, 28, 29] as well as in [19] is direct, in the sense that no connection with the
standard CTMDP model was explored therein. A different method (the so called time
discretization method) was taken in [23, 26], where the gradual-impulsive CTMDP
model and the associated optimal control problem were studied as the limit of a
sequence of discrete-time problems (for the skeleton models). The skeleton models
include complicated transition probabilities.

The present paper differs from the previous literature in terms of the problem
statement and the methods of investigation. The concerned optimal control problem
for the gradual-impulsive CTMDP considered in the majority of the previous liter-
ature is unconstrained (with a single objective), as is the case in [9, 19, 23, 28, 29]
as well as in [5, 8, 17]. The main optimality result in these papers was the estab-
lishment of the Bellman (optimality) equation, which is used to characterize and
show the existence of optimal strategies (often known as the dynamic programming
method). One of the relatively few works dealing with constrained problems for
gradual-impulsive CTMDP models is [10], where the performance criteria are the ex-
pected total discounted costs, and a linear programming approach was established.
The linear program formulation in [10] is a consequence of direct investigations of the
occupation measures and their characterizations. For their arguments, extra condi-
tions (e.g., bounded transition rate) are needed, and the role of the positive discount
factor is important. In this connection, we point out that the discounted problem
is a special case of the total undiscounted problem considered in the present paper,
and the method of investigation here is quite different from [10], and consequently,
we do not need to impose any conditions on the growth of the transition and cost
rates. More precisely, our investigation is based on the reduction of the gradual-
impulsive CTMDP model to an equivalent but simpler standard CTMDP model.
The reduction of the gradual-impulsive model for PDPs to an equivalent model with
gradual control only was proposed in [8]. The reduction method in [8] is different
from the one proposed here. In greater detail, in PDPs, apart from natural jumps,
the process also jumps when it hits the active boundary of the state space. In the
gradual control model of PDPs, apart from controlling the transition rate, there is
also boundary control, corresponding to when the process hits the active boundary.
The target in [8] was to reduce the impulse control to a boundary control in the
new model by introducing, along with other extra components, fictitious time in the
state of the induced model. The idea is to replicate the original impulse epoch when
the fictitious time component in the new model hits a suitably introduced bound-
ary. When applying this method to a CTMDP, the induced model will be a PDP
(no longer piecewise constant), with additional boundary control (besides the control
of the transition rate) and a much more complicated state space than the original
one.

Our main contributions are as follows.
(a) We fully justify that the gradual-impulsive CTMDP model can be reduced to

an equivalent and simpler standard CTMDP model with the same state space. This
reduction method was partially addressed and justified in [22], where it was assumed
that the transition intensities are separated from zero at each state. This condition
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1894 ALEXEY PIUNOVSKIY AND YI ZHANG

was essentially used in the argument in [22]. Here we manage to remove this extra
condition, which, in our opinion, is a significant improvement. In fact, this turns out
to be a delicate issue, and calls for a new and different proof. The proof is based on the
investigation of several new classes of control strategies, which can be of independent
interest in their own right, and were not considered in [22]. The situation is much
simpler if one only deals with strategies in a simple form (e.g., stationary), but we
consider general strategies.

(b) We establish the linear programming approach to solving constrained gradual-
impulsive optimal control problem for CTMDPs with total undiscounted cost criteria.
The linear program formulation itself is interesting, and was not reported in the
previous literature, to the best of our knowledge. Moreover, no extra conditions on
the growth of the transition and cost rates are needed. This is achieved by referring
to the relevant results for the equivalent standard CTMDP problem, and thus also
demonstrates the effectiveness of the reduction method fully justified in (a).

The rest of this paper is organized as follows. In section 2 we describe the gradual-
impulsive CTMDP model and the standard CTMDP model, and state the constrained
optimal control problems under consideration. In section 3 we present the main state-
ments concerning the reduction method as well as the linear programming approach
to the constrained optimal control problem. The justification of the reduction method
is postponed to section 4, which also introduces some new classes of strategies and
the auxiliary statements for them.

2. Model descriptions. In this section, we describe the gradual-impulsive con-
trol model \scrM and the model \scrM GO with gradual control only, as in [22], which also
goes back to [27, 29].

2.1. Gradual-impulsive control model. We describe the primitives of the
gradual-impulsive control model \scrM =: \{ X,AG,AI , q,Q, \{ cGi , cIi \} Ji=0\} as follows. The
state space is X, the space of gradual controls is AG, and the space of impulsive
controls is AI . It is assumed that X, AG, and AI are all Borel spaces, endowed
with their Borel \sigma -algebras \scrB (X), \scrB (AG), and \scrB (AI), respectively. Furthermore, we
assume without loss of generality that AG and AI are two disjoint measurable subsets
of a Borel space A such that A = AG\cup AI . The transition rate, on which the gradual
control acts, is given by q(dy| x, a), which is a signed kernel fromX\times AG, endowed with
its Borel \sigma -algebra, to \scrB (X), satisfying the following conditions: q(\Gamma | x, a) \in [0,\infty ) for
each \Gamma \in \scrB (X), x /\in \Gamma ; q(X| x, a) = 0, x \in X, a \in AG; \=qx := supa\in AG qx(a) <\infty , x \in 
X, where qx(a) :=  - q(\{ x\} | x, a) for each (x, a) \in X\times AG. We introduce the postjump
measure \~q(dy| x, a) := q(dy \setminus \{ x\} | x, a) \forall x \in X, a \in AG. If the current state is x \in X,
and an impulsive control b \in AI is applied, then the state immediately following this
impulse obeys the distribution given by Q(dy| x, b), which is a stochastic kernel from
X\times AI to \scrB (X). We assume, without loss of generality that

Q(\{ x\} | x, b) = 0 \forall x \in X, b \in AI .(2.1)

Finally, there are a family of cost rates and functions \{ cGi , cIi \} Ji=0 with J being a fixed
positive integer, representing the number of constraints in the concerned optimal
control problem to be described below; see (2.3). For each i \in \{ 0, 1, . . . , J\} , cGi and
cIi are [0,\infty ]-valued measurable functions on X\times AG and X\times AI , respectively. We
emphasize the following.

Remark 2.1. The assumption on the positivity of the cost functions is relevant
to optimality results and for brevity. The reduction results (see Theorem 3.1 below),
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1895

actually hold for [ - \infty ,\infty ]-valued cIi and c
G
i : one only needs to apply the reduction to

the two performance measures induced by the positive and negative parts of cIi and
cGi separately.

The description of the system dynamics in the gradual-impulsive control problem
is as follows. Assume qx(a) > 0 for each x \in X and a \in AG for simplicity. At the

initial time 0 with the initial state x0, the decision maker selects the triple (\^c0,\^b0, \rho 
0)

with \^c0 \in [0,\infty ], \^b0 \in AI , and \rho 0 = \{ \rho 0t (da)\} t\in (0,\infty ) \in \scrR (AG). Here, \scrR (AG) is the

collection of \scrP (AG)-valued measurable mappings on (0,\infty ) with any two elements
therein being identified the same if they differ only on a null set with respect to
the Lebesgue measure, where \scrP (AG) stands for the space of probability measures on
(AG,\scrB (AG)). Then, the time until the next natural jump follows the nonstationary
exponential distribution with the rate function

\int 
AG qx0(a)\rho 

0
t (da) =: qx0(\rho 

0
t ). Here and

below, unless stated otherwise, if \rho \in \scrR (AG), then qx(\rho t) :=
\int 
AG qx(a)\rho t(da) and

\~q(dy| x, \rho t) :=
\int 
AG \~q(dy| x, a)\rho t(da). If by time \^c0, there is no occurrence of a natural

jump, then the first sojourn time is \^c0, at which, the impulsive action \^b0 \in AI is
applied, and the next state X1 follows the distribution Q(dy| x0,\^b0). If the first natural
jump happens before \^c0, say at t1, then the first sojourn time is t1, and the next state

X1 follows the distribution
\~q(dy| x0,\rho 

0
t1

)

qx0 (\rho 
0
t1

)
. Except for the initial one, a decision epoch

occurs immediately after a sojourn time. At the next decision epoch, the decision
maker selects (\^c1,\^b1, \rho 

1), and so on. It is thus natural to embed the gradual-impulsive
control problem into a discrete-time Markov decision process (DTMDP) (but with a
complicated action space involving the space of relaxed control functions.) This way of
describing gradual-impulsive control problems for CTMDPs goes back to Yushkevich
[29].

The state space of this DTMDP is \^X := \{ (\infty , x\infty )\} \cup [0,\infty )\times X, where (\infty , x\infty ) is

an isolated point in \^X. The first coordinate of \^x = (\theta , x) \in \^X represents the previous
sojourn time in the gradual-impulsive control model, and the state of the controlled
process in the gradual-impulsive control model is given in the second coordinate. The
inclusion of the first coordinate in the state allows us to consider control policies that
select actions depending on the past sojourn times.

The action space of the DTMDP is \^A := [0,\infty ] \times AI \times \scrR (AG). Recall that
\scrR (AG) is the collection of \scrP (AG)-valued measurable mappings on (0,\infty ) with any
two elements therein being identified the same if they differ only on a null set with
respect to the Lebesgue measure, where \scrP (AG) stands for the space of probability
measures on (AG,\scrB (AG)). We endow \scrP (AG) with its weak topology (generated
by bounded continuous functions on AG) and the Borel \sigma -algebra, so that \scrP (AG)
is a Borel space; see Chapter 7 of [3]. An element \rho of \scrR (AG) is understood as a
relaxed control function, and its value \rho t \in \scrP (AG) at t > 0 can be understood as the
distribution of the gradual control after time duration t from the moment when this
relaxed control function is selected. In the case \rho t(da) does not change with t > 0, i.e.,
the relaxed control function is a constant one, with slight abuse of notation, we often
write it as \rho (da), omitting the subscript t. According to Lemma 3 of [27], each element
in \scrR (AG) can be regarded as a stochastic kernel from (0,\infty ) to \scrB (AG). According to
Lemma 1 of [27], the space \scrR (AG), endowed with the smallest \sigma -algebra with respect
to which the mapping \rho = (\rho t(da)) \in \scrR (AG) \rightarrow 

\int \infty 
0
e - tg(t, \rho t)dt is measurable for

each bounded measurable function g on (0,\infty )\times \scrP (AG), is a Borel space.
The transition probability p in the DTMDP is defined as follows. For each

bounded measurable function g on \^X and action \^a = (\^c,\^b, \rho ) \in \^A,
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1896 ALEXEY PIUNOVSKIY AND YI ZHANG\int 
\^X

g(t, y)p(dt\times dy| (\theta , x), \^a) :=
\int \^c

0

\int 
X

g(t, y)\~q(dy| x, \rho t)e - 
\int t
0
qx(\rho s)dsdt

+I\{ \^c = \infty \} g(\infty , x\infty )e - 
\int \infty 
0
qx(\rho s)ds + I\{ \^c <\infty \} e - 

\int \^c
0
qx(\rho s)ds

\int 
X

g(\^c, y)Q(dy| x,\^b)

for each state (\theta , x) \in [0,\infty ) \times X; and
\int 
\^X
g(t, y)p(dt \times dy| (\infty , x\infty ), \^a) := g(\infty , x\infty ).

The object p defined above is indeed a stochastic kernel from \^X \times \^A to \scrB ( \^X), see
Lemma 2 of [27] and its proof therein.

Similarly, the cost functions \{ li\} Ji=0 defined below are measurable on \^X\times \^A\times \^X:

li((\theta , x), \^a, (t, y)) := I\{ x \in X\} 
\biggl\{ \int t

0

cGi (x, \rho s)ds+ I\{ t = \^c <\infty \} cIi (x,\^b)
\biggr\} 

(2.2)

for each i = 0, 1, . . . , J and ((\theta , x), \^a, (t, y)) \in \^X\times \^A\times \^X. Here, the generic notation

\^a = (\^c,\^b, \rho ) \in \^A of an action in this DTMDP has been in use, and we have used the
following generic notation: for each probability measure \mu on \scrB (AG) and measurable
function f on AG, we put f(\mu ) :=

\int 
AG f(x)\mu (dx) whenever the right-hand side is well

defined. This notation is only for brevity, and will be used when there is no potential
confusion regarding the underlying space AG. The interpretation is that the pair
(\^c,\^b) is the pair of the planned time duration until the next impulse and the next
planned impulse (provided that no natural jump has taken place before then), and \rho 
is the relaxed control function to be used during the next sojourn time. Without loss
of generality, the initial state is (0, x0) with some x0 \in X.

Let \{ \^Xn\} \infty n=0 = \{ ( \^\Theta n, Xn)\} \infty n=0 and \{ \^An\} \infty n=0 be the controlled and controlling
processes in this DTMDP model, and \{ ( \^Cn, \^Bn)\} \infty n=0 the coordinate process corre-

sponding to \{ (\^cn,\^bn)\} \infty n=0 in \{ \^an\} \infty n=0.

Definition 2.1. (a) A strategy in model \scrM is given by \sigma = \{ \sigma (0)
n , \^Fn\} \infty n=0, where

for each n \geq 0, \sigma 
(0)
n (d\^c \times d\^b| \^hn) is a stochastic kernel, and \^Fn is an \scrR (AG)-valued

measurable mapping in (\^hn, \^c,\^b), where \^hn := (\^x0, (\^c0,\^b0), \^x1, (\^c1,\^b1), . . . , \^xn).

(b) A strategy \sigma = \{ \sigma (0)
n , \^Fn\} \infty n=0 in \scrM is called stationary if for each n \geq 0,

\sigma (0)
n (d\^c\times d\^b| \^hn) = \sigma S,(0)(d\^c\times d\^b| xn), \^Fn(\^hn, \^c,\^b)t(da) = \^FS(xn)(da) \forall t > 0,

where \sigma S,(0)(d\^c\times d\^b| x) and \^FS(x)(da) are stochastic kernels on \scrB ([0,\infty ]\times AI) con-
centrated on \{ 0,\infty \} \times AI and on \scrB (AG) given x \in X. Here, in line with the inter-
pretation of the element of \scrR (AG), \^FS(xn)(da) is understood as a constant relaxed
control function. We identify such a stationary strategy in \scrM with \sigma S = (\sigma S,(0), \^FS).

Under a strategy \sigma in \scrM , having in hand \^hn, the decision maker selects (\^cn,\^bn)

according to \^\sigma 
(0)
n (d\^c \times d\^b| \^hn), and after that, chooses the relaxed control function

\rho n = \^Fn(\^hn, \^cn,\^bn) \in \scrR (AG) to be used during the next sojourn time. Note that the
class of strategies defined above covers the particular case when one a priori deter-
mines a fixed time moment, say T , of applying an impulse: this then corresponds to

\sigma 
(0)
n (d\^c \times AI | \^hn) = \delta T - \^tn

(d\^c) provided that \^tn \leq T, where \^tn =
\sum n
i=1

\^\theta n is the re-
alized time of the nth jump moment, induced by either natural or active (impulsive)
jumps.

Given \^x0 = (0, x0) \in \^X and a strategy \sigma , let \^P\sigma x0
be the strategic measure in

the DTMDP, and \^E\sigma x0
the corresponding expectation. Then the concerned gradual-

impulsive control problem with constraints reads

minimize over \sigma \in \Sigma : \^W0(x0, \sigma ) such that \^Wj(x0, \sigma ) \leq dj , j = 1, . . . , J,(2.3)
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1897

where for each 0 \leq j \leq J , \^Wj(x0, \sigma ) := \^E\sigma x0

\Bigl[ \sum \infty 
n=0 lj(

\^Xn, \^An, \^Xn+1)
\Bigr] 
, \{ dj\} Jj=1 \in \BbbR J

is a fixed vector of constants, and x0 is a fixed element of X.

2.2. Standard CTMDP model. In a standard CTMDP model, there is only
gradual control. Its system primitives are \scrM GO := \{ X,A, qGO, \{ cGOi \} Ji=0\} . Here the
state and action spaces X and A are Borel spaces, qGO is the transition rate from
X \times A to \scrB (X), and \{ cGOi \} Ji=0 is a collection of [0,\infty ]-valued measurable functions
on X\times A, representing the cost rates, J \geq 0 is a fixed integer. The superscript ``GO""
abbreviates ``gradual only"", as the model only allows gradual controls.

In the standard CTMDP model \scrM GO, a decision epoch occurs after each natural
jump of the controlled process (except for the initial decision epoch at time zero).
At each decision epoch, one selects the relaxed control function \rho \in \scrR (A), where
\scrR (A) is understood as \scrR (A\scrG ) with AG being replaced by A, until the next decision
epoch occurs. We sketch the more rigorous construction as follows. The sample
space \Omega is taken as the union of (X \times (0,\infty ))\infty and the collection of sequences in
the form (x0, \theta 1, x1, . . . , \theta m - 1, xm - 1,\infty , x\infty ,\infty , x\infty , . . . ), where m \geq 1, and x\infty /\in X
is an isolated point. We endow \Omega with the \sigma -algebra \scrF obtained as the trace of
\scrB ((X\infty \times (0,\infty ])\infty ) on \Omega , whereX\infty = X\cup \{ x\infty \} . The generic notation for an element
of \Omega is \omega . For each \omega \in \Omega , define \theta 0 := 0, tn :=

\sum n
i=0 \theta i, hn := (x0, \theta 1, x1, . . . , \theta n, xn)

for each n \geq 0. The collection of all possible hn is denoted as Hn for each n \geq 0.
Let us put t\infty := limn\rightarrow \infty tn. When regarded as coordinate variables, we use capital
letters \Theta n, Tn, Xn, and Hn corresponding to \theta n, tn, xn and hn. The state process
\{ X(t)\} t\geq 0 is defined by X(t) := Xn if Tn \leq t < Tn+1 for some n \geq 0, and X(t) := x\infty 
if t \geq T\infty . As usual, we omit \omega whenever the context excludes confusion.

Definition 2.2. A strategy S in the standard CTMDP model \scrM GO is given by
S = \{ Fn\} \infty n=0, where for each n \geq 0, Fn is a measurable mapping on Hn taking values

in \scrR (A). It is called Markov if Fn(hn) = F
M

n (xn) for some measurable mapping F
M

n

from X to \scrR (A). In this case, we identify S with \{ FMn \} n\geq 0 =: S
M
. A strategy

S = \{ Fn\} n\geq 0 in \scrM GO is called stationary if Fn(hn)t(da) = F
S
(xn)(da) for some

stochastic kernel F
S
(x)(da) on \scrB (A) given x \in X. In this case, we identify such a

stationary strategy S with F
S
.

Given a strategy S = \{ Fn\} \infty n=0 and initial state x0 \in X, there is a unique proba-

bility measure PSx0
on (\Omega ,\scrF ) such that PSx0

(X0 \in dx) = \delta x0
(dx), and for each n \geq 1

and \Gamma 1 \in \scrB ([0,\infty )), \Gamma 2 \in \scrB (X),

PSx0
(\Theta n \in \Gamma 1, Xn \in \Gamma 2| Hn - 1)

=

\int 
\Gamma 1

e
 - 

\int s
0
qGO
Xn - 1

(Fn - 1(Hn - 1)t)dt\~qGO(\Gamma 2| Xn - 1, Fn - 1(Hn - 1)s)ds,

PSx0
(\Theta n = \infty , Xn = x\infty | Hn - 1) = e

 - 
\int \infty 
0
qGO
Xn - 1

(Fn - 1(Hn - 1)t)dt,

and PSx0
(\Theta n = \infty , Xn \in \Gamma 2| Hn - 1) = PSx0

(\Theta n \in \Gamma 1, Xn = x\infty | Hn - 1) = 0. Let the

expectation corresponding to PSx0
be denoted as ESx0

.
We consider the following optimal control problem corresponding to problem

(2.3):

minimize over S : W0(x0, S) subject to Wj(x0, S) \leq dj , j = 1, . . . , J,(2.4)
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with Wi(x0, S) := ESx0
[
\sum \infty 
n=0 I\{ Tn <\infty \} 

\int Tn+1

Tn
cGOi (Xn, Fn(Hn)t - Tn

)dt] for each i =

0, 1, . . . , J Here, the constants J and \{ dj\} Jj=1. are the same as in problem (2.3).

3. Main results.

3.1. Reduction results. In the rest of this paper, we consider the following
standard CTMDP model \scrM GO induced by the gradual-impulsive control model \scrM ,
defined as follows:

A := AI \cup AG; qGO(dy| x, a) := q(dy| x, a) \forall (x, a) \in X\times AG;

\~qGO(dy| x, a) := Q(dy| x, a), qGOx (a) := 1 \forall (x, a) \in X\times AI ;

cGOi (x, a) := cGi (x, a) \forall (x, a) \in X\times AG; cGOi (x, a) := cIi (x, a) \forall (x, a) \in X\times AI .

(3.1)

(Equality (2.1) guarantees that qGO defined in the above is indeed a transition rate.)
One purpose of this paper is to show that the gradual-impulsive control model

\scrM can be reduced to this induced model \scrM GO in the following sense. We say that
the model \scrM can be reduced to the model \scrM GO if each strategy in \scrM is replicated
by a strategy in \scrM GO, and each strategy in \scrM GO is replicated by a strategy in \scrM ,
where a strategy in a model is said to replicate another strategy in a possibly different
model if the performance measures of the two strategies in their respective models
coincide. We formulate our first main result as follows.

Theorem 3.1. The model \scrM can be reduced to the model \scrM GO. That is, for
each strategy \sigma in \scrM (or S in \scrM GO), there is some strategy S in \scrM GO (respectively,
\sigma in \scrM ) such that \^Wi(x0, \sigma ) =Wi(x0, S), i \in \{ 0, . . . , J\} .

Proof. The proof of this theorem is postponed to section 4.

This reduction issue was partially addressed in [22]. where it was established
that any strategy in \scrM can be replicated by a strategy in \scrM GO; see Theorem 3.2 of
[22] therein. The opposite direction is more delicate. The corresponding statement,
collected as Proposition 3.2 below, was established in [22] under the following extra
condition.

Condition 3.1. For each x \in X, there is some \epsilon > 0 such that qx(a) \geq \epsilon > 0 for
all a \in AG.

Proposition 3.2. Suppose Condition 3.1 is satisfied. Then each strategy in \scrM GO

can be replicated by a strategy in \scrM GO, i.e., for each strategy S in \scrM GO, there is a
strategy \sigma in \scrM such that \^Wi(x0, \sigma ) =Wi(x0, S), i \in \{ 0, . . . , J\} .

Proof. See Theorem 3.1 of [22].

Let us describe a simple example where Condition 3.1 is not satisfied. Let X = \BbbZ .
The state x \in \{ 0, 1, . . . \} represents the number of infected population. The subset
\{ 0, - 1, - 2, . . . \} can be viewed as a cemetery, but instead of merging them to a single
state 0, we keep it in the current form, so that (2.1) is satisfied. Each individual
gives an infection rate \lambda > 0, and one may (gradually) vaccinate the population to
reduce this infection rate. Suppose q(\{ x + 1\} | x, a) = e - a\lambda xI\{ x \geq 0\} = qx(a) for
a \in AG := [0,\infty ). Here a \in AG is the intensity of vaccination. One may also remove
the virus carriers impulsively (at a certain cost), and so Q(\{ x  - b\} | x, b) = 1 with
b \in AI :  - = \{ 1, . . . , x\} for some x \in \{ 1, 2, . . . \} . One may consider the following
cost functions. Let cG0 (x, a) be a function that increases in x for fixed a, cI0(x, b) be
an increasing function in b, cG1 (x, a) be an increasing function in a, and cI1(x, b) = 0.
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Note that qx(a) = 0 for x \in \{ 0, - 1, . . . \} and infa\in AG qx(a) = 0 for x \in \{ 1, 2, . . . \} , so
that Condition 3.1 is violated.

The main contribution of this paper lies in showing that Condition 3.1 can be
withdrawn from Proposition 3.2, and that removal would also complete the proof
of Theorem 3.1. We underline that the argument in the proof of Theorem 3.1 of
[22] essentially made use of Condition 3.1. Here we will get over this difficulty by
introducing and investigating in section 4 auxiliary and new classes of strategies in
\scrM and in \scrM GO, which can be of independent interest.

The situation is simpler if we only consider stationary strategies in \scrM GO. They
can be replicated by stationary strategies in \scrM as observed in the next statement.
Its proof can be done directly without assuming Condition 3.1 or involving auxiliary
strategies, though the argument cannot handle the case of general strategies. For this
reason we omit the details. (They can be found in the preprint of this paper available
at arXiv:2112.02674.)

Proposition 3.3. Each stationary strategy F
S
in \scrM GO is replicated by the sta-

tionary strategy \sigma S = (\sigma S,(0), \^FS) in \scrM defined as follows: for each x \in O with

O :=
\Bigl\{ 
x \in X :

\int 
AG qx(a)F

S
(x)(da) + F

S
(x)(AI) > 0

\Bigr\} 
, on \scrB (AI),

\sigma S,(0)(\Gamma \times d\^b| x) = 0 \forall \Gamma \in \scrB (0,\infty ),

\sigma S,(0)(\{ 0\} \times d\^b| x) = F
S
(x)(d\^b)\int 

AG qx(a)F
S
(x)(da) + F

S
(x)(AI)

,

\sigma S,(0)(\{ \infty \} \times d\^b| x) =

\left\{   F
S
(x)(d\^b)

F
S
(x)(AI)

\int 
AG qx(a)F

S
(x)(da)\int 

AG qx(a)F
S
(x)(da)+F

S
(x)(AI)

if F
S
(x)(AI) > 0,

p\ast \ast (d\^b) otherwise,

where p\ast \ast is an arbitrarily fixed probability measure on \scrB (AI);

\^FS(x)(da) =

\left\{   F
S
(x)(da\cap AG)

F
S
(x)(AG)

if F
S
(x)(AG) > 0,

p\ast (da) otherwise,

where p\ast is an arbitrarily fixed probability measure on \scrB (AG); whereas for each x \in 
X \setminus O, \sigma S,(0)(d\^c\times d\^b| x) = \delta \infty (d\^c)p\ast \ast (d\^b), \^FS(x)(da) = F

S
(x)(da).

3.2. Optimality results. Theorem 3.1 and Proposition 3.3 assert that if one
can obtain a stationary optimal strategy for the standard CTMDP problem (2.4) in the
induced model \scrM GO, then a stationary optimal strategy for the gradual-impulsive
optimal control problem (2.3) can be constructed. In view of this observation, we
present conditions that guarantee the existence of an optimal stationary strategy for
problem (2.3), and establish a linear program, solving which, one can produce such
an optimal stationary strategy.

Condition 3.2. AG and AI are compact; \{ cGi \} Ji=0 and \{ cIi \} Ji=0 are [0,\infty ]-valued
and lower semicontinuous on X\times AG and X\times AI , respectively, and for each bounded
continuous function f on X, the functions (x, a) \in X\times AG \rightarrow 

\int 
X
f(y)\~q(dy| x, a) and

(x, b) \in X\times AI \rightarrow 
\int 
X
f(y)Q(dy| x, b) are continuous.D
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Suppose that Condition 3.2 is satisfied in this subsection. Let v\ast be the minimal
nonnegative lower semicontinuous function on X satisfying the first equality in

v\ast (x) = inf
a\in A

\Biggl\{ \sum J
j=0 c

GO
j (x, a)

\epsilon + qGOx (a)
+

\int 
X
v\ast (y)\~qGO(dy| x, a) + \epsilon v\ast (x)

\epsilon + qGOx (a)

\Biggr\} 

=

\sum J
j=0 c

GO
j (x, f\ast (x))

\epsilon + qGOx (f\ast (x))
+

\int 
X
v\ast (y)\~qGO(dy| x, f\ast (x)) + \epsilon v\ast (x)

\epsilon + qGOx (f\ast (x))
, x \in X

(recall A = AG \cup AI), where f\ast is a measurable mapping from X to A. Note that
v\ast is actually independent of \epsilon > 0, and the existence of v\ast and f\ast is guaranteed
under Condition 3.2, according to, e.g., Theorem 4.2.1 of [21] and its proof. Put
R := \{ x \in X : v\ast (x) > 0\} . (The intuitive meaning of Rc is the part of the state
space at which it is optimal to apply f\ast in the model \scrM GO; the process will remain
there with no cost being incurred. Thus, the nontrivial part is to determine the control
in \scrM GOwhen the process is in R.) Now consider the following linear program:\int 

R\times AG

cG0 (x, a)\nu (dx\times da) +

\int 
R\times AI

cI0(x, a)\nu (dx\times da) \rightarrow min
\nu 

s.t.

\int 
AG

qy(a)\nu (dy \times da) + \nu (dx\times AI) = \delta x0(dx) +

\int 
R\times AG

\~q(dx| y, a)\nu (dy \times da)

+

\int 
R\times AI

Q(dx| y, a)\nu (dy \times da),(3.2)\int 
R\times AG

cGj (x, a)\nu (dx\times da) +

\int 
R\times AI

cIj (x, a)\nu (dx\times da) \leq dj , j \in \{ 1, 2, . . . , J\} ,

\nu is a measure on \scrB (R\times A) : \nu (dx\times A) is a \sigma -finite measure on \scrB (R);
\int 
AG qx(a)\nu (dx\times 

da) + \nu (dx\times AI) is \sigma -finite on \scrB (R).
Here the set of \sigma -finite measures \nu on \scrB (R \times A) forms a positive cone in a

suitable vector space of certain set functions, which can be identified as sequences
of finite signed measures on a countable measurable partition of \scrB (R \times A). (The
partitions may be different for different set functions.)

Theorem 3.4. Suppose that Condition 3.2 is satisfied, and there is a feasible
strategy for problem ( 2.3). Then the following assertions hold.

(a) There exists an optimal stationary strategy for problem ( 2.3).
(b) Suppose the linear program ( 3.2) has a feasible solution, which is the case

if problem ( 2.3) has a feasible strategy with finite value. The linear program ( 3.2)

has an optimal solution, say \nu \ast . Consider the stochastic kernel F
S
(x)(da) on \scrB (A)

given x \in X satisfying \nu \ast (dx \times da) = \nu \ast (dx \times A)F
S
(x)(da) for each \Gamma \in \scrB (R), and

F
S
(x)(da) = \delta f\ast (x)(da) for each x \in X \setminus R. (Such a stochastic kernel exists because

\nu \ast (dx \times A) is \sigma -finite on \scrB (R).) Then the stationary strategy \sigma S = (\sigma S,(0), \^FS)

defined in terms of F
S
in Proposition 3.3 is optimal for problem ( 2.3).

Proof. By Theorem 3.1, problem (2.3) can be reduced to the induced standard
CTMDP problem (2.4). Statement (a) follows from this reduction, Theorem 4.2.2(b)
of [21], and Proposition 3.3. Statement (b) further follows from the proof of Theorem
4.2.2(b) of [21].

Definition 3.5. A stationary strategy \sigma S = (\sigma S,(0), \^FS) in model \scrM is called
pure stationary if

\sigma S,(0)(d\^c\times d\^b| x) = \delta \varphi (x)(d\^c)\delta \zeta (x)(d\^b), \^FS(x)(da) = \delta fS(x)(da) \forall t > 0,
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where \varphi (or \zeta , fS) is a measurable mapping from X to \{ 0,\infty \} (AI , AG, respectively).
We identify such a pure stationary strategy in \scrM with (\varphi , \zeta , fS).

Pure stationary strategies are the easiest for implementation. They are often suf-
ficient for problems with a single objective, i.e., when J = 0 (see e.g., [9, 17]) or when
the model satisfies additional structural conditions, such as being convex or atomless
(see e.g., [11, 14]). The next example demonstrates that without further conditions,
pure stationary strategies are often not sufficient for the constrained problem (2.3).
This is a typical situation in the constrained optimization when J > 0; see [1].

Example 3.1. Let X = \{ 0, 1, 2, . . . \} , AG = \{ a\} , AI = \{ b\} with a \not = b, so that
we may put A = \{ a, b\} = AG \cup AI . Let q0(a) = 1 = q(\{ 1\} | 0, a), qx(a) = 0 for all
x \in \{ 1, 2, . . . \} , Q(\{ x + 1\} | x, b) = 1 for all x \in X. Finally, fix J = 1, d1 = 1, x0 = 0,
and consider the cost rates and functions defined by

cG0 (0, a) = 1, cG0 (x, a) = 0 \forall x \in \{ 1, 2, . . . \} ,
cI0(x, b) = 0, cG1 (x, a) = 0 \forall x \in \{ 0, 1, 2, . . . \} ,
cI1(0, b) = 2, cI1(x, b) = 0 \forall x \in \{ 1, 2, . . . \} .

Apparently, since the process is essentially only controlled at the state x = 0 (once the
process leaves the state 0, no further cost will be incurred), as far as the performance
of pure stationary strategies is concerned, one only needs to consider pure stationary
strategies in the following form: \sigma DS = (\varphi , \zeta , fS) with \varphi (0) = 0 and \sigma 

\prime DS = (\varphi \prime , \zeta , fS)
with \varphi \prime (0) = \infty . We may compute

\^W0(0, \sigma 
DS) = 0, \^W1(0, \sigma 

DS) = 2 > d1 = 1, \^W0(0, \sigma 
\prime DS) = 1, \^W1(0, \sigma 

\prime DS) = 0.

Consequently, \sigma DS is not feasible for problem (2.3). Now consider \sigma S = (\sigma S,(0), \^FS)
such that \sigma S,(0)(\{ 0\} \times \{ b\} | 0) = 0.5 = \sigma S,(0)(\{ \infty \} \times \{ b\} | 0). Then one can verify
that \^W0(0, \sigma 

S) = 1
2 < \^W0(0, \sigma 

\prime DS), \^W1(0, \sigma 
S) = 1, which is feasible and strictly

outperforms \sigma 
\prime DS , and thus strictly outperforms any feasible pure stationary strategy.

4. Auxiliary statements and proof of Theorem 3.1. The proof of Theorem
3.1 takes several steps, and makes use of auxiliary classes of strategies in the model
\scrM and the induced model \scrM GO, which are introduced in separate subsections below.

4.1. Pseudo-Poisson-related strategies in \bfscrM \bfitG \bfitO . In what follows, we fix
some strictly positive constant \lambda > 0. Consider the induced model \scrM GO. Let \lambda (a) :=
\lambda I\{ a \in AG\} \forall a \in A. For each n \geq 0, consider a sequence of stochastic kernels
\{ pn,k\} k\geq 0 on \scrB (A) given x \in X. By a pseudo-Poisson-related strategy in \scrM GO we

mean (\lambda , \{ pn,k\} n,k\geq 0). Under such a pseudo-Poisson-related strategy, at the beginning
of a sojourn time, when the state is xn, a marked point process is generated according
to (\lambda , \{ pn,k\} n,k\geq 0), and during the sojourn time, we use actions as the marks and
change actions only at the arrival times of that marked point process. We illustrate
the implementation of such a pseudo-Poisson-related strategy as follows.

\bullet At the initial time with the initial state x0, generate \Phi 
(0)
0 \sim p0,0(da| x0) and

\Psi 
(0)
1 \sim Exp(\lambda (\Phi 

(0)
0 )), where Exp(y) represents the exponential distribution

with rate y \in [0,\infty ); an exponential random variable with rate 0 is \infty . Use

\Phi 
(0)
0 as the action during [0, T1 \wedge \Psi 

(0)
1 ). Recall that T1 is the first sojourn

time in \scrM GO.
\bullet If \Psi 

(0)
1 < T1, then generate \Phi 

(0)
1 \sim p0,1(da| x0), \Psi 

(0)
2 \sim Exp(\lambda (\Phi 

(0)
1 )). Use

\Phi 
(0)
1 as the action during [\Psi 

(0)
1 , T1 \wedge \Psi 

(0)
2 ).
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\bullet If \Psi 
(0)
1 \geq T1, then generate \Phi 

(1)
0 \sim p1,0(da| X1) and \Psi 

(1)
1 \sim Exp(\lambda (\Phi 

(1)
0 )).

Recall that X1 is the state variable in \scrM GO after the first sojourn time. Use

\Phi 
(1)
0 as the action during [T1, T2 \wedge (T1 +\Psi 

(1)
1 )).

\bullet And so on.
Below we give a more precise definition of a psuedo-Poisson-related strategy, and

introduce notations to be used throughout this subsection. We first fix the canon-
ical sample space of the aforementioned marked point process: \Xi GO := [0,\infty ) \times 
A \times ((0,\infty ] \times A)\infty is the countable product. The generic notation for an element
of \Xi GO is \xi = \{ (\psi n, \alpha n)\} n\geq 0. Consider the coordinate random variables (viewing
(\Xi GO,\scrB (\Xi GO)) as a sample space): for each \xi = \{ (\psi n, \alpha n)\} n\geq 0 \in \Xi GO, \Psi n(\xi ) := \psi n,
and \Phi n(\xi ) := \alpha n, and \tau n :=

\sum n
k=0 \psi k.

Definition 4.1. A pseudo-Poisson-related policy in \scrM GO is given by a sequence

of stochastic kernels S
P

= \{ pn(d\xi | x)\} n\geq 0 on \scrB (\Xi GO) from x \in X, where for each
n \geq 0 and x \in X, under pn(d\xi | x), pn(\Psi 0 \in dt| x) = \delta 0(dt), and the random vectors
(\Phi 0,\Psi 1), (\Phi 1,\Psi 2)), . . . are mutually independent satisfying

pn(\Phi k \in da| x) =: pn,k(da| x) \forall k \in \{ 0, 1, 2, . . . \} ,

pn(\Phi k \in da, \Psi k+1 > t| x) = e - \lambda (a)tpn,k(da| x) \forall k \in \{ 0, 1, 2, . . . \} , t \in (0,\infty ).

(Note that \Psi k may take +\infty with a positive probability under pn(d\xi | x). If \lambda (a) \equiv \lambda ,
then \{ 

\sum n
i=0 \Psi i\} n\geq 0 forms a standard Poisson point process, justifying the use of the

prefix ``pseudo"" here.)

Given a pseudo-Poisson-related policy S
P

= \{ pn\} \infty n=0 and initial state x0 \in X,

there is a unique probability measure PS
P

x0
on (\Omega ,\scrF ) such that PS

P

x0
(X0 \in dx) =

\delta x0
(dx) for each n \geq 1 and \Gamma 1 \in \scrB ([0,\infty )), \Gamma 2 \in \scrB (X),

PS
P

x0
(\Theta n \in \Gamma 1, Xn \in \Gamma 2| Hn - 1) =

\int 
\Xi GO

PS
P
,\xi 

x0
(\Theta n \in \Gamma 1, Xn \in \Gamma 2| Hn - 1)pn(d\xi | x)

:=

\int 
\Xi GO

\biggl\{ \int 
\Gamma 1

e
 - 

\int s
0
qGO,\xi 
Xn - 1

(t)dt
\~qGO,\xi (\Gamma 2| Xn - 1, s)ds

\biggr\} 
pn(d\xi | x),

PS
P

x0
(\Theta n = \infty , Xn = x\infty | Hn - 1) =

\int 
\Xi GO

PS
P
,\xi 

x0
(\Theta n = \infty , Xn = x\infty | Hn - 1)pn(d\xi | x)

:=

\int 
\Xi GO

\biggl\{ 
e
 - 

\int \infty 
0
qGO,\xi 
Xn - 1

(t)dt
\biggr\} 
pn(d\xi | x),(4.1)

and PS
P

x0
(\Theta n = \infty , Xn \in \Gamma 2| Hn - 1) = PS

P

x0
(\Theta n \in \Gamma 1, Xn = x\infty | Hn - 1) = 0, where

qGO,\xi (dy| x, s) :=
\infty \sum 
k=0

qGO(dy| x, \alpha k)I\{ s \in (\tau k, \tau k+1]\} ,

\~qGO,\xi (dy| x, s) :=
\infty \sum 
k=0

\~qGO(dy| x, \alpha k)I\{ s \in (\tau k, \tau k+1]\} ,

and qGO,\xi x (s) :=
\sum \infty 
k=0 q

GO
x (\alpha k)I\{ s \in (\tau k, \tau k+1]\} . Let the expectation corresponding

to PS
P

x0
be denoted as ES

P

x0
.
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1903

The system performance under S
P

is measured by

Wi(x0, S
P
) := ES

P

x0

\Biggl[ \infty \sum 
n=0

I\{ Xn \not = x\infty \} 

\times 
\int 
\Xi GO

\int 
(0,\infty ]

\int t

0

cGO,\xi i (Xn, s)dsP
S

P
,\xi 

n (\Theta n+1 \in dt| Xn)pn(d\xi | Xn)

\Biggr] 
,

where PS
P
,\xi 

n (\Theta n+1 \in dt| Xn) is defined in (4.1), see the terms inside the parentheses

therein, and cGO,\xi i (x, s) :=
\sum \infty 
k=0 c

GO
i (x, \alpha k)I\{ s \in (\tau k, \tau k+1]\} .

Theorem 4.2. Each Markov strategy S
M

= \{ FMn \} n\geq 0 in \scrM GO can be replicated

by a pseudo-Poisson-related strategy S
P

in \scrM GO.

Proof. Let some Markov strategy S
M

= \{ FMn \} n\geq 0 in \scrM GO be given, and define

the following S
P
= \{ pn\} n\geq 0 by

pn,0(da| x) :=
\int \infty 

0

e - 
\int t
0
(\lambda +qGO

x )(F
M
n ,s)ds(qGOx (a) + \lambda (a))F

M

n (x)t(da)dt,(4.2)

where (\lambda + qGOx )(F
M

n , s) :=
\int 
A
(\lambda (a) + qGOx (a))F

M

n (x)s(da); and for each k \geq 1,

pn,k(da| x) :=
\int \infty 

0

\lambda (F
M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!

\times 

\left(   \int \infty 
w
e - 

\int t
0
(\lambda +qGO

x )(F
M
n ,s)ds(qGOx (a) + \lambda (a))F

M

n (x)t(da)dt\int \infty 
0

\lambda (F
M
n ,w)

\Bigl( \int w
0
\lambda (F

M
n ,u)du

\Bigr) k - 1

(k - 1)! e - 
\int w
0

(\lambda +qGO
x )(F

M
n ,s)dsdw

\right)   dw(4.3)

if the denominator does not vanish, otherwise pn,k(da| x) is put to be a fixed probability

measure p\ast on \scrB (A), concentrated on AI .
For notational convenience, let us introduce

Qn,k(w, x) :=
\lambda (F

M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!
e - 

\int w
0

(\lambda +qGO
x )(F

M
n ,s)ds,

so that

pn,k(da| x) :=
\int \infty 

0

\lambda (F
M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!

\times 

\Biggl( \int \infty 
w
e - 

\int t
0
(\lambda +qGO

x )(F
M
n ,s)ds(qGOx (a) + \lambda (a))F

M

n (x)t(da)dt\int \infty 
0
Qn,k(w, x)dw

\Biggr) 
dw.

It is useful to observe that if\int \infty 

0

Qn,k(w, x)dw

:=

\int \infty 

0

\left\{     
\lambda (F

M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!
e - 

\int w
0

(\lambda +qGO
x )(F

M
n ,s)ds

\right\}     dw(4.4)
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1904 ALEXEY PIUNOVSKIY AND YI ZHANG

vanishes for some k \geq 1, then so does
\int \infty 
0
Qn,l(w, x)dw for all l \in \{ 1, 2, . . . \} .

First of all, let us verify that

PS
P

x0
(Xn \in dy) = PS

M

x0
(Xn \in dy)(4.5)

as follows. The case of n = 0 is evident. Suppose it holds for some n \geq 0, and let

us prove PS
P

x0
(Xn+1 \in \Gamma | Xn = x) = PS

M

x0
(Xn+1 \in \Gamma | Xn = x) for each x \in X and

\Gamma \in \scrB (X), as follows. Note that

PS
P

x0
(Xn+1 \in \Gamma | Xn = x) =

\int 
\Xi GO

\int \infty 

0

e - 
\int s
0
qGO,\xi 
x (t)dt\~qGO,\xi (\Gamma | x, s)dspn(d\xi | x)(4.6)

=

\infty \sum 
k=0

\int 
\Xi GO

\int 
(\tau k,\tau k+1)

\~qGO(\Gamma | x, \alpha k)
k - 1\prod 
i=0

e - \psi i+1q
GO
x (\alpha i)e - (s - \tau k)qGO

x (\alpha k)dspn(d\xi | x)

=
\infty \sum 
k=0

\int 
\Xi GO

k - 1\prod 
i=0

e - \psi i+1q
GO
x (\alpha i)I\{ \psi i+1 <\infty \} \~qGO(\Gamma | x, \alpha k)

\int \psi k+1

0

e - q
GO
x (\alpha k)sdspn(d\xi | x).

Since (\Phi 0,\Psi 1), (\Phi 1,\Psi 2), . . . are mutually independent under pn(d\xi | x), we see, upon
computing the integrals with respect to pn(d\xi | x) in the above, that

PS
P

x0
(Xn+1 \in \Gamma | Xn = x)

=

\infty \sum 
k=0

k - 1\prod 
i=0

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,i(da| x)

\int 
A

\~qGO(\Gamma | x, a)
\lambda (a) + qGOx (a)

pn,k(da| x),(4.7)

where we recall that \lambda (a) + qGOx (a) \geq min\{ 1, \lambda \} > 0 for all a \in A. Let us verify for
k \geq 1 that

k - 1\prod 
i=0

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,i(da| x) =

\int \infty 

0

Qn,k(w, x)dw(4.8)

as follows. When k = 1, the left-hand side can be written as\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,0(da| x)

=

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
\times 
\int \infty 

0

e - 
\int t
0
(\lambda +qGO

x )(F
M
n ,s)ds(qGOx (a) + \lambda (a))F

M

n (x)t(da)dt

=

\int \infty 

0

\lambda (F
M

n , t)e
 - 

\int t
0
(\lambda +qGO

x )(F
M
n ,s)dsdt =

\int \infty 

0

Qn,1(w, x)dw,

as desired. (Again, we used here the fact that \lambda (a) + qGOx (a) \geq min\{ 1, \lambda \} > 0 for all
a \in A.)

Now assume that (4.8) holds for some k \geq 1, and we now must show that

k\prod 
i=0

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,i(da| x) =

\int \infty 

0

Qn,k+1(w, x)dw.

The case when the right-hand side vanishes is trivial, because it implies the same for
the left-hand side by the definition of pn,i (see (4.2) and (4.3)), and the observation
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1905

below (4.4). Thus, we assume that
\int \infty 
0
Qn,k+1(w, x)dw > 0, which is equivalent to\int \infty 

0
Qn,k(w, x)dw > 0 for all k \geq 1 as was observed below (4.4). Then, by the inductive

supposition,

k\prod 
i=0

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,i(da| x) =

k - 1\prod 
i=0

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,i(da| x)

\times 
\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,k(da| x) =

\int \infty 

0

Qn,k(w, x)dw

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,k(da| x).

The above expression is equal to

\int \infty 

0

Qn,k(w, x)dw

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)

\int \infty 

0

\lambda (F
M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!

\times 

\Biggl( \int \infty 
w
e - 

\int t
0
(\lambda +qGO

x )(F
M
n ,s)ds(qGOx (a) + \lambda (a))F

M

n (x)t(da)dt\int \infty 
0
Qn,k(w, x)dw

\Biggr) 
dw

=

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)

\int \infty 

0

\lambda (F
M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!

\times 
\biggl( \int \infty 

w

e - 
\int t
0
(\lambda +qGO

x )(F
M
n ,s)ds(qGOx (a) + \lambda (a))F

M

n (x)t(da)dt

\biggr) 
dw

=

\int \infty 

0

\biggl[ \int \infty 

w

\lambda (F
M

n , t)e
 - 

\int t
0
(\lambda +qGO

x )(F
M
n ,s)dsdt

\biggr] \lambda (FMn , w)\Bigl( \int w0 \lambda (F
M

n , u)du
\Bigr) k - 1

(k  - 1)!
dw.

Integrating by parts the above integral, we may write the previous expression as\left[   \int \infty 

w

\lambda (F
M

n , t)e
 - 

\int t
0
(\lambda +qGO

x )(F
M
n ,s)dsdt

\Bigl( \int w
0
\lambda (F

M

n , u)du
\Bigr) k

k!

\right]   
\infty 

0

+

\int \infty 

0

\Bigl( \int w
0
\lambda (F

M

n , u)du
\Bigr) k

k!
\lambda (F

M

n , w)e
 - 

\int w
0

(\lambda +qGO
x )(F

M
n ,s)dsdw =

\int \infty 

0

Qn,k+1(w, x)dw,

where for the equality, one may apply routine analysis based on \lambda (a) + qGOx (a) \geq 
min\{ 1, \lambda \} > 0 for all a \in A. This thus proves (4.8) for all k \geq 1.

We may substitute (4.8) back into (4.7):

PS
P

x0
(Xn+1 \in \Gamma | Xn = x) =

\int 
A

\~qGO(\Gamma | x, a)
\lambda (a) + qGOx (a)

pn,0(da| x) +
\infty \sum 
k=1

\int \infty 

0

Qn,k(w, x)dw

\times 
\int 
A

\~qGO(\Gamma | x, a)
\lambda (a) + qGOx (a)

pn,k(da| x) =
\int \infty 

0

\~qGO(\Gamma | x, FMn , t)e - 
\int t
0
(\lambda +qGO

x )(F
M
n ,s)dsdt(4.9)

+

\infty \sum 
k=1

\infty \int 
0

\lambda (F
M

n , w)
\Bigl( \int w

0
\lambda (F

M

n , u)du
\Bigr) k - 1

(k  - 1)!
\~qGO(\Gamma | x, FMn , t)

\infty \int 
w

e - 
\int t
0
(\lambda +qGO

x )(F
M
n ,s)dsdtdw
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1906 ALEXEY PIUNOVSKIY AND YI ZHANG

with the above equalities being valid whether
\int \infty 
0
Qn,k(w, x)dw vanishes or not; in-

deed, if
\int \infty 
0
Qn,k(w, x)dw = 0, then the summands in the last one of the previous

equalities vanish, too.
Note that, for k \geq 1,

\int \infty 

0

\lambda (F
M
n , w)

\Bigl( \int w

0
\lambda (F

M
n , u)du

\Bigr) k - 1

(k  - 1)!
\~qGO(\Gamma | x, FM

n , t)

\int \infty 

w

e - 
\int t
0 (\lambda +qGO

x )(F
M
n ,s)dsdtdw

=

\int \infty 

0

\int t

0

\lambda (F
M
n , w)

\left\{     
\Bigl( \int w

0
\lambda (F

M
n , u)du

\Bigr) k - 1

(k  - 1)!

\right\}     dw\~qGO(\Gamma | x, FM
n , t)e - 

\int t
0 (\lambda +qGO

x )(F
M
n ,s)dsdt

=

\int \infty 

0

\int t

0

\lambda (F
M
n , w)

\int 
\{ 0\leq v1\leq v2\leq \cdot \cdot \cdot \leq vk - 1\leq w\} 

k - 1\prod 
j=1

\lambda (F
M
n , vj)dv1dv2 . . . dvk - 1dw

\times \~qGO(\Gamma | x, FM
n , t)e - 

\int t
0 (\lambda +qGO

x )(F
M
n ,s)dsdt

=

\int \infty 

0

\int 
\{ 0\leq v1\leq v2\leq \cdot \cdot \cdot \leq vk - 1\leq w\leq t\} 

k - 1\prod 
j=1

\lambda (F
M
n , vj)\lambda (F

M
n , w)dv1dv2 . . . dvk - 1dw

\times \~qGO(\Gamma | x, FM
n , t)e - 

\int t
0 (\lambda +qGO

x )(F
M
n ,s)dsdt

=

\int \infty 

0

\left\{     
\Bigl( \int t

0
\lambda (F

M
n , u)du

\Bigr) k

k!

\right\}     \~qGO(\Gamma | x, FM
n , t)e - 

\int t
0 (\lambda +qGO

x )(F
M
n ,s)dsdt,

where the first equality is by the Fubini--Tonelli theorem, and for the second as well
as the last equality, recall the following equality, which is valid for any real-valued
integrable function f :\biggl( \int w

0

f(u)du

\biggr) k - 1

= (k  - 1)!

\int 
\{ 0\leq v1\leq v2\leq \cdot \cdot \cdot \leq vk - 1\leq w\} 

k - 1\prod 
j=1

f(vj)dv1dv2 . . . dvk - 1.

With the above equalities, (4.9) can be written as follows:

PS
P

x0
(Xn+1 \in \Gamma | Xn = x) =

\infty \sum 
k=0

\int \infty 

0

\left\{     
\Bigl( \int t

0
\lambda (F

M

n , u)du
\Bigr) k

k!

\right\}     \~qGO(\Gamma | x, FMn , t)(4.10)

\times e - 
\int t
0
(\lambda +qGO

x )(F
M
n ,s)dsdt =

\int \infty 

0

\~qGO(\Gamma | x, FMn , t)e - 
\int t
0
qGO
x (F

M
n ,s)dsdt

= PS
M

x0
(Xn+1 \in \Gamma | Xn = x),

as desired.
The rest verifies

ES
P

x0

\Biggl[ 
I\{ Xn \not = x\infty \} 

\int 
\Xi GO

\int 
(0,\infty ]

\int t

0

cGO,\xi i (Xn, s)dsP
S

P
,\xi 

n (\Theta n+1 \in dt| Xn)pn(d\xi | Xn)

\Biggr] 

= ES
M

x0

\Biggl[ 
I\{ Xn \not = x\infty \} 

\int \Theta n+1

0

cGOi (Xn, F
M

n , s)ds

\Biggr] 
,(4.11)D
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1907

which would complete the proof of this theorem. It is sufficient to assume in the rest
of this proof that cGOi is nonnegative and bounded on X \times A: the general case can
be handled based on this simpler case with the help of the monotone convergence
theorem.

Note that on \{ Xn \not = x\infty \} ,

\int 
(0,\infty ]

\int t

0

cGO,\xi i (Xn, s)dsP
S

P
,\xi 

n (\Theta n+1 \in dt| Xn) = ES
P
,\xi 

n

\Biggl[ \int \Theta n+1

0

cGO,\xi i (Xn, s)ds| Xn

\Biggr] 
,

where ES
P
,\xi 

n [\cdot | Xn] is understood with respect to PS
P
,\xi 

n (\Theta n+1 \in dt| Xn), which is de-
fined in (4.1); see the terms inside the parentheses therein.

Now, the left-hand side of (4.11) can be written as

ES
P

x0

\Biggl[ 
I\{ Xn \not = x\infty \} 

\int 
\Xi GO

\int 
(0,\infty ]

\int t

0

cGO,\xi i (Xn, s)dsP
S

P
,\xi 

n (\Theta n+1 \in dt| Xn)pn(d\xi | Xn)

\Biggr] 

= ES
P

x0

\biggl[ 
I\{ Xn \not = x\infty \} 

\int 
\Xi GO

ES
P
,\xi 

x0

\biggl[ \int \infty 

0

cGO,\xi i (Xn, s)I\{ s < \Theta n+1\} ds| Xn

\biggr] 
pn(d\xi | Xn)

\biggr] 
=

\int 
X

PS
P

x0
(Xn \in dx)

\biggl\{ \int 
\Xi GO

\int \infty 

0

cGO,\xi i (x, s)e - 
\int s
0
qGO,\xi 
x (t)dtdspn(d\xi | x)

\biggr\} 
.

Note that the term inside the parenthesis is in the same form as the term on the right-

hand side of (4.6), where \~qGO,\xi (\Gamma | x, s) is replaced by cGO,\xi i (x, s) with the latter term
having been assumed to be nonnegative and bounded. Therefore, the calculations in
(4.6)--(4.10) apply with obvious modifications (more precisely, replacing \~qGO(\Gamma | x, a)
by cGOi (x, a)), leading to

\mathrm{E}S
P

x0

\Biggl[ 
I\{ Xn \not = x\infty \} 

\int 
\bfXi GO

\int 
(0,\infty ]

\int t

0

cGO,\xi 
i (Xn, s)ds\mathrm{P}

S
P
,\xi 

n (\Theta n+1 \in dt| Xn)pn(d\xi | Xn)

\Biggr] 

=

\int 
\bfX 

\mathrm{P}S
P

x0
(Xn \in dx)

\Biggl\{ 
\infty \sum 

k=0

k - 1\prod 
i=0

\int 
\bfA 

\lambda (a)

\lambda (a) + qGO
x (a)

pn,i(da| x)
\int 
\bfA 

cGO
i (x, a)

\lambda (a) + qGO
x (a)

pn,k(da| x)

\right\}   
=

\int 
\bfX 

\mathrm{P}S
P

x0
(Xn \in dx)

\biggl\{ \int \infty 

0

cGO
i (x, F

M
n , t)e - 

\int t
0 qGO

x (F
M
n ,s)dsdt

\biggr\} 
,(4.12)

where for the first and the second equality, compare the corresponding terms in the
parentheses with (4.7) and (4.10).

On the other hand, the right-hand side of (4.11) can be written as

ES
M

x0

\biggl[ 
I\{ Xn \not = x\infty \} ES

M

x0

\biggl[ \int \infty 

0

cGOi (Xn, F
M

n , s)I\{ s < \Theta n+1\} ds| Xn

\biggr] \biggr] 
=

\int 
X

PS
M

x0
(Xn \in dx)

\biggl\{ \int \infty 

0

cGOi (x, F
M

n , t)e
 - 

\int t
0
qGO
x (F

M
n ,s)dsdt

\biggr\} 
.

Since PS
M

x0
(Xn \in dx) = PS

P

x0
(Xn \in dx) as was verified earlier in this proof (cf. (4.5)),

we see that the previous expression coincides with the term on the left-hand side of
(4.11), as required.
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1908 ALEXEY PIUNOVSKIY AND YI ZHANG

4.2. Poisson-related strategy in \bfscrM . Recall that \lambda \in (0,\infty ) is a fixed con-
stant. Let \Xi := [0,\infty ) \times AG \times ((0,\infty ) \times AG)\infty be the countable product. The
generic notation for an element of \Xi is still \xi = \{ (\psi n, \alpha n)\} n\geq 0, and the coordinate
random variables are still denoted, for each \xi = \{ (\psi n, \alpha n)\} n\geq 0 \in \Xi , by \Psi n(\xi ) := \psi n
and \Phi n(\xi ) := \alpha n. The context should exclude any confusion with \Xi GO. For each
n \in \{ 0, 1, . . . \} , let pn(d\xi | x) be a stochastic kernel on \scrB (\Xi ) given x \in X, which is
specified by the following: for each x \in X, under pn(d\xi | x), the coordinate random
variables \Psi 0,\Phi 0,\Psi 1,\Phi 1, . . . are mutually independent and

pn(\Psi 0 \in dt| x) = \delta 0(dt), pn(\Psi k \leq t| x) = 1 - e - \lambda t \forall k \in \{ 1, 2, . . . \} ,
pn(\Phi k \in da| x) =: pn,k(da| x) \forall k \in \{ 0, 1, 2, . . . \} .

(Hence, we have under pn(d\xi | x), \{ 
\sum n
k=0 \Psi k\} n\geq 1 is a Poisson point process.) Let

\sigma 
P,(0)
n (d\^c\times d\^b| x, \xi ) be a stochastic kernel on \scrB ([0,\infty ]\times AI) from (x, \xi ) \in X\times \Xi .

Definition 4.3. The pairs \{ (\sigma P,(0)n , pn)\} n\geq 0 =: \sigma P are called a Poisson-related
strategy in \scrM .

Given \xi = \{ (\psi n, \alpha n)\} n\geq 0 \in \Xi with the generic notation \tau n :=
\sum n
k=0 \psi k for each

n \in \{ 0, 1, . . . \} , we put

q\xi (dy| x, s) :=
\infty \sum 
k=0

q(dy| x, \alpha k)I\{ s \in (\tau k, \tau k+1]\} ,(4.13)

\~q\xi (dy| x, s) :=
\infty \sum 
k=0

\~q(dy| x, \alpha k)I\{ s \in (\tau k, \tau k+1]\} , q\xi x(s) :=

\infty \sum 
k=0

qx(\alpha k)I\{ s \in (\tau k, \tau k+1]\} .

Under a Poisson-related strategy \sigma P = \{ (\sigma P,(0)n , pn)\} n\geq 0, the transition law of
\^Xn+1 = (\^\Theta n+1, Xn+1) given \^Hn depends on \^Hn only via ( \^\Theta n, Xn) = (\theta , x) \in \^X. It is

denoted by G\sigma 
P

n , and is defined for each bounded measurable function g on \^X by\int 
\^X

g(t, y)G\sigma 
P

n (dt\times dy| (\theta , x))(4.14)

:=

\int 
[0,\infty ]\times AI\times \Xi 

\Biggl\{ \int \^c

0

\int 
X

g(t, y)\~q\xi (dy| x, t)e - 
\int t
0
q\xi x(s)dsdt

+I\{ \^c = \infty \} g(\infty , x\infty )e - 
\int \infty 
0
q\xi x(s)ds

+I\{ \^c <\infty \} e - 
\int \^c
0
q\xi x(s)ds

\int 
X

g(\^c, y)Q(dy| x,\^b)
\biggr\} 
\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x)

=:

\int 
[0,\infty ]\times AI\times \Xi 

\biggl\{ \int 
\^X

g(t, y)G\sigma 
P ,\xi 
n (dt\times dy| (\theta , x), \^c,\^b)

\biggr\} 
\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x)

for each (\theta , x) \in [0,\infty )\times X, and
\int 
\^X
g(t, y)G\sigma 

P

n (dt\times dy| (\infty , x\infty )) := g(\infty , x\infty ).

Remark 4.1. Note that, G\sigma 
P

(dt\times dy| (\theta , x)) and G\sigma P ,\xi (dt\times dy| (\theta , x), \^c,\^b), which
is defined in (4.14), see the terms inside the parentheses therein, depend on (\theta , x)

only through x \in X\infty := X \cup \{ x\infty \} , and, therefore, we will write G\sigma 
P

(dt \times dy| x)
and G\sigma 

P ,\xi (dt\times dy| x, \^c,\^b) for G\sigma P

(dt\times dy| (\theta , x)) and G\sigma P ,\xi (dt\times dy| (\theta , x), \^c,\^b) in what

follows. The same applies to l\sigma 
P ,n
i (\^x) = l\sigma 

P ,n
i (x) introduced below.
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CTMDP WITH GRADUAL-IMPULSIVE CONTROL 1909

The cost function under \sigma P over the corresponding sojourn time is given by

l\sigma 
P ,n
i (x) :=

\int 
[0,\infty ]\times AI\times \Xi 

\int \infty 

0

I\{ x \in X\} 
\biggl\{ \int t

0

cG,\xi i (x, s)ds+ I\{ t = \^c <\infty \} cIi (x,\^b)
\biggr\} 

\times G\sigma 
P ,\xi 
n (dt\times X\infty | x, \^c,\^b)\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x) \forall \^x = (\theta , x) \in \^X,(4.15)

where X\infty = X \cup \{ x\infty \} , and cG,\xi i (x, s) :=
\sum \infty 
k=0 c

G
i (x, \alpha k)I\{ s \in (\tau k, \tau k+1]\} .

The sequence \{ G\sigma P

n \} n\geq 0 together with the initial distribution \delta x0(dy)\delta 0(dt) de-

fines a probability \^P\sigma 
P

x0
on
\Bigl[ \bigcup 

n\geq 1([0,\infty )\times X)n \times \{ (\infty , x\infty )\} \infty 
\Bigr] 
\cup ([0,\infty )\times X)\infty . Let

\^E\sigma 
P

x0
be the expectation with respect to \^P\sigma 

P

x0
. The system performance under \sigma P is

measured by

\^Wi(x0, \sigma 
P ) :=

\sum 
n\geq 0

\^E\sigma 
P

x0

\Bigl[ 
l\sigma 

P ,n
i (Xn)

\Bigr] 
,

where we recall the generic notation \^Xn = (\^\Theta n, Xn) for a state variable in \scrM .

Theorem 4.4. Each pseudo-Poisson-related strategy S
P
= \{ pn\} n\geq 0 in \scrM GO can

be replicated by a Poisson-related strategy \sigma P = \{ (\sigma P,(0)n , pn)\} n\geq 0 in \scrM .

Proof. Let a pseudo-Poisson-related strategy S
P

= \{ pn\} n\geq 0 in \scrM GO be fixed.

Consider the Poisson-related strategy \sigma P = \{ (\sigma P,(0)n , pn)\} n\geq 0 in \scrM defined by the
following: on \scrB (AG), for each x \in X,

pn,k(da| x) :=

\Biggl\{ 
pn,k(da| x)
pn,k(A

G| x) if pn,k(A
G| x) > 0,

p\ast (da) otherwise,
(4.16)

where p\ast \in \scrP (AG) is fixed; for each x \in X and \xi = (\psi 0, \alpha 0, \psi 1, \alpha 1, . . . ) \in \Xi with
\tau n =

\sum n
k=0 \psi k,

\sigma P,(0)n (d\^c\times d\^b| x, \xi )(4.17)

:=

\infty \sum 
k=0

\delta \tau k(d\^c)pn,k(d
\^b| x)

k - 1\prod 
m=0

pn,m(AG| x) + \delta \infty (d\^c)

\infty \prod 
m=0

pn,m(AG| x)p\ast \ast (d\^b),

where p\ast \ast \in \scrP (AI) is a fixed probability measure. Observe that \sigma 
P,(0)
n (d\^c \times d\^b| x, \xi )

defined above depends on \xi \in \Xi only through \xi  - := (\psi 0, \psi 1, \psi 2, . . . ).
In what follows, we will show in two steps that \sigma P defined above is a required

replicating strategy.
Step 1. First, let us verify that

\^P\sigma 
P

x0
(Xn \in dy) = PS

P

x0
(Xn \in dy).(4.18)

Since the above is clearly valid when n = 0, both sides being equal to \delta x0(dy), using
an inductive argument, it is sufficient to verify that for an arbitrarily fixed \Gamma \in \scrB (X)
and x \in X, for all n \geq 0,

G\sigma 
P

n ([0,\infty )\times \Gamma | x) = PS
P

x0
(Xn+1 \in \Gamma | Xn = x),(4.19)

as follows. (Recall (4.14) and Remark 4.1 for the definition of G\sigma 
P ,\xi (dt \times dy| (x, \^c,\^b)

with a generic \sigma P .)
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1910 ALEXEY PIUNOVSKIY AND YI ZHANG

Recall the right-hand side of (4.19) was computed in (4.7), which can be now writ-
ten out more explicitly usingA = AI\cup AG, AI\cap AG = \emptyset , qGOx (a) = qx(a)I\{ a \in AG\} +
I\{ a \in AI\} , \~qGO(\Gamma | x, a) = Q(\Gamma | x, a) for each a \in AI , and \lambda (a) = \lambda I\{ a \in AG\} on A:

PS
P

x0
(Xn+1 \in \Gamma | Xn = x) =

\infty \sum 
k=0

\Biggl[ 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr] 

\times 
\biggl( \int 

AG

\~q(\Gamma | x, a)
\lambda + qx(a)

pn,k(da| x) +
\int 
AI

Q(\Gamma | x, a)pn,k(da| x)
\biggr) 

=

\infty \sum 
k=0

\Biggl[ 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr] \int 
AG

\~q(\Gamma | x, a)
\lambda + qx(a)

pn,k(da| x)(4.20)

+

\infty \sum 
k=0

\Biggl[ 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr] \int 
AI

Q(\Gamma | x, a)pn,k(da| x)

=: B1 +B2.

On the other hand, the left-hand side of (4.19) may be written as

G\sigma 
P

n ([0,\infty )\times \Gamma | x) =
\int 
\Xi 

pn(d\xi | x)
\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(s)dsdt

+I\{ \^c <\infty \} e - 
\int \^c
0
q\xi x(s)dsQ(\Gamma | x,\^b)

\Bigr\} 
\sigma P,(0)n (d\^c\times d\^b| x, \xi )

=

\int 
\Xi 

pn(d\xi | x)

\Biggl( \infty \sum 
k=0

\int \tau k

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(s)dsdtpn,k(A

I | x)
k - 1\prod 
m=0

pn,m(AG| x)

+

\int \infty 

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(s)dsdt

\infty \prod 
m=0

pn,m(AG| x)

+

\infty \sum 
k=0

e - 
\int \tau k
0 q\xi x(s)ds

\int 
AI

Q(\Gamma | x,\^b)pn,k(d\^b| x)
k - 1\prod 
m=0

pn,m(AG| x)

\Biggr) 
,(4.21)

where the first equality is by (4.14), and the second equality is by the above definition

of \sigma 
P,(0)
n ; see (4.17). Thus,

G\sigma 
P

n ([0,\infty )\times \Gamma | x) =
\int 
\Xi 

pn(d\xi | x)
\infty \sum 
k=0

\int \tau k

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(s)dsdtpn,k(A

I | x)

\times 
k - 1\prod 
m=0

pn,m(AG| x) +
\int 
\Xi 

pn(d\xi | x)
\int \infty 

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(s)dsdt

\infty \prod 
m=0

pn,m(AG| x)

+

\int 
\Xi 

pn(d\xi | x)
\infty \sum 
k=0

e - 
\int \tau k
0 q\xi x(s)ds

\int 
AI

Q(\Gamma | x,\^b)pn,k(d\^b| x)
k - 1\prod 
m=0

pn,m(AG| x)

=: C1 + C2 + C3.(4.22)

We analyze the above summands term by term as follows.
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As for C3, we see

C3 :=

\int 
\Xi 

pn(d\xi | x)
\infty \sum 
k=0

e - 
\int \tau k
0 q\xi x(s)ds

\int 
AI

Q(\Gamma | x,\^b)pn,k(d\^b| x)
k - 1\prod 
m=0

pn,m(AG| x)

=

\infty \sum 
k=0

\int 
\Xi 

pn(d\xi | x)

\Biggl( \Biggl[ 
k - 1\prod 
l=0

e - \psi l+1qx(\alpha l)

\Biggr] \int 
AI

Q(\Gamma | x,\^b)pn,k(d\^b| x)
k - 1\prod 
m=0

pn,m(AG| x)

\Biggr) 

=

\infty \sum 
k=0

\Biggl[ 
k - 1\prod 
l=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,l(da| x)

\Biggr] \int 
AI

Q(\Gamma | x,\^b)pn,k(d\^b| x)
k - 1\prod 
m=0

pn,m(AG| x)

=

\infty \sum 
k=0

\Biggl[ 
k - 1\prod 
l=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,l(da| x)

\Biggr] \int 
AI

Q(\Gamma | x,\^b)pn,k(d\^b| x) = B2,

where the second to the last equality holds by the definition of pn,l: pn,l(da| x) =

pn,l(A
G| x)pn,l(da| x) (see (4.16)), no matter whether

\prod k - 1
m=0 pn,m(AG| x) vanishes or

not, and the same remark applies to the calculations for C1 and C2 below, which will
not be repeated.

As for C1, we have

C1 =

\infty \sum 
k=0

\int 
\Xi 

pn(d\xi | x)

\Biggl( 
k - 1\sum 
l=0

\~q(\Gamma | x, \alpha l)

\Biggl( 
l - 1\prod 
\nu =0

e - \psi \nu +1qx(\alpha \nu )

\Biggr) 

\times 
\int \psi l+1

0

e - tqx(\alpha l)dtpn,k(A
I | x)

k - 1\prod 
m=0

pn,m(AG| x)

\Biggr) 

=

\infty \sum 
k=0

k - 1\sum 
l=0

\int 
AG

\~q(\Gamma | x, a)
qx(a) + \lambda 

pn,l(da| x)

\Biggl( 
l - 1\prod 
\nu =0

\int 
AG

\lambda 

\lambda + qx(a)
pn,\nu (da| x)

\Biggr) 

\times pn,k(A
I | x)

k - 1\prod 
m=0

pn,m(AG| x)

=

\infty \sum 
k=0

k - 1\sum 
l=0

\int 
AG

\~q(\Gamma | x, a)
qx(a) + \lambda 

pn,l(da| x)

\Biggl( 
l - 1\prod 
\nu =0

\int 
AG

\lambda 

\lambda + qx(a)
pn,\nu (da| x)

\Biggr) 

\times (1 - pn,k(A
G| x))

k - 1\prod 
m=l+1

pn,m(AG| x).

It is convenient to introduce the following notation:

Dl :=

\int 
AG

\~q(\Gamma | x, a)
qx(a) + \lambda 

pn,l(da| x)

\Biggl( 
l - 1\prod 
\nu =0

\int 
AG

\lambda 

\lambda + qx(a)
pn,\nu (da| x)

\Biggr) 
.

Then B1 in (4.20) can be written as

B1 =

\infty \sum 
k=0

\Biggl( 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr) \int 
AG

\~q(\Gamma | x, a)
\lambda + qx(a)

pn,k(da| x) =
\infty \sum 
l=0

Dl,

which is finite because so is the left-hand side of (4.20).
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1912 ALEXEY PIUNOVSKIY AND YI ZHANG

With the notation of Dl, we now write

C1 =

\infty \sum 
k=0

k - 1\sum 
l=0

Dl(1 - pn,k(A
G| x))

k - 1\prod 
m=l+1

pn,m(AG| x).

By a similar calculation as for C1, we may write

C2 :=

\int 
\Xi 

pn(d\xi | x)
\int \infty 

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(s)dsdt

\infty \prod 
m=0

pn,m(AG| x)

=

\infty \sum 
k=0

\int 
AG

\~q(\Gamma | x, a)
\lambda + qx(a)

pn,k(da| x)

\Biggl( 
k - 1\prod 
\nu =0

\int 
AG

\lambda 

\lambda + qx(a)
pn,\nu (da| x)

\Biggr) \prod 
m\geq k+1

pn,m(AG| x)

=

\infty \sum 
k=0

Dk

\prod 
m\geq k+1

pn,m(AG| x).

Thus, C1 + C2 equals

\infty \sum 
k=0

k - 1\sum 
l=0

Dl(1 - pn,k(A
G| x))

k - 1\prod 
m=l+1

pn,m(AG| x) +
\infty \sum 
k=0

Dk

\prod 
m\geq k+1

pn,m(AG| x)

=

\infty \sum 
l=0

Dl

\infty \sum 
k=l+1

(1 - pn,k(A
G| x))

k - 1\prod 
m=l+1

pn,m(AG| x) +
\infty \sum 
l=0

Dl

\prod 
m\geq l+1

pn,m(AG| x)

=

\infty \sum 
l=0

Dl

\left\{   \sum 
k\geq l+1

\Biggl( 
k - 1\prod 

m=l+1

pn,m(AG| x) - 
k\prod 

m=l+1

pn,m(AG| x)

\Biggr) 
+

\prod 
m\geq l+1

pn,m(AG| x)

\right\}   
=

\infty \sum 
l=0

Dl = B1.

(Recall that
\sum \infty 
l=0Dl converges.) Combining this with the previous observation, we

see that C1 +C2 +C3 = B1 +B2, and by (4.20) and (4.22), we see that (4.19) holds.
Consequently, (4.18) follows.

Step 2. In view of the definitions of \^Wi(x0, \sigma 
P ) and Wi(x0, S

P
), it remains to

show that

\^E\sigma 
P

x0
[l\sigma 

P ,n
i (Xn)] = ES

P

x0

\Biggl[ 
I\{ Xn \not = x\infty \} 

\int 
\Xi GO

\int 
(0,\infty ]

\int t

0

cGO,\xi i (Xn, s)ds

\times PS
P
,\xi 

n (\Theta n+1 \in dt| Xn)pn(d\xi | Xn)
\Bigr] 

(4.23)

for bounded [0,\infty )-valued functions cGi , c
I
i , because the general case can be handled

using the monotone convergence theorem.
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Note that for each x \in X

l\sigma 
P ,n
i (x) =

\int 
\Xi 

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

\int t

0

cG,\xi i (x, s)dsq\xi x(t)e
 - 

\int t
0
q\xi x(s)dsdt

+I\{ \^c = \infty \} 
\int \infty 

0

cG,\xi i (x, s)dse - 
\int \infty 
0
q\xi x(s)ds

+I\{ \^c <\infty \} e - 
\int \^c
0
q\xi x(s)ds

\Biggl( \int \^c

0

cG,\xi i (x, s)ds+ cIi (x,
\^b)

\Biggr) \Biggr\} 
\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x)

= lim
m\rightarrow \infty 

\int 
\Xi 

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

\int t

0

cG,\xi i (x, s)e - 
s
m dsq\xi x(t)e

 - 
\int t
0
q\xi x(s)dsdt

+I\{ \^c = \infty \} 
\int \infty 

0

cG,\xi i (x, s)e - 
s
m dse - 

\int \infty 
0
q\xi x(s)ds + I\{ \^c <\infty \} e - 

\int \^c
0
q\xi x(s)ds

\times 

\Biggl( \int \^c

0

cG,\xi i (x, s)e - 
s
m ds+ cIi (x,

\^b)

\Biggr) \Biggr\} 
\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x),

where the first equality is by (4.15) and (4.14). Applying, legitimately, integration by
parts, we see\int \^c

0

\int t

0

cG,\xi i (x, s)e - 
s
m dsq\xi x(t)e

 - 
\int t
0
q\xi x(s)dsdt

=

\int \^c

0

cG,\xi i (x, t)e - 
t
m e - 

\int t
0
q\xi x(s)dsdt - e - 

\int \^c
0
q\xi x(s)ds

\int \^c

0

e - 
s
m cG,\xi i (x, s)ds,

where all the terms are finite, \^c being finite or not, because so are cIi , c
G
i assumed.

Substituting the previous equality back into the above formula and applying the
monotone convergence theorem, we see

l\sigma 
P ,n
i (x) =

\int 
\Xi 

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

cG,\xi i (x, t)e - 
\int t
0
q\xi x(s)dsdt+ I\{ \^c <\infty \} e - 

\int \^c
0
q\xi x(s)dscIi (x,

\^b)

\Biggr\} 
\times \sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x).(4.24)

Observe that the term inside the parenthesis in the above expression is in the same
form as the one in the first equality of (4.21), where \~q\xi (\Gamma | x, t) and Q(\Gamma | x,\^b) are now

replaced with cG,\xi i (x, t) and cIi (x,
\^b), respectively. Therefore, by repeating the calcu-

lations below (4.21) in Step 1 with obvious modifications, we see that the following
equality holds, which corresponds to (4.19) (or more precisely, the established equality
C1 + C2 + C3 = B1 +B2; see more explanations below):

l\sigma 
P ,n
i (x) =

\infty \sum 
k=0

\Biggl( 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr) 

\times 
\biggl( \int 

AG

cGi (x, a)

\lambda + qx(a)
pn,k(da| x) +

\int 
AI

cIi (x, a)pn,k(da| x)
\biggr) 
.

Indeed, the term on the right-hand side of the above equality corresponds to the term
on the right-hand side of the first equality in (4.20), which coincides with the right-

hand side of (4.19), whereas it was observed earlier that l\sigma 
P ,n
i (x) corresponds to the

left-hand side of (4.19).
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Consequently, the left-hand side of (4.23) reads

\^E\sigma 
P

x0
[l\sigma 

P ,n
i (Xn)] =

\int 
X

\^P\sigma 
P

x0
(Xn \in dx)l\sigma 

P ,n
i (x) =

\int 
X

\^P\sigma 
P

x0
(Xn \in dx)

\times 

\Biggl\{ \infty \sum 
k=0

\Biggl( 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr) 

\times 
\biggl( \int 

AG

cGi (x, a)

\lambda + qx(a)
pn,k(da| x) +

\int 
AI

cIi (x, a)pn,k(da| x)
\biggr) \biggr\} 

.

On the other hand, by (4.12), we may write the right-hand side of (4.23) as

\int 
X

PS
P

x0
(Xn \in dx)

\Biggl\{ \infty \sum 
k=0

\Biggl( 
k - 1\prod 
i=0

\int 
A

\lambda (a)

\lambda (a) + qGOx (a)
pn,i(da| x)

\Biggr) 

\times 
\int 
A

cGOi (x, a)

\lambda (a) + qGOx (a)
pn,k(da| x)

\biggr\} 

=

\int 
X

PS
P

x0
(Xn \in dx)

\Biggl\{ \infty \sum 
k=0

\Biggl( 
k - 1\prod 
i=0

\int 
AG

\lambda 

\lambda + qx(a)
pn,i(da| x)

\Biggr) 

\times 
\biggl( \int 

AG

cGi (x, a)

\lambda + qx(a)
pn,k(da| x) +

\int 
AI

cIi (x, a)pn,k(da| x)
\biggr) \biggr\} 

,

where the equality is by the definitions of \lambda (a), A, cGOi , and qGO. In view of (4.18),
which was established in the above, we see from the previous equality that (4.23)
holds, as desired.

4.3. Proof of Theorem 3.1.

Proof. In view of the discussions below Proposition 3.2, we only need to show
that each strategy S in \scrM GO can be replicated by a strategy in \scrM .

According to Theorem 2 of [20] (or Theorem 4.1.1 of [21]), for each strategy S

in \scrM GO, there is a replicating Markov strategy S
M

in the same model \scrM GO (recall

Definition 2.2). Theorems 4.2 and 4.4 imply that the Markov strategy S
M

in \scrM GO

is replicated by a Poisson-related strategy \sigma P in \scrM . To complete the proof of the
statement, it remains to show that this replicating Poisson-related strategy \sigma P in \scrM 
can be replicated by an (ordinary) strategy \sigma in the same model \scrM . This is justified
as follows. Without loss of generality, we assume that cGi and cIi are nonnegative and
bounded in this proof.

Let some Poisson-related strategy \sigma P = \{ (\sigma Pn , pn)\} n\geq 0 in \scrM be fixed. Let

\sigma 
(0)
n (d\^c \times d\^b| x) :=

\int 
\Xi 
\sigma 
P,(0)
n (d\^c \times d\^b| x, \xi )pn(d\xi | x). Then, by Proposition 7.27 of [3]

(or Proposition B.1.33 of [21]), there is a stochastic kernel \^pn(d\xi | x, \^c,\^b) on \scrB (\Xi ) given

(x, \^c,\^b) \in X\times [0,\infty ]\times AI satisfying

\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x) = \^pn(d\xi | x, \^c,\^b)\sigma (0)
n (d\^c\times d\^b| x).(4.25)

We define a strategy \sigma = (\sigma 
(0)
n , \^Fn)n\geq 0 in \scrM as follows. Let \sigma 

(0)
n (d\^c\times d\^b| \^hn) :=

\sigma 
(0)
n (d\^c\times d\^b| xn) (Recall the generic notation \^xn = (\^\theta n, xn) for the state in the model
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\scrM .) Let

\^Fn(\^hn, \^c,\^b)t(da) :=

\int 
\Xi 
e - 

\int t
0
q\xi xn

(u)du\sum 
k\geq 0 \delta \alpha k

(da)I\{ \tau k < t \leq \tau k+1\} \^pn(d\xi | xn, \^c,\^b)\int 
\Xi 
e - 

\int t
0
q\xi xn (u)du\^pn(d\xi | xn, \^c,\^b)

=: \^Fn(xn, \^c,\^b),

where the generic notations \xi = \{ (\psi n, \alpha n)\} n\geq 0 \in \Xi and \tau k =
\sum k
i=0 \psi i are in use.

We will show that

\^P\sigma x0
(Xn \in dx) = \^P\sigma 

P

x0
(Xn \in dx) \forall n \geq 0.(4.26)

(Recall the generic notation \^Xn = (\^\Theta n, Xn) in the model \scrM .) Since the initial states
are the same, with an inductive argument, it is sufficient to show for \Gamma \in \scrB (X) and
x \in X,

\^P\sigma x0
(Xn+1 \in \Gamma | Xn = x) = \^P\sigma 

P

x0
(Xn+1 \in \Gamma | Xn = x) \forall n \geq 1.(4.27)

Then,

\~q(\Gamma | x, \^Fn(x, \^c,\^b)t)

=

\int 
AG

\~q(\Gamma | x, a)
\int 
\Xi 
e - 

\int t
0
q\xi x(u)du

\sum 
k\geq 0 \delta \alpha k

(da)I\{ \tau k < t \leq \tau k+1\} \^pn(d\xi | x, \^c,\^b)\int 
\Xi 
e - 

\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)

=

\int 
\Xi 
\~q\xi (\Gamma | x, t)e - 

\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)\int 

\Xi 
e - 

\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)

;

recall (4.13) for the definition of \~q\xi . Applying the above equality to \Gamma = X, we see

qx( \^Fn(x, \^c,\^b)t) =

\int 
\Xi 
q\xi x(t)e

 - 
\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)\int 

\Xi 
e - 

\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)

=  - d

dt
ln

\int 
\Xi 

e - 
\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)

for almost all t, and thus e - 
\int t
0
qx( \^Fn(x,\^c,\^b)s)ds =

\int 
\Xi 
e - 

\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b). Now,

\^P\sigma x0
(Xn+1 \in \Gamma | Xn = x) =

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

\~q(\Gamma | x, \^Fn(x, \^c,\^b))t)e - 
\int t
0
qx( \^Fn(x,\^c,\^b)s)dsdt

+ I\{ \^c <\infty \} e - 
\int \^c
0
qx( \^Fn(x,\^c,\^b)s)dsQ(\Gamma | x,\^b)

\Biggr\} 
\sigma (0)
n (d\^c\times d\^b| x)

=

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

\int 
\Xi 

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)dt

+I\{ \^c <\infty \} 
\int 
\Xi 

e - 
\int \^c
0
q\xi x(u)du\^pn(d\xi | x, \^c,\^b)Q(\Gamma | x,\^b)

\biggr\} 
\sigma (0)
n (d\^c\times d\^b| x)

=

\int 
\Xi 

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

\~q\xi (\Gamma | x, t)e - 
\int t
0
q\xi x(u)dudt+ I\{ \^c <\infty \} e - 

\int \^c
0
q\xi x(u)duQ(\Gamma | x,\^b))

\Biggr\} 
\times \sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x) = \^P\sigma 

P

x0
(Xn+1 \in \Gamma | Xn = x),(4.28)
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where the second to the last equality is by (4.25), and for the last equality, see (4.14).
Thus, (4.27) is verified, and (4.26) follows.

Finally, one can show with a similar argument as for (4.24) that

\^E\sigma x0

\Bigl[ 
li( \^Xn, \^An, \^Xn+1)| Xn = x

\Bigr] 
=

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

cGi (x, \^Fn(x, \^c,
\^b)t)

\times e - 
\int t
0
qx( \^Fn(x,\^c,\^b)s)dsdt+ I\{ \^c <\infty \} e - 

\int \^c
0
qx( \^Fn(x,\^c,\^b)s)dscIi (x,

\^b)

\Biggr\} 
\sigma (0)
n (d\^c\times d\^b| x),

where li was defined by (2.2). Having inspected that the term in the parenthesis of
the last equality is in the same form as the term on the right-hand side of the first
equality in (4.28), we see now

\^E\sigma x0

\Bigl[ 
li( \^Xn, \^An, \^Xn+1)| Xn = x

\Bigr] 
=

\int 
\Xi 

\int 
[0,\infty ]\times AI

\Biggl\{ \int \^c

0

cG,\xi i (x, t)e - 
\int t
0
q\xi x(u)dudt

+ I\{ \^c <\infty \} e - 
\int \^c
0
q\xi x(u)ducIi (x,

\^b))

\Biggr\} 
\sigma P,(0)n (d\^c\times d\^b| x, \xi )pn(d\xi | x) = l\sigma 

P ,n
i (x),

where the first equality corresponds to the second to the last equality in (4.28), and
the last equality holds by (4.24). The previous equality and (4.26) imply that

\^E\sigma x0

\Bigl[ 
li( \^Xn, \^An, \^Xn+1)

\Bigr] 
= \^E\sigma 

P

x0

\Bigl[ 
l\sigma 

P ,n
i (Xn)

\Bigr] 
for all n \geq 0. The statement is thus proved.
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