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A SECOND ORDER ACCURATE, OPERATOR SPLITTING SCHEME

FOR REACTION-DIFFUSION SYSTEMS IN AN ENERGETIC

VARIATIONAL FORMULATION

CHUN LIU∗, CHENG WANG† , AND YIWEI WANG‡

Abstract. A second-order accurate in time, positivity-preserving, and unconditionally energy
stable operator splitting numerical scheme is proposed and analyzed for the system of reaction-
diffusion equations with detailed balance. The scheme is designed based on an energetic variational
formulation, in which the reaction part is reformulated in terms of the reaction trajectory, and both
the reaction and diffusion parts dissipate the same free energy. At the reaction stage, the reaction
trajectory equation is approximated by a second-order Crank-Nicolson type method. The unique
solvability, positivity-preserving and energy-stability are established based on a convexity analysis.
In the diffusion stage, an exact integrator is applied if the diffusion coefficients are constant, and a
Crank-Nicolson type scheme is applied if the diffusion process becomes nonlinear. In either case, both
the positivity-preserving property and energy stability could be theoretical established. Moreover,
a combination of the numerical algorithms at both stages by the Strang splitting approach leads
to a second-order accurate, structure preserving scheme for the original reaction-diffusion system.
Numerical experiments are presented, which demonstrate the accuracy of the proposed scheme.

1. Introduction. In this work, we consider the following type of reaction diffu-
sion systems

(1.1) ∂tci = ∇ · (Di(ci,x)∇ci) + ri(c), i = 1, . . . N,

where ci > 0 is the concentration of i-th species, Di(ci,x) are diffusion coefficients,
and ri(c) are nonlinear reaction terms for the chemical reaction

(1.2) αl
1X1 + αl

2X2 + . . . αl
NXN −−⇀↽−− βl

1X1 + βl
2X2 + . . . βl

NXN , l = 1, . . . ,M.

Such a type of reaction-diffusion systems can be found in many mathematical models
in chemical engineering, biology, soft matter physics and combustion theory, see [10,
29, 30, 33, 37, 46, 51, 52, 53, 58, 60] for examples.

Numerical simulation for the reaction-diffusion system (1.1) turns out to be very
challenging, due to the stiffness brought by the reaction term. Moreover, a naive
discretization to (1.1) may fail to preserve the positivity and the conservation property
in the original system [23]. To overcome these difficulties, many numerical methods
have been developed to solve reaction kinetics and reaction-diffusion systems [5, 23,
32, 62], including some operator splitting approaches [8, 15, 25, 26, 62].

It has been discovered that for certain form of reaction-diffusion systems, in which
the reaction part describes the reversible chemical reaction satisfying the law of mass
action with detailed balance condition, the whole system admits an energy-dissipation
law, which opens a door of developing structure-preserving numerical schemes. In
more details, under certain conditions, which will be specified in the next section, the
reaction-diffusion system (1.1) can be reformulated as a combination of two general-
ized gradient flows (with different patterns) for a single free energy [39, 59]. Since the
reaction and diffusion parts of the original system dissipate the same free energy, it
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is natural to use an operator splitting approach to develop an energy stable scheme
for the whole system. Based on this variational structure, a first order accurate oper-
ator splitting scheme has been constructed in a recent work [41], with the variational
structure theoretically preserved for the numerical solution. In this approach, since
the physical free energy is in the form of logarithmic functions of the concentration c,
a linear function of reaction trajectories R, the positivity-preserving analysis of the
numerical scheme at both stages has been established. Similar to the analysis in a
recent article [9] for the Flory-Huggins Cahn-Hilliard flow, an implicit treatment of
the nonlinear singular logarithmic term is crucial to theoretically justify its positivity-
preserving property. A more careful analysis reveals that, the convex and the singular
natures of the implicit nonlinear parts prevent the numerical solutions approach the
singular limiting values, so that the positivity-preserving property is available for the
density variables of all the species. A detailed convergence analysis and error esti-
mate have also been reported in a recent work [42]. However, it is a not trivial task
to develop a second order accurate operator splitting scheme based on this idea. In
fact, most existing works of second order energy stable scheme for gradient flows are
multi-step algorithms, based on either modified Crank-Nicolson or BDF2 temporal
discretization, and a multi-step approximation to the concave terms is usually needed
to ensure both the unique solvability and energy stability. On the other hand, a single
step, second order approximation has to be accomplished at each stage in the operator
splitting approach, while a theoretical justification of positivity-preserving and energy
stability turns out to be very challenging.

In this article, we propose and analyze a second order accurate operator splitting
scheme for the reaction-diffusion system with the detailed balance condition. Fol-
lowing the energetic variational formulation, the splitting scheme solves the reaction
trajectory equation of R at the reaction stage, and solves the diffusion equation for
c in the diffusion stage. To overcome the above-mentioned difficulties, we make use
of a numerical profile created by the first order convex splitting algorithm, which is
proved to be a second order accurate approximation to the physical quantity at time
step tn+1, to construct a second order approximation to the mobility part. Then an
application of modified Crank-Nicolson formula leads to a second order approxima-
tion to the mobility function at the intermediate time instant tn+1/2. Meanwhile, the
physical energy does not contain any concave part in the reaction-diffusion system, so
that a single step, modified Crank-Nicolson method leads to a second order accurate
algorithm. In addition, an artificial second order Douglas-Dupont-type regularization
term [9], in the form of ∆t

∑N
i=1 σi(µi(R

n+1 −Rn))), is added in the chemical poten-
tial, to ensure the positivity-preserving property. The energy stability is derived by
a careful energy estimate, because of the choice in the modified Crank-Nicolson ap-
proximation. These techniques lead to a second order accurate, positivity preserving
and energy stable algorithm in the reaction stage.

In the diffusion stage, an exact integrator, so called exponential time differencing
(ETD) method is applied if the diffusion coefficients are constant. Such an ETD
method solves the diffusion stage equation exactly (by keeping the finite difference
spatial discretization), so that both the positivity-preserving and energy stability are
ensured. If the diffusion coefficients are nonlinear, we have to apply a similar idea as
in the reaction stage: a predictor-corrector approach in the mobility approximation
and a modified Crank-Nicolson algorithm for the chemical potential. In either case,
both the positivity-preserving and energy stability could be theoretically justified for
the numerical solution in the diffusion stage. Finally, a combination of the numerical
algorithms at both stages by the Strang splitting approach leads to a second-order
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accurate, structure preserving scheme for the original reaction-diffusion system.
The rest of this article is organized as follows. The energetic variational approach

is reviewed in Section 2, for the reaction-diffusion systems with the detailed balance
condition. Subsequently, the second-order operator splitting scheme is presented in
Section 3. The positivity-preserving and energy stability analyses will be provided
at each stage as well. Some numerical results will be presented in Section 4, to
demonstrate the performance of the second order operator splitting scheme.

2. Review of the energetic variational approach for reaction-diffusion

systems. In this section, we briefly review the energetic variational approach for
reaction-diffusion systems with detailed balance, which will be the foundation of the
second order operator splitting scheme developed in the next section. We refer inter-
ested readers to [41, 59] for more detailed descriptions.

The energetic variational approach (EnVarA) [22, 27, 40], which is inspired by
the seminal works of Rayleigh [55] and Onsager [48, 49], provides a systematic way
to derive the dynamics of the system from a prescribed energy-dissipation law. In
more details, an energy-dissipation law, which comes from the first and second law of
thermodynamics, can be written as

d

dt
Etotal = −△,

for an isothermal closed system, where Etotal is the total energy, including both the
kinetic energy K and the Helmholtz free energy F , and△ ≥ 0 is the energy dissipation
rate which is equal to the entropy production in the process. The energy-dissipation
law, along with the kinematics of employed variables, describe all the physics and
the assumptions in the system. Starting with an energy-dissipation law, the EnVarA
derives the dynamics of the systems through two variational principles, the Least
Action Principle (LAP) and the Maximum Dissipation Principle (MDP). The LAP,
which states the equation of motion for a Hamiltonian system can be derived from

the variation of the action functional A =
∫ T

0 K−Fdt, with respect to the flow maps,
gives a unique procedure to derive the conservative force for the system. In the MDP,
variation of the dissipation potential D, which equals to 1

2△ in the linear response
regime, with respect to the rate (such as velocity), gives the dissipation force for the
system. In turn, the force balance condition leads to the evolution equation to the
system

δD

δxt
=
δA

δx
.

In this formulation, the energy-dissipation law, along with the kinematics of state vari-
ables,describes all the physics and the assumptions for a given system. The energetic
variational approach has been successfully applied to build up many mathematical
models [27], including systems with chemical reactions [59, 60]; it has also provided a
guideline of designing structure-preserving numerical schemes for systems with varia-
tional structures [41, 44, 45], etc.

2.1. Reaction kinetics. Consider a system with N species {X1, X2, . . . XN}
and M reversible chemical reactions given by

(2.1) αl
1X1 + αl

2X2 + . . . αl
NXN −−⇀↽−− βl

1X1 + βl
2X2 + . . . βl

NXN , l = 1, . . . ,M.

3



Denote c = (c1, c2, . . . , cN )T, the concentrations of all species. The variable vector c
satisfies the reaction kinetics

(2.2) ∂tci =
M∑

l=1

σilrl(c),

where rl(c) is the reaction rate for l−the chemical reaction, and σil = βl
i − αl

i is the
stoichiometric coefficients. From (2.2), it is noticed that

(2.3)
d

dt
(e · c) = e · σr(c(t), t) = 0, for e ∈ Ker(σT).

In turn, one can define N−rank(σ) linearly independent conserved quantities for the
reaction network. In the classical chemical kinetics, rl(c) is determined by the law of
mass action (LMA), which states that the reaction rate is directly proportional to the
product of the reactant concentrations, i.e.,

(2.4) rl(c) = k+l c
αl

− k−l c
βl

, c
αl

=

N∏

i=1

c
αl

i

i , c
βl

=

N∏

i=1

c
βl
i

i ,

in which k+l and k−l are the forward and backward reaction constants for the l-th
reaction.

The free energy of the system can be written as [47, 59]

(2.5) F [ci] =

∫ N∑

i=1

(ci(ln ci − 1) + ciUi) dx,

where the first part stands for the entropy, and Ui is the internal energy associated
with each species. In general, Ui depends on c and x, and the choice of Ui determines
the equilibrium of the system. We assume that Ui is a constant throughout this
paper. Moreover, it has been shown that the reaction kinetics (2.2) along with the
law of mass action (2.4) admits a Lyapunov function if there exists a strictly positive
equilibrium point c∞ ∈ R

N
+ , satisfying

(2.6) kl+c
αl

∞ = kl−c
βl

∞, l = 1, . . .M.

The condition is known as the detailed balance condition. Within c∞, one can define
the Lyapunov function as

(2.7) F [ci] =

N∑

i=1

ci

(
ln

(
ci
c∞i

)
− 1

)
.

It can be noticed that c∞i and Ui are related through

(2.8)

N∑

i=1

αl
i(ln c

∞
i + Ui) =

N∑

i=1

βl
i(ln c

∞
i + Ui), l = 1, . . . ,M.

To transform the reaction kinetics into a variational frame, it is important to
introduce another state variable R ∈ R

M , known as the reaction trajectory [50, 59],
or the extent of reaction [12, 36]. The l-th component of R(t) corresponds to the
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number of l-th reaction that has happened by time t in the forward direction. For
any initial condition c(0) ∈ R

N
+ , the value of c(t) can be represented in terms of R as

the following formula

(2.9) c(t) = c(0) + σR(t), σ ∈ R
N×M is the stoichiometric matrix.

This equation can be viewed as the kinematics of a reaction kinetics, which embodies
the conservation properties (2.3). In particular, the positivity of c requires a constraint
on R:

σR(t) + c(0) > 0.

Subsequently, the reaction rate r can be defined as Ṙ, known as the reaction velocity
[36]. In the framework of the EnVarA, we can describe the reaction kinetics through
the energy-dissipation law in terms of R(t) and Ṙ:

(2.10)
d

dt
F [c(R)] = −Dchem[R, Ṙ],

where Dchem[R, Ṙ] is the rate of energy dissipation in the chemical reaction process.
Unlike mechanical systems, the rate of energy dissipation for reaction kinetics may
not be quadratic in terms of Ṙ, since the system is often far from equilibrium [4, 14].
For a general nonlinear energy dissipation

(2.11) Dchem[R, Ṙ] =
(
Γ(R, Ṙ), Ṙ

)
=

M∑

l=1

Γl(R, Ṙ)Ṙl ≥ 0,

since

(2.12)
d

dt
F =

(
δF

δR
, Ṙ

)
=

M∑

l=1

δF

δRl
Ṙl,

one can specify

(2.13) Γl(R, Ṙ) = −
δF

δRl
.

such that the energy-dissipation law (2.10) holds. Equation (2.13) is the reaction rate
equation obtained by an energetic variational approach. It is interesting to notice
that

(2.14)
δF

δRl
=

N∑

i=1

δF

δci

δci
δRl

=

N∑

i=1

σl
iµi,

which turns out to be the chemical affinity, and µi = δF
δci

is the chemical potential
of i−th species. The chemical affinity is the driving force of the chemical reaction
[12, 13, 36], and the dissipation makes a connection between the reaction rate Ṙ and
the chemical affinity. A typical choice of mathcalDchem[R, Ṙ] is given by

(2.15) Dchem[R, Ṙ] =

M∑

l=1

Ṙl ln
( Ṙl

ηl(c(R))
+ 1
)
.
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One can derive the law of mass action by taking ηl(c(R)) = k−l c(R)
βl . Since Ṙl ≈ 0

near an equilibrium, we see that

(2.16) Dchem[R, Ṙ] =

M∑

l=1

Ṙl ln

(
Ṙl

ηl(c(R))
+ 1

)
≈

N∑

i=1

1

ηl(c(R))
Ṙ2

l , Rl ≪ 1.

In turn, the energy-dissipation law (2.10) becomes an L2-gradient flow in terms of R.

Remark 2.1. In Onsager’s celebrated paper [48], instead of writing Dchem[R, Ṙ]
as a non-quadratic form, it was argued that chemical affinity (2.14) can be linearized
near the equilibrium, i.e. c

0 is closed to c
∞ and R(t) is close to zero.

The reaction kinetics can be viewed as a generalized gradient flow, with a non-
linear mobility in terms of the reaction trajectory. Hence, it is expected that the
numerical techniques for L2-gradient flows can be applied to reaction kinetics.

2.2. Reaction-diffusion systems. One can extend the energetic variational
formulation for reaction kinetics to reaction-diffusion system with detailed balance,
which is the foundation of the operator splitting scheme developed in the next section.
For a reaction-diffusion system with N species and M reactions, the concentration
c ∈ R

N satisfies the kinematics

(2.17) ∂tci +∇ · (ciui) =
(
σṘ

)
i
, i = 1, 2, . . .N,

where ui is the average velocity of each species by its own diffusion, R ∈ R
M rep-

resents various reaction trajectories involved in the system, with σ ∈ R
N×M being

the stoichiometric matrix as defined in section 2.1. The quantities ui and R can be
obtained through an energy-dissipation law [6, 59]

(2.18)
d

dt
F [c(R)] = −(2Dmech +Dchem),

which leads to a reaction-diffusion equation. Here F [c] is the free energy given by
(2.5), and Dmech and Dchem are dissipations for the mechanical and reaction parts,
respectively. One key point is that the reaction and diffusion parts of the system
dissipate the same free energy. To derive the reaction diffusion equation (1.1), Dmech

could be taken as

2Dmech =

∫

Ω

N∑

i=1

ηi(ci)|ui|
2dx, ηi is the friction coefficient,

and Dchem could be taken as

Dchem =

∫

Ω

M∑

l=1

Ṙl ln

(
Ṙl

η(c(R))

)
dx.

The energetic variational approach could be applied to the reaction and diffusion
parts, respectively, so that the “force balance equation” is obtained for the chemical
and mechanical subsystems. Formally, a direct computation implies that

(2.19)
d

dt
F [c] =

N∑

i=1

(ci∇µi,ui) +

M∑

l=1

(
N∑

i=1

σl
iµi, Ṙl

)
,
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which in turn gives

(2.20)

{
ηi(ci)ui = −ci∇µi, i = 1, 2, . . .N,

ln
(

Ṙl

η(c(R))

)
= −

∑N
i=1 σ

l
iµi, l = 1, . . . ,M.

In particular, a linear reaction-diffusion system can be obtained by choosing ηi(ci) =
1
Di
ci:

(2.21) ∂tci = Di∆ci + (σ∂tR)i, (σ∂tR)i is the reaction term.

Other choices of ηi(ci) can result in some porous medium type nonlinear diffusion
equation [44]

(2.22) ∂tci = ∇ · (D(ci)∇ci) + (σ∂tR)i,

where D(ci) =
ci

η(ci)
is the concentration-dependent diffusion coefficient.

In this formulation, the reaction part is reformulated in terms of reaction trajec-
tories R, and the reaction and diffusion parts impose different dissipation mechanisms
for the same physical energy.

3. The second-order operator splitting scheme. In the section, we con-
struct a second-order operator splitting scheme to a reaction-diffusion system based
on the energetic variational formulation outlined in the last section, in which the nu-
merical discretization for the reaction part is applied to the reaction trajectory R in
the reaction space, while the numerical method for the diffusion part is designed to
the concentration c in the species space. To illustrate the idea, we focus on a case
with one reversible detailed balance reaction, given by

(3.1) α1 X1 + . . . αr Xr

k+

1−−⇀↽−−
k−

1

βr+1 Xr+1 + . . . βN XN,

where k+1 and k−1 are constants. Moreover, we assume that the reaction-diffusion
system satisfies the energy-dissipation law (2.18). Numerical schemes for systems
involving multiple reversible reactions can be constructed in the same manner.

To simplify the numerical description, the reaction-diffusion equation (2.22) can
be rewritten as

(3.2) c = Ac+ Bc,

where A is a reaction operator and B a diffusion operator. Throughout this section,
the computational domain is taken as Ω = (0, 1)3 with a periodic boundary condition,
and ∆x = ∆y = ∆z = h = 1

N0
with N0 being the spatial mesh resolution throughout

this section; a computational domain with other boundary condition or numerical
mesh could be analyzed in a similar fashion. In addition, the discrete free energy is
defined as follows, with the given spatial discretization:

(3.3) Fh(c) := 〈

N∑

i=1

(ci(ln ci − 1) + ciUi) ,1〉,

where 〈f, g〉 = h3
∑N0−1

i,j,k=0 fi,j,kgi,j,k denotes the discrete L2 inner product.
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Following the second-order Strang splitting formula c
n+1 = e

1
2
∆tAe∆tBe

1
2
∆tA

c
n

[57], the numerical solution c
n+1 can be obtained through three stages. Given c

n

with c
n
i,j,k ∈ R

N
+ , we update c

n+1 via the following three stages.
Stage 1. First, we set c0 = c

n and solve the reaction trajectory equation, subject
to the initial condition Rn = 0, with a second-order, positivity-preserving, energy-
stable scheme, with the temporal step-size ∆t/2. An intermediate numerical profile
is updated as

(3.4) c
n+1,(1) = c

n + σRn+1,(1).

Stage 2. Starting with the intermediate variable c
n+1,(1), we solve the diffusion

equation ∂tc = Bc by a second-order, positivity-preserving and energy-stable scheme
with the temporal step-size ∆t to obtain c

n+1,(2).
Stage 3. We set c0 = c

n+1,(2) and repeat the stage 1, i.e., solving the reaction
trajectory equation, subject to the initial condition Rn = 0 with the temporal step-
size ∆t/2 to obtain Rn+1,(2). The numerical solution at tn+1 is updated as

(3.5) c
n+1 = c

n+1,(2) + σRn+1,(2).

More details of the numerical algorithms at each stage will be provided in the
following subsections.

3.1. Second-order algorithm for reaction kinetics. We first develop a sec-
ond order algorithm for the reaction stage, which only needs to be constructed in a
point-wise sense. The discrete free energy can be reformulated in terms of R at each
mesh point, denoted by

(3.6) F (R) =

N∑

i=1

ci(R)(ln ci(R)− 1) + ci(R)Ui.

For simplicity of presentation, we omit the grid index throughout this subsection. Fol-
lowing the earlier discussions, for a given initial condition c

0, the reaction trajectory
equation is given by

(3.7)

{
ln
(

Rt

η(c(R)) + 1
)
= −µ(R),

µ(R) = δF
δR =

∑N
i=1 σiµi(ci(R)),

where η(c(R)) is the nonlinear mobility that takes the form η(c(R)) = k−1
∏N

i=r+1 c
βi

i ,

c(R) = c
0 + σR with σ = (−α1,−α2, . . . ,−αr, β1, β2, . . . , βN )T is the stoichiometric

vector, and µi(ci) = ln ci + Ui is the chemical potential associated with i-species.
Similar to an L2−gradient flow, a second-order algorithm for the reaction trajectory
equation (3.7) can be constructed through a Crank-Nicolson type discretization

(3.8) ln

(
Rn+1 −Rn

η(c(R∗))∆t
+ 1

)
= −µn+1/2,

where µn+1/2 is a suitable approximation to the chemical affinity, F ′(R), at tn+1/2,

R∗ is an approximation to Rn+1/2, which needs to be independent on Rn+1. The
primary difficulty is focused on the construction of R∗ and µn+1/2, to ensure the
unique solvability, as well as the positivity of Rn+1 −Rn + η(c(R∗))∆t and c(Rn+1).
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First, we use a first-order scheme to obtain a rough “guess” to Rn+1, denoted by
R̂n+1, as a numerical solution to

(3.9) ln

(
R̂n+1 −Rn

η(c(Rn))∆t
+ 1

)
=

N∑

i=1

σiµi(R̂
n+1),

in the admissible set. This first-order scheme was proposed in [41], while the unique

solvability and the positivity preserving property have been proved. With R̂n+1 at
hand, we introduce R∗ = (Rn + R̂n+1)/2. Although (3.9) corresponds to a first order

truncation error, we see that R̂n+1 is a second order approximation to Rn+1, locally
in time, due to the ∆t term in the denominator. In turn, R∗ becomes a second order

approximation to Rn+1/2. To approximate
(
δF
δR

)n+1/2
, we apply the idea of discrete

variational derivative method [21, 24]. More specifically, the following function is
introduced

(3.10) φ(p, q) =

{
F (p)−F (q)

p−q , p 6= q,

F ′(p), p = q,

as a second-order approximation to F ′(p+q
2 ). In fact, it is also known as the discrete

variation of F (R) [24].
With the combined arguments, the second-order algorithm is constructed as

(3.11)

{
ln
(

Rn+1−Rn

η(c(R̂n+1/2))∆t
+ 1
)
= −µ

n+1/2
R , R̂n+1/2 = 1

2 (R
n + R̂n+1),

µ
n+1/2
R = φ(Rn+1, Rn) + ∆t

∑N
i=1 σi(µi(R

n+1)− µi(R
n)).

The term ∆t
∑N

i=1 σ(µi(R
n+1) − µi(R

n)) is added for the theoretical analysis the
positivity-preserving property. This O(∆t2) term is artificial, and it will not effect
the second order accuracy in the temporal discretization.

This algorithm can be reformulated as an optimization problem

(3.12)





R = argminR∈Vn
Jn(R),

Jn(R) = Ψn(R,R
n) +

∫ R

Rn φ(s,R
n)ds+ λ(∆tF (R) − (γn, R)),

Vn =
{
R | ci(R) > 0, R−Rn + η(c(R̂n+1/2))∆t > 0

}
,

where γn = ∆t
∑N

i=1 σiµi(ci(R
n)), and

(3.13) Ψn(R,R
n) = (R−Rn+η(c(R̂n+1/2))∆t) ln

(
R−Rn

η(c(R̂n+1/2))∆t
+ 1

)
−(R−Rn)

is a function that measures the “distance” between R and Rn. An explicit form of
Jn(R) is not available. On the other hand, we can prove that Jn(R) admits a unique
minimizer in the admissible set. More precisely, the following theorem is valid.

Theorem 3.1. Given c
n > 0 and Rn = 0, there exists a unique solution Rn+1

for the minimization problem (3.12), which turns out to be the unique solution for

the numerical scheme (3.11), with c(Rn+1) > 0 and Rn+1 + η(c(R̂n+1/2))∆t > 0.
Therefore, the numerical scheme is well-defined.
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To facilitate the proof of this result, the following smooth functions are introduced,
for fixed a > 0:

(3.14)

G1
a(x) =

x lnx− a ln a

x− a
,

G0
a(x) =

∫ x

a

G1
a(s)ds,

G2
a(x) = (G0

a)
′′(x) = (G1

a)
′ =

x− a+ a(ln a− lnx)

(x − a)2
.

By a direct calculation, it is straightforward to prove the following results, which will
be used in the proof of Theorem 3.1.

Lemma 3.1. For any fixed a > 0, we have: (1) G2
a(x) ≥ 0 for any x > 0; (2)

G0
a(x) is convex in terms of x; (3) There exists ξ between a and x such that (G1

a)
′(x) =

1
ξ ; (4) Since G

1
a(x) increases in terms of x, we have G1

a(x) ≤ G1
a(a) for any 0 < x ≤ a.

Now we can proceed into the proof of Theorem 3.1.

Proof. Recall the minimization problem (3.12), and it is clear that Jn(R) is a
strictly convex function over Vn. We only need to prove that the minimizer of Jn(R)
over V could not occur on the boundary of V , so that a minimizer corresponds to a
numerical solution of (3.11) in Vn.

The following closed domain is considered in the analysis:

Vδ =
{
R | ci(R) ≥ δ, R −Rn + η(c(R̂n+1/2))∆t ≥ δ

}
⊂ V .(3.15)

A careful calculation indicates that, for any R ∈ Vδ, the following bounds are satisfied

(3.16) max
1

βi
(δ − c0i ) ≤ R ≤ min

1

αi
(c0i − δ), R ≥ Rn − η(c(R̂n+1/2))∆t+ δ,

i.e., Vδ = [max 1
βi
(δ−c0i ),min 1

αi
(c0i−δ)] or Vδ = [Rn−η(c(R̂n+1/2))∆t+δ,min 1

αi
(c0i−

δ)]. Since Vδ is a bounded, compact set, there exists a (may not unique) minimizer
of Jn(R) over Vδ. Moreover, we have to prove that, such a minimizer could not occur
on the boundary points in Vδ, if δ is sufficiently small, by using the singular property
of logarithmic function approaches to 0.

Without loss of generality, the minimization point is assumed to be R∗ = Rn −
η(c(R̂n+1/2)∆t+ δ. A direct calculation gives

(3.17) J ′
n(R) |R=R∗ = ln δ + φ(R∗, Rn) + ∆t(µ(R∗)− γn).

Next we show that φ(R∗, Rn) +∆t(µ(R∗)− γn) is bounded, so that we can choose δ
sufficiently small with

J ′
n(R) |R=R∗< 0,(3.18)

which leads to a contradiction since there will be R∗′

= Rn−η(c(R̂n+1/2))∆t+δ+δ′ ∈
Vδ such that

Jn(R
∗′

) < Jn(R
∗).(3.19)

To derive a bound for φ(R∗, Rn) + ∆t(µ(R∗)− γn), we notice that

(3.20) φ(R∗, Rn) =

N∑

i=1

σiG
1
cni
(c0i + σiR

∗) +

N∑

i=1

σi(Ui − 1),
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where cni = c0i +σiR
n and

∑N
i=1 σi(Ui− 1) is a constant. Since G1

a(x) is an increasing
function of x for any a > 0, the following inequality is valid:
(3.21)
G1

cni
(c0i + σiR

∗) = G1
cni
(c0i + σi(R

n − η̂n∗∆t− δ)) = G1
cni
(c0i + σiR

n − σi(η̂
n∗∆t− δ))

≥ G1
cni
(c0i + σiR

n) = ln cni + 1, σi < 0,

in which δ is sufficiently small such that η̂n∗∆t− δ > 0. Similarly, we have

(3.22) G1
cni
(c0i + σiR

∗) ≤ G1
cni
(c0i + σiR

n) = ln cni + 1, σi > 0,

with δ sufficiently small such that η̂n∗∆t− δ > 0. Hence,

(3.23)

φ(R∗, Rn) =

N∑

i=1

σiG
1
cni
(c0i + σiR

∗) +

N∑

i=1

σi(Ui − 1)

≤

N∑

i=1

σi ln c
n
i + C0, C0 =

N∑

i=1

σiUi.

Following the same argument, the following inequality could be derived:

(3.24)
µ(R∗) =

N∑

i=1

σiµi(ci + σiR
∗) =

N∑

i=1

σi ln(c
0
i + σiR

∗) +

N∑

i=1

σiUi

≤ σi ln(c
n
i ) + C0,

since lnx is an increasing function of x. A combination of (3.23) and (3.24) gives

(3.25) J ′
n(R) |R=R∗≤ ln δ + C1,

where Ci = (1 + ∆t)
∑N

i=1 σi ln(c
n
i ) + (1 + ∆t)C0 − ∆tγn is a constant. So we can

choose δ small enough such that J ′
n(R) |R=R∗< 0, which leads to the contradiction

inequality (3.19).
Using similar arguments, if R∗ = min 1

αi
(c0i − δ) = 1

αq
(c0q − δ), we can prove that

(3.26) J ′
n(R) |R=R∗≥ C2 +∆t(−αq) ln δ.

Then δ can be chosen to be sufficiently small such that J ′
n(R) |R=R∗> 0, which leads

to a contradiction. Meanwhile, if R∗ = max 1
βi
(δ− c0i ), we will have J

′
n(R) |R=R∗< 0.

As a result, the global minimum of Jn(R) over Vδ could only possibly occur at
an interior point, if δ is sufficiently small. In turn, there is a minimizer R∗ ∈ (Vδ)

o,
in the interior region of Vδ, of Jn(R

∗), so that J ′
n(R) = 0. In other words, R∗ has to

be the numerical solution of (3.11), provided that δ is sufficiently small. Therefore,
the existence of a “positive” numerical solution is proved. In addition, since J(R) is
a strictly convex function over V , the uniqueness of this numerical solution follows
from a standard convexity analysis. The proof of Theorem 3.1 is finished.

The energy stability of the numerical scheme (3.11) is stated below.

Theorem 3.2. For a given Rn, the numerical solution Rn+1 to (3.11) satisfies
the energy-dissipation estimate

(3.27) F (Rn+1) ≤ F (Rn), at a point-wise level.
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Proof. Multiplying both side of (3.11) by Rn+1−Rn and rearranging terms yields

(3.28)

F (Rn+1)− F (Rn)

∆t
=−

Rn+1 −Rn

∆t
ln

(
Rn+1 −Rn

η(c(R̂n+1/2))∆t
+ 1

)

−

N∑

i=1

σi(µ
n+1
i − µn

i )(R
n+1 −Rn)

≤−
Rn+1 −Rn

∆t
ln

(
Rn+1 −Rn

η(c(R̂n+1/2))∆t
+ 1

)
≤ 0.

In the derivation of the above inequality, the following fact has been used:
(3.29)
σi(µ

n+1
i − µn

i )(R
n+1 −Rn) = σi(ln(c

0
i + σiR

n+1)− ln(c0i + σiR
n))(Rn+1 −Rn) ≥ 0,

which comes from the monotonic property of the logarithmic function.

Remark 3.1. Without the additional term ∆t
∑N

i=1 σi(µi(R
n+1) − µi(R

n)), the
discrete energy dissipation law (3.28) is an exact time discretization to the continuous
energy-dissipation law, which is the advantage of the discrete variational derivative
method. It is crucial to add this term to establish the positivity-preserving property of
the numerical solution in the admissible set. Also see the related numerical analysis
for the Cahn-Hilliard gradient flow with Flory-Huggins energy potential [9, 17, 18, 19],
the Poisson-Nernst-Planck (PNP) system [43, 54], etc.

Remark 3.2. There have been extensive works of second order accurate, energy
stable numerical schemes to various gradient flows, based on either modified Crank-
Nicolson [1, 2, 16, 28, 31, 56] or BDF2 [38, 61] approach. Meanwhile, most existing
works are multi-step methods, since a multi-step approximation to the concave terms
is usually needed to ensure both the unique solvability and energy stability. However,
for the operator splitting method, a single step, second order approximation has to be
accomplished at each stage, so that these standard approach is not directly available.
To overcome this difficulty, we construct a numerical profile R̂n+1, a local-in-time
second order approximation of R at time step tn+1, so that a multi-step approximation
to the mobility function is avoided. In addition, the fact that the physical energy does
not contain any concave part enables one to derive a single step, modified Crank-
Nicolson method, while preserving the energy stability.

3.2. Second-order schemes in the diffusion stage. In this subsection, we
present two positivity-preserving and energy-stable numerical algorithms for linear
and nonlinear diffusion processes, respectively, which could be used in the diffusion
stage. In particular, the cross-diffusion is not considered, so that the N diffusion
equations of ci are fully decoupled. Therefore, we only need to construct numerical
algorithms for a diffusion equation

(3.30) ρt = ∇ · (D(ρ,x)∇ρ), D(ρ,x) is the diffusion coefficient.

In fact, this diffusion equation satisfies an energy-dissipation law

(3.31)

∫
ρ ln ρ+ Cρdx = −

∫
M(ρ,x)|∇µ|2dx,

where M(ρ,x) = D(ρ,x)ρ is known as the mobility, C is an arbitrary constant,
∇µ = ∇(ln ρ) turns out to be the gradient of the chemical potential µ = ρ ln ρ+Cρ+1.
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With a careful spatial discretization, the discrete energy is defined as

(3.32) Fh(ρ) := 〈ρ ln ρ+ Cρ,1〉.

3.2.1. An ETD scheme for a linear diffusion. We first consider a linear
diffusion with a constant coefficient, given by

(3.33) ρt = Lρ, L = D∆, D > 0,

subject to the periodic boundary condition. Of course, the solution of linear diffusion
equation (3.33) satisfies the following maximum principle:

(3.34) max
Ω

ρ(x, t) ≤ max
Ω

ρ(x, 0), min
Ω
ρ(x, t) ≥ min

Ω
ρ(x, 0), ∀t > 0.

An easy way to obtain a high-order scheme to a linear diffusion equation is to
apply the exponential time differencing (ETD) method [11, 35], which is indeed exact
in time. More precisely, we can introduce the spatial discretization to (3.33) by the
standard centered difference method, which leads to

(3.35) ∂tρ = Lhρ.

Integrating the above equation over a single time step from t = tn to tn+1, we get

(3.36) ρn+1 = eLh∆tρn,

which is known as the ETD scheme [11].
Due to the discrete maximum principle [20], the following positivity-preserving

property is obvious.

Theorem 3.3. Given ρn, with ρni,j,k > 0, 0 ≤, i, j, k ≤ N0 − 1, there exists a

unique solution ρn+1 for the numerical scheme (3.36), with discrete period boundary
condition, with ρn+1

i,j,k > 0, 0 ≤ i, j, k ≤ N0 − 1.

With the positivity-preserving and unique solvability for the numerical scheme (3.36),
it is straightforward to prove an unconditional energy stability.

Theorem 3.4. For the numerical solution (3.36), we have

(3.37) Fh(ρ
n+1) ≤ Fh(ρ

n),

so that Fh(ρ
n) ≤ Fh(ρ

0
h), an initial constant.

Proof. Taking a discrete inner product with (3.35) by ln ρ gives

(3.38) 〈 d
dtρ, ln ρ〉 = −〈∇hρ,∇h(ln ρ)〉.

By a direct calculation, we have

(3.39)
d

dt
Fh(ρ) = 〈 d

dtρ, ln ρ〉 = −〈∇hρ,∇h(ln ρ)〉 ≤ 0,

where the last inequality is due to the monotone property of the logarithmic function.
This completes the proof.

In fact, such a stability is available for not only Fh(ρ) given by (3.32), but also
for all the convex energies. The following estimate could be derived using similar
techniques.

Corollary 3.1. For the numerical solution (3.35), we have Fh(ρ
n+1) ≤ Fh(ρ

n)
for any n ≥ 0, and Fh(ρ) taking a form of

F(ρ) = 〈F (u),1〉, in which F is a convex function of ρ, for ρ > 0.
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3.2.2. Second-order scheme for a nonlinear diffusion equation. The ETD
scheme is not suitable for nonlinear diffusion equations. The construction of a second-
order accurate, positivity-preserving and energy stable scheme for a generalized non-
linear diffusion equation has always been very challenging. Here we present a general
approach to achieve this goal. For simplicity of presentation, it is assumed that the
diffusion coefficient D(ρ) depends only explicitly on ρ. The case of x-dependent co-
efficients could be handled in a similar manner.

The idea is quite similar to the scheme (3.11) in the reaction stage. First, we need
a rough guess ρ̂n+1, which has to be point-wise positive, as a second order temporal
approximation to ρn+1. The simplest way to obtain such a rough guess ρ̂n+1 is to use
the classical semi-implicit scheme

(3.40)
ρ̂n+1 − ρn

∆t
= ∇h ·

(
Ah[D(ρn)]∇hρ̂

n+1,(2)
)
,

where ∇h and ∇h· stand for the discrete gradient and the discrete divergence respec-
tively, Ah[D(ρn)] is a spatially averaging operator introduced to obtain the value of
D(ρn) at staggered mesh points. As proved in a recent work, the semi-implicit scheme
(3.40) satisfies the following uniquely solvable and positivity-preserving properties.

Proposition 3.1. [41] Given ρn, with ρni,j,k > 0, 0 ≤ i, j, k ≤ N0, there exists a

unique solution ρn+1 for the numerical scheme (3.40), with discrete periodic boundary
condition, with ρn+1

i,j,k > 0, 0 ≤ i, j, k ≤ N0.

It is observed that, although the truncation error for (3.40) is only O(∆t) in
the temporal discretization, a one-step computation would lead to an O(∆t2) ap-
proximation to the PDE solution of ρt = Bρ at time step tn+1, as long as ρn re-
tains a second order temporal accuracy. Within the rough guess ρ̂n+1, we define
ρ̂n+1/2 = 1

2 (ρ
n + ρ̂n+1), which is an O(∆t2) approximation to ρ at the time instant

tn+1/2. Thus, a second-order accurate scheme can be constructed through Crank-
Nicolson type discretization, along with the discrete variational derivative method
[21, 24]:

(3.41)





ρn+1−ρn

∆t = ∇h(M
n+1/2
h ∇hµ

n+1/2),

µn+1/2 = F (ρn+1)−F (ρn)
ρn+1−ρn +∆t(ln ρn+1 − ln ρn),

M
n+1/2
h = Ah(D(ρ̂n+1/2)ρ̂n+1/2),

where F (ρ) = ρ ln ρ+Cρ is the free energy density. Similar to the derivation of (3.11),
the artificial regularization term ∆t(ln ρn+1− ln ρn), which does not affect the overall
accuracy, is needed in the theoretical justification of the positivity-preserving prop-
erty; see the following theorem.

Theorem 3.5. Given ρn, with ρni,j,k > 0, ∀0 ≤ i, j, k ≤ N0 − 1, there exists

a unique solution ρn+1 for the numerical scheme (3.41), with the discrete periodic
boundary condition satisfying ρn+1

i,j,k > 0.

To simplify the notation, we introduce an average operator:

f =
h3

|Ω|

N−1∑

i,j,k=0

fi,j,k,

and define a hyperplane in RN3
0 , with dimension (N3

0 − 1):

H =
{
ρi,j,k = β0 + ψi,j,k :

∑N0−1
i,j,k=0ψi,j,k = 0

}
.(3.42)
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Meanwhile, we recall a preliminary estimate, which has been proved in a recent work
[9]. Let CΩ be the space of grid function on Ω. For any

(3.43) ϕ ∈ C̊Ω = {ν ∈ CΩ|ν̄ = 0},

there exists a unique ξ ∈ C̊Ω that solves

(3.44) LM̆(ξ) = ϕ, where LM̆(ξ) := −∇h · (M̌∇hξ).

In turn, the following discrete norm can be defined:

(3.45) ‖ϕ‖L−1

M̆

=
√
〈ϕ,L−1

M̌
(ϕ)〉,

which is a discrete weighted H−1-norm associated with a non-constant mobility.

Lemma 3.2. [9] Suppose that ϕ1, ϕ2 ∈ Cper, with 〈ϕ1−ϕ2, 1〉 = 0, i.e., ϕ1−ϕ2 ∈

C̊per, and assume that ‖ϕ1‖∞, ‖ϕ2‖∞ ≤Mh, and M ≥ M0 at a point-wise level. Then
we have the following inequality:

(3.46) ‖L−1
M̌

(ϕ1 − ϕ2)‖∞ ≤ C2 := C̃2M
−1
0 h−1/2.

where C̃2 > 0 depends only upon Mh and Ω.

Now we proceed into the proof of Theorem 3.5.

Proof. The mass conservative property of the numerical solution (3.41) is obvious:

(3.47) ρn+1 = ρn := β0.

A direct calculation implies that, if ρn+1 with ρn+1
i,j,k > 0 is the numerical solution

of (3.41), ρn+1 is a minimization of the following discrete energy functional:

(3.48) Jn(ρ) =
1

2∆t
‖ρ− ρn‖L

M̌n + 〈G0
ρn(ρ) + ∆t(ρ ln ρ+ Cnρ),1〉,

over the admissible set

V H
h :=

{
ρ = β0 + ψ | ψ̄ = 0, 0 < ρi,j,k < Mh, ∀(i, j, k)

}
.(3.49)

Here Cn = C − 1−∆t(1 + ln ρn), G0
ρn(ρ) is defined in (3.14), and Mh = β0

h3 .
To this end, we consider the following closed domain:

V H
h,δ =

{
ψ : ψ = 0, δ ≤ ρi,j,k ≤Mh

}
⊂ V H

h .(3.50)

Since V H
h,δ is a bounded, compact set in the hyperplane H , there exists a (may not

unique) minimizer of Jh(ψ) over V
H
h,δ. The key point of the positivity analysis is that,

such a minimizer could not occur on the boundary points (in H) if δ is small enough.
For a given ρn with ρni,j,k > 0, we can assume that ρn satisfies the following

bounds

(3.51) ǫ0 ≤ ρni,j,k ≤Mh − ǫ0, ∀0 ≤ i, j, k ≤ N0 − 1.

Assume a minimizer of Jn(ρ) occurs at a boundary point of V H
h,δ. Without loss of

generality, we set the minimization point as ρ∗i,j,k, with ρ
∗
i0,j0,k0

= δ. In addition, we
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denote the grid point that ρ∗ reaches the maximum value as (i1, j1, k1). It is obvious
that ρ∗i1,j1,k1

≥ β0, because of the fact that ρ∗ = β0.
To obtain a contradiction, we compute the direction derivative of Jn(ρ) along the

direction
(3.52)

δψ = δi,i0δj,j0δk,k0 − δi,i1δj,j1δk,k1
∈ C̊per, δk,l is the Kronecker delta function,

and the following identity is valid:

1

h3
Jn(ρ

∗ + sδψ)− Jn(ρ
∗)

s

∣∣∣
s=0

=
1

∆t
(LM̌n(ρ∗ − ρn))i0,j0,k0

− LM̌n(ρ∗ − ρn))i1,j1,k1
)

+ (G1
ρn(ρ∗))i0,j0,k0

− (G1
ρn(ρ∗))i1,j1,k1

+∆t(ln ρ∗i0,j0,k0
− ln ρ∗i1,j1,k1

) + 〈Cn, δψ〉.

In addition, by the fact that ρ∗i0,j0,k0
= δ and ρ∗i1,j1,k1

≥ β0, we get

(3.53) ln ρ∗i0,j0,k0
− ln ρ∗i1,j1,k1

≤ ln δ − lnβ0.

In the meantime, the following inequality could be derived, based on Lemma 3.2:

1

∆t
|(LM̌n(ρ∗ − ρn))i0,j0,k0

− LM̌n(ρ∗ − ρn))i1,j1,k1
)| ≤ 2C̃2M

−1
0 h−1/2∆t−1.

Since G1
a(x) is an increasing function in term of x > 0 for any fixed a > 0, and ρn

satisfies the bound (3.51), it is straightforward to obtain

(G1
ρn(ρ∗))i0,j0,k0

− (G1
ρn(ρ∗))i1,j1,k1

+ 〈Cn, δψ〉

≤ lnMh + 1−G1
ǫ0(β0) + ∆t(lnMh − ln ǫ0).

As a consequence, a combination of the above estimates leads to

(3.54)
1

h3
Jn(ρ

∗ + sδψ)− Jn(ρ
∗)

s

∣∣∣
s=0

≤ D0 +∆t(ln δ − lnβ0),

where D0 = 2C̃2M
−1
0 h−1/2∆t−1+lnMh+1−G1

ǫ0(β0)+∆t(lnMh− ln ǫ0), a constant
for fixed ∆t and h. Hence, we can choose δ to sufficiently small such that

(3.55)
1

h3
Jn(ρ

∗ + sδψ)− Jn(ρ
∗)

s

∣∣∣
s=0

< 0.

This inequality contradicts with the assumption that ρ∗ is a minimizer of Jn(ρ).
Therefore, a minimizer of Jn(ρ) cannot occur on the boundary of V H

h,δ if δ is small

enough. In other words, the minimizer of Jn(ρ) over V H
h could only possibly occur

at its interior point, which gives a solution of the numerical scheme (3.41). The
uniqueness of this numerical solution comes from a direct application of the strict
convexity of Jn(ρ). The proof of Theorem 3.5 is complete.

With the positivity-preserving property and the unique solvability established,
we can further prove the following unconditional energy stability.

Theorem 3.6. For the numerical solution (3.41), we have

Fh(ρ
n+1) ≤ Fh(ρ

n), with Fh(ρ
n) = 〈ρn ln ρn + Cρn,1〉.(3.56)
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Proof. Taking a discrete inner products with (3.41) by µn+1/2 yields

1

∆t
〈ρn+1 − ρn, µn+1/2〉 = −〈M

n+1/2
h ∇hµ

n+1/2,∇hµ
n+1/2〉 ≤ 0(3.57)

Notice that

(3.58)
〈ρn+1 − ρn, µn+1/2〉 = Fh(ρ

n+1)−Fh(ρ
n) + ∆t〈ρn+1 − ρn, ln ρn+1 − ln ρn〉

≥ Fh(ρ
n+1)−Fh(ρ

n),

due to monotonic property of the logarithmic function. Then we arrive at

(3.59) Fh(ρ
n+1)−Fh(ρ

n) ≤ −〈M
n+1/2
h ∇hµ

n+1/2,∇hµ
n+1/2〉 ≤ 0.

Remark 3.3. It is worth emphasizing that, the discretization presented in (3.41)
is based on the H−1-gradient flow structure of the diffusion equations. One can also
construct a variational structure preserving scheme for diffusion equations by using the
Lagrangian methods [7, 34, 44], which treat diffusion equations as an L2-gradient flow
in the space of diffeomorphism, or the numerical methods for Wasserstein gradient
flows in the space of probability measure [3].

3.3. The second order accurate operator splitting scheme. The second-
order operator splitting scheme could be formulated as follows, based on the previous
analyses.

Given c
n with c

n
i,j,k ∈ R

N
+ , we update c

n+1 via the following three stages.
Stage 1. Setting c0 = c

n and solving the reaction trajectory equation, subject to
the initial condition Rn = 0, using scheme (3.11) with a temporal step-size ∆t/2. An
intermediate numerical profile is updated as

(3.60) c
n+1,(1) = c

n + σRn+1,(1).

Stage 2. Starting with the intermediate variable c
n+1,(1), we solve the diffusion

equation ∂tc = Bc by applying either scheme (3.36) (for constant diffusion coefficient)
or scheme (3.41) (for nonlinear diffusion coefficient), with a temporal step-size ∆t, to
obtain c

n+1,(2).
Stage 3. We set c0 = c

n+1,(2) and repeat the numerical algorithm at stage 1, i.e.,
solving the reaction trajectory equation, subject to the initial condition Rn = 0, by
scheme (3.11) with the temporal step-size ∆t/2 to obtain Rn+1,(2). The numerical
solution at tn+1 is updated as

(3.61) c
n+1 = c

n+1,(2) + σRn+1,(2).

The following theoretical result for the second-order operator splitting scheme can be
established, based on Theorem 3.1 - 3.6.

Theorem 3.7. Given c
n with c

n
i,j,k ∈ R

N
+ , ∀0 ≤ i, j, k ≤ N0 − 1 and a discrete

period boundary condition,, there exists a unique solution c
n+1 with c

n+1
i,j,k ∈ R

N
+ , ∀0 ≤

i, j, k ≤ N0 − 1, for the second order accurate operator splitting numerical scheme. In
addition, we have the energy dissipation estimate:

Fh(c
n+1) ≤ Fh(c

n),

so that Fh(c
n) ≤ Fh(c

0), a constant independent of h.
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4. The numerical results.

4.1. Reaction kinetics. In this subsection, we test the accuracy order for the
algorithm (3.11), by considering a simple reaction kinetics (with α > 0):

(4.1)





dc1
dt

= c2 − αc1,

dc2
dt

= αc1 − c2.

In fact, this equation corresponds to a simple reversible chemical reaction X1
a

−−⇀↽−−
1

X2.

For any given initial value ci(0) = c0i , the exact solution turns out to be

(4.2) c1(t) =

(
1 +

(
c01
c∞1

− 1

)
exp(−(a+ 1))t

)
c∞1 , c2(t) = c01 + c02 − c1(t),

with c∞1 = (c01 + c02)/(α + 1) being the equilibrium concentration of X1. Following
the earlier analysis, we introduce R as the reaction trajectory, so that the energy-
dissipation law becomes

(4.3)
d

dt

(
2∑

i=1

ci(ln ci − 1) + c1 ln a+ c2 ln(1)

)
= −Ṙ ln

(
Ṙ

c2
+ 1

)
.

To test the numerical accuracy order, we display the errors between the numerical
solution and exact solution at T = 1 in Table 4.1, with a sequence of step sizes ∆t.
An almost perfect second order temporal accuracy is observed.

∆t Error Order
1/20 2.0882e-3
1/40 5.3413e-4 1.9670
1/80 1.3577e-4 1.9760
1/160 3.4279e-5 1.9858
1/320 8.6159e-6 1.9923
1/640 2.1600e-06 1.9960

Table 4.1: Error table for the linear ODE system (4.1)

4.2. Reaction-diffusion systems. In this subsection, we consider the reaction-
diffusion system

(4.4)

{
∂tu = Du∆u

α − k+1 uv
2 + k−1 v

3

∂tv = Dv∆v + k+1 uv
2 − k−1 v

3,

where α ≥ 1 is a constant, Du > 0 and Dv > 0 are diffusion coefficients. The reaction
part of (4.4) describes the chemical reaction

U + 2V
k1

+

−−−⇀↽−−−
k1

−

3V.
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U�V U#V U+V

U/V U2V U7V

Fig. 4.1: Numerical solutions for the reaction-diffusion system (4.4) with α = 1 (a - c) and α = 2
(d - f) at t = 0.2 (a and d), t = 0.5 (b and e) and t = 0.7 (c and f).

with the law of mass action. The the whole system satisfies the energy-dissipation
law

d

dt

∫

Ω

u(lnu− 1 + Uu) + v(ln v − 1 + Uv)dx

= −

∫

Ω

Ṙ ln

(
Ṙ

k−1 v
3
+ 1

)
+ αuαDu|∇µu|

2 +Dv|∇µv|
2dx.

The internal energies can be taken as Uu = ln k+1 and Uv = ln k−1 so that Ṙ =
k+1 uv

2 − k−1 v
3.

For α = 1, we apply the ETD scheme (3.36) to solve the diffusion parts for both
u and v. Otherwise we use scheme (3.41) for u and use the ETD scheme for v. The
computational domain is taken as Ω = (−1, 1)2, and a periodic boundary condition
is imposed for both u and v. The initial value is set as

u = (− tanh((
√
x2 + y2 − 0.4)/0.1) + 1)/2 + 1;

v = (tanh((
√
x2 + y2 − 0.4)/0.1) + 1)/2 + 1.

Other parameters are taken as: Du = 0.2, Dv = 0.1, k+1 = 1 and k−1 = 0.1.
Fig. 4.1 shows the numerical solutions at t = 0.2, 0.5 and 0.7 for α = 1 and

α = 2 respectively, which are obtained by taking h = ∆t = 1/20. The discrete free
energy evolutions corresponding to these two numerical solutions are displayed in Fig.
4.2, which clearly demonstrate the energy stability of the operator splitting scheme
in both linear and nonlinear diffusion cases.

Next we test for numerical accuracy of the operator splitting scheme. As analyt-
ical forms of the exact solutions are not available, we perform a Cauchy convergence
test for numerical simulations for α = 1 and α = 2, respectively, at T = 0.2, before
the systems reach their constant equilibria. We compute the ℓ∞ differences between
numerical solutions with consecutive spatial resolutions, hj−1, hj and hj+1, with
∆tj = hj. Since we expect the numerical scheme preserves a second order spatial
accuracy, the following quantity could be computed

ln
(

1
A∗ ·

‖uhj−1
−uhj

‖∞

‖uhj
−uhj+1

‖∞

)

ln
hj−1

hj

, A∗ =
1−

h2
j

h2
j−1

1−
h2
j+1

h2
j

, for hj−1 > hj > hj+1,

to check the convergence order [43]. As demonstrated in Tables 4.2 and 4.3, an almost
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Fig. 4.2: The discrete free energy evolutions corresponding to numerical solutions for the reaction-
diffusion system (4.4) with α = 1 and α = 2 (h = ∆t = 1/20).

perfect second order accuracy has been achieved for both the linear and nonlinear
diffusion cases.

— ψ = u Order ψ = v Order
‖ψh1

− ψh2
‖∞ 4.1625e-3 - 3.6818e-3 -

‖ψh2
− ψh3

‖∞ 1.5357e-3 1.8700 1.3581e-3 1.8705
‖ψh3

− ψh4
‖∞ 7.3080e-4 1.9036 6.4788e-4 1.8950

‖ψh3
− ψh4

‖∞ 4.0386e-4 1.9230 3.5830e-4 1.9197

Table 4.2: The ℓ∞ differences and convergence order for the numerical solutions of u, and v for
(4.4) with α = 1. Various mesh resolutions are used: h1 = 1

20
, h2 = 1

30
, h3 = 1

40
, h4 = 1

50
, h5 = 1

60
,

and the time step size is taken as ∆tj = hj .

— ψ = u Order ψ = v Order
‖ψh1

− ψh2
‖∞ 4.4205e-3 - 2.6961e-3 -

‖ψh2
− ψh3

‖∞ 1.4508e-3 2.1586 9.4864e-4 1.9870
‖ψh3

− ψh4
‖∞ 6.1387e-4 2.3120 4.3720e-4 2.0150

‖ψh3
− ψh4

‖∞ 3.1575e-4 2.2446 2.4420e-4 1.8752

Table 4.3: The ℓ∞ differences and convergence order for the numerical solutions of u, and v for
(4.4) with α = 2 at T = 0.2. Various mesh resolutions are used: h1 = 1

20
, h2 = 1

30
, h3 = 1

40
,

h4 = 1

50
, h5 = 1

60
, and the time step size is taken as ∆tj = hj .

5. Concluding remarks. A second-order accurate, operator splitting numer-
ical scheme is developed for reaction-diffusion equations with the detailed balance
condition based on their variational structures. The key idea is to design an operator
splitting scheme such that each stage dissipates the same free energy, according to
the variational structure associated with the original system. In the reaction part,
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the reaction trajectory equation is solved by using the numerical techniques from
L2−gradient flows, based on a modified Crank-Nicolson approach. In the diffusion
part, an ETD algorithm gives an exact time integration for a linear diffusion process,
while a semi-implicit algorithm is applied for a nonlinear diffusion. A combination
of the numerical algorithms at both stages by the Strang splitting approach leads to
the proposed operator splitting scheme. Moreover, the unique solvability, positivity-
preserving property, as well as an unconditionally energy stability can be proved for
each stage; as a result, the combined splitting scheme also satisfies these theoretical
properties. Similar ideas can be applied to other dissipative systems with multiple
dissipation mechanisms. A few numerical results have also been presented to demon-
strate the numerical performance.
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