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Abstract

In this work, we are concerned with a Fokker-Planck equation related to the nonlinear
noisy leaky integrate-and-fire model for biological neural networks which are structured by
the synaptic weights and equipped with the Hebbian learning rule. The equation contains
a small parameter ε separating the time scales of learning and reacting behavior of the
neural system, and an asymptotic limit model can be derived by letting ε → 0, where the
microscopic quasi-static states and the macroscopic evolution equation are coupled through
the total firing rate. To handle the endowed flux-shift structure and the multi-scale dynam-
ics in a unified framework, we propose a numerical scheme for this equation that is mass
conservative, unconditionally positivity preserving, and asymptotic preserving. We provide
extensive numerical tests to verify the schemes’ properties and carry out a set of numerical
experiments to investigate the model’s learning ability, and explore the solution’s behavior
when the neural network is excitatory.

Key words: Fokker-Planck equation, Nonlinear Noisy Leaky Integrate-and-Fire model,
neuron network, structure preserving scheme, asymptotic preserving, multiscale model.
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1 Introduction

In biological neural networks, neurons transmit information in two ways: one is conveying rapid
and transient electrical signals on their membranes, and the other is sending neurotransmitters
at a synapse. The learning and memory of the network is based on the connection weights of
the synapses among the neurons [1]. How a neural network with a given structure reacts to the
environment and how the neural network’s infrastructure is modified by the environment in the
long run are two of the essential topics in neural science.

Mathematically, there has been plenty of models describing the neural networks’ behavior
from all scales and sizes. The most successful single-neuron model is undoubtedly the Hodgkin-
Huxley model [2] and its simplification, the Fitzhugh-Nagumo model [3]. However, when model-
ing large-scale biological neural networks, these models are far too complicated and impractical.
Therefore, scientists and mathematicians usually adopt the integrate-and-fire model [4] when
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modeling the system that consists of a large number of neurons [5, 6, 7, 8, 9, 10]. One of the
most widely used version of the integrate-and-fire model is the nonlinear noisy leaky integrate
and fire model (NNLIF). In this model, when the firing event does not occur, the membrane
potential V (t) of a neuron is influenced by a relaxation to a resting potential VI , an incoming
synaptic current I(t) from other neurons and the background. The current I(t) is approximately
decomposed into a drift term and a term of Brownian motion. The SDE, in the simplest form,
is given by

dV = − (V − VI) dt+ µdt+ σdBt, (1.1)

where the parameters µ and σ are determined by the synaptic current I(t). The distinguished
feature of this model is the incorporation of the firing event: when a neuron reaches a firing
potential VF , it discharges itself and the potential jumps to a resetting potential VR immediately
[11, 12]. Here, we assume, VR < VF , and the firing event is expressed by

V
(
t−
)

= VF , V
(
t+
)

= VR. (1.2)

(1.1) and (1.2) constitute the stochastic process for the NNLIF model, which is a SDE coupled
with a renewal process. By Itô’s formula, one can derive the time evolution of the density function
p(v, t) [13, 14], which represents the probability of finding a neuron at the voltage v and given
time t: 

∂p

∂t
+

∂

∂v
(hp)− a∂

2p

∂v2
= N(t)δ(v − VR), t ∈ (0,∞), v ∈ (−∞, VF ),

p(v, 0) = p0(v), p(−∞, t) = p(VF , t) = 0,
(1.3)

where

N(t) = −a∂p
∂v

(VF , t) (1.4)

stands for the firing rate of the network, a = σ2/2 stands for the amplitude of the noise, δ(·)
stands for the Dirac delta function, and

h = h(v,N(t)) = −v + I + wN(t) (1.5)

stands for the rate of the rising of the neurons’ potential, consisting of a decay term −v, an
external input function I and a group reaction term wN(t). The coefficient w in (1.5) can be
either positive or negative. In the simplest scenario, w is a constant. We say that the neural
network is excitatory when w > 0, and inhibitory when w < 0.

When it comes to the learning behavior of the biological neural network, the most seminal
work is the Hebbian rule [15] stated as a motto “neurons that fire together wire together”. A very
simple mathematical setup of this rule is as follows: assuming that the strength of weights wij
between two neurons i and j increases when the two neurons have high activity simultaneously.
For M neurons in interactions, the classical Hebbian rule relates the weights to the activity Ni
of the neuron i as

d

dt
wij = kijNiNj − wij , 1 ≤ i, j ≤M.

In [16], the authors designed a model that integrates the NNLIF model and the Hebbian
rule stated above. They considered a heterogeneous population of homogeneous neural networks
structured by their synaptic weights w ∈ (−∞,+∞), negative sign standing for inhibitory neu-
rons and positive sign standing for excitatory neurons. They introduced a learning rule in order
to modulate the distribution of synaptic weights H and allow the network to recognize some
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given input signals I by choosing an appropriate heterogeneous synaptic weight distribution H
adapted to the signal I. They assumed that the subnetworks interact only via the total firing rate
N , with synaptic weights described with a single variable w. And they gave the following inter-
pretation: all the subnetworks parametrized by w may modulate their intrinsic synaptic weight
w with respect to a function Φ which depends on the intrinsic activity N(w) of the network
parametrized by w and of the total activity of the network N . Then, the proposed generalization
of the Hebbian rule consists in choosing

Φ(N(w), N) = NN(w)K(w), N =

∫ ∞
−∞

N(w)dw, (1.6)

where K(·) represents the learning strength of the subnetwork with synaptic weight w. Adding
the above choice of the learning rule, they obtained the following equation

∂p

∂t
+

∂

∂v
[(−v + I(w) + wσ(N(t)))p] + ε

∂

∂w
[(Φ− w)p]− a∂

2p

∂v2
= N(w, t)δ (v − VR) , (1.7)

where ε stands for a time scale ratio which takes into account that learning is slower than the
typical voltage activity of the network.

If we want to study the learning behavior of the model, we may further perform a time
rescaling t→ t/ε for (1.7) to arrive at

∂p

∂t
+

∂

∂w
[(N(t)N(w, t)K(w)− w)p]

=
1

ε

{
a
∂2p

∂v2
− ∂

∂v
[(−v + I(w) + wσ(N(t)))p] +N(w, t)δ(v − VR)

}
for (v, w, t) ∈ (−∞, VF )× (−∞,+∞)× (0, T ),

N(w, t) = −a∂p
∂v

(VF − 0, w, t) ≥ 0, N(t) =

∫ ∞
−∞

N(w, t)dw,

(1.8)

where ∂p
∂v (VF − 0, w, t) means the left derivative in the v direction and the corresponding initial

and boundary conditions are

p(VF , w, t) = 0, p(−∞, w, t) = 0, p(v,±∞, t) = 0, p(v, w, 0) = p0(v, w). (1.9)

Here p(v, w, t) at a fixed time t describes the probability density of finding a neuron with synaptic
weight w and voltage v, henceforth the probability density of finding a single neuron with synaptic
weight w is defined as

H(w, t) =

∫ VF

−∞
p(v, w, t)dv, (1.10)

and the normalization condition of probability ensures that
∫ +∞
−∞ H(w, t)dw = 1 holds for all

t ≥ 0. N(w, t) describes the firing rate of the neurons with synaptic weight w, at time t and
N(t) describes the entire network’s firing rate at time t summing over all the synaptic weights.
a is a positive noise coefficient. The model is a multi-scale transport equation, where the v-
wise transport represents the integrate-and-fire dynamics of the neural network, and the w-wise
transport represents the network’s learning behavior.

Systematic understanding of the model (1.8) is largely lacking, although some of its properties
were proved in [16]. Particularly, the numerical studies are far from sufficient for understanding
the possible uses and limitations of this model. In this work, we further explore this model from
a numerical perspective. Specifically, we aim to design a structure-preserving numerical scheme
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for (1.8), and further explore this model with extensive numerical experiments to investigate
possible solution structures and interpretations.

In our work, we propose a numerical scheme with the positivity preserving and asymptotic
preserving properties. There are two key ingredients that make our scheme meet the desired
properties. The first one is the Scharfetter-Gummel symmetric reconstruction [17] of the v-wise
convection and diffusion terms in (1.8). The second one is that we treat the flux shift term
Nδ(v − VR) in (1.8) implicitly. With the symmetric reconstruction and this implicit treatment,
we can prove that implementing our scheme means inverting a so-called M -matrix at each time
step, and the positivity preserving properties of the scheme is independent of the respective
ratio between ∆t and ∆v or ε. The only grid ratio requirement is that ∆t/∆w has to satisfy
the w-wise CFL condition, which is a natural requirement. Furthermore, when letting ε → 0
without adjusting ∆t, we obtain a numerical scheme consistent with the asymptotic behavior of
the model, consisting of a w-wise convection equation for H(w, t) defined in (1.10) and a v-wise
quasi-steady equation for p(v, w, t) with given H(w, t).

Numerical methods for Fokker-Planck type equations are abundant in the literature. In
recent years many works have been proposed to preserve the structure of the solution such as
mass conservation, positivity, entropy decay, and steady state preserving. This often relies on
delicate choice of numerical fluxes and suitable time discretization. Without being exhaustive,
we mention a few relevant works. Regarding spatial discretization, there are mainly two kinds
of methods: one is based on formulating the equation into the transport form and using upwind
fluxes [18]. This is later extended to general nonlinear aggregation and diffusion equations [19].
The other is based on formulating the equation into the diffusion form (i.e., Scharfetter-Gummel
form). Depending on how to choose the fluxes, it bifurcates to several variants, for example, the
Chang-Cooper scheme [20] and its generalization [21]; the symmetrized finite difference scheme
[17], and more recently the high order finite difference scheme [22]. Regarding time discretization,
high order explicit or semi-implicit schemes (c.f. [23]) can be used. However, we mention that
to get positivity preserving implicit schemes for Fokker-Planck type equations, one is basically
limited to first order scheme [24, 25, 26, 27]. The only exception we are aware of is the second
order exponential method in [28] which is applicable to the linear Fokker-Planck equation and
hard to generalize to more general cases. For the above reason, we limit ourself to first order
method in this paper.

In the numerical experiment part, we verify the scheme’s order of accuracy (first order for
w, t, second order for v) and asymptotic preserving properties, test the model’s recognition
properties presented in [16] and further explore the model’s behavior when the solution p(v, w, t)
is supported in the region w > 0. The numerical results suggest that this model shows great
potential in distinguishing a general input by producing distinct and unsymmetrical responses to
orthogonal basis functions. When w > 0, the solution p(v, w, t) may either develop to a steady
state supported in a region w ∈ [0, A] for some positive A, or expand its support rapidly towards
w →∞.

The rest of the paper is organized as follows. In Section 2, we present our schemes in detail,
including the equations and their implementations; in Section 3, we give a detailed analysis of
our schemes’ properties, including conservation, positivity preserving properties and asymptotic
preserving properties; and in Section 4, we present the numerical results including the verification
of the schemes’ accuracy, asymptotic preserving properties, numerical exploration of the model’s
learning and recognition ability and the behavior of the model with positive synaptic weights.
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2 The Schemes

Our work aims to provide a numerical scheme for (1.8). In this section, we will give a detailed
description of the schemes we designed.

This section is organized as follows: in Section 2.1 and Section 2.2, we introduce the grid
point settings and the numerical scheme for (1.8), including a v-wise semi-implicit (v-SI) imple-
mentation and a v-wise fully-implicit (v-FI) implementation; and in Section 2.3, we introduce

the matrix form of the v-SI and v-FI schemes, from which we introduce a useful matrix MN
j to

formulate further analysis.

2.1 Grid point settings and discretizations

Our scheme is a grid-based method, and this subsection gives the basic grid point settings of our
scheme.

We assume that p(v, w, t) vanishes fast enough as v → −∞ or w → ±∞ such that we truncate
the domain into the bounded region

(v, w) ∈ [Vmin, VF ]× [Wmin,Wmax]× [0, Tmax],

and suppose that p(v, w, t) is negligible out of this region. Then we divide the intervals [Vmin, VF ],
[Wmin,Wmax], [0, Tmax] into nv, nw, nt equal sub-intervals with size

∆v =
VF − Vmin

nv
, ∆w =

Wmax −Wmin

nw
, ∆t =

Tmax

nt
, (2.1)

respectively, so that the grid points are assigned as follows
vi = Vmin + i∆v i = 0, 1, 2, · · · , nv
wj = Wmin + j∆w j = 0, 1, 2, · · · , nw
tm = m∆v m = 0, 1, 2, · · · , nt,

(2.2)

then pmi,j represents the numerical approximation of p (vi, wj , t
m). We always assume that there

is an index r satisfying
VR = vr, (2.3)

which naturally treats the derivative’s discontinuity at v = VR. Actually it can also be seen from
(2.1) and (2.2) that vnv = VF , so the two points related to flux shift are both aligned with the
grid point.

For the discretization of N = −a∂p/∂v|v=VF , we approximate the derivative with the first-
order finite difference

Nm
j = −a

pmnv,j − p
m
nv−1,j

∆v
= a

pmnv−1,j

∆v
(2.4)

(here we have applied the boundary condition pmnv,j = 0); for the discretization of N(t) =∫∞
−∞N(w, t)dw, we apply the simplest rectangular rule of numerical integration

N
m

= ∆w

nv∑
j=0

Nm
j , (2.5)

which can also be explained as a trapezoidal rule of numerical integration since the boundary
values Nm

0 and Nm
nw are supposed to be negligible (zero); furthermore, we also denote the discrete
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representation of H(w, t) =
∫ VF
−∞ p(v, w, t)dv as

Hm
j = ∆v

nv∑
i=1

pmi,j . (2.6)

2.2 The numerical scheme for the Fokker-Planck equation (1.8)

We design a scheme with a finite volume construction: for each i = 0, 1, · · · , nv − 1, j =
0, 1, · · · , nw, m = 0, 1, · · · , nt − 1, we have the difference equation

pm+1
i,j − pmi,j

∆t
+

Φmi,j+1/2 − Φmi,j−1/2

∆w
=

1

ε

Fmi+1/2,j − F
m
i−1/2,j

∆v
, (2.7)

or, in an equivalent splitting form

p∗mi,j − pmi,j
∆t

+
Φmi,j+1/2 − Φmi,j−1/2

∆w
= 0, (2.8)

pm+1
i,j − p∗mi,j

∆t
=

1

ε

Fmi+1/2,j − F
m
i−1/2,j

∆v
. (2.9)

This splitting form is introduced only for convenience when discussing the scheme’s properties
in section 3.3. Our scheme is not based on the idea of operator splitting.

For the w-wise transport, we take the following explicit flux construction adapted from Go-
dunov’s Method (see, for example, (13.24) in [29]):

Φmi,j+1/2 =


{

min
{

Φmi,j ,Φ
m
i,j+1

}
pmi,j ≤ pmi,j+1

max
{

Φmi,j ,Φ
m
i,j+1

}
pmi,j > pmi,j+1

j = 0, · · · , nw − 1

0 j = −1, nw

(2.10)

where
Φmi,j = (N

m
Nm
j K(wj)− wj)pmi,j for j = 0, · · · , nw. (2.11)

For the v-wise transport, we need to treat the operator partially implicitly in an appropriate
way such that the scheme’s stability is not limited by the grid ratio ∆t/(∆v)2 and the stiffness
introduced by the smallness of ε. We inherit the idea from [30] which implements a Scharfetter-
Gummel symmetric reconstruction for the convection-diffusion operator and imposes a flux-shift
from the boundary VF back to VR, but we treat the flux shift operator Nδ(V − VR) implicitly:

Fmi+1/2,j =

a
MN

α

i+1/2,j

∆v

(
pm+1
i+1,j

MN
α

i+1,j

−
pm+1
i,j

MN
α

i,j

)
+Nm+1

j η(vi+1/2 − VR) i = 0, 1, · · · , nv − 2,

0 i = −1, nv − 1,

(2.12)
where η(·) is the Heaviside function (η(x) = 1 when x ≥ 0 and η(x) = 0 when x < 0), and

MN
α

i,j = e−
[−vi+I(wj)+σ(Nα)]2

2a , MN
α

i+1/2,j =
2MN

α

i,j M
N
α

i+1,j

MN
α

i,j +MN
α

i+1,j

. (2.13)

Now to complete the scheme, the only thing that remains is to specify the expression of
N
α

. As we shall see, the choice of N
α

will highly affect the implementations and properties
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of the scheme. Here we propose two choices of N
α

: either N
m

or N
m+1

. We call the scheme
(2.7)˜(2.13) with

N
α

= N
m

the v-wise semi-implicit (v-SI) scheme, and the scheme (2.7)˜(2.13) with

N
α

= N
m+1

the v-wise fully-implicit (v-FI) scheme. The advantage of the v-SI scheme is that its implemen-
tation is free of nonlinear solvers, and thus is the main focus of this work. The v-FI scheme is
mainly introduced for comparison.

To avoid ambiguity, when discussing the v-SI scheme, we add a superscript ”SI” for all
the variables, which will be put at the first place and separated with other superscripts by a
semicolon:

pmi,j , N
m
j , N

m
, Hm

j are written as pSI;m
i,j , NSI;m

j , N
SI;m

, HSI;m
j for the v-SI scheme;

and a similar set of notations will be introduced for the v-FI scheme:

pmi,j , N
m
j , N

m
, Hm

j are written as pFI;m
i,j , NFI;m

j , N
FI;m

, HFI;m
j for the v-FI scheme.

We still use pmi,j , N
m
j , N

m
, Hm

j when discussing the properties that the v-SI scheme and the v-FI
scheme have in common (like the conservation and positivity preserving property).

It is worth noting that, in (2.12), the flux-shift part is N
m+1

for both the v-SI and v-FI
construction of the scheme. This is an apparently small but important difference from the
scheme proposed in [30]. This difference will be proved to make the scheme (unconditionally)
positivity preserving for all ε and ∆v.

2.3 The matrix problem involved in the schemes and the iterative
methods for the v-FI scheme

In this subsection, we introduce the matrix equation one will face when implementing the pro-
posed schemes. To begin with, we define the class of matrices which will frequently appear
throughout our work:

Definition 1 For a given N ∈ R and j = 0, 1, · · · , nw, we define the matrix MN
j as an nv ×nv

matrix such that

(
MN

j

)
kl

=



−MN
k−3/2,j/M

N
k−2,j l = k − 1

−MN
k−1/2,j/M

N
k,j l = k + 1(

MN
k−3/2,j +MN

k−1/2,j

)
/MN

k−1,j l = k and l 6= 1, nv

MN
n−3/2,j/M

N
n−1,j + 1 l = k = nv

MN
1/2,j/M

N
0,j l = k = 1

−1 k = r + 1 and l = nv

0 otherwise

(2.14)

where

MN
i,j = e−

[−vi+I(wj)+σ(N)]2

2a and MN
i+1/2,j =

2MN
i,jM

N
i+1,j

MN
i,j +MN

i+1,j

. (2.15)
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MN
j is tridiagonal except for one entry at k = r + 1, l = nv, and its properties will be further

discussed in section 3.2. For now, having defined MN
j , we can write the matrix form of the

proposed schemes.
For the v-SI scheme, assume that we have already solved pSI;∗m

i,j from the explicit convection

step (2.8), then one easily checks1 that solving the v-wise transport step (2.9) means solving the
system (

εI +
a∆t

(∆v)2
MN

SI;m

j

)
pSI;m+1

:,j = εpSI;∗m
:,j (2.16)

for each j = 0, 1, · · · , nw, where

pSI;m+1
:,j =

(
pSI;m+1

0,j , pSI;m+1
1,j , · · · , pSI;m+1

nv−1,j

)>
,

pSI;∗m
:,j =

(
pSI;∗m

0,j , pSI;∗m
1,j , · · · , pSI;∗m

nv−1,j

)>
,

I is the n×n identity matrix and MN
SI;m

j follows the definition given in (2.14). (2.16) is a linear

equation for pSI;m+1
:,j .

For the v-FI scheme, solving the v-wise transport equation means solving the system(
εI +

a∆t

(∆v)2
MN

FI;m+1

j

)
pFI;m+1

:,j = εpFI;∗m
:,j (2.17)

for each j = 0, 1, · · · , nw, where

pFI;m+1
:,j =

(
pFI;m+1

0,j , pFI;m+1
1,j , · · · , pFI;m+1

nv−1,j

)>
,

pFI;∗m
:,j =

(
pFI;∗m

0,j , pFI;∗m
1,j , · · · , pFI;∗m

nv−1,j

)>
.

(2.17) is a nonlinear system since the matrix MN
FI;m+1

j depends directly on the unsolved variable

N
FI;m+1

. Therefore, we have to solve such a system with a nonlinear solver.

We propose a fix point iteration method as follows. We set the initial guess as p
(0)
i,j = pFI;∗m

i,j ,

hence N
(0)

= N
m

, then for k = 0, 1, 2, · · · , let
(
εI +

a∆t

(∆v)2
MN

(k)

j

)
p

(k+1)
:,j = εpFI;m

:,j for j = 0, 1, · · · , nw

N
(k+1)

= ∆w

nv∑
j=0

N (k+1) = ∆w

nv∑
j=0

p
(k+1)
nv−1,j

∆v
,

(2.18)

where

p
(k+1)
:,j =

(
p

(k+1)
0,j , p

(k+1)
1,j , · · · , p(k+1)

nv−1,j

)>
.

We iterate K rounds to satisfy the stopping criterion |N (K+1)−N (K)| ≤ ε for some small enough
ε, and then take

pFI;m+1
:,j = p

(K)
:,j , N

FI;m+1
j = N

(K)
j , N

FI;m+1
= N

(K)
.

1The only notable detail here is that Nm+1
j in (2.12) should be replaced with apm+1

nv−1,j/∆v according to (2.4).
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3 The Properties of the Scheme

Having proposed the scheme in Section 2.2, we discuss how it preserves the properties of the
original model.

We show that both the v-SI and the v-FI schemes proposed in Section 2.2 are mass-conservative
and positivity-preserving as long as the w-wise CFL condition is satisfied (no matter how small ε
and ∆v is). As for the AP property, the v-FI scheme and the v-SI scheme preserve the asymptotic
limit in slightly different forms.

3.1 Conservative properties

Being total mass invariant is one of the most basic properties of our model (1.8), and our scheme
satisfies the conservation property naturally thanks to the finite volume construction.

Theorem 1 The schemes (2.7)˜(2.13) satisfies

nv∑
i=0

nw∑
j=0

pm+1
i,j =

nv∑
i=0

nw∑
j=0

pmi,j , (3.1)

Proof: Summing (2.7) over i from 0 to nv − 1, over j from 0 to nw and using (2.10) (2.12), we
have

nv−1∑
i=0

nw∑
j=0

pm+1
i,j

=

nv−1∑
i=0

nw∑
j=0

pmi,j +
∆t

ε∆v

nv−1∑
i=0

nw∑
j=0

(Fmi+1/2,j − F
m
i−1/2,j)−

∆t

∆w

nv−1∑
i=0

nw∑
j=0

(Ψm
i,j+1/2 −Ψm

i,j−1/2)

=

nv−1∑
i=0

nw∑
j=0

pmi,j +
∆t

ε∆v

nw∑
j=0

(Fmnv−1/2,j − F
m
−1/2,j)−

∆t

∆w

nv−1∑
i=0

(Ψm
i,nw+1/2 −Ψm

i,−1/2)

=

nv−1∑
i=0

nw∑
j=0

pmi,j +
∆t

ε∆v

nw∑
j=0

(0− 0)− ∆t

∆w

nv−1∑
i=0

(0− 0) =

nv−1∑
i=0

nw∑
j=0

pmi,j ,

(3.2)

and because of the boundary condition pmnv,j = 0, we can change “
∑nv−1
i=0 ” on both ends of (3.2)

into “
∑nv
i=0”, which gives us (3.1).

3.2 Properties of the matrix MN
j

Before discussing the properties of our schemes, we firstly investigate the matrix MN
j defined

in (2.14) and (2.15). This matrix has a one dimensional kernel spanned by a strictly positive
vector. This property will help us to show the positivity of the schemes.

The main result in this section is

Lemma 1 For all N ≥ 0, MN
j defined in (2.14) and (2.15) has a unique (up to a positive

multiple) right eigenvector q = (q0, · · · , qnv−1)> for eigenvalue 0 which is strictly positive.

Proof: We want to study the solution of

MN
j q = 0. (3.3)

9



We left-multiply both sides of (3.3) by the n× n bi-diagonal matrix

L =


1
1 1

1 1
. . .

. . .

1 1

 , or entry-by-entry : Lkl =

{
1 k = l + 1 or k = l

0 otherwise

obtaining
(
LMN

j

)
q = 0 (note that L is non-singular, so LMN

j has the same kernel with MN
j ),

which can be rearranged into the following system:

qi =
MN
i,j

MN
i,j+1

qi+1 i = r − 1, r − 2, · · · , 0

qi =
MN
i,j

MN
i,j+1

qi+1 +
MN
i,j

MN
i,j+1/2

qn−1 i = n− 3, n− 4, · · · , r

qi =

(
MN
i,n−2

MN
i,n−1

+
MN
i,n−2

MN
i,n−3/2

)
qn−1 i = n− 2

(3.4)

One can derive from (3.4) recurrently (in a reversed order, from i = n − 2 to i = 0) that
qn−2, qn−3, · · · , q0 can all be written as a positive multiple of qn−1 whose expressions only con-

tains entries of MN
j . This implies strict-positiveness and uniqueness (up to a positive number

multiplication) of q. �

3.3 Positivity preserving properties

Solutions being non-negative is another basic property of model (1.8), hence we also expect our
scheme to be positivity preserving. In Theorem 2.2 [30], it is proved that the scheme’s positivity
preserving property relies on the grid ratio ∆t/(∆v)2. In this section, we see that the positivity
preserving property of our scheme does not rely on ∆t/(∆v)2 or ε, and this improvement comes
from our implicit treatment to the flux-shift operator that is stated in Section 2.

We start with the general matrix form of our problem (both for the v-SI scheme and for the
v-FI scheme): (

εI +
a∆t

(∆v)2
MN

α

j

)
pm+1

:,j = εp∗m:,j , (3.5)

where
pm+1

:,j =
(
pm+1

0,j , pm+1
1,j , · · · , pm+1

nv−1,j

)>
,

p∗m:,j =
(
p∗m0,j , p

∗m
1,j , · · · , p∗mnv−1,j

)>
.

A crucial property of system (3.5) is that the to-be-inverted matrix εI + a∆t
(∆v)2M

N
α

j is the so-

called M-matrix, which is an important topic in the area of positive operators. In [31], the
authors provided forty equivalent statements that ensures a Z-matrix (a matrix with all diagonal
entries non-negative and all non-diagonal entries non-positive) to be an M-matrix. We pick out
the statement F16 and K33 in this article, forming the following lemma:
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Lemma 2 (Equivalence of statements F16 and K33 of Theorem 1 in [31]) A semi-positive
Z-matrix is an M-matrix, and henceforth monotone. Specifically, if a n× n matrix M satisfies{

M i,j ≥ 0 j = i

M i,j ≤ 0 j 6= i

and there exists a strictly positive (every entry is positive) n×1 vector v∗ > 0 such that Mv∗ > 0,
then M is a non-singular M-matrix, and henceforth Mv ≥ 0 implies v ≥ 0. Here

- v > 0 means that all the entries of v are positive, and
- v ≥ 0 means that all the entries of v are non-negative.

With Lemma 2, we can further prove the following Lemma:

Lemma 3 For (3.5), p∗m:,j ≥ 0 indicates pm+1
:,j ≥ 0.

Proof : Firstly, it is not hard to check that εI + a∆t
(∆v)2M

N
α

j is a Z-matrix according to the

definitions. Secondly, we notice that(
εI +

a∆t

(∆v)2
MN

α

j

)
QN

α

:,j = εQN
α

:,j > 0

since QN
α

i,j is in the kernel of MN
α

j , according to Lemma 2 (taking v∗ as QN
α

j ), the matrix

εI + a∆t
(∆v)2M

N
α

j is a non-singular M-Matrix and henceforth p∗mj ≥ 0 indicates pm+1
j ≥ 0. �

Applying Lemma 3 and (2.8), we can give out the following sufficient conditions of the posi-
tivity preserving property of the proposed schemes

Theorem 2 (Positivity Preserving Properties) pm+1
i,j ≥ 0, holds for all i = 0, · · · , nv and j =

0, · · · , nw as long as

pmi,j −
∆t

∆w

(
Φmi,j+1/2 − Φmi,j−1/2

)
≥ 0 (3.6)

holds for all i = 0, · · · , nv, j = 0, · · · , nw.

(3.6) tells us that as long as the grid ratio ∆t/∆w is not too big, (which is the most basic
requirement for almost all numerical schemes for hyperbolic conservation law, and is also known
as the CFL condition), the numerical solution will be non-negative. Such a property is unrelated
to the grid ratio ∆t/∆v2 or the scaling parameter ε. This means that we can take arbitrarily
small ∆v and ε without worrying about violations of the positivity of the solutions.

Especially, as we can take ε arbitrarily small for a fixed ∆t, it becomes possible for us to
futher analyze the asymptotic behavior of the scheme when ε→ 0.

3.4 Asymptotic preserving properties

We first discuss the asymptotic properties of the original continuous model. (1.8)
Integrating the first equation of (1.8) over v from −∞ to VF and applying the boundary

condition, we get
∂H

∂t
+

∂

∂w
[(N(t)N(w, t)K(w)− w)H] = 0, (3.7)

where H = H(w, t) is defined in (1.10). When taking ε→ 0 in (1.8), we have
a
∂2p

∂v2
− ∂

∂v
[(−v + I(w) + wσ(N(t)))p] +N(w, t)δ(v − VR) = 0,

N(w, t) := −a∂p
∂v

(VF − 0, w, t), N(t) =

∫ ∞
−∞

N(w, t)dw.
(3.8)

11



According to Theorem 3.1 in [16], the solution of equation (3.8) is graranteed to exist and
be unique when H(w, t) is given. Equations (1.10), (3.7) and (3.8) gives the asymptotic limit
equation of (1.8) as ε → 0, where (3.7) can be viewed as the macroscopic equation governing
the slow dynamics while (3.8) gives the local microscopic equilibrium of the fast dynamics. We
consider our scheme with only time t discretized

pn+1 − pn

∆t
+

∂

∂w
[(N

n
Nn(w)K(w)− w)pn]

=
1

ε

{
a
∂2pn+1

∂v2
− ∂

∂v
[(−v + I(w)+wσ(N

α
))pn+1] +Nn+1(w)δ(v − VR)

}
for (v, w, t) ∈ (−∞, VF )× (−∞,+∞)× (0, T )

Nn+1(w) := −a∂p
∂v

(VF − 0, w, t), N
n+1

=

∫ ∞
−∞

Nn+1(w)dw;

(3.9)

where α is n and n+ 1 for the v-SI scheme and v-FI scheme, respectively.
For the v-FI scheme, integrating the first equation in (3.9) and applying the boundary con-

ditions, we have
Hn+1 −Hn

∆t
+

∂

∂w

[
(N

n
Nn(w)K(w)− w)Hn

]
= 0 (3.10)

which is a discretization of (3.7); and when ε→ 0, (3.9) becomes
a
∂2pn+1

∂v2
− ∂

∂v
[(−v + I(w) + wσ(N

n+1
))pn+1] +Nn+1(w)δ(v − VR) = 0

Nn+1(w) := −a∂p
∂v

(VF − 0, w, t), N
n+1

=

∫ ∞
−∞

Nn+1(w)dw,
(3.11)

which is directly the same as (3.8).
For the v-SI scheme, Integrating the first equation in (3.9) and applying the boundary con-

ditions, we obtain (3.10) again, while taking ε→ 0 in (3.9), we have
a
∂2pn+1

∂v2
− ∂

∂v
[(−v + I(w) + wσ(N

n
))pn+1] +Nn+1(w)δ(v − VR) = 0

Nn+1(w) := −a∂p
∂v

(VF − 0, w, t), N
n+1

=

∫ ∞
−∞

Nn+1(w)dw.
(3.12)

We remark that the local equilibrium (3.12) can be viewed as a linearization of (3.11) such that

the nonlinear coefficient σ(N
n+1

) is replaced by σ(N
n
),

The schemes (3.10) and (3.12) can be viewed as the limiting scheme for the following time
rescaled maybe “delayed” equation as ε→ 0

∂p

∂t
+

∂

∂w
[(N(t)N(w, t)K(w)− w)p]

=
1

ε

{
a
∂2p

∂v2
− ∂

∂v
[(−v+I(w) + wσ(N(t−∆t)))p] +N(w, t)δ(v − VR)

}
for (v, w, t) ∈ (−∞, VF )× (−∞,+∞)× (0, T )

N(w) := −a∂p
∂v

(VF − 0, w, t), N =

∫ ∞
−∞

N(w)dw.

(3.13)

Therefore, the v-SI scheme is asymptotic preserving up to a ∆t time delay. In other words, when
ε→ 0, it is still a consistent first-order in time discretization to the limit of the original model.
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4 Numerical Results

This section gives the numerical results obtained from our schemes, involving both the tests on
the schemes’ performance and the explorations of the model by our scheme. In Section 4.1, we
numerically test the order of accuracy of our schemes; in Section 4.2, we numerically validate
the asymptotic preserving properties of our schemes; in Section 4.3, we test the model’s learning
and discrimination abilitites; in Section 4.4, we focus on exploring the model’s behavior when
the neural system is excitatory.

4.1 Order of Convergence

In this part, we test the order of accuracy of the v-SI schemes. Since the exact solution is
unavailable, we estimate the order of the error by

Oh,Lp = log2

∥∥∥ωh − ωh
2

∥∥∥
p∥∥∥ωh

2
− ωh

4

∥∥∥
p

,

where ωh is the numerical solution with step length h. The term Oh above is an approximation
for the accuracy order. Errors in both L1 and L2 norms are examined.

We choose VF = 2, VR = 1, Vmin = −4, a = 1, ε = 0.5,Wmin = −1.1,Wmax = 0.1, σ(N) = N ,
I(w) ≡ 0 and

pinit =

{
sin2(πv) sin2(πw) −1 < w < 0 and − 1 < v < 1

0 otherwise

throughout this section, and we test the accuracy for both Tmax = 0.1 and Tmax = 1. We test
the numerical results on v, w, t directions by fixing two of ∆t,∆w and ∆v while adjusting the
third one. The results are shown in Table 1, Table 2 and Table 3, respectively.

∆v ‖p∆v − p∆v/2‖1 O∆v,L1 ‖p∆v − p∆v/2‖2 O∆v,L2

2.0e-1 1.1337e-03 2.0818 3.5479e-03 2.0675
1.0e-1 2.6781e-04 2.0122 8.4643e-04 2.0080
5.0e-2 6.6390e-05 1.9340 2.1044e-04 1.8739
2.5e-2 1.7374e-05 - 5.7417e-05 -

∆v ‖p∆v − p∆v/2‖1 O∆v,L1 ‖p∆v − p∆v/2‖2 O∆v,L2

2.0e-1 1.4571e-01 1.8905 2.8929e-01 1.7984
1.0e-1 3.9299e-02 1.7441 8.3168e-02 1.7309
5.0e-2 1.1731e-02 1.7872 2.5056e-02 1.8471
2.5e-2 3.3990e-03 - 6.9641e-03 -

Table 1: v-wise order of accuracy, ∆t = 10−3, ∆w = 10−2 are fixed. Upper table: Tmax = 0.1;
Lower table: Tmax = 2.5.

It can be seen that when Tmax = 0.1, the scheme shows the expected second-order convergence
rate in the v direction, and the first-order convergence in w, t directions. However, when Tmax =
2.5, the v- and w- wise orders of accuracy decrease a bit. This may be caused by the w-wise
nonlinearity of the equation (1.8). Indeed, when T = 2.5 the solution has already developed into
a discontinuous pattern (Figure 1).
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∆w ‖p∆w − p∆w/2‖1 O∆w,L1 ‖p∆w − p∆w/2‖2 O∆w,L2

4.0e-2 4.2858e-03 0.9550 9.9587e-03 0.9543
2.0e-2 2.2108e-03 1.0038 5.1394e-03 1.0030
1.0e-2 1.1025e-03 0.9849 2.5643e-03 0.9801
0.5e-2 5.5703e-04 - 1.3000e-03 -

∆w ‖p∆w − p∆w/2‖1 O∆w,L1 ‖p∆w − p∆w/2‖2 O∆w,L2

4.0e-2 4.5348e-01 1.0102 3.9149e-01 0.7353
2.0e-2 2.2514e-01 1.0095 2.3516e-01 0.7557
1.0e-2 1.1183e-01 0.9717 1.3928e-01 0.6145
0.5e-2 5.7022e-02 - 9.0971e-02 -

Table 2: w-wise order of accuracy, ∆t = 10−3, ∆v = 10−1 are fixed. Upper table: Tmax = 0.1;
Lower table: Tmax = 2.5.

∆t ‖p∆t − p∆t/2‖1 O∆t,L1 ‖p∆t − p∆t/2‖2 O∆t,L2

2.0e-3 3.8523e-04 0.9730 1.2219e-03 0.9647
1.0e-3 1.9625e-04 0.9686 6.2608e-04 0.9626
5.0e-4 1.0028e-04 1.0093 3.2125e-04 1.0089
2.5e-4 4.9819e-05 - 1.5963e-04 -

∆t ‖p∆t − p∆t/2‖1 O∆t,L1 ‖p∆t − p∆t/2‖2 O∆t,L2

2.0e-3 4.9612e-03 0.9473 4.5521e-03 0.9676
1.0e-3 2.5729e-03 0.9884 2.3278e-03 0.9954
5.0e-4 1.2969e-03 0.9781 1.1677e-03 0.9895
2.5e-4 6.5836e-04 - 5.8810e-04 -

Table 3: t-wise order of accuracy, ∆v = 10−1, ∆w = 10−2 are fixed. Upper table: Tmax = 0.1;
Lower table: Tmax = 2.5.

4.2 Asymptotic behaviors of the v-SI and v-FI schemes

In this subsection, we numerically validate the asymptotic preserving properties of both the v-SI
scheme and the v-FI scheme by validating that with fixed grid size, the numerical solution of the
scheme converge to the v-wise quasi-steady state at the discretized level as ε→ 0.

Firstly we introduce a discretized version of the time-independent quasi-steady state equations
(1.10) and (3.8) for a given H = H(w). This will serve as a reference solution. We denote the
solution of the continuous time-independent quasi-steady state equations (1.10) and (3.8) for a
given H = H(w) as PH(v, w). Since (3.8) means that PH(v, w) should nullify the stiff operator
in (1.8), our discretized version can also be directly defined to nullify the stiff terms (order 1/ε
terms) in the main equation (2.7) in our scheme. For a given discretized grid function Hj such
that ∆w

∑nw
j=0Hj = 1 the v-wise quasi-steady state in the discretized level PHi,j and corresponding

NH
j , N

H
is defined to satisfy the following equations

∆v

nv−1∑
i=0

PHi,j = Hj for j = 0, 1, · · · , nw, (4.1)
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Figure 1: When t = 2.5, there is a discontinuity in the numerical solution. Left: p(v, w, t = 2.5),
with the marked data showing that small variance along the w direction causes a big variance of
p; Right: N(w, t = 2.5).

FHi+1/2,j − F
H
i−1/2,j = 0 (4.2)

FHi+1/2,j =

a
MNH

i+1/2,j

∆v

(
PHi+1,j

MNH

i+1,j

− PHi,j

MNH

i,j

)
+NH

j η(vi+1/2 − VR) i = 0, 1, · · · , nv − 2

0 i = −1, nv − 1

(4.3)

NH
j = aPHnv−1,j/∆t, N

H
= ∆w

nw∑
j=0

NH
j (4.4)

To generate this discretized v-wise quasi-steady state for a given Hj with ∆v
∑nw
j=0Hj = 1,

one may solve the system
MN

(k)

j P
(k+1)
:,j = 0 and ∆t

nv−1∑
i=0

P
(k+1)
i,j = Hj for j = 0, 1, · · · , nw

N
(k+1)

= ∆w

nv∑
j=0

N (k+1) = ∆w

nv∑
j=0

p
(k+1)
nv−1,j

∆v

(4.5)

iteratively from some initial guess of N
(0)

, and take PHi,j = P
(K)
i,j , NH

j = N
(K)
j , N

H
= N

(K)
for

sufficiently large K that satisfies some stopping criterion like |N (K+1)−N (K)| ≤ ε for some small
enough ε.

The numerical experiments are conducted as follows:

1. Fix all the scheme parameters except ε (these parameters include all the grid lengths,
initial/boundary values and coefficients, especially, ∆t is fixed), and solve the scheme. The
solution for a fixed ε is denoted as pε.
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2. Having solved for pε, find Hε by (2.6) , and thereafter the corresponding discretized v-wise
quasi-steady state PHε by (4.1)˜(4.4), which can be numerically obtained by implementing
the iterations described in (4.5);

3. Plot ‖pmε − PH
m
ε ‖ versus tm for each ε (the norm is taken at a single time layer, chosen

as L1 norm in our numerical test). AP property means that after a short period of time
(the length of which decreases with ε), the difference between the solution pmε and the
corresponding discretized v-wise quasi-steady state PH

m
ε should drop to a small value

which vanishes as ε→ 0, i.e.

‖pmε − PH
m
ε ‖ ε→0−−−→ 0. (4.6)

In our simulations, we choose VF = 2, VR = 1, Vmin = −4, a = 1,Wmin = −1.1,Wmax =
0.1, Tmax = 0.3, σ(N) = N,∆t = 5× 10−4,∆v = 0.1,∆w = 0.01 ,

pinit =

{
sin2(πv) sin2(πw) −1 < w < 0 and − 1 < v < 1

0 otherwise
(4.7)

and

I(w) =
1

2
e−(10w+5)2 (4.8)

We perform the aforementioned AP test for both the v-FI scheme and the v-SI scheme,
choosing ε ranging from 10−1 to 10−7, and the results are shown in Figure 2 and Figure 3,
respectively.

0 0.05 0.1 0.15 0.2
10-8

10-6

10-4

10-2

100

Figure 2: AP property of the v-FI scheme. ‖pFI;m
ε −PHFI;m

ε ‖ is plotted over t ∈ [0, T ], discretized

with the time step ∆t = 5× 10−4. The discretized quasi-steady state PH
FI;m
ε is obtained by the

iterations described in (4.5). It can be roughly seen that when ε is small, ‖pFI;m
ε −PHFI;m

ε ‖ = o(ε)
after a few time steps.

From Figure 2, we can see that for the v-FI scheme, the differences between pmε and PH
m
ε is

decreasing when ε→ 0, we can even assert ‖pmε − PH
m
ε ‖ = o(ε) from the figure.

From Figure 3, we can see that for the v-SI scheme, the differences between pmε and PH
m
ε

is also decreasing when ε → 0. However, this decreasing trend is halting when ε = 10−5 for
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Figure 3: AP property of the v-SI scheme. ‖pSI;m
ε −PHSI;m

ε ‖ is plotted over t ∈ [0, T ], discretized
with the grid size ∆t = 5× 10−4 (left) and 5× 10−3 (right). The discretized quasi-steady state

PH
SI;m
ε is obtained by the iterations described in (4.5). Comparing to the v-FI scheme, the

property ‖pSI;m
ε − PH

SI;m
ε ‖ is of order ε when ε is comparable to or greater than ∆t. When

ε � ∆t (which is the case when ε = 10−5, 10−6, 10−7 in the figure, represented by the green,

cyan and blue curves, respectively), ‖pSI;m
ε −PHSI;m

ε ‖ becomes roughly of order of ∆t, so smaller
ε does not make this difference uniformly smaller as it does for the v-FI scheme.

∆t = 5 × 10−4 and ε = 10−4 for ∆t = 5 × 10−3, and further decrease of ε does not uniformly
draw pmε and PH

m
ε closer. This can be explained by the time-delayed effect of the v-SI scheme,

which was presented in section 3.4. This time-delay effect introduces an o(∆t) difference between
pmε and PH

m
ε , which will not further decrease when ε becomes a small number comparing to ∆t.

We may say that ‖pmε −PH
m
ε ‖ = o(∆t) when ε� ∆t and ‖pmε −PH

m
ε ‖ = o(ε) when ε� ∆t for

the v-SI scheme.

4.3 Learning and reacting

From this subsection on, we explore model (1.8) with our scheme. We always use the v-SI scheme
in the rest of this section.

In this subsection, we test the model’s learning and discrimination abilities. We let the model
perform learning-testing tasks that was originally proposed in [16], containing a learning phase
and a testing phase:
Learning Phase A heterogeneous input I(w) is presented to the system, while the learning
process is active. The learning rule is determined for the inhibitory weights by −N(w)N by
taking K(w) = −1 if w ≤ 0. After some time, the synaptic weight distribution H(w, t) converges
to an equilibrium distribution H∗I (w), which depends on I.
Testing Phase A new input J(w) is presented to the system. This time, the neural system
reacts to J but does not learn it. In this stage, there is only v-wise transport and no w-wise
convection. To achieve this goal, we implement the v-wise quasi-steady state solver (4.5) with
I replaced by the testing signal J , during which we keep H∗I (w) we obtained in the Learning
Phase.
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The pattern recognition property of the system is that it can detect whether the new input
J(w) is actually the same one that has been presented during the learning phase, i.e. I(w):
indeed, in this case, N∗I,J(w) = w1[−A, 0) has a very specific shape that does not depend upon
the original input I that has been learned in the learning phase.

For the learning phase, We implement the v-SI scheme; for the testing phase, we implement
the v-wise quasi-steady state solver (4.5), replacing the input function I(w) with the testing
input function J(w).

In our numerical experiments, the learning and testing input functions are chosen from the
set

{ψi(10w + 5) + 1|i = 0, 1, · · · , 4} (4.9)

where ψi(x) stands for the i-th normalized Hermite function defined recursively as

ψ0(y) ≡ π− 1
4 e−

1
2y

2

; ψ1(y) ≡ π− 1
4

√
2ye−

1
2y

2

ψn+1(y) =

√
2

n+ 1
yψn(y)−

√
n

n+ 1
ψn−1(y).

(4.10)

This set of functions are well known for forming a set of bases for the Hilbert space L2(−∞,+∞).
We take the argument 10w + 5 so that the input functions are centralized at w = −1/2 and
almost entirely supported in our truncated solving region; and the extra “+1” term widens the
support of the solution so that it can react to input signals at wider range of w. We choose
VF = 2, VR = 1, Vmin = −4, a = 1, ε = 0.1,Wmin = −1.1,Wmax = 0.1, Tmax = 5, σ(N) = N,∆t =
0.005,∆v = 0.1,∆w = 0.01, and pinit is given as (4.7).

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
0

0.5

1

1.5

2

Figure 4: The candidate input functions ϕi(10w+ 5) + 1 where i = 0, 1, 2, 3, 4 and ϕi stands for
the i-th normalized Hermite functions.

For each i, j = 0, 1, · · · , 4, we let the model perform the fore-mentioned task with I(w) =
ψi(10w+ 5) and J(w) = ψj(10w+ 5), and the corresponding network activity N(w) is shown in
the (i+1)-th row, (j+1)-th column in Figure 5. It can be seen that, when the learned input I(w)
and the testing input J(w) are the same (corresponding to the diagonal entries in the figure),
the firing pattern is of the nice triangular shape N∗I,J(w) = w1[−A, 0); but when I(w) and J(w)
are different, the firing pattern is not in a regular shape. It is worth noting that in [16], the
authors provided a primitive numerical result for the same learning-testing task, the networks
firing pattern after reacting to the same learned input signal, shown in the article’s Figure 3,
turned out to be quite zigzag. In comparison, with our numerical method, an almost-perfect
triangular-shaped pattern is produced after the model learn and react to the same input (see the
subfigures in the diagonal entries in Figure 5).
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Figure 5: Test on the neural network’s recognition property. The pattern recognition task
described at the beginning of subsection 4.3 is done for all possible pairs of input functions given
in (4.9). For each i, j = 0, 1, · · · , 4, the subfigure at the (i+1)-th row, (j+1)-th column gives the
final firing pattern N∗I,J(w) versus after learning the signal I(w) = ϕi(10w+ 5) + 1 and reacting
to the signal J(w) = ϕj(10w + 5) + 1. For each subfigure, the horizontal coordinate represents
w, and the vertical axis represents N(w) at the end of the task. It can be seen that, when
the learned input I(w) and the testing input J(w) are the same (corresponding to the diagonal
entries in the figure), the firing pattern is of the nice triangular shape N∗I,J(w) = w1[−A, 0); but
when I(w) and J(w) are different, the firing pattern will not be regular-shaped.
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4.4 Positive synaptic weights

This subsection focus on exploring model’s behavior when the neural system is excitatory, i.e.
the solution is supported in the with region with w ≥ 0. In [16], the authors’ analytic work focus
mainly on inhibitory networks. And for the excitatory neural system, they provided that, under
some choice of parameters, the steady-state solution may not exist. We further explore with our
numerical scheme the behavior of the solution when the synaptic weights are positive.

Our numerical exploration shows that in the excitatory cases, the network can either develop
to a steady state like it did in the inhibitory cases, or exhibit a trend of accelerating expansion
unlike it did with inhibitory cases under different parameter settings.

4.4.1 Long-time steady solution

We firstly test some scenarios in which the solutions present behavior similar to it would present
with negative synaptic weights w.

We choose I ≡ 1, a = 1, ε = 0.2, σ(N) = N/(1 + N), ∆t = 5 × 10−3,∆v = 0.1,∆w = 0.01,
Tmax = 5, K(w) ≡ 1 and initial condition given as (4.7). The solution finally develops to a steady-
state with N∗(w) forming a right triangular pattern supported in a single interval w ∈ [0, A] for
some A > 0, just like it did with negative synaptic weights. This is the case that corresponds to
the correct biological picture.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 6: Solution with positive synaptic weight. With I = 0, a = 1, ε = 0.2, initial condition
given as (4.7), σ(N) = N/(1 + N), ∆t = 5 × 10−3,∆v = 0.1,∆w = 0.01, Tmax = 5, K(w) ≡ 1.
The solution finally develops to a steady-state with N∗(w) forming the right triangular pattern
just like it did with negative synaptic weights.

,

Indeed, as long as it can develop to a steady state, the excitatory neural network also has the
recognition ability shown in subsection 4.3. To show this, we perform a similar learning-testing
task as we did in the last subsection. The parameter settings are the same as they were in the
last subsection except for that the initial condition pinit is supported in the region with w ≥ 0,
K(w) ≡ 1, σ(N) = N/(1 +N) and the candidate input functions become

ψi(10w − 5) + 1 i = 0, 1, · · · , 4 (4.11)

so that the input are centered at +1/2 instead of −1/2 for the inhibitory cases. The results are
given in Figure 7. The arrangement of the figures are the same as that of Figure 5. It can be
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seen that w−N(w) subfigures at the diagonal entries are in perfect right triangular shape, which
is the same as it is in Figure 7.

4.4.2 Unsteady solution

Now we turn our attention to a different case, where the solution is not converging to a steady
solution. In [16], it was presented that even if we choose the firing function σ to be bounded

σ(N) = k
N

1 +N
, (4.12)

we may still face some scenarios that a steady state does not theoretically exist. And we further
explore the solution’s behavior in this case.

We choose I(w) ≡ 1, k = 3, and the rest parameters were same as it was in the first
numerical experiment in sub-subsection 4.4.1. The solution turns out to propagate to the region
with greater w. The w-wise right boundary of the support of N grows increasingly fast (Figure
8 right), and henceforth N grows increasingly big (Figure 8 left). It should be noticed that our
result shown in Figure 8 does not necessarily imply that this is a blow up solution, since we are
not sure whether N(t) will grow to ∞ in a finite time.

Even if the solution is not a blow-up one, it still does not practically make sense that the
network’s synaptic weight grows increasingly fast to ∞. Therefore, the solution’s fast growing
behavior is a non-physical effect of our model.

5 Conclusion

In this work, we have proposed a numerical scheme for the Fokker-Planck equation of structured
neural networks (1.8), which is shown to be conservative, positivity-preserving, and asymptotic-
preserving.

The key to success of our scheme is the implicit treatment for flux shift operators in (1.8),
based on which the numerical scheme has an improved positivity preserving property: there is
no v-wise grid ratio constraint to guarantee the positivity, which is otherwise a major bottleneck
for efficient simulation.

As for numerical exploration, we have conducted the learning-testing numerical experiments
and yielded numerical solutions that not only match the theoretical results perfectly, but also
fully demonstrate the recognition ability of the model and provide insights for potential uses and
future studies. The numerical tests are also extended to the cases of excitatory neural networks.
We have also explored with our numerical experiments the behavior of the model when a steady
state solution does not exist. These numerical experiments are successful in capturing partial
long time trends of the solution but still preliminary. Further numerical experiments can be done
to explore, for example, the model’s behavior when the input signal I becomes time-dependent,
or alternative learning rules that can prevent N(t) from growing to infinity for the excitatory
cases.
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Figure 7: Test of recognition property of excitatory neural networks. The pattern recognition task
described at the beginning of subsection 4.3 is done for all possible pairs of input functions given
in (4.9). For each i, j = 0, 1, · · · , 4, the subfigure at the (i+1)-th row, (j+1)-th column gives the
final firing pattern N∗I,J(w) versus after learning the signal I(w) = ϕi(10w− 5) + 1 and reacting
to the signal J(w) = ϕj(10w − 5) + 1. For each subfigure, the horizontal coordinate represents
w, and the vertical axis represents N(w) at the end of the task. It can be seen that, when
the learned input I(w) and the testing input J(w) are the same (corresponding to the diagonal
entries in the figure), the firing pattern is of the nice triangular shape N∗I,J(w) = w1(0, A); but
when I(w) and J(w) are different, the firing pattern will not be regular-shaped.
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Figure 8: Solution with positive synaptic weight. With I(w) ≡ 1, a = 1, ε = 0.2, initial condition
given as (4.7), σ(N) = 3N/(1 +N), ∆t = 5× 10−3,∆v = 0.1,∆w = 0.01, Tmax = 5, K(w) ≡ 1.
Left: in the unsteady scenarios, N grows with accelerate. Right: The solution turns out to
propagate to the region with greater w. The w-wise right boundary of the support of N grows
increasingly fast.
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