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Abstract. In this paper, we propose and analyze the extrapolation method and asymptotically exact a
posterior error estimate for eigenvalues of the Morley element. We establish an asymptotic expansion
of eigenvalues, and prove an optimal result for this expansion and the corresponding extrapolation
method. We also design an asymptotically exact a posterior error estimate and propose new approx-
imate eigenvalues with higher accuracy by utilizing this a posteriori error estimate. Finally, several
numerical experiments are considered to confirm the theoretical results and compare the performance
of the proposed methods.
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1. Introduction

The biharmonic eigenvalue problem originates from the plate theory of elasticity, and also occurs
in many physical areas, say the inverse scattering theory. In the Kirchhoff-Love plate model, the
biharmonic eigenvalue problem describes the vibration and buckling of an elastic plate subject to
some certain boundary condition. The Morley element method is one of the most popular methods
for this problem in applied mechanics and engineering, and is widely studied in literature. The
application of the Morley element in plate problems can be found in [8, 12, 31, 40] and the references
therein. Some a posteriori error estimates and adaptive algorithms were established in [15, 25, 27].
For eigenvalue problems by the Morley element, the a priori error estimates were analyzed in
[17, 42] and an a posteriori error estimate was analyzed in [43]. Guaranteed lower bounds for
eigenvalues of the biharmonic equation was proposed and analyzed in [9, 19].

The extrapolation method is an efficient approach to improve the accuracy of approximations
of many problems. The key of the efficiency of extrapolation algorithm is an asymptotic expansion
of the error. The classical analysis of asymptotic expansions is usually based on a superclose
property of the canonical interpolation of the element under consideration, see [5, 16, 32–39]
and the references therein for eigenvalues of second order elliptic operators. For the biharmonic
eigenvalue problem, the asymptotic expansions of eigenvalues by the Ciarlet-Raviart scheme and
the nonconforming rotated Q1 and the enriched rotated Q1 elements on rectangular meshes were
analyzed in [11] and [29], respectively. For some nonconforming elements on triangular meshes, the
lack of this crucial superclose property leads to a substantial difficulty of the asymptotic analysis.
Until recently, [21] proved the first optimal asymptotic result of two nonconforming elements for
eigenvalues of the Laplacian operator.
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Asymptotically exact a posteriori error estimates is another efficient technique to improve the
accuracy of eigenvalues. The key of such a posteriori error estimates is to express the error in terms
of some computable high accuracy approximations. For eigenvalues of the Laplacian operator,
[20, 41] studied the asymptotically exact a posteriori error estimates for some conforming and
nonconforming elements.

In this paper, we establish the first asymptotic analysis for eigenvalues by the Morley element
and analyze the efficiency of the extrapolation algorithm. Inspired by [21], we overcome the
difficulty caused by the lack of a crucial superclose property and get

(1.1) λ − λM =‖ (I −ΠHHJ)∇2u ‖20,Ω +2I1 + 2I2 − 2I3 + O(h4
|u|29

2 ,Ω
),

where (λM,uM) is an eigenpair by the Morley element, the interpolation operator ΠHHJ is defined
in (2.18) and I1, I2, I3 are defined in (3.4). To achieve an optimal result, we conduct a new technical
analysis for each term on the right hand side of (1.1). The analysis in this paper is quite different
from the one in [21] because some natural orthogonal property is absent in this case. We establish
an explicit expression with a vanishing subdominant term for the interpolation in [26]. By use of
this expression, we can cancel some suboptimal terms in ‖ (I −ΠHHJ)∇2u ‖20,Ω and get the desired
optimal expansion. By employing the commuting property and the equivalence with the HHJ
element, we express I1 in terms of the second order accuracy term uHHJ, instead of the first order
accuracy term σHHJ. In this way, we achieve an optimal estimate of I1, where uHHJ and σHHJ are
defined in (2.17). We express the consistency error term I2 in terms of jumps along interior edges,
which allows some cancellation and is the key to a desired optimal analysis. For I3, we establish
an explicit expression of the interpolation error of the Morley element, and cancel the suboptimal
terms between adjacent elements forming a parallelogram, which is crucial in getting the optimal
result.

We also design an asymptotically exact a posteriori error estimate and the corresponding approx-
imate eigenvalue by the Morley element. By a simple postprocessing technique, the accuracy of the
approximate eigenvalue can be improved to O(h3). Numerical results show that this postprocess-
ing technique is effective on both uniform and adaptive meshes, and achieves better performance
than the extrapolation method.

The remaining paper is organized as follows. Section 2 presents fourth order elliptic eigenvalue
problems and some notations. Section 3 explores an optimal asymptotic expansion of approximate
eigenvalues by the Morley element and analyzes the optimal convergence rate of eigenvalues by
the extrapolation method. Section 4 proposes and analyzes an asymptotically exact a posterior
error estimate of eigenvalues by the Morley element. Section 5 presents some numerical tests.

2. Notations and Preliminaries

2.1. Notations. Given a nonnegative integer k and a bounded domain Ω ⊂ R2 with boundary ∂Ω,
let Wk,∞(Ω,R), Hk(Ω,R), ‖ · ‖k,Ω and | · |k,Ω denote the usual Sobolev spaces, norm, and semi-norm,
respectively. The Sobolev spaces

H1
0(Ω,R) = {u ∈ H1(Ω,R) : u|∂Ω = 0}, H2

0(Ω,R) = {u ∈ H2(Ω,R) : u|∂Ω =
∂u
∂n
|∂Ω = 0}.

Denote the standard L2(Ω,R) inner product and L2(K,R) inner product by (·, ·) and (·, ·)0,K, respec-
tively.

Suppose that Ω ⊂ R2 is a convex polygonal domain and the partitionTh of domain Ω is assumed
to be uniform in the sense that any two adjacent triangles form a parallelogram. Let |K| denote
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the area of element K and |e| the length of edge e. Let hK denote the diameter of element K ∈ Th

and h = maxK∈Th hK. Denote the set of all interior edges and boundary edges of Th by Ei
h and Eb

h,
respectively, and Eh = Ei

h ∪ E
b
h.

Let element K have vertices pi = (pi1, pi2), 1 ≤ i ≤ 3 oriented counterclockwise, and corresponding
barycentric coordinates {ψi}

3
i=1. Let MK = (M1,M2) denote the centroid of the element, {ei}

3
i=1 the

edges of element K, {di}
3
i=1 the perpendicular heights, {θi}

3
i=1 the internal angles, {mi}

3
i=1 the midpoints

of edges {ei}
3
i=1, and {ni}

3
i=1 the unit outward normal vectors, {ti}

3
i=1 the unit tangent vectors with

counterclockwise orientation (see Fig. 1). There hold the following relationships di|ei| = 2|K| and

p1 p2

p3

m3e3 n3

n1

n2

d3

θ1

Figure 1. Paramters associated with a triangle K.

∇ψi = −
ni

di
, sinθi = ni−1 · ti+1 = −ni+1 · ti−1,

cosθi = −ni−1 · ni+1 =
|ei−1|

2 + |ei+1|
2
− |ei|

2

2|ei−1||ei+1|

(2.1)

among the quantities [28]. For K ⊂ R2, r ∈ Z+, let Pr(K,R) be the space of all polynomials of degree
not greater than r on K. Denote the piecewise Hessian operator by ∇2

h. For any 1 ≤ i, j, k ≤ 2, denote
the third order derivative ∂3v

∂xi∂x j∂xk
by ∂i jkv. For any α = (α1, α2), denote

|α| = α1 + α2, α! = α1!α2!, Dαv = ∂α1
1 ∂

α2
2 v.

For ease of presentation, the symbol A . B will be used to denote that A ≤ CB, where C is a positive
constant.

2.2. Morley element for eigenvalue problems. Consider the biharmonic eigenvalue problem for
plate bending, which finds λ and ‖u‖0,Ω = 1 such that

(2.2) ∆2u = λu, in Ω,

with the clamped boundary condition

(2.3) u|∂Ω =
∂u
∂n

∣∣
∂Ω = 0,

or the simply supported boundary condition

(2.4) u|∂Ω =
∂2u
∂n2

∣∣
∂Ω = 0.

The weak formulation for (2.2) is to find (λ,u) ∈ R × V such that ‖ u ‖0,Ω= 1 and

a(u, v) = λ(u, v) ∀ v ∈ V,(2.5)
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with a(w, v) =

∫
Ω
∇

2w : ∇2v dx and

V =

{
H2

0(Ω,R) for clamped boundary plates with (2.3),
H2(Ω,R) ∩H1

0(Ω,R) for simply supported plates with (2.4).

The bilinear form a(·, ·) is symmetric, bounded, and coercive, namely

a(w, v) = a(v,w), |a(w, v)| .‖ w ‖2,Ω‖ v ‖2,Ω, ‖ v ‖22,Ω. a(v, v), ∀w, v ∈ V.

The eigenvalue problem (2.5) has a sequence of eigenvalues

0 < λ1
≤ λ2

≤ λ3
≤ ...↗ +∞,

and the corresponding eigenfunctions u1,u2,u3, ..., with (ui,u j) = δi j.
The nonconforming Morley element space VM over Th is defined [40, 44] by

VM :=
{

v ∈ L2(Ω,R)
∣∣v|K ∈ P2(K,R) for any K ∈ Th, v is continuous at each interior

vertex and vanishes on each boundary vertex,
∫

e

[∂v
∂n
]

ds = 0 for any e ∈ Ei
h,

and
∫

e

∂v
∂n

ds = 0 for any e ∈ Eb
h

}
if the clamped boundary condition (2.3) is imposed, and

VM :=
{

v ∈ L2(Ω,R)
∣∣v|K ∈ P2(K,R) for any K ∈ Th, v is continuous at each interior

vertex and vanishes on each boundary vertex,
∫

e

[∂v
∂n
]

ds = 0 for any e ∈ Ei
h

}
if the simply supported boundary condition (2.4) is imposed. The corresponding canonical inter-
polation operator ΠM : V → VM is defined by

(2.6)
∫

e

∂ΠMv
∂n

ds =

∫
e

∂v
∂n

ds,∀e ∈ Eh, ΠMv(p) = v(p) for any vertex p.

The corresponding finite element approximation of (2.5) is to find (λM,uM) ∈ R × VM such that
‖ uM ‖0,Ω= 1 and

ah(uM, vh) = λM(uM, vh) ∀ vh ∈ VM,(2.7)

with the discrete bilinear form ah(wh, vh) :=
∑
K∈Th

∫
K
∇

2
hwh : ∇2

hvh dx.Denote the approximate solution

of (2.7) by (λi
M,u

i
M) with 0 < λ1

M ≤ λ2
M ≤ · · · ↗ λNV

M , where NV = dimVM and (ui
M,u

j
M) = δi j,

1 ≤ i, j ≤ NV.
Let λ be an eigenvalue of Problem (2.5) with multiplicity q and

M(λ) = {w ∈ V : w is an eigenvector of Problem (2.5) corresponding to λ}.

Without loss of generality, assume the index of λ are k0 + 1, · · · , k0 + q, that is, λk0 < λ = λk0+1 =
· · · = λk0+q < λk0+q+1. Denote

Mh(λ) = span{uk0+1
M , uk0+2

M , · · · , uk0+q
M } ⊂ VM.
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Suppose that (λM,uM) is the i-th eigenpair of Problem (2.7) by the Morley element, the theory of
nonconforming eigenvalue approximations, see for instance, [3, 4, 6, 18, 42] and the references
therein, indicates that there exists u ∈M(λ) with λ = λi such that

h|λ − λM| + h j
|u −ΠMu| j,h + h ‖ u − uM ‖0,Ω +h j

‖ ∇
j
h(u − uM) ‖0,Ω . h3

‖ u ‖3,Ω(2.8)

provided that the domain is convex and M(λ) ⊂ V ∩H3(Ω), where j = 1, 2. Whenever there is no
ambiguity, (λ,u) defined this way is the called the corresponding eigenpair to (λM,uM) of Problem
(2.7) if the estimate (2.8) holds.

For the Morley element, there holds the following commuting property [14, 18]

(2.9)
∫

K
∇

2(w −ΠMw) : ∇2vh dx = 0 ∀ w ∈ V, vh ∈ VM.

This, together with the technique in [20, 21], guarantees the following expansion

(2.10) λ − λM = ‖∇2
h(u − uM)‖20,Ω − 2λ(u −ΠMu,u) + O(h4

|u|23,Ω).

The asymptotic expansion in this paper is based on this crucial identity (2.10).

2.3. Hellan–Herrmann–Johnson element for source problems. For any source term f , the plate
bending problem seeks u f

∈ V such that

∆2u f = f(2.11)

with boundary condition (2.3) or (2.4). Define

D = {v ∈ H1
0(Ω,R) : v|K ∈ H2(K,R)}

and the space for an auxiliary variable σ f := ∇2u f by

S = {τ ∈ L2(Ω,S) : τ|K ∈ H1(K,S), and Mnn(τ) is continuous across interior edges}

with S := symmetric R2×2 if the clamped boundary condition (2.3) is imposed and

S = {τ ∈ L2(Ω,S) : τ|K ∈ H1(K,S), and Mnn(τ) is continuous across interior edges,
Mnn(τ) = 0 on boundary edges}

if the simply supported boundary condition (2.4) is imposed.
Given K ∈ Th and τ ∈ H1(K,S), let

Mnn(τ) = nTτn, Mnt(τ) = tTτn

with the unit outnormal n and unit tangential direction t with counterclockwise orientation of ∂K.
Since σ fn : ∇v = Mnn(σ f ) ∂v

∂n + Mnt(σ f ) ∂v
∂t , the integration by parts gives

(2.12) ( f , v) = (σ f ,∇2v) +
∑
K∈Th

∫
∂K

(∇ · σ f ) · nv −Mnn(σ f )
∂v
∂n
−Mnt(σ f )

∂v
∂t

ds.

Note that v ∈ D is continuous on interior edges and zero on the boundary ∂Ω, so is the tangential
derivative of v. Thus,

(2.13) ( f , v) = (σ f ,∇2v) −
∑
K∈Th

∫
∂K

Mnn(σ f )
∂v
∂n

ds.
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The mixed formulation of source problem (2.11), which was analyzed in [30], seeks (σ f ,u f ) ∈ S×D
such that

(2.14)

(σ f , τ) +
∑
K∈Th

−(τ,∇2u f )0,K +

∫
∂K

Mnn(τ)
∂u f

∂n
ds = 0, ∀τ ∈ S,

∑
K∈Th

−(σ f ,∇2v)0,K +

∫
∂K

Mnn(σ f )
∂v
∂n

ds = −( f , v), ∀v ∈ D.

Define the discrete spaces [2, 10]

U(Th) :=
{

v ∈ D : v|K ∈ P1(K,R) for any K ∈ Th
}
,

Σ(Th) :=
{
τ ∈ S : τ|K ∈ P0(K,S) for any K ∈ Th

}
.

The first order HHJ element [10, 30] of Problem (2.14) seeks (σ f
HHJ,u

f
HHJ) ∈ Σ(Th) ×U(Th) such that

(2.15)

(σ f
HHJ, τh) +

∑
e∈Eh

∫
e
Mnn(τh)[

∂u f
HHJ

∂n
] ds = 0, ∀τh ∈ Σ(Th),

∑
e∈Eh

∫
e
Mnn(σ f

HHJ)[
∂vh

∂n
] ds = −( f , vh), ∀vh ∈ U(Th).

It follows from the theory of mixed finite element methods [13] that

‖ u f
− u f

HHJ ‖0,Ω +h ‖ σ f
− σ f

HHJ ‖0,Ω +h|u f
− u f

HHJ|1,Ω . h2
‖ u f
‖3,Ω,(2.16)

provided that u f
∈ V ∩H3(Ω,R). In this paper, we consider two different source terms f = λu and

f = λMuM. Let (σλu
HHJ,u

λu
HHJ) and (σHHJ,uHHJ) ∈ Σ(Th)×U(Th) be the solutions of Problem (2.15) with

source terms f = λu and f = λMuM, respectively. Then,

(2.17) σHHJ = σλMuM
HHJ , uHHJ = uλMuM

HHJ .

In the rest of this paper, denote σ = ∇2u where u is the eigenfunction of Problem (2.2).
Define the interpolation operator ΠHHJ : S→ Σ(Th) by

(2.18)
∫

e
Mnn(ΠHHJτ) ds =

∫
e
Mnn(τ) ds for any e ∈ Eh, τ ∈ S.

There exists the following identity in [23] that

(2.19) (σλu
HHJ −ΠHHJσ, σ

λu
HHJ − σ) = 0.

For the plate bending problem with the clamped boundary condition (2.3), it was analyzed in [22]
that the HHJ element admits an important superconvergence property on uniform triangulations as
presented below. For Problem (2.2) with the simply supported condition (2.4), Mnn(σλu

HHJ−ΠHHJσ) =

0 for all edges e ∈ Eb
h. A simple extension of the analysis in [24] proves the superconvergence

property of the HHJ element when (2.4) is imposed.

Lemma 2.1. Suppose that (σλu
HHJ,u

λu
HHJ) is the solution of Problem (2.15) with boundary condition (2.3) or

(2.4) on a uniform triangulation, f = λu and u ∈ V ∩Hr(Ω,R). It holds that

(2.20) ‖ σλu
HHJ −ΠHHJσ ‖0,Ω. h2(

|u|r,Ω + κ| ln h|1/2|u|3,∞,Ω
)
.

where κ is defined in (3.36), r = 9
2 if boundary condition (2.3) is imposed, and r = 7

2 if (2.4) is imposed.
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2.4. Equivalence between the HHJ element and the Morley element. Let ΠDv be the linear
interpolation of any function v ∈ V + VM. Given a function f ∈ L2(Ω,R). Let u f

M ∈ VM be the
Morley solution of the source problem

(2.21) aM(u f
M, vh) = ( f , vh), ∀vh ∈ VM,

and ũ f
M ∈ VM be the modified Morley solution of the source problem

(2.22) aM(ũ f
M, vh) = ( f ,ΠDvh), ∀vh ∈ VM.

As analyzed in [1], the HHJ solution of source problem (2.15) and the modified Morley solution of
source problem (2.22) are equivalent in the following sense

(2.23) σ f
HHJ = ∇2

hũ f
M, u f

HHJ = ΠDũ f
M.

This equivalence leads to the following lemma.

Lemma 2.2. Let (σλu
HHJ,u

λu
HHJ), (σHHJ,uHHJ) be the solutions of Problem (2.15) with f = λu and f = λMuM,

respectively, ũλu
M and ũM be the solutions of Problem (2.22) with f = λu and f = λMuM, respectively. It

holds that

(2.24) σλu
HHJ = ∇2

hũλu
M , uλu

HHJ = ΠDũλu
M , σHHJ = ∇2

hũM, uHHJ = ΠDũM.

3. Optimal Analysis of Extrapolation Algorithm for theMorley element

In this section, we consider the extrapolation algorithm on the eigenvalues by the Morley
element. An asymptotic expansion of eigenvalues is established, which gives an optimal theoretical
analysis of the extrapolation algorithm on the eigenvalue problem.

Given the approximate eigenvalues λh
M and λ2h

M on Th and T2h, respectively. The extrapolation
algorithm computes a new approximate eigenvalue by

(3.1) λEXP
M =

2αλh
M − λ

2h
M

2α − 1
,

where the convergence rate α = 2 if the eigenfunction is smooth enough. Suppose that there exists
such an asymptotic expansion of eigenvalues

(3.2) λ − λh
M = Chα + O(hβ) with β > α,

where C is independent on the mesh size h. It is easy to verify that the extrapolation algorithm
(3.1) improves the accuracy of eigenvalues to O(hβ) if (3.2) holds.

In the rest of this section, we establish an expansion in the form of (3.2) with an optimal rate
β = 4 and C is expressed explicitly by the function u.

3.1. Error expansions for eigenvalues. The classic asymptotic analysis does not work for the
Morley element because of the lack of a crucial superclose property. Inspired by [21], we use the
equivalence between the mixed HHJ element and the modified Morley element in Lemma 2.2 and
the superconvergence property of the mixed HHJ element in Lemma 2.1 to establish an asymptotic
expansion of eigenvalues by the Morley element.

To begin with, we list the discrete problems and the corresponding solutions considered in this
paper:

(P1) eigenvalue problem (2.7) by the Morley element: uM;
(P2) source problem (2.21) by the Morley element: uλu

M ;
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(P3) source problem (2.22) by the modified Morley element: ũλu
M and ũM;

(P4) source problem (2.15) by the HHJ element: (σλu
HHJ,u

λu
HHJ), (σHHJ,uHHJ).

The Morley solution uM in Problem (P1) is also a solution of Problem (P2) with f = λMuM. The
following Lemma 3.1 analyzes some superclose property of the Morley element and the mixed
HHJ element, including the relation between Problems (P1) and (P2), and that between Problems
(P2) and (P3). Lemma 2.2 presents the equivalence between the solutions of Problems (P3) and
(P4). Thus, the superconvergence in Lemma 2.1 of the HHJ element for Problem (P4) can be used
to analyze the expansion of eigenvalues of Problem (P1).

Lemma 3.1. Suppose that (λ,u) is an eigenpair of Problem (2.5), (σλu
HHJ,u

λu
HHJ) and (σHHJ,uHHJ) are the

solutions of Problems (2.15) with f = λu and f = λMuM, respectively. It holds that

(3.3) |uλu
M − ũλu

M |2,h + |uM − ũM|2,h + |uλu
M − uM|2,h+ ‖ σ

λu
HHJ − σHHJ ‖0,Ω. h2

‖u‖3,Ω,

provided that u ∈ V ∩H3(Ω,R).

Proof. To bound ‖∇2
h(uλu

M − ũλu
M )‖0,Ω, let vh = uλu

M − ũλu
M in (2.21) and (2.22). It holds that

‖∇
2
h(uλu

M − ũλu
M )‖20,Ω = (λu, (I −ΠD)(uλu

M − ũλu
M )) . λh2

‖∇
2
h(uλu

M − ũλu
M )‖0,Ω,

which implies that ‖∇2
h(uλu

M − ũλu
M )‖0,Ω . h2, and completes the estimate of the first term on the

left-hand side of (3.3). A similar analysis leads to the following estimate of the second term, that is
‖∇

2
h(uM − ũM)‖0,Ω . h2.A similar analysis to the one for Lemma 3.1 in [21] gives ‖∇2

h(uλu
M −uM)‖0,Ω .

h2
‖u‖3,Ω for the third term. Consider the last term on the left-hand side of (3.3). By the equivalence

(2.24) between the modified Morley element and the HHJ element,

σλu
HHJ − σHHJ = ∇2

h(ũλu
M − ũM) = ∇2

h(ũλu
M − uλu

M + uλu
M − uM + uM − ũM).

It follows that ‖ σλu
HHJ − σHHJ ‖0,Ω. h2

‖u‖3,Ω, which completes the proof. �

For simplicity of presentation, we introduce the following notations

(3.4)
I1 = (σ − σλu

HHJ, σ
λu
HHJ − σHHJ), I2 = (σ − σHHJ,∇2

h(ũM − uM)),

I3 = λ(u −ΠMu,u).

The asymptotic expansion of eigenvalues by the Morley element is based on the decomposition in
the following theorem.

Theorem 3.1. Suppose that (λ,u) is the solution of Problem (2.5) with u ∈ V∩H
9
2 (Ω,R), and (λM,uM) is

the corresponding discrete eigenpair of Problem (2.7) by the Morley element. If the triangulation is uniform,
it holds that

(3.5) λ − λM =‖ (I −ΠHHJ)∇2u ‖20,Ω +2I1 + 2I2 − 2I3 + O(h4
| ln h||u|29

2 ,Ω
),

where I1, I2 and I3 are defined in (3.4).

Proof. Recall the expansion (2.10) of eigenvalues by the Morley element

(3.6) λ − λM = ‖∇2
h(u − uM)‖20,Ω − 2λ(u −ΠMu,u) + O(h4

|u|23,Ω).

Thanks to the equivalence σHHJ = ∇2
hũM in (2.24),

∇
2u − ∇2

huM = (∇2u −ΠHHJ∇
2u) + (ΠHHJ∇

2u − σλu
HHJ) + (σλu

HHJ − σHHJ) + ∇2
h(ũM − uM),
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with the HHJ solutions σλu
HHJ and σHHJ of the source problem (2.15) with f = λu and f = λMuM,

respectively, and the Morley solutions uM and ũM of the eigenvalue problem (2.7) and the modified
problem (2.22), respectively. It holds that

λ − λM = ‖ (I −ΠHHJ)σ ‖20,Ω + ‖ ΠHHJσ − σ
λu
HHJ ‖

2
0,Ω + ‖ σλu

HHJ − σHHJ ‖
2
0,Ω

+ ‖ ∇2
h(ũM − uM) ‖20,Ω +2(σ −ΠHHJσ,ΠHHJσ − σ

λu
HHJ)

+ 2(σ −ΠHHJσ, σ
λu
HHJ − σHHJ) + 2(σ −ΠHHJσ,∇

2
h(ũM − uM))

+ 2(ΠHHJσ − σ
λu
HHJ, σ

λu
HHJ − σHHJ) + 2(ΠHHJσ − σ

λu
HHJ,∇

2
h(ũM − uM))

+ 2(σλu
HHJ − σHHJ,∇

2
h(ũM − uM)) − 2λ(u −ΠMu,u) + O(h4

|u|23,Ω).

(3.7)

Recall the superconvergence (2.20) of the HHJ element in Lemma 2.1 and the superclose property
(3.3) of both the Morley element and the HHJ element. Then,

(3.8)

‖ ΠHHJσ − σ
λu
HHJ ‖

2
0,Ω + ‖ σλu

HHJ − σHHJ ‖
2
0,Ω +‖∇2

h(uM − ũM)‖20,Ω
+2(ΠHHJσ − σ

λu
HHJ, σ

λu
HHJ − σHHJ) + 2(ΠHHJσ − σ

λu
HHJ,∇

2
h(ũM − uM))

+2(σλu
HHJ − σHHJ,∇

2
h(ũM − uM)) . h4

| ln h|‖u‖29
2 ,Ω
.

A combination of (2.19) and the superconvergence property (2.20) of the HHJ element yields

(3.9)
∣∣(σ −ΠHHJσ,ΠHHJσ − σ

λu
HHJ)

∣∣ =
∣∣(σλu

HHJ −ΠHHJσ,ΠHHJσ − σ
λu
HHJ)

∣∣ . h4
| ln h||u|29

2 ,Ω
.

A substitution of (3.8) and (3.9) into (3.7) leads to

λ − λM =‖ (I −ΠHHJ)∇2u ‖20,Ω +2I1 + 2I2 − 2I3 + O(h4
| ln h||u|29

2 ,Ω
),

which completes the proof. �

In the rest of this section, we will conduct an asymptotic analysis of each term on the right-hand
side of the expansion (3.5) in the above theorem.

3.2. Asymptotic expansion of ‖ (I − ΠHHJ)∇2u ‖20,Ω. Define the three basis functions for the HHJ
element

φi
HHJ(x) = −

1
2 sinθi−1 sinθi+1

(
ti−1tT

i+1 + ti+1tT
i−1

)
∈ P0(K,S), 1 ≤ i ≤ 3.

By (2.1), it is easy to verify that

1
|e j|

∫
e j

nT
j φ

i
HHJn j ds = δi j.(3.10)

Define four short-hand notations for the HHJ element

φ1(x) =
1

6|K|1/2
(x1 −M1)3, φ2(x) =

1
2|K|1/2

(x1 −M1)2(x2 −M2)

φ3(x) =
1

2|K|1/2
(x1 −M1)(x2 −M2)2, φ4(x) =

1
6|K|1/2

(x2 −M2)3.
(3.11)

Note that {φi}
4
i=1 are linear independent and

(3.12) P3(K,R) = P2(K,R) ∪ span{φi : 1 ≤ i ≤ 4},

(3.13) ‖∂111φi‖0,K = δ1i, ‖∂112φi‖0,K = δ2i, ‖∂122φi‖0,K = δ3i, ‖∂222φi‖0,K = δ4i.



10 Jun Hu, Limin Ma and Rui Ma

Define

(3.14) γi j
HHJ =

1
|K|

∫
K

(
(I −ΠHHJ)∇2φi

)T(I −ΠHHJ)∇2φ j dx, 1 ≤ i, j ≤ 4.

Lemma 3.2. Constants γi j
HHJ in (3.14) are the same on different elements of a uniform triangulation and

independent of the mesh size h.

Proof. By the definition of ΠHHJ and (3.10),

(3.15) ΠHHJ∇
2φi =

3∑
j=1

ai j
HHJφ

j
HHJ with ai j

HHJ =
1
|e j|

∫
e j

nT
j ∇

2φin j ds.

Since ∇2φ1 ∈ P1(K,S),

a1 j
HHJ = nT

j ∇
2φ1(m j)n j =

1
|K|1/2

nT
j

m j1 −M1 0

0 0

n j

is constant independent of the mesh size h, where m j = (m j1,m j2) is the midpoint of edge e j.
Similarly, for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ 3, constant ai j

HHJ is independent on the mesh size h. It
follows from (3.14) and (3.15) that

γi j
HHJ =

1
|K|

(∇2φi,∇
2φ j)0,K −

1
|K|

3∑
k=1

(φk
HHJ, a

ik
HHJ∇

2φ j + a jk
HHJ∇

2φi)0,K

+
1
|K|

3∑
k,l=1

aik
HHJa

jl
HHJ(φ

k
HHJ, φ

l
HHJ)0,K.

(3.16)

By the definition of φi ∈ P3(K,R) and φi
HHJ ∈ P0(K,R), each entry of ∇2φi is a linear combination of

x1 −M1 and x2 −M2. Thus, (φk
HHJ,∇

2φi)0,K = 0 for any 1 ≤ i ≤ 4, 1 ≤ k ≤ 3. For any 1 ≤ i, j ≤ 4, both
1
|K| (∇

2φi,∇2φ j)0,K and 1
|K| (φ

i
HHJ, φ

j
HHJ)0,K on uniform triangulations are constant independent of h. It

follows (3.16) that γi j
HHJ in (3.14) are the same on different elements and independent of h. �

For any region G, define

F(u,G) = γ11
HHJ‖∂111u‖20,G + γ22

HHJ‖∂112u‖20,G + γ33
HHJ‖∂122u‖20,G + γ44

HHJ‖∂222u‖20,G

+2γ12
HHJ

∫
G
∂111u∂112u dx + 2γ13

HHJ

∫
G
∂111u∂122u dx + 2γ14

HHJ

∫
G
∂111u∂222u dx

+2γ23
HHJ

∫
G
∂112u∂122u dx + 2γ24

HHJ

∫
G
∂112u∂222u dx + 2γ34

HHJ

∫
G
∂122u∂222u dx.

(3.17)

The following lemma presents the Taylor expansion of the interpolation error of the HHJ element.

Lemma 3.3. For any w ∈ P3(K,R),

(3.18) ‖ (I −ΠHHJ)∇2w ‖20,K= F(w,K)|K|.
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Proof. For any w ∈ P3(K,R), it follows from (3.12) and (3.13) that there exist p2 ∈ P2(K,R) and
constants {ai}

4
i=1 such that

(3.19) w =

4∑
i=1

aiφi + p2, (I −ΠHHJ)∇2w =

4∑
i=1

ai(I −ΠHHJ)∇2φi,

where

(3.20) a1 = |K|1/2∂111w, a2 = |K|1/2∂112w, a3 = |K|1/2∂122w, a4 = |K|1/2∂222w.

A substitution of (3.14) to (3.19) leads to

(3.21) ‖ (I −ΠHHJ)∇2w ‖20,K=

4∑
i, j=1

aia jγ
i j
HHJ|K| = F(w,K)|K|,

which completes the proof. �

Lemma 3.3 indicates that F(u,Ω)|K| is an expansion of ‖(I − ΠHHJ)∇2u‖20,Ω with accuracy O(h3).
Next we improve this estimate to an optimal rate O(h4). Define the interpolation Πl

Kv ∈ Pl(K,R) in
[26] for each positive integer l by

(3.22)
∫

K
DαΠl

Kv dx =

∫
K

Dαv dx with |α| ≤ l,

Let Πl
hv|K = Πl

Kv. There exists the following error estimate of the interpolation error

(3.23) |(I −Πl
K)v|m,K . hl−m+1

|v|l+1,K, ∀ 0 ≤ m ≤ l + 1.

Note that

(3.24)
‖(I −ΠHHJ)∇2u‖20 = ‖(I −ΠHHJ)∇2

hΠ
3
hu‖20 + ‖(I −ΠHHJ)∇2

h(I −Π3
h)u‖20

+ 2((I −ΠHHJ)∇2
h(I −Π3

h)u, (I −ΠHHJ)∇2
hΠ

3
hu),

where the second term on the right-hand side is a higher order term. The key to analyze ‖(I −
ΠHHJ)∇u‖20 is to prove a nearly orthogonal property of ((I −ΠHHJ)∇2

h(I −Π3
h)u, (I −ΠHHJ)∇2

hΠ
3
hu). To

this end, define a set of polynomials

φ(0,0) = 1, φ(1,0) = x1 −M1, φ(0,1) = x2 −M2,

φα =
1
α!

(x −MK)α −
∑
|β|≤|α|−2

Cβαφβ, for |α| ≥ 2.(3.25)

with constant

Cβα =
1

α!|K|

∫
K

Dβ(x −MK)α dx.(3.26)

For any |α| = k, φα ∈ Pk(K,R) and it is the first term 1
α! (x−MK)α that determines the k-th derivatives

of φα.
The explicit expression of the interpolation Πl

Ku in the following lemma admits an important
property that all φβ with |β| = |α| − 1 vanish in φα.

Lemma 3.4. For any nonnegative integer l and u ∈ Hl(K,R),

(3.27) Πl
Ku =

∑
|α|≤l

aαKφα, with aαK =
1
|K|

∫
K

Dαu dx.
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Moreover,

(3.28) (I −Πl
K)Πl+1

K u =
∑
|α|=l+1

aαKφα.

Proof. First we prove that basis functions φα in (3.25) satisfy that

1
|K|

∫
K

Dγφα dx = δαγ :=

{
1 α = γ

0 α , γ
(3.29)

by induction. It is obvious that φα with |α| ≤ 1 satisfies (3.29). Suppose that (3.29) holds for any φα
with |α| ≤ k, consider φα with |α| = k + 1.

If |γ| ≤ k − 1, a combination of (3.25), (3.26) and (3.29) gives

(3.30)
1
|K|

∫
K

Dγφα dx =
1

α!|K|

∫
K

Dγ(x −MK)α dx − Cγα = 0.

If |γ| = k, since Dγ(x −MK)α is a linear combination of x1 −M1 and x2 −M2,

(3.31)
1
|K|

∫
K

Dγφα dx =
1

α!|K|

∫
K

Dγ(x −MK)α dx = 0.

If |γ| = k+1 andγ , α, there must exist i ∈ {1, 2} such thatγi > αi,which implies that ∂γi
i (xi−Mi)αi = 0.

Consequently,

Dγφα = ∂γ1
1 (x1 −M1)α1∂γ2

2 (x2 −M2)α2 = 0.(3.32)

Since φβ ∈ P|β|(K,R),

Dγφβ = 0, if |γ| > |β|.(3.33)

If |γ| = k + 1 and γ , α, a combination of (3.25), (3.32) and (3.33) gives
∫

K Dγφα dx = 0. If γ = α,
by the definition (3.25), a direct computation yields 1

|K|

∫
K Dγφα dx = 1. Since φα ∈ Pk+1(K,R), it is

trivial that Dγφα = 0 for any |γ| > k + 1. A combination of all the results above leads to (3.29) for
|α| = k + 1, which completes the proof for (3.29). A combination of the definition of Πl

K in (3.22)
and (3.29) gives (3.27) directly.

By (3.27), Πl+1
K u =

∑
|α|=l+1

aαKφα +
∑
|α|<l+1

aαKφα. Since φα ∈ P|α|(K,R),

(3.34) (I −Πl
K)Πl+1

K u =
∑
|α|=l+1

aαK(I −Πl
K)φα.

It follows from (3.22) and (3.29) that

(3.35) Πl
Kφα = 0, ∀|α| = l + 1.

A combination of (3.34) and (3.35) gives

(I −Πl
K)Πl+1

K u =
∑
|α|=l+1

aαKφα,

which completes the proof for (3.28). �

Lemma 3.5. It holds on uniform triangulations that∣∣((I −ΠHHJ)∇2
hΠ

3
hu, (I −ΠHHJ)∇2

h(I −Π3
h)u)

∣∣ . h4
‖u‖25,Ω,

provided u ∈ H5(Ω,R).
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Proof. The partition Th of domain Ω includes the set of parallelograms N1 and the set of a few
remaining boundary trianglesN2, see Fig. 2 for example. Let

N2

N2

N2

N2

N1 N1 N1 N1 N1 N1

N1 N1 N1 N1 N1 N1

N1 N1 N1 N1 N1 N1

N1

N1

Figure 2. A uniform triangulation of Ω.

(3.36) kappa = |N2|

denote the number of the elements inN2. It holds that

(3.37)
(
(I −ΠHHJ)∇2

hΠ
3
hu, (I −ΠHHJ)∇2

h(I −Π3
h)u
)

= IN1 + IN2

with INi =
∑
K∈Ni

((I −ΠHHJ)∇2Π3
Ku, (I −ΠHHJ)∇2(I −Π3

K)u)0,K.

It follows from the estimate (3.23) that

((I −ΠHHJ)∇2Π3
Ku, (I −ΠHHJ)∇2(I −Π3

K)u)0,K

=((I −ΠHHJ)∇2Π3
Ku, (I −ΠHHJ)∇2(I −Π3

K)Π4
Ku)0,K + O(h4

‖u‖25,Ω).
(3.38)

Consider the expansion of (I −Π3
K)Π4

Ku. Let l = 4 in (3.28). It holds that

(I −Π3
K)Π4

Ku
∣∣
K =

∑
|α|=4

aαK
( 1
α!

(x −MK)α −
∑
|β|≤2

Cβαφβ
)
.

This implies that (I − Π3
K)Π4

Ku does not include any homogeneous third order terms. These
vanishing homogeneous third order terms are crucial for the analysis here. By the definition of the
interpolation ΠHHJ and the fact that ∇2φβ is constant if |β| = 2,

(I −ΠHHJ)∇2(I −Π3
K)Π4

Ku
∣∣
K =

∑
|α|=4

aαK
α!

(I −ΠHHJ)∇2(x −MK)α.

Similarly, (I −ΠHHJ)∇2Π3
Ku|K =

∑
|β|=3

aβK
β!

(I −ΠHHJ)∇2(x −MK)β. Thus, by (3.38),

(3.39) ((I −ΠHHJ)∇2Π3
Ku, (I −ΠHHJ)∇2(I −Π3

K)u)0,K =
∑
|α|=4

∑
|β|=3

aαKaβK
α!β!

cαβK + O(h4
‖u‖25,K),

with cαβK :=
(
(I −ΠHHJ)∇2(x −MK)β, (I −ΠHHJ)∇2(x −MK)α

)
0,K.

Consider IN1 in (3.37). Let c be the centroid of a parallelogram formed by two adjacent elements
K1 and K2. Define a mapping T : x → x̃ = 2c − x. It is obvious that T maps K1 onto K2 and
x − MK1 = −(x̃ − MK2 ). Note that for any |α| = 4 and |β| = 3, ∇2(x − MK)α and ∇2(x − MK)β are
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homogeneous polynomials of x1 − M1 and x2 − M2 with degree 2 and 1, respectively. For any
adjacent elements K1 and K2 forming a parallelogram, cαβK1

= −cαβK2
. It follows that

((I −ΠHHJ)∇2Π3
hu, (I −ΠHHJ)∇2(I −Π3

h)u)0,K1∪K2

=
∑
|α|=4

∑
|β|=3

1
α!β!

(aβK1
aαK1
− aβK2

aαK2
)cαβK1

+ O(h4
‖u‖25,Ω)

=
∑
|α|=4

∑
|β|=3

1
α!β!

(
aβK1

(aαK1
− aαK2

) + (aβK1
− aβK2

)aαK2

)
cαβK1

+ O(h4
‖u‖25,Ω).

(3.40)

Recall aαK = 1
|K|

∫
K Dαu dx in (3.27). Note that for all v ∈ P4(K1 ∪ K2), we have 1

|K1 |

∫
K1

Dαv dx −
1
|K2 |

∫
K2

Dαv dx = 0. The Bramble-Hilbert Lemma leads that∣∣∣∣ 1
|K1|

∫
K1

Dαv dx −
1
|K2|

∫
K2

Dαv dx
∣∣∣∣ . |u|5,K1∪K2 .

A similar analysis for |β| = 3 gives

(3.41) |aαK1
− aαK2

| + |aβK1
− aβK2

| . ‖u‖5,K1∪K2 .

Note that

(3.42) |cαβK1
| . h2

‖∇
3(x −MK1 )β‖0,K1‖∇

3(x −MK1 )α‖0,K1 . h3
|K1| for |α| = 4, |β| = 3.

A substitution of (3.41) and (3.42) into (3.40) gives

IN1 .
∑
K∈N1

h4
‖u‖5,K|K|

1
2 + O(h4

‖u‖25,Ω)

≤ h4

∑
K∈N1

‖u‖25,K

 1
2
∑

K∈N1

|K|

 1
2

+ O(h4
‖u‖25,Ω) . h4

‖u‖25,Ω.

(3.43)

For any element K ∈ N2, it follows from (3.39) and (3.42) that∣∣((I −ΠHHJ)∇2Π3
Ku, (I −ΠHHJ)∇2(I −Π3

K)u)0,K
∣∣ . h3

|K|.

Since
∑

K∈N2
|K| . h, it follows that

IN2 . h4
‖u‖25,Ω.(3.44)

A substitution of (3.43) and (3.44) into (3.37) leads to∣∣((I −ΠHHJ)∇2Π3
hu, (I −ΠHHJ)∇2(I −Π3

h)u)
∣∣ . h4

‖u‖25,Ω,

which completes the proof. �

Thanks to Lemmas 3.2, 3.3 and 3.5, there exists the following fourth-order accurate expansion
of ‖ (I −ΠHHJ)∇2u ‖20,Ω in Theorem 3.1.

Lemma 3.6. For any u ∈ V ∩H5(Ω,R),

(3.45) ‖ (I −ΠHHJ)∇2u ‖20,Ω=
1
N

F(u,Ω)|Ω| + O(h4
‖u‖25,Ω),

where F(u,Ω) in (3.17) is independent of the mesh size h and N is the number of elements.
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3.3. Error estimate of I1 = (σ−σλu
HHJ, σ

λu
HHJ−σHHJ). The first order term σ−σλu

HHJ leads to a suboptimal
result of I1 if the Cauchy-Schwarz inequality is applied directly. To prove an optimal error estimate,
we employ the commuting property of the interpolation of the Morley element and the equivalence
between the HHJ element and the modified Morley element. This allows to express I1 in terms of
the error of uHHJ with a second order accuracy, which leads to the desired optimal estimate.

Lemma 3.7. Suppose that (λ,u) is the solution of Problem (2.5) and u ∈ V ∩H3(Ω,R). It holds that

|I1| . h4
‖u‖23,Ω.

Proof. By the equivalence (2.24) between the HHJ element and modified Morley element,

(σ − σλu
HHJ, σ

λu
HHJ − σHHJ) = (∇2

h(u − ũλu
M ),∇2

h(ũλu
M − ũM)).(3.46)

Since ũλu
M − ũM ∈ VM, the commuting property (2.9) of the Morley element leads to

(∇2
h(u − ũλu

M ),∇2
h(ũλu

M − ũM)) = (∇2
h(ΠMu − ũλu

M ),∇2
h(ũλu

M − ũM)).(3.47)

Recall that ũλu
M and ũM are the solutions of Problem (2.22) with f = λu and λMuM, respectively. It

follows that

(∇2
h(ΠMu − ũλu

M ),∇2
h(ũλu

M − ũM)) = (λu − λMuM,ΠD(ΠMu − ũλu
M )).(3.48)

Thanks to the error estimate (2.8) of the Morley element and (2.16) of the HHJ element, the
equivalence (2.24) between the modified Morley element and the HHJ element, and the triangle
inequality,

‖ΠD(ΠMu − ũλu
M )‖0,Ω ≤ ‖ΠD(ΠMu − u)‖0,Ω + ‖u − uλu

HHJ‖0,Ω ≤ h2
‖u‖3,Ω.(3.49)

A combination of (2.8), (3.46), (3.47), (3.48) and (3.49) gives

|(σ − σλu
HHJ, σ

λu
HHJ − σHHJ)| ≤ h2(λ|u − uM| + |λ − λM|)‖u‖3,Ω ≤ h4

‖u‖23,Ω,

which completes the proof.
�

3.4. Error estimate of I2 = (σ−σHHJ,∇2
h(ũM−uM)). This term is essentially a consistency error term

of the Morley element with third order accuracy by a direct use of the Cauchy-Schwarz inequality.
The main idea here is to employ the equivalence between the HHJ element and the modified
Morley element and make use of the weak continuity of solutions in VM.

Lemma 3.8. Suppose that (λ,u) is the solution of Problem (2.5) and u ∈ V ∩H3(Ω,R). It holds that

|I2| . h4
‖u‖23,Ω.

Proof. By the equivalence (2.24) between the HHJ element and the modified Morley element and
the superclose property in Lemma 3.1,

I2 =(∇2(u − ũM),∇2
h(ũM − uM)) = (∇2(u − uM),∇2

h(ũM − uM)) + O(h4
‖u‖23,Ω).

By the commuting property (2.9) of the Morley element and Problems (2.7), (2.22),

(3.50) (∇2(u − uM),∇2
h(ũM − uM)) = λM(uM, (I −ΠD)sh)

with sh = ΠMu − uM. Note that

(λMuM, (I −ΠD)sh) = (λΠ0
hu, (I −ΠD)sh) + (λMuM − λΠ0

hu, (I −ΠD)sh).(3.51)
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It follows from the triangle inequality and the error estimate (2.8) that∣∣(λMuM − λΠ0
hu, (I −ΠD)sh)

∣∣ . h4
‖u‖23,Ω.(3.52)

According to the expansion of the interpolation error in [28] for the linear element,

(3.53) (λΠ0
hu, (I −ΠD)sh) = (−

1
2

3∑
i=1

∂2sh

∂t2
i
ψi−1ψi+1|ei|

2, λΠ0
hu) = −

λ
24

3∑
i=1

|ei|
2(
∂2sh

∂t2
i
,Π0

hu),

where ψi are the barycentric coordinates. Integration by parts indicates that∫
K

∂2sh

∂t2
i

Π0
hu dx =

∫
∂K

∂sh

∂ti
Π0

hu(n · ti) ds.(3.54)

As sh ∈ VM, it holds that
∫

e[∇sh] ds = 0. Note that te is the unit tangent vector of edge e with the
same direction on two adjacent elements sharing the edge e, and ti is the one along the boundary
of an element with counterclockwise orientation. Since n · ti is the same on two adjacent elements,
it follows (2.8) that∣∣∣∣∣∣

∑
K∈Th

|ei|
2
∫
∂K

∂sh

∂ti
Π0

hu(n · ti) ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
e∈Eh

(n · ti)|ei|
2
∫

e

∂sh

∂ti
[(Π0

h −Π0
e )u] ds

∣∣∣∣∣∣
. h2
|sh|1,h‖u‖1,Ω . h4

‖u‖23,Ω.

(3.55)

By the commuting property of the interpolation ΠM in (2.9), a substitution of (3.51), (3.52), (3.53),
(3.54) and (3.55) into (3.50) gives

|I2| . h4
‖u‖23,Ω,

which completes the proof. �

3.5. Error estimate of I3 = λ(u − ΠMu,u). This interpolation term I3 can not be cancelled with
other terms as the analysis in [21] for the Crouzeix-Raviart element. The key here to obtain an
optimal estimate is to exploit the Taylor expansion of (I −ΠM)u and make full use of the uniform
triangulations.

Define

φi
M = ψ2

i−1ψi+1, φ4
M = ψ1ψ2ψ3, 1 ≤ i ≤ 3(3.56)

with the barycentric coordinates {ψi}
3
i=1. For two adjacent elements K1 and K2 forming a parallel-

ogram, let the local index of vertices satisfy ∇ψi|K1 = −∇ψi|K2 , i = 1, 2, 3. By (2.1), there exist the
following properties of these cubic polynomials

∂3φi
M

∂t3
j

= −
2
|ei|

3 δi j,
∂3φ4

M

∂t2
j−1∂t j+1

=
2

|e j+1||e j−1|
2 , 1 ≤ i ≤ 4, 1 ≤ j ≤ 3,

∂3φi
M

∂t2
j−1∂t j+1

=


−

2
|e j+1 ||e j−1 |

2 i = j + 1

0 i = j
2

|e j+1 ||e j−1 |
2 i = j − 1

, 1 ≤ i, j ≤ 3.

(3.57)

Note that

P3(K,R) = P2(K,R) + span{φi
M, 1 ≤ i ≤ 4}.(3.58)
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For 1 ≤ i ≤ 3, ψ2
iψi−1 = φi+1

M and

ψ3
i = −φi+1

M + φi−1
M + φ4

M − ψiψi+1 + ψ2
i , ψ2

iψi+1 = −φi−1
M − φ

4
M + ψiψi+1.

Lemma 3.9. For any w ∈ P3(K,R),

(I −ΠM)Π3
hw =

4∑
i=1

ci(I −ΠM)φi
M(3.59)

with

c j = −
|e j|

3

2
Π0

h
∂3w
∂t3

j
, 1 ≤ j ≤ 3,

c4 =
|e j+1||e j−1|

2

2
Π0

h
∂3w

∂t2
j−1∂t j+1

−
|e j+1|

3

2
Π0

h
∂3w
∂t3

j+1
+
|e j−1|

3

2
Π0

h
∂3w
∂t3

j−1
.

(3.60)

Proof. By (3.58), there exist constants ci and p2 ∈ P2(K,R) such that

Π3
hw =

4∑
i=1

ciφ
i
M + p2.(3.61)

It leads to (3.59) with coefficients ci to be determined. Taking third derivatives on both sides of
(3.61), it follows from (3.57) that

∂3Π3
hw

∂t3
j

= −
2
|e j|

3 c j,
∂3Π3

hw
∂t2

j−1∂t j+1
=

2
|e j+1||e j−1|

2 (c j−1 − c j+1 + c4).

The fact that ∂αΠ3
hw = Π0

h∂
αw with |α| = 3 leads to (3.60) directly, and completes the proof. �

The expansion in Lemma 3.9 of the interpolation error of the Morley leads to the following
optimal analysis of I3 on uniform triangulations.

Lemma 3.10. Suppose that (λ,u) is the solution of Problem (2.5) and u ∈ V ∩ H4(Ω,R). It holds on
uniform triangulations that

|I3| . h4
‖u‖24,Ω.

Proof. Note that

(3.62) I3 = λ((I −ΠM)Π3
hu,Π0

hu) + λ((I −ΠM)(I −Π3
h)u,Π0

hu) + λ((I −ΠM)u, (I −Π0
h)u),∣∣((I −ΠM)(I −Π3

h)u,Π0
hu)
∣∣ + ∣∣((I −ΠM)u, (I −Π0

h)u)
∣∣ . h4

‖u‖24,Ω.(3.63)

It follows from (3.59), (3.62) and (3.63) that

I3 = λ((I −ΠM)Π3
hu,Π0

hu) + O(h4
|u|24,Ω) = λ

∑
K∈Th

4∑
i=1

si(ci,Π
0
Ku)K + O(h4

|u|24,Ω).(3.64)

with si = Π0
K(I −ΠM)φi

M and ci defined in (3.60). By the definition of φi
M in (3.56), constant si has

the same value on different elements. Note that the directions of ti for two adjacent elements are
opposite. Thus, the definition of ci in (3.60) indicates

ci|K1 = −ci|K2 = O(h3),
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where adjacent elements K1 and K2 forming a parallelogram. Similar to the analysis in Lemma 3.5,∣∣∑4
i=1 si(ci,Π0

hu)
∣∣ . h4

‖u‖23,Ω. A substitution of this estimate into (3.64) leads to

|I3| . h4
‖u‖24,Ω,

which completes the proof. �

Lemma 3.7, 3.8, 3.10 show that the terms I1, I2 and I3 are higher order terms. According to the
decomposition of eigenvalues in Theorem 3.1, the error of eigenvalues equals to the interpolation
error of the HHJ element in L2 norm up to a higher order term. The following asymptotic expansion
of eigenvalues of the Morley element comes from the combination of Lemma 3.6, 3.7, 3.8, 3.10 and
Theorem 3.1.

Theorem 3.2. Suppose that (λ,u) is the eigenpair of Problem (2.5) with u ∈ V ∩H5(Ω,R), and (λM,uM)
is the corresponding eigenpair of Problem (2.7) by the Morley element on an uniform triangulation Th. It
holds that

λ − λM =
1
N

F(u,Ω)|Ω| + O(h4
| ln h|‖u‖25,Ω).

with N the number of elements on Th and F(u,Ω) defined in (3.17).

The optimal convergence result of the extrapolation algorithm in the following theorem is an
immediate consequence of Theorem 3.2.

Theorem 3.3. Suppose that λ is a simple eigenvalue of Problem (2.5) and a corresponding eigenfunction
u ∈ V ∩H5(Ω,R). Let (λM,uM) be the corresponding eigenpair of Problem (2.7) by the Morley element on
an uniform triangulation Th. It holds that∣∣λ − λEXP

M

∣∣ . h4
| ln h|‖u‖25,Ω.

with extrapolation eigenvalues λEXP
M defined in (3.1).

Remark 3.1. If λ is a multiple eigenvalue, eigenfunctions uM on triangulations with different mesh size
may approximate to different functions u ∈ M(λ). Then, the asymptotic expansion of eigenvalue λM in
Theorem 3.2 cannot lead to a theoretical estimate of λEXP

M in (3.1). Some numerical tests in Section 5 show
that extrapolation method can also improve the accuracy of multiple eigenvalues toO(h4) if the eigenfunction
is smooth enough.

4. Asymptotically exact a posterior error estimate and postprocessing scheme

In this section, we establish and analyze an asymptotically exact a posterior error estimate of
eigenvalues by the Morley element. This estimate gives a high accuracy postprocessing scheme of
eigenvalues.

To begin with, we introduce a gradient recovery technique [7, 24]. Define the discrete space

CR(Th,S) :=
{

v ∈ L2(Ω,S) : v|K ∈ P1(K,S) for any K ∈ Th,

∫
e
[v] ds = 0 for any e ∈ Ei

h

}
.

For any function v ∈ CR(Th,S), it is known that each entry of v is uniquely determined by its value
at the midpoint of edges, so does the function v itself. Given q ∈ Σ(Th), define Khq|K ∈ CR(Th,S)
as follows.
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Definition 1. 1.For each interior edge e ∈ Ei
h, the elements K1

e and K2
e are the pair of elements sharing e.

Then the value of Khq at the midpoint me of e is

Khq(me) =
1
2

(q|K1
e
(me) + q|K2

e
(me)).

2.For each boundary edge e ∈ Eb
h, let K be the element having e as an edge, and K′ be an element sharing

an edge e′ ∈ Ei
h with K. Let e′′ denote the edge of K′ that does not intersect with e, and m, m′ and m′′ be the

midpoints of the edges e, e′ and e′′, respectively. Then the value of Khq at the point m is

Khq(m) = 2Khq(m′) − Khq(m′′).

m’

m”

m

K

K’

e
e’

e”

∂Ω

The Morley element solution for source problems admits a first order superconvergence on
uniform triangulations [22]. According to Lemma 3.1, the eigenfunction uM is superclose to the
Morley element solution for a corresponding source problem. These two facts lead to the following
superconvergence result on uniform triangulations

(4.1) ‖ ∇
2u − Kh∇

2
huM ‖0,Ω. h2

| ln h|1/2|u| 9
2 ,Ω
,

provided that u ∈ V ∩H
9
2 (Ω,R).

Define the following asymptotically exact a posteriori error estimate

(4.2) FM =‖ Kh∇
2
huM − ∇

2
huM ‖

2
0,Ω .

Given a discrete eigenvalue λM of the Morley element, the postprocessing scheme computes a new
approximate eigenvalue

(4.3) λR
M = λM + FM.

By the expansion (2.10), a similar analysis to the one in [21] leads to the following theorem.

Theorem 4.1. Let (λ,u) be an eigenpair of (2.5) with u ∈ V∩H
9
2 (Ω,R), and (λM,uM) be the corresponding

approximate eigenpair of (2.7) in VM. The new eigenvalue λR
M by the postprocessing scheme satisfies

|λ − λR
M| . h3

| ln h||u|29
2 ,Ω
,

and the accuracy of the asymptotically exact a posterior error estimates FM is O(h3
| ln h|).

Proof. Recall the expansion (3.6) of eigenvalues

λ − λM = ‖∇2
h(u − uM)‖20,Ω − 2λ(u −ΠMu,u) + O(h4

|u|23,Ω).

By the definition of λR
M in (4.3),

(4.4) λ − λR
M = ‖∇2

h(u − uM)‖20,Ω − ‖Kh∇
2
huM − ∇

2
huM‖

2
0,Ω − 2λ(u −ΠMu,u) + O(h4

|u|23,Ω).

It follows from (4.1) and the Cauchy Schwarz inequality that

(4.5)
∣∣‖∇2

h(u − uM)‖20,Ω − ‖Kh∇
2
huM − ∇

2
huM‖

2
0,Ω

∣∣ . h3
| ln h|1/2|u| 9

2 ,Ω
.
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It follows (2.8) that |(u − ΠMu,u)| . h3
‖u‖3,Ω. A substitution of this estimate and (4.5) into (4.4)

yields
|λ − λR

M| . h3
| ln h||u|29

2 ,Ω
,

which completes the proof. �

5. Numerical examples

This section presents some numerical tests to confirm the theoretical analysis in the previous
sections.

5.1. Example 1 (simply support plate and clamped plate). We consider the plate problem (2.5) on
the unit square Ω = (0, 1)2. The initial mesh T1 consists of two right triangles, obtained by cutting
the unit square with a north-east line. Each mesh Ti is refined into a half-sized mesh uniformly, to
get a higher level mesh Ti+1.
Simply support plate. Consider the simply support plate with boundary condition u = ∂2u

∂n2 = 0. It is
known that the first eigenvalue of this problem isλ1 = 4π4, and the convergence rate of approximate
eigenvalues by the Morley element is α = 2. Fig. 3 plots the errors of eigenvalues λM, λEXP

M and λR
M

by the Morley element, the corresponding extrapolation method and the postprocessing technique,
respectively. The convergence rate of eigenvalues by the Morley element is improved remarkably
from second order to fourth order, which verifies the analysis in Theorem 3.3 and Theorem 4.1.
Fig. 3 also shows that the postprocessing technique has a better performance than the extrapolation
method, although the theoretical convergence rate is smaller than the extrapolation method.

Figure 3. The relative errors of the extrapolation eigenvalues for the simply support plate in Example
1.

Among the smallest six eigenvalues, it is known that λ2 = λ3 and λ5 = λ6. Table 1 lists the
relative errors of eigenvalues by the Morley element for these multiple eigenvalues. It shows that
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the extrapolation method also improves the convergence rate of multiple eigenvalues to a rate of
4.

T2 T3 T4 T5 T6 T7 rate

λ2 2.55E-01 6.95E-02 8.39E-03 6.54E-04 4.35E-05 2.76E-06 3.98

λ3 2.34E-01 6.05E-02 7.20E-03 5.55E-04 3.68E-05 2.33E-06 3.98

λ5 4.63E-01 1.54E-01 2.81E-02 2.64E-03 1.87E-04 1.21E-05 3.95

λ6 4.63E-01 1.55E-01 2.82E-02 2.65E-03 1.87E-04 1.21E-05 3.95

Table 1. The relative errors of eigenvalues by the extrapolation method for the Morley element in
Example 1.

Figure 4. The relative errors of the extrapolation eigenvalues for clamped plate in Example 1.

Clamped plate. Consider the clamped plate with boundary condition u = ∂u
∂n = 0. The sum of

the eigenvalue by the Morley element on the mesh T11 and the corresponding a posteriori error
estimate in (4.2) is taken as the reference eigenvalue for this example. Fig. 4 plots the relative errors
of the first eigenvalues λM, λEXP

M and λR
M. It shows that both the extrapolation method and the

postprocessing technique can improve the accuracy of eigenvalues on the clamped plate to order
4, which verifies the analysis in Theorem 3.3 and Theorem 4.1. Similar to the results in Example 1
for simply supported plate, Fig. 4 implies that the accuracy of eigenvalues by the postprocessing
technique is better than that of eigenvalues by the extrapolation method.
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5.2. Example 2 (Piecewise uniform mesh). Consider a model problem (2.5) with V = H2
0(Ω) on

the domain Ω shown in Fig. ??, where the coordinates of A1 to A5 are (2, 0), (1,−2), (−1,−2), (−2, 0),
(0, 2), respectively. The minimal and maximal angle of Ω are 90◦ and 121.3◦, respectively. Fig. ??
plots the initial mesh T1 and each mesh Ti is refined into a half-sized mesh uniformly, to get a
higher level mesh Ti+1. The eigenvalue by the Aygris element on T8 is taken as the reference
eigenvalue for this example.

A0
A1

A2A3

A4

A5

Figure 5. The computational domain of Example 2.

Table 2 indicates an almost fourth order convergence rate of extrapolation eigenvalues λEXP
M in

(3.1) with α = 2 and postprocessed eigenvalues λR
M in (4.2). Although the meshes are no longer

uniform, we can still observe the optimal estimate for the asymptotic expansion of the Morley
element on such piecewise uniform meshes. It implies that both the extrapolation method and the
postprocessing technique are effective on piecewise uniform meshes. Similar to Example 1, the
accuracy of eigenvalues by the postprocessing technique is slightly better than that of eigenvalues
by the extrapolation method.

T3 T4 T5 T6 T7 order

λM 9.91E-01 2.71E-01 6.95E-02 1.75E-02 4.38E-03 1.99

λR
M 1.51E-01 1.37E-02 1.05E-03 7.95E-05 6.38E-06 3.64

λEXP
M 3.21E-01 3.11E-02 2.28E-03 1.52E-04 9.81E-06 3.95

Table 2. The relative errors of eigenvalues for Example 2.

5.3. Example 3 (Cracked domain). Consider the model problem (2.5) on a square domain with a
crack

Ω = (−1, 1)2/[0, 1] × {0}.

The boundary condition is u = ∂u
∂n = 0. Let T0 consist of two right triangles, obtained by cutting the

domain (−1, 1)2 with a north-east line. Each mesh Ti is refined into a half-sized mesh uniformly, to
get a higher level mesh Ti+1. Let T1 be the initial mesh.
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Figure 6. The first eigenfunctions on adaptive triangulations for Example 3 with 10246, 28909, 76779
and 459901 d.o.f, respectively.

Figure 7. The relative errors of the extrapolation eigenvalues on uniform triangulations and the
adaptive method for Example 3.

The eigenfunction with respect to the smallest eigenvalue for this case is singular. Adaptive
method is a popular and efficient way to deal with singular cases. For eigenvalue problems by
the Morley element, an efficient and reliable a posteriori error estimator of Morley elements was
proposed in [43]. This a posteriori error estimator is adopted here to generate adaptive grids.
Denote the smallest approximate eigenvalues by the Morley element on these adaptive grids by
λA

M. For the approximate eigenvalues λA
M, compute the asymptotically exact a posterior error

estimate in (4.2) and denote the postprocessed approximate eigenvalues in (4.3) by λR,A
M . Since
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the eigenvalues of the problem in consideration are unknown, we use the adaptive postprocessed
eigenvalue λR,A

M on an adaptive mesh with 3454396 degrees of freedom as the reference eigenvalue.
Fig. 6 plots the approximate eigenfunction on adaptive meshes, and Fig. 7 plots the errors of
approximate eigenvalues λM, λEXP

M , λR
M, λA

M and λR,A
M . In this case, the discrete eigenvalue λM

converges at the rate 1. We compute the extrapolation eigenvalue λEXP
M in (3.1) with α = 1. Since

the eigenfunction is singular, the postprocessing scheme improves the accuracy of eigenvalues
on uniform meshes without improving the convergence rate, while the extrapolation method can
improve the convergence rate to 2.00. Fig. 7 also implies that the postprocessing scheme is also
effective on adaptive meshes.

5.4. Example 4. Consider the model problem (2.5) on a Dumbbell-split domain with a slit Ω =

(−1, 1) × (−1, 5)\([0, 1) × {0} ∪ [1, 3] × [−0.75, 1]). The boundary condition is u = ∂u
∂n = 0. The initial

triangulation is shown in Fig. 8.

(-1,-1) (1,-1) (3,-1) (5,-1)

(-1,1) (1,1) (3,1) (5,1)

(1,-0.75) (3,-0.75)

Figure 8. The initial triangulation of Dumbbell domain Ω for Example 4.

Fig. 9 and Fig. 11 plot the first and the fourth eigenfunctions on adaptive meshes, respectively.
Fig. 10 plots the relative errors of the first and the fourth eigenvalues λM by the Morley element,
the extrapolation eigenvalue λEXP

M in (3.1), the adaptive eigenvalue λA
M, and the postprocessed

eigenvalues λR
M and λR,A

M . The first eigenvalue λM converges at the rate 2, while the fourth
eigenvalue λM only converges at the rate 1. This implies a relatively higher regularity of the
first eigenfunction. This explains why the extrapolation method and postprocessing technique on
uniform meshes even have better performance than adaptive methods. For the first eigenvalue,
both the extrapolation method and the postprocessing technique can improve the convergence
rate to 3. For the fourth eigenvalue, the convergence rate of eigenvalues by the postprocessing
technique stays at 1, while that of eigenvalues by the extrapolation method (3.1) with α = 1
increases to 2. For the case that the eigenfunction is not smooth enough, Fig. 10 shows that the
proposed postprocessing technique is effective on both uniform meshes and adaptive meshes.
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Figure 9. The first eigenfunctions on adaptive triangulations for Example 4 with 6409 and 166591
d.o.f, respectively.

Figure 10. The relative errors of the first (left) and the fourth (right) eigenvalue on uniform trian-
gulations and the adaptive method for Example 4.
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Figure 11. The fourth eigenfunctions on adaptive triangulations for Example 4 with 15832 and
523521 d.o.f, respectively.
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