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The most likely evolution of diffusing and
vanishing particles: Schrödinger Bridges with

unbalanced marginals

Yongxin Chen, Tryphon T. Georgiou and Michele Pavon

Abstract

Stochastic flows of an advective-diffusive nature are ubiquitous in biology and the physical sciences. Of
particular interest is the problem to reconcile observed marginal distributions with a given prior posed by E.
Schrödinger in 1932/32 and known as the Schrödinger Bridge Problem (SBP). It turns out that Schrödinger’s
problem can be viewed both as a modeling as well as a control problem. Due to the fundamental significance
of this problem, interest in SBP and in its deterministic (zero-noise limit) counterpart of Optimal Mass Transport
(OMT) has in recent years enticed a broad spectrum of disciplines, including physics, stochastic control, computer
science, probability theory, and geometry. Yet, while the mathematics and applications of SBP/OMT have been
developing at a considerable pace, accounting for marginals of unequal mass has received scant attention; the
problem to interpolate between “unbalanced” marginals has been approached by introducing source/sink terms into
the transport equations, in an adhoc manner, chiefly driven by applications in image registration.

Nevertheless, losses are inherent in many physical processes and, thereby, models that account for lossy
transport may also need to be reconciled with observed marginals following Schrödinger’s dictum; that is, to adjust
the probabilty of trajectories of particles, including those that do not make it to the terminal observation point,
so that the updated law represents the most likely way that particles may have been transported, or vanished,
at some intermediate point. Thus, the purpose of this work is to develop such a natural generalization of the
SBP for stochastic evolution with losses, whereupon particles are “killed” (jump into a coffin/extinction state)
according to a probabilistic law, and thereby mass is gradually lost along their stochastically driven flow. Through
a suitable embedding we turn the problem into an SBP for stochastic processes that combine diffusive and jump
characteristics. Then, following a large-deviations formalism in the style of E. Schrödinger, given a prior law that
allows for losses, we ask for the most probable evolution of particles along with the most likely killing rate as the
particles transition between the specified marginals. Our approach differs sharply from previous work involving a
Feynman-Kac multiplicative reweighing of the reference measure: The latter, as we argue, is far from Schrödinger’s
quest. An iterative scheme, generalizing the celebrated Fortet-IPF-Sinkhorn algorithm, permits to compute the new
drift and the new killing rate of the path-space solution measure. We finally formulate and solve a related fluid-
dynamic control problem for the flow of one-time marginals were both the drift and the new killing rate play the
role of control variables.

I. INTRODUCTION

Consider the problem of estimating the velocity field of oceanic currents by releasing into the water
a cloud of tracer particles and by sampling their distribution at a later time. The diffusion coefficient is
assumed known and the original cloud that is released at time t = 0 consists of N particles. These are
expected to remain in suspension for a duration of time while they diffuse and drift with the current.
At time t = 1, their distribution is sampled again. Some of the particles in the meantime have sunk, so
that the number of found particles is less than N . Suppose this experiment is performed several times,
treating the model originating from previous experiments as a “prior”. Is it conceivable to “improve” a
prior model in a rational way? More explicitly, by relying on a prior model and the new sampling result,
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ar
X

iv
:2

10
8.

02
87

9v
1 

 [
m

at
h-

ph
] 

 5
 A

ug
 2

02
1



2

is it possible to determine an updated model that represents the most probable way that the tracer cloud
may have been transported?

At first sight, this problem appears to be of a different nature than those treated in the theory of
Large Deviations [1], [2], [3], in that the sought path-space measure is not a probability measure per se.
Nevertheless, in spite of the paucity of the available data, it is possible to solve this inverse problem by a
natural embedding technique. A byproduct is a physically motivated framework to interpolate distributions
of unequal mass (integrals). The blueprint for the rationale in our work has been provided by the celebrated
duo of papers by E. Schrödinger in 1931/32 [4], [5] where he considered the problem of reconciling
marginal distributions with a prior stochastic evolution.

The original Schrödinger Bridge Problem (SBP) asks for the most likely evolution of stochastic
particles as they travel between marginal probability densities ρ0 and ρ1, specified at two points in time
(taken as t0 = 0 and t1 = 1 without loss of generality), when these marginals fail to be consistent
with a known prior law. Interestingly, Schrödinger considered this abstract problem before a theory of
continuous parameter stochastic processes was in place, and had only been preceded by Ludwig Boltzmann
[6]. Schrödinger attacks the problem very much in his countryman’s style, through coarse graining, and
applying the De Moivre-Stirling formula and Lagrange multipliers. In spite of the lack of proper tools
(Sanov’s theorem [7] will be published in Russian only in 1957), he arrives at the correct answer [4],
[5], that the most likely evolution is obtained by solving a certain two-point boundary value problem
(Schrödinger system of equations). Important contributions to this theory are then provided by Fortet,
Beurling and Jamison [8], [9], [10], [11]. It took more than half a century before Föllmer [12], recovering
Schrödinger’s original motivation, properly cast the problem within the framework of Large-Deviations
theory. The field has since seen several other significant contributions, a partial selection being [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28]. Here [19], [25], [27] are survey
papers. Observe that, in view of Sanov’s theorem [3], the SBP amounts to seeking a new probability law
on the path space of the stochastic particles that is consistent with the given marginals and, at the same
time, is the closest to the prior probability law in the relative entropy sense.

Schrödinger’s Bridge Problem (SBP), as well as its zero-noise limit of Optimal Mass Transport (OMT),
continue to impact a growing range of disciplines and applications. In this expanding mathematical
landscape, the problem to account for variable mass along the transport path received attention from
early on. It was chiefly motivated by the need to interpolate distributions of unequal mass for times series
spectral analysis and image registration [29]. The viewpoint that is being pursued herein is closer in spirit
to the original rationale of E. Schrödinger as we build on a Large Deviations formalism. To this end,
we consider below a diffusion process with killing and seek the closest update of the corresponding law
that is in agreement with the marginal data. Thus, we ask for the most likely evolution of stochastic
particles which are known to obey a given prior law with potential for losses (“killing rate”) while they
transition between two marginal distributions ρ0 and ρ1 as before. The two distributions are not necessarily
consistent with the prior law and neither is the loss of mass necessarily consistent with the prior killing
rate.

In our formulation of the unbalanced Schrödinger Bridge Problem (uSBP), the marginals cannot be
assumed to be probability distributions as their integrals differ due to losses. To this end, we embed the
distributions into a frame that includes a coffin/extinction state, leading to a probability law on a continuum
together with a discrete state. Thereupon, we find the updated law and killing rate that minimize the relative
entropy to the prior with losses, and are consistent with the two marginals. In the special case when the
marginals are already consistent with the prior, naturally, the solution coincides with the lossy prior,
differently from what happens in other formulations of SBP with killing which are based on Feyman-Kac
functionals [18], [15], [16], [17], [20], [30], [31], [32], and unbalanced transport [33], [34], [35], [29], as
discussed in Section V.
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The structure of the paper is as follows. In Section II we revisit classical Schrödinger bridge problems.
The main framework on Schrödinger bridges with unbalanced marginals is presented in Section III. We also
present a fluid dynamic formulation of the main framework in Section IV. A comprehensive comparison
between Schrödinger bridges with unbalanced marginals and existing results on Schrödinger bridges with
killing is provided in Section V. This is followed by a numerical example in Section VI and a concluding
remark in Section VII.

II. PRELIMINARIES ON SCHRÖDINGER BRIDGE PROBLEM

We briefly review elements of the theory of Schrödinger Bridge Problem (SBP). To this end, consider
a diffusion process

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (1)

over the Euclidean space Rn. In Schrödinger’s original thought experiment, a large number N of trajec-
tories over the time interval [0, 1] are independently sampled from (1) with probability distribution of Xt

at the initial time t = 0 being ρ0. The law of large numbers dictates that the terminal distribution at time
t = 1 must be (approximately) ∫

Rn

q(0, x, 1, ·)ρ0(x)dx, (2)

where q(t, x, s, y), t < s denotes the kernel of transition rates from state x at time t to state y at time
s. Now suppose the observed marginal distribution at time t = 1, denoted by ρ1, is inconsistent with (2)
and the prior kernel q(0, x, 1, y), that is,

ρ1(·) 6=
∫
Rn

q(0, x, 1, ·)ρ0(x)dx.

Schrödinger’s problem then seeks the most likely evolution that the particles may have taken between the
specified marginals. That is, SBP seeks a suitable update of the law of the diffusion process that reconciles
the two marginals ρ0, ρ1. In the sequel and for notational simplicity, we use the same symbol ρ to denote
both, the probability density, as well as the corresponding measure dρ = ρdx, depending on the context.

As first noted by Föllmer [12], SBP can be more clearly expressed in the language of the theory of
large deviations [3]. Specifically, let Ω = C([0, 1],Rn) denote the space of continuous functions on [0, 1]
with values in Rn, and P(Ω) denote the space of probability laws over Ω. Given any two probability
measures P,Q, the relative entropy of P with respect to Q is

H(P | Q) =

{∫
dP log dP

dQ
if P � Q

+∞ otherwise.
(3)

Now consider N independent trajectories X1
t , X

2
t , . . . , X

N
t ∈ Ω of a diffusion having law R ∈ P(Ω), and

let LN denote their empirical distribution. Then, asymptotically as N →∞, Sanov’s theorem1 gives the
exponential rate of decay for the probability of occurence of an empirical distribution that differs from
the law R [3] as

Prob(LN ∈ A) ≈ exp(−N inf
P∈A

H(P | R)), ∀A ⊂ P(Ω). (4)

Thus, Sanov’s result expresses the likelihood of observing an empirical distribution approximated by P
in terms of the relative entropy H(P | R). Thence, SBP can be formulated as follows:

1Sanov’s theorem holds when the process takes values in any Polish space.
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Problem 1. Let R ∈ P(Ω) be the probability measure on Ω induced by the prior process (1) with initial
distribution ρ0. Determine

P ? := arg min
P∈P(Ω)

{H(P | R) | P0 = ρ0, P1 = ρ1} , (5)

where Pt denotes the marginal distribution of P at time t (i.e., the push forward Xt#P = Pt).

The entropy functional is strictly convex which ensures uniqueness of the minimizer (when it exists).
Further, if R0 = ρ0 as well as R1 = ρ1, the solution to SBP coincides (trivially) with the prior law R, i.e.,
P ? = R, achieving the minimal value H(P ? | R) = 0. When R1 6= ρ1, the SBP thus seeks an updated law
P ? that is closest to the prior in the sense of relative entropy and restores consistency with the marginals
(which fails for the prior R). Next we briefly discuss the solution to SBP. For an in depth exposition see
[25] and the review articles [36], [27].

By disintegration of measure,

R(·) =

∫
Rn×Rn

Rxy(·)R01(dxdy), and

P (·) =

∫
Rn×Rn

P xy(·)P01(dxdy),

where R01 (P01) denotes the joint marginal distribution of R (P ) of Xt for t ∈ {0, 1} (i.e., R01 = X01#R,
and similarly, for P ), and Rxy (P xy) denotes the measure induced by P conditioned on (X0 = x,X1 = y).
It follows that

H(P | R) = H(P01 | R01) +

∫
H(P xy | Rxy)P01(dxdy). (6)

Clearly, when P xy = Rxy for any x, y ∈ Rn, the second term on the right assumes the minimal value 0.
An immediate consequence is the following static formulation of the SBP.

Problem 2. Determine

π? := arg min
π∈P(Rn×Rn)

{H(π | R01) | π0 = ρ0, π1 = ρ1} . (7)

To distinguish between the two formulations (5) and (7), we refer to (5) as the dynamic SBP. The
two formulations are equivalent in the sense that solving one provides a solution to the other, as noted next.

Theorem 3 ([25]). Suppose P ? is a solution to the dynamic SBP (5), then P ?
01 solves the static SBP (7).

On the other hand, if π? is a solution to (7), then setting P ? =
∫
Rn×Rn R

xy(·)π?(dxdy) solves (5), while
P ?

01 = π?.

Proof. It follows readily from (6).

A direct consequence of Theorem 3 is that the Radon-Nikodym ratios between solutions and priors
for the two problems, the static (18) and the dynamic (17), coincide, namely,

dP ?

dR
=

dπ?

dR01

(X0, X1). (8)

In fact, this ratio can be factored into two parts, one that depends only on X0 and one that depends on
X1, as follows.
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Theorem 4 ([25]). Assume that R01 � R0⊗R1, and that there exists π ∈ P(Rn×Rn) such that π0 = ρ0,
π1 = ρ1 (i.e., feasible), for which H(π | R01) < +∞. Then the static problem (7) admits a unique solution
π? and there exist two measurable functions f, g : X → R+ such that

π? = f(X0)g(X1)R01. (9)

The two factors f, g are solutions to the Schrödinger system

dρ0

dR0

(x) = f(x)R(g(X1) | X0 = x), (10a)

dρ1

dR1

(y) = g(y)R(f(X0) | X1 = y). (10b)

Moreover, the unique solution to the dynamic problem (5) is

P ? = f(X0)g(X1)R. (11)

The above theorem provides an abstract construction of the sought probability law(s) via the solution
of the Schrödinger system (10). The local characteristics and the modified stochastic differential equation
for the process with law P ? follow. Computationally, these can be expressed most succinctly in terms
of a pair of two, forward and backward in time (and identical to that of the prior Fokker-Planck and its
adjoint) equations, that are nonlinearly coupled through boundary conditions. We explain this next.

First recall that the marginals Rt(x) of the prior law R for the diffusion (1) satisfy (weakly) the
Fokker-Planck equation

∂tRt +∇ · (bRt) =
1

2

n∑
i,j=1

∂2(aijRt)

∂xi∂xj
. (12)

In what follows, a(t, x) = σ(t, x)σ(t, x)′ is assumed to be everywhere positive definite. Let the two end-
point marginals be absolutely continuous with densities ρ0 and ρ1, respectively. The Schrödinger system
(10) can be reparametrized in terms of

ϕ̂(0, x) := f(x)R0(x) (13a)
ϕ(1, y) := g(y), (13b)

and takes the form

∂tϕ̂ = −∇ · (bϕ̂) +
1

2

n∑
i,j=1

∂2(aijϕ̂)

∂xi∂xj
(14a)

∂tϕ = −b · ∇ϕ− 1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
(14b)

ρ0 = ϕ(0, ·)ϕ̂(0, ·) (14c)
ρ1 = ϕ(1, ·)ϕ̂(1, ·). (14d)

Theorem 5. Let R be the law of (1) with a(t, x) = σ(t, x)σ(t, x)′ being positive definite for all (t, x) ∈
R × Rn, and assume that ρ0, ρ1 are absolutely continuous with respect to the Lebesgue measure. There
exists a unique (up to a constant positive scaling) pair (ϕ̂(t, x), ϕ(t, x)) of non-negative functions that
satisfies the Schrödinger system (14). Moreover, the law P ? for the dynamic problem (5) is law of the
diffusion

dXt = (b(t,Xt) + a(t,Xt)∇ logϕ(t,Xt))dt+ σ(t,Xt)dWt, (15)
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with distribution of X0 being ρ0, and at any time t ∈ [0, 1], the marginal density for P ? satisfies the
identity pt(x) = ϕ(t, x)ϕ̂(t, x).

Existence and uniqueness of solutions for the Schrödinger system have been provided in various
degrees of generality by Fortet, Beurling and Jamison [8], [9], [10], [11]. For a detailed exposition of
the theory of Schrödinger’s problem we refer to Leonard [25], in particular, [25, Theorems 2.8, 2.9, 3.4].
A more recent account along with a proof that is based on the contractiveness of suitable maps in the
Hilbert metric was given in [37]. In the present paper, we follow a similar approach as in [37] when
analyzing the more general Schrödinger system for diffusions with losses and, therefore, we sketch key
steps for this more general case that we consider. An added benefit in recasting the Schrödinger system
as in (14) is that it leads, after discretization, to an efficient algorithm for computing (ϕ̂(t, x), ϕ(t, x)),
and thereby, f, g as well as P ?. The discretized version of the Schrödinger system (14) amounts to the
celebrated Sinkhorn algorithm for matrix scaling [27].

III. UNBALANCED STOCHASTIC TRANSPORT

We now analyze stochastic flows between unequal marginals following E. Schrödinger original ratio-
nale that is rooted in large deviations theory. To this end, we consider a diffusion process with killing
and seek the closest update of the corresponding prior law that restores agreement with marginal data.

Once again consider the diffusion process (1) but, this time, with a nonnegative killing rate V (t, x)
(assume V (·, ·) is continuous and not constantly zero). A thought experiment similar to Schrödinger’s,
calls for a large number N of trajectories over a time interval [0, 1], that are independently sampled from
(1) with initial probability distribution ρ0, and a recorded empirical distribution for the surviving particles
at time t = 1 approximated by ρ1, which is inconsistent with the prior law, that is,

ρ1(·) 6=
∫
Rn

q(0, x, 1, ·)ρ0(x)dx.

The kernel q(0, x, 1, y) is no longer a probability kernel in that
∫
Rn q(0, x, 1, y)dy 6= 1, in general, and thus,

neither
∫
Rn q(0, x, 1, ·)ρ0(x)dx nor ρ1 are necessarily probability densities, due to killing. In particular,∫

ρ1(x)dx = Ns/N ≤ 1 where Ns denotes the number of survival particles at time 1. Just as in the
standard SBP, we consider continuous distributions, assuming that N is large, and seek to identify the
most likely behavior of the particles. By behavior we mean the most likely evolution of the particles
along with the most likely times that the particles may have gotten killed (or, absorbed by an underlying
medium).

As in the standard Schrödinger bridge, the problem arising from the above thought experiment can
be formally stated using the theory of large deviations [3]. However, in this case, the space of trajectories
needs to be modified to accommodate for possible killing of particles. To this end, we augment the state
space of the diffusion Rn with a “coffin state” c, resulting in the state space

X = Rn ∪ {c}.

Let Ω = D([0, 1],X ) be the Skorokhod space over X , that is, each element in Ω is a càdlàg over X
[38]. Denote by P(Ω) and P(X ) the spaces of probability distributions over Ω and X , respectively. Each
diffusion process Xt (t ∈ [0, 1]) on Rn with killing corresponds to a process Xt taking values in X , and
therby, to a law in P(Ω).

Evidently, X is a Polish space. The space Ω of càdlàg over X is thus, with the appropriate topology,
also a Polish space [39], [40]. Sanov’s theorem applies to measures on Polish spaces and, therefore, the
likelihood function is once again expressed in terms of the relative entropy between probability laws. In
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our unbalanced SBP setting, the set of probability laws over path space P(Ω) that are in alignment with
the observations is

{P ∈ P(Ω) | P0 = p0, P1 = p1},

where p0, p1 are the natural augmentation of ρ0, ρ1 so that they belong in P(X ), respectively. Specifically,
assuming that

∫
Rn ρ1(x)dx = 1, we set

p0 = (ρ0(·), 0) (16a)

and
p1 = (ρ1(·), 1−

∫
Rn

ρ1(x)dx). (16b)

Thus, we arrive at the following recasting of uSBP as an ordinary SBP.

Problem 6 (Unbalanced Schrödinger Bridge Problem (uSBP)). Determine

P? := arg min
P∈P(Ω)

{H(P | R) | P0 = p0,P1 = p1} . (17)

As before, verbatim, R(·) =
∫
X 2 Rxy(·)R01(dxdy) and P(·) =

∫
X 2 Pxy(·)P01(dxdy), where now R01

(P01) denotes the joint marginal distribution of R (P) over the marginal X0,1, and Rxy (Pxy) denotes the
law conditioned on X0 = x ∈ X and X1 = y ∈ X . As before, the relation to the static SBP emerges.

Problem 7. Determine

π? := arg min
π∈P(X 2)

{H(π | R01) | π0 = p0,π1 = p1} . (18)

The two formulations are once again equivalent, as it readily follows from the identity H(P | R) =
H(P01 | R01) +

∫
X 2 H(Pxy | Rxy)P01(dxdy).

Theorem 8. Suppose P? solves the dynamic uSBP (17), then P?
01 also solves the static uSBP (18). On

the other hand, if π? solves (18), then setting P? =
∫
X 2 Rxy(·)π?(dxdy) solves (17), while P?

01 = π?.

The Radon-Nikodym ratios between solutions and priors for the two problems, analogous to (8),
applies here too, and the analogous expressions for the Schrödinger system in Theorem 4 follow as well.
More explicitly, the solutions to (17) and (18) are of the form

P? = f(X0)g(X1)R (19)

and
π? = f(X0)g(X1)R01 (20)

respectively. The divergence between the standard SBP and the present uSBP becomes noticeable when
we seek explicit solutions via analogues of system (14) and of the corresponding Fokker-Plank equation
in Theorem 5, since now, we need to specify the update on the prior killing rate. We detail this next.
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A. Generalized Schrödinger system
The Fokker-Planck equation for a diffusion (1) with killing rate V (t, x) is

∂tRt +∇ · (bRt) + V Rt =
1

2

n∑
i,j=1

∂2(aijRt)

∂xi∂xj
. (21)

As before, a(t,X) = σ(t,X)σ(t,X)′ is assumed to be positive definite throughout. The corresponding
Schrödinger system and its relation to the law of P? can be expressed after reparametrizing the pair (f, g)
of functions on X as follows

f(x)R0(x) =

{
ϕ̂(0, x) if x ∈ Rn

ψ̂(0) if x = c,
(22a)

g(y) =

{
ϕ(1, y) if y ∈ Rn

ψ(1) if y = c.
(22b)

Comparing with (14), the Schrödinger system along with the non-linear coupling constraints now becomes

∂tϕ̂ = −∇ · (bϕ̂)− V ϕ̂+
1

2

n∑
i,j=1

∂2(aijϕ̂)

∂xi∂xj
(23a)

dψ̂

dt
=

∫
V ϕ̂(t, x)dx (23b)

∂tϕ = −b · ∇ϕ+ V ϕ− 1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
− V ψ (23c)

dψ

dt
= 0 (23d)

ρ0 = ϕ(0, ·)ϕ̂(0, ·) (23e)
ρ1 = ϕ(1, ·)ϕ̂(1, ·) (23f)

ψ̂(0) = 0 (23g)

ψ(1)ψ̂(1) = 1−
∫
ρ1. (23h)

Theorem 9. Let R be the law of a diffusion (1) with nontrivial killing rate V (t, x) and a(t, x) =
σ(t, x)σ(t, x)′ being positive definite for all (t, x) ∈ R × Rn, and assume that ρ0, ρ1 are absolutely
continuous with respect to the Lebesgue measure. There exists a unique (up to a constant positive scaling)
4-tuple (ϕ̂(t, x), ψ̂(t), ϕ(t, x), ψ(t)) of non-negative functions that satisfies the Schrödinger system (23).

The proof of the theorem, given in Appendix IX, is based on the contractiveness of the iterative scheme
that consists in alternating between evaluation of (ϕ̂(1, ·), ψ̂(1)) from (ϕ(0, ·), ψ(0)) using (23e-23a-23g-
23b), and then evaluating (ϕ(0, ·), ψ(0)) in a followup cycle from (ϕ̂(1, ·), ψ̂(1)) using the backward in
time integration, via the remaining equations. Specifically, we prove that the iteration(

ϕ̂(1, ·)
ψ̂(1)

)
7→
(
ϕ(0, ·)
ψ(0)

)
7→
(
ϕ̂(1, ·)
ψ̂(1)

)
next

(24)

is strictly contractive in the Hilbert metric.

As in the ordinary SBP the discretized Schrödinger system (23) leads to an efficient algorithm to
compute (ϕ̂(t, x), ψ̂(t), ϕ(t, x), ψ(t)), and thereby, P? as well as the corresponding Fokker-Planck equation
for the corresponding marginals, that is explained next.
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B. Dynamic formulation
In general, a multiplicative transformation such as R→ P? = f(X0)g(X1)R, preserves the Markovian

character. Moreover, the generators of the respective semi-groups that relate in this way, herein, LR
t ,LP?

t ,
can be evaluated from one another directly by utilizing the multiplicative factors and the so-called carré
du champ operator

Γt(u, v) := Lt(uv)− uLt(v)− vLt(u).

Specifically (see [25, Equation (3.6)], and also [30], [41]),

LP?

t u(x) = LR
t u(x) + ΓR

t (gt, u)(x)/gt(x), (25)

where

gt(y) =

{
ϕ(t, y) if y ∈ Rn

ψ(t) if y = c.
(26)

In light of Theorem 9 we now establish an explicit characterization of the dynamic unbalanced
Schrödinger bridge problem (17). We denote by Pt the marginal of Xt restricted to the first component
in X , and by qt the probabilty of the coffin state. Thus, we use the vectorial notation

Pt =: (Pt, qt).

Accordingly, for the marginals Rt = (Rt, st) of the prior, Rt satisfies the Fokker-Planck equation (21)
while st = 1−

∫
Rn Rt(x)dx. The solution P? to (17) is then characterized by the following theorem.

Theorem 10. The solution P? to (17) corresponds to a diffusion process

dXt = (b(t,Xt) + a(t,Xt)∇ logϕ(t,Xt))dt+ σ(t,Xt)dWt (27)

with killing rate ψV/ϕ, where ϕ is obtained from the solution of the generalized Schrödinger system (23).
Accordingly,

∂tPt +∇ · ((b+ a∇ logϕ)Pt) =
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
− ψ

ϕ
V Pt. (28)

Proof. The generator of R, is of the form

LR
t :

[
ϕ
ψ

]
7→

[
b · ∇ϕ− V ϕ+ 1

2

∑n
i,j=1 aij

∂2ϕ
∂xi∂xj

+ V ψ

0

]
. (29)

The carré du champ operator becomes

ΓR
t (

[
ϕ1

ψ1

]
,

[
ϕ2

ψ2

]
) =

[
V ϕ1ϕ2 + a∇ϕ1 · ∇ϕ2 + V ψ1ψ2 − V ψ1ϕ2 − V ϕ1ψ2

0

]
. (30)

We readily obtain that

LP?

t

[
v
η

]
= LR

t

[
v
η

]
+ ΓR

t (

[
ϕ
ψ

]
,

[
v
η

]
)/

[
ϕ
ψ

]
(31)

=

[
b · ∇v − V v + 1

2

∑n
i,j=1 aij

∂2v
∂xi∂xj

+ V η + V v + a∇ logϕ · ∇v + V ψ
ϕ
η − V ψ

ϕ
v − V η

0

]
=

[
(b+ a∇ logϕ) · ∇v − ψ

ϕ
V v + 1

2

∑n
i,j=1 aij

∂2v
∂xi∂xj

+ ψ
ϕ
V η

0

]
,
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where the division in (31) is carried out componentwise. The generator is that of the diffusion process
(27) with killing rate ψV/ϕ over the extended state space X . The Fokker-Planck equation (28) can be
obtained by taking the dual of LP?

t .

Theorem 11. The marginal distribution P?
t on the first component of X is Pt = ϕ(t, ·)ϕ̂(t, ·), and on the

second component of X is qt = ψ(t)ψ̂(t).

Proof. We verify that Pt as above satisfies the Fokker-Planck equation associated with the diffusion (27)
with killing rate ψV/ϕ. To this end, let Pt(·) := ϕ(t, ·)ϕ̂(t, ·). Then by (23a) and (23c) we obtain

0 = ∂tPt +∇ · ((b+ a∇ logϕ)Pt)−
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
+ ϕ̂ψV

= ∂tPt +∇ · ((b+ a∇ logϕ)Pt)−
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
+
ψ

ϕ
V Pt,

which is exactly the desired Fokker-Planck equation (28). Similarly, by (23b) and (23d),

dqt
dt

= ψ(t)

∫
V ϕ̂(t, x)dx =

∫
ψ

ϕ
V Ptdx,

which is consistent with Pt and the new killing rate ψV/ϕ.

IV. FLUID DYNAMIC FORMULATION

The original Schrödinger bridge problem, when there is no killing, is known to be equivalent to the
stochastic control problem of minimizing control energy subject to the marginal two end-point constraints
[26], or equivalently, to a fluid dynamic formulation whereby the velocity field u(t, ·) effecting the flow
minimizes this action integral, namely,

min
Pt(·),u(t,·)

∫ 1

0

∫
Rn

1

2
‖u(t, x)‖2Ptdxdt (32a)

∂tPt +∇ · ((b+ σu)Pt)−
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
= 0 (32b)

P0 = ρ0, P1 = ρ1. (32c)

The optimization takes place over the feedback control policy-flow field u(t, x) together with the corre-
sponding density flow Pt(x). Below, in this section, we derive an analogous formulation for the Schrödinger
bridge problems with unbalanced marginals.

Along the flow, the killing rate may deviate from the prior V and is to be determined. To quantify
the deviation of the posterior killing rate from the prior, we introduce an entropic cost inside the action
integral, to penalize changes in the ratio α(t, x) between the posterior and the prior killing rate. That is,
α is an added optimization variable which is α(t, x) ≥ 0, and with the posterior killing rate being αV .
To penalize differences between the posterior and the prior killing rates we introduce the factor

α logα− α + 1 (33)

inside the action integral, which is convex and achieves the minimal value 0 at α = 1. This entropy cost
has been used in [25], [42] to study Schrödinger bridge problem over graphs. It is associated with the
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large deviation principle for continuous-time Markov chain with discrete state. Combining this entropic
cost term for the ratio of killing rates with (32) we arrive at

min
P,u,α

∫ 1

0

∫
Rn

[
1

2
‖u(t, x)‖2Pt + (α logα− α + 1)V Pt

]
dxdt (34a)

∂tPt +∇ · ((b+ σu)Pt) + αV Pt −
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
= 0 (34b)

P0 = ρ0, P1 = ρ1. (34c)

Note that the control strategy has now two components, a drift term u(t, x) and a correcting term α(t, x)
for the killing rate.

Theorem 12. Let (ϕ̂(t, x), ψ̂(t), ϕ(t, x), ψ(t)) be the solution to the Schrödinger system (23), then the
solution to (34) is given by the choice

u?(t, x) = σ(t, x)′∇ logϕ(t, x) (35a)

α?(t, x) =
ψ(t)

ϕ(t, x)
(35b)

Pt(x) = ϕ(t, x)ϕ̂(t, x). (35c)

Proof. We verify that conditions (35) ensure stationarity of the Lagrangian for (34). Introducing the
Lagrange multiplier λ(t, x), the Lagrangian for (34) is

L =

∫ 1

0

∫ [
1

2
‖u‖2Pt + (α logα− α + 1)V Pt

+λ

(
∂tPt +∇ · ((b+ σu)Pt) + αV Pt −

1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj

)]
dxdt.

Applying integration by part we obtain

L =

∫ 1

0

∫ [
1

2
‖u‖2Pt + (α logα− α + 1)V Pt − Pt∂tλ−∇λ · (b+ σu)Pt + αV λPt

−1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj
Pt

]
dxdt+

∫
λ(1, x)P1(x)dx−

∫
λ(0, x)P0(x)dx. (36)

Minimizing the above over u yields
u?(t, x) = σ′∇λ. (37a)

Similarly, minimization over α yields

α?(t, x) = exp(−λ). (37b)

Substituting (37) into (36) we obtain

L =

∫ 1

0

∫
Pt

(
−1

2
a∇λ · ∇λ− b · ∇λ− ∂tλ−

1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj
+ V (1− exp(−λ))

)
dxdt

+

∫
λ(1, x)P1(x)dx−

∫
λ(0, x)P0(x)dx.
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The optimality condition

∂tλ+ b · ∇λ+
1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj
+

1

2
a∇λ · ∇λ− V (1− exp(−λ)) = 0 (38)

follows. Now, let

λ(t, x) = log
ϕ(t, x)

ψ(t)
, (39)

then (38) becomes

∂tϕ−
dψ

dt

ϕ

ψ
+ b · ∇ϕ− V ϕ+

1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
+ V ψ = 0, (40)

and by setting dψ/dt = 0, the above reduces to (23c). Finally, plugging (39) into (37) yields (35).

Substituting the optimal control (35) into (34b) yields the closed loop dynamics under optimal control
strategy. Clearly, it is the same as (28) associated with the solution P? to the uSBP (17).

V. SBP OVER REWEIGHTED PROCESSES

Some early attempts to formulate the Schrödinger Bridge Problem for diffusions with losses date
back to Nagasawa and Wakolbinger [18], [15]. These focused on processes that are suitably reweighed
via a Feynman-Kac multiplicative functional to model losses. Earlier relevant work on Schrödinger
Bridges over reweighed processes includes [18], [15], [16], [17], [20], [30], [31]. In particular, e.g.,
[15, Section 8], and more recently, [30] discuss Feynman-Kac reweighing of the prior measure R, into
f(X0) exp

(
−
∫ 1

0
V (t,Xt)dt

)
g(X1)R. Such a process, with this special Radon-Nikodym derivative, is

referred to as the h-transform of R. To distinguish this prior work from our uSBP formulation, we refer
to the earlier formulation as SBP over reweighted processes.

Let ρ̂1 be a normalized version of ρ1 so that ρ̂1 is a probability distribution, then the classical
Schrödinger bridge problem over reweighted processes can be formulated as

min
P∈P(Ω)

{
H(P | R̂) | P0 = ρ0, P1 = ρ̂1

}
, (41)

where

R̂ = exp

(
−
∫ 1

0

V (t,Xt)dt

)
R (42)

is the (unnormalized) distribution induced by the survival trajectories of the diffusion process (1) with
killing rate V . The solution to this problem reads

P ? = f(X0)g(X1)R̂ = f(X0) exp

(
−
∫ 1

0

V (t,Xt)dt

)
g(X1)R (43)

where the two multipliers f, g are chosen such that P ? satisfies the constraints P0 = ρ0, P1 = ρ̂1. These
two multipliers can again be obtained by solving a Schrödinger system. More specifically, let ϕ, ϕ̂ be the
solution to

∂tϕ̂ = −∇ · (bϕ̂)− V ϕ̂+
1

2

n∑
i,j=1

∂2(aijϕ̂)

∂xi∂xj
(44a)

∂tϕ = −b · ∇ϕ+ V ϕ− 1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
(44b)

ρ0 = ϕ(0, ·)ϕ̂(0, ·) (44c)
ρ̂1 = ϕ(1, ·)ϕ̂(1, ·), (44d)
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then ϕ, ϕ̂ relate to f, g as

ϕ̂(0, x) = f(x)R̂0(x) (45a)
ϕ(1, y) = g(y). (45b)

Unlike the solution P? to the uSBP (17), the solution P ? to (41) is a probability measure over
Ω = C([0, 1],Rn). Indeed, it is associated with the diffusion process

dXt = (b(t,Xt) + a(t,Xt)∇ logϕ(t,Xt))dt+ σ(t,Xt)dWt

without losses. The marginal distribution of it equals Pt = ϕ(t, ·)ϕ̂(t, ·) and is a probability measure over
Rn for all t ∈ [0, 1]. We argue that the SBP over weighted process doesn’t address Schrödinger’s orginal
problem as described in the thought experiment in Section III. The prior R̂ describes the distribution of
the surviving trajectories and the problem (41) can be interpreted as finding the most likely evolution of
surviving trajectories that are compatible with the two marginals ρ0, ρ̂1. However, the mechanism of how
the particles that did not survive got killed is completely ignored in this formulation.

The importance of explicitly considering a possible update of the killing rate becomes salient when
the end-point marginals are consistent with the prior law. Such a case highlights a dichotomy between
our formulation of uSBP, and the rationale behind SBP over reweighted processes To see this, consider a
scenario where the two marginals are already consistent with the prior law, that is

ρ1(·) =

∫
Rn

q(0, x, 1, ·)ρ0(x)dx.

One would expect the solution to be the prior R̂, since the prior is consistent with the end-point marginals.
This is, however, not the case! Indeed, R̂0 represents the distribution at t = 0 of those particles that are
destined to survive, and this differs from ρ0, the distribution of all particles. Thus, R̂0 is not the solution
to (41).

One could attempt to modify Schrödinger’s thought experiment by postulating that ρ0 is precisely the
distribution at t = 0 of those particles that eventually survive. With this modification, it is easy to see
that the prior R̂ solves (41). This modification, however, is not physical: It is not possible to measure at
time t = 0 the marginal of the survival trajectories!

Finally, we note that the Schrödinger bridge problem over reweighted processes has the following
fluid dynamic (stochastic control) formulation

min
Pt(·),u(t,·)

∫ 1

0

∫
Rn

[
1

2
‖u(t, x)‖2 + V (t, x)]Ptdxdt (46a)

∂tPt +∇ · ((b+ σu)Pt)−
1

2

n∑
i,j=1

∂2(aijPt)

∂xi∂xj
= 0 (46b)

P0 = ρ0, P1 = ρ̂1. (46c)

This stochastic control problem is over the diffusion process without losses

dXt = b(t,Xt)dt+ σ(t,Xt)u(t,Xt)dt+ σ(t,Xt)dWt,

and the control u(t, x) only enters the system through the drift. The prior killing rate V serves as a cost
term. This is substantially different from the control formulation (34) of the uSBP where the control has
a drift term u(t, x) and a correcting term α(t, x), and the killing rate V appears in the dynamics instead
of the cost function.
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Fig. 1: Marginal flow of uSBP for s = 1

(a) s = 0.8 (b) s = 0.6 (c) s = 0.4

Fig. 2: Marginal flow of uSBP for s = 0.8, 0.6, 0.4

VI. NUMERICAL EXAMPLE

We conclude by highlighting the uSBP formalism with an academic/numerical example. To this end,
we consider the diffusion process

dXt = σdWt,

with Xt,Wt ∈ R (i.e., in a 1-dimensional state space), σ = 0.05, and killing rate

V (t, x) ≡ 1.

We work out the solution of the unbalanced Schrödinger bridge problem (uSBP) with initial marginal
density

ρ0(x) =

{
0.3− 0.3 cos(3πx) if 0 ≤ x < 2/3

2.4− 2.4 cos(6πx− 4π) if 2/3 ≤ x ≤ 1,

and target marginal density
ρ1(x) = sρ0(1− x),

where s ≤ 1 denotes the percentage of survival particles.

Figures 1 and 2 display the marginal flow of the uSBP for different values of s. When s < 1, only
a portion of the particles survive until the end and many particles vanish along the way. Thus, the total
mass of the particles is a decreasing function of time, as can be seen from Figure 3. Note that the terminal
percentage of surviving particles is consistent with the chosen value for s, in each case.
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(a) s = 0.8 (b) s = 0.6 (c) s = 0.4

Fig. 3: Survival mass of uSBP for s = 0.8, 0.6, 0.4

Fig. 4: Marginal flow of SBP over reweighted processes

For comparison, we also display the solution to the SBP over reweighted processes in Figure 4. Note
that its solution is independent of s. The solution describes the posterior distribution of the survived
particles only, and thus the marginal flow remains a probability measure at all times. In fact, it coincides
with uSBP for s = 1.

VII. CONCLUDING REMARKS

We introduced Schrödinger bridges between unbalanced marginals in the spirit of E. Schrödinger’s
original rationale (that led to the standard SBP), aimed to reconcile a given prior law, that now includes a
killing rate, with marginal observations. We formulated the problem as maximum entropy problem over an
augmented state space that includes a coffin state representing the state of vanishing particles. The solution
is characterized by a Schrödinger-type system, different to the classical one, that yields a diffusion process
whose drift as well as killing rate are suitable adjusted as compared to the prior. Just like in the standard
SBP, this new unbalanced Schrödinger bridge problem (uSBP) can be formulated as a stochastic control
problem. Naturally, departing from the standard SBP, the control variable in this control formulation
includes both the drift and killing rate. We underscore an apparent dichotomy between our formulation
of the uSBP and earlier work on SBP over reweighted processes with Feynman-Kac functionals. Though
both pertain to SBP’s for diffusions with losses, we argued that our uSBP is a natural formulation in
the spirit of Schrödinger’s original quest to reconcile probabilistic models with observations. The nature
of the zero-noise limit of the uSBP and its relation to a corresponding optimal transport flow between
unbalanced marginals is left as a topic of future research.
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VIII. APPENDIX A: HILBERT’S PROJECTIVE METRIC

Herein we discuss Hilbert’s projective metric and highlight some important contraction theorems due
to Garrett Birkoff and P. J. Bushell [43], [44], [45] that we use in this work. A first application of
the Birkhoff-Bushell contractive maps to scaling of nonnegative matrices, a topic closely connected to
Schrödinger bridges, was presented in [46]. In [47], it was shown that the Schrödinger bridge for Markov
chains and quantum channels can be efficiently obtained from the fixed-point of a map which contracts
the Hilbert metric. We refer to [37], [27] for more detailed information and further applications of this
metric. Below, following [45], we recall some basic concepts and results of this theory.

Let B be a real Banach space and let K be a closed solid cone in B, i.e., K is closed with nonempty
interior K0 and is such that K + K ⊆ K, K ∩ −K = {0} as well as λK ⊆ K for all λ ≥ 0. Define the
partial order

x � y⇔ y − x ∈ K, x ≺ y⇔ y − x ∈ K0

and for x,y ∈ K+ := K\{0}, define

M(x,y) := inf {λ | x � λy}
m(x,y) := sup{λ | λy � x}.

Then, the Hilbert metric is defined on K+ by

dH(x,y) := log

(
M(x,y)

m(x,y)

)
.

It is easily seen that dH(·, ·) is symmetric, i.e., that dH(x,y) = dH(y,x), and invariant under scaling
by positive constants, since dH(x,y) = dH(λx,y) for any λ > 0 and x,y ∈ K0. Therefore dH(λx,x) = 0.
It can also be shown that the triangular inequality holds and, therefore, dH(·, ·) is a projective metric that
represents distance between rays.

In our analysis we encounter two types of maps. We encounter inversion

Einv : x 7→ x−1, (47)

of elements x ∈ K0, and also linear maps that are positive, namely,

E : K+ → K+.

For both types of maps we are interested in determining their contraction ratio,

κ(E) := inf{λ | dH(E(x), E(y)) ≤ λdH(x,y),∀x,y ∈ K0}.

It turns out that the former are isometries in the Hilbert metric whereas the latter are contractions. Thus,
the composition of a combination of both types turns out to be a contraction.

That (47) is an isometry, i.e., κ(Einv) = 1, follows immediately from

M(x,y) =
1

m(x−1,y−1)
.

Then, by G. Birkhoff’s theorem [43], [45], any positive linear map E is contractive and the contraction
ratio can be expressed in terms of the projective diameter

∆(E) := sup{dH(E(x), E(y)) | x,y ∈ K0}
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of the range of E . Specifically, under these conditions, G. Birkhoff’s theorem states that

κ(E) = tanh(
1

4
∆(E)). (48)

Thus, a positive linear map is strictly contractive if its projective diameter ∆(E) is finite. A further useful
observation, that follows from the triangular inequality, is that for any x0 ∈ K0,

∆(E) ≤ 2 sup{dH(E(x),x0) | x ∈ K0}. (49)

This allows bounding ∆(E) to ensure strict contraction for E .

Important examples are provided by the positive orthant of Rn, the cone of Hermitian, positive
semidefinite matrices, spaces of bounded positive functions, and so on. Notice that, in all cases, the
boundary of the cone lies at an infinite distance from any interior point.

IX. APPENDIX B: PROOF OF THEOREM 9 ON THE GENERALIZED SCHRÖDINGER SYSTEM

We herein establish existence and uniqueness of solution (up to constant positive scaling) for the
system (23). The steps mimick the analogous case for the SBP where the marginals are supported on a
Euclidean space [37]. The difference at present lies in that the support of functions includes an added
point that represents the coffin state.

We assume throughout that the marginal measures ρ0, ρ1 are absolutely continuous with respect to
the Lebesgue measure, in that ρ0(dx) = ρ0(x)dx and ρ1(dx) = ρ1(x)dx for density functions ρ0, ρ1 with
support S0, S1 ⊆ Rn, respectively, and that ρ0 is a probability measure while ρ1 is a nonnegative measure
with

∫
S1
ρ1(x)dx ≤ 1. The case

∫
S1
ρ1(x)dx = 1 reduces to the standard SBP and is easy to handle. Thus,

without loss of generality, we assume ∫
S1

ρ1(x)dx > 1.

As before, we let q(0, x0, t, x) for 0 < t ≤ 1 denote the fundamental solution of equation (23a) and
assume that it is continuous and strictly positive on compact subsets. This is guaranteed by sufficient
smoothness of the coefficients b, V, a, positivity of V and positive definiteness on the whole domain of
the matrix a = (aij). Under these assuptions we rewrite the Schrödinger system (23) as follows,

ϕ̂(t, x) =

∫
Rn

q(0, x0, t, x)ϕ̂(0, x0)dx0, (50a)

ψ̂(1) =

∫ 1

0

∫
Rn

V (t, x)ϕ̂(t, x)dxdt (50b)

ϕ(0, x0) =

∫
Rn

q(0, x0, 1, x1)ϕ(1, x1)dx1 +

∫ 1

0

∫
Rn

q(0, x0, t, x)V (t, x)ψ(t)dxdt (50c)

ψ(t) = constant, 0 ≤ t ≤ 1, (50d)
ρ0(x0) = ϕ(0, x0)ϕ̂(0, x0) (50e)
ρ1(x1) = ϕ(1, x1)ϕ̂(1, x1) (50f)

ψ(0)ψ̂(0) = 1−
∫
S0

ρ0 = 0 (50g)

ψ(1)ψ̂(1) = 1−
∫
S1

ρ1 =: c1 > 0. (50h)
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We consolidate the system of equations (50) into

ϕ̂(t, x) =

∫
S0

q(0, x0, t, x)ρ0(x0)
1

ϕ(0, x0)
dx0 (51a)

ψ̂(1) =

∫ 1

0

∫
Rn

V (t, x)ϕ̂(t, x)dxdt

=

∫
S0

1

ϕ(0, x0)
ρ0(x0)

∫ 1

0

∫
Rn

q(0, x0, t, x)V (t, x)dxdt︸ ︷︷ ︸
r(x0)

dx0 (51b)

ϕ(0, x0) =

∫
S1

q(0, x0, 1, x1)ρ1(x1)
1

ϕ̂(1, x1)
dx1 +

1

ψ̂(1)
c1

∫ 1

0

∫
Rn

q(0, x0, t, x)V (t, x)dxdt︸ ︷︷ ︸
r(x0)

(51c)

ψ(0) = ψ(1) =
1

ψ̂(1)
c1. (51d)

These four equations, that encapsulate the Schrödinger system, suggest considering the composition
of maps (

ϕ̂(1, ·)
ψ̂(1)

)
E17→
( 1
ϕ̂(1,·)

1

ψ̂(1)

)
E27→
(
ϕ(0, ·)
ψ(0)

)
E37→
( 1
ϕ(0,·)

1
ψ(0)

)
E47→
(
ϕ̂(1, ·)
ψ̂(1)

)
next

(52)

in order to analyze existence of solutions. Indeed, we utilize the theory of the Hilbert metric (outlined in
Appendix VIII) to show that the composition is a strict contraction along rays, resulting in a unique fixed
point.

To this end, we consider the Banach space B = L∞(X ) of real-valued functions h(·) on X = S∪{c},
where S ∈ Rn satisfies that S0 ∪ S1 ⊂ S. For notational convenience we use the vectorial notation

(
h(x)
h(c)

)
to specify the values of h on the two constituents of its support, for x ∈ Rn and c ∈ {c}. Thus, the norm
of h is

‖h‖ := max{‖h|S‖∞, |h(c)|}.

We consider the cone of positive functions

K = {h ∈ B | h(c) ≥ 0 and h(x) ≥ 0 a.e. x ∈ S}

and the corresponding partial order h1 � h2 ⇔ h2 − h1 ∈ K as usual. We observe that K is closed,
solid and has a non-empty interior (of strictly positive a.e. functions) that we denote K0; we also denote
K+ := K\{0}.

Note that in the on-going development, the components of functions h ∈ B, that are (possibly time-
dependent) functions on Rn and {c}, respectively, are differentiated as ϕ, ψ, or ϕ̂, ψ̂, respectively, e.g.,(
h(x)
h(c)

)
=
(
ϕ(t,x)
ψ(t)

)
. We proceed to consider the composition of maps in (52) and establish first the following

weaker version of Theorem 9:

Theorem 13. Assuming that the support sets S0, S1 of the two marginals ρ0, ρ1 of the uSBP are compact,
the claim in Theorem 9 holds true.

Recall the notation M(·, ·),m(·, ·), κ(·) and ∆(·) from Appendix VIII. As noted in the appendix, since
M(h1, h2) = m(h−1

1 , h−1
2 )−1 for h1, h2 ∈ K0, both E1 and E3 are isometries. They are readily extended to

isometries on K+ as well.
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The map E2 is linear (homogeneous of degree 1) and therefore, by Birkhoff’s theorem given in the
appendix, contractive on K+. For the same reason, E4 is contractive. Unfortunately, neither map is strictly
contractive. To see this, note that since, e.g., E2(

(
?
0

)
) =

(
?
0

)
, with ? denoting nonzero entries, certain

elements on the boundary of K+ map onto the boundary and not the interior.

In order to establish the theorem we proceed as follows. Let z ∈ S0 be an arbitrary fixed point in S0.
We modify equation (51d) of the Schrödinger system (51), replacing it with

ψ̃(0) = ϕ(0, z) =

∫
S1

q(0, z, 1, x1)ρ1(x1)
1

ϕ̂(1, x1)
dx1 +

1

ψ̂(1)
c1r(z), (51d’)

and, accordingly, replace E2 with a corresponding map that we refer to as E ′2. We then show the existence
and uniqueness of solution for the modified system. Interestingly, except for the last of the elements in
the 4-tuple (ϕ̂(1, x), ψ̂(1), ϕ(0, x), ψ(0)), namely, ψ(0), the remaining dictate the sought solution of the
original Schrödinger system (23). This last entry plays no role in the original Schrödinger system. In
particular,

E4 ◦ E3 ◦ E2 ◦ E1 = E4 ◦ E3 ◦ E ′2 ◦ E1 =: C. (53)

We now consider E ′2 : h 7→ g and show that it is strictly contractive in the Hilbert metric. From (49),
taking as x0 the function which is identically equal to 1 on S as well as on {c}, we deduce that

∆(E ′2) ≤ 2 sup{log

(
max{supx g(x), g(c)}
min{infx g(x), g(c)}

)
| g = E ′2(h) and h ∈ K0} (54)

Since ρ0, ρ1 are supported on compact sets S0, S1 of Rn, respectively, we can choose S to be compact
as well. Since the kernel q is positive and continuous, the kernel is bounded from below and above on
S × S. I.e., there exist 0 < α1 ≤ β1 <∞ such that

α1 ≤ q(0, x, 1, y) ≤ β1, (55)

for all (x, y) ∈ S × S. Similarly, there exist 0 < α2 ≤ β2 <∞ such that

α2 ≤ r(x) ≤ β2 (56)

for all x ∈ S.

Let h(x) = 1
ϕ̂(1,x)

and h(c) = 1

ψ̂(1)
, then

α1

∫
S1

ρ1(x1)h(x1)dx1 ≤
∫
S1

q(0, x0, 1, x1)ρ1(x1)h(x1)dx1 ≤ β1

∫
S1

ρ1(x1)h(x1)dx1, ∀x0 ∈ S.

It follows that, in view of (51c),

supx g(x)

infx g(x)
≤

maxi∈{1,2} βi
mini∈{1,2} αi

<∞.

Thanks to the modification (51d’), g(c) = g(z) and therefore

max{supx g(x), g(c)}
min{infx g(x), g(c)}

≤
maxi∈{1,2} βi
mini∈{1,2} αi

<∞.

Thus, from (54) and using Birkhoff’s theorem (48),

κ(E ′2) < 1.

As a consequence, the composition E4 ◦ E3 ◦ E ′2 ◦ E1 is strictly contractive, i.e.,

κ(E4 ◦ E3 ◦ E ′2 ◦ E1) < 1.
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It follows from (53) that
κ(C) = κ(E4 ◦ E3 ◦ E2 ◦ E1) < 1.

The above condition ensures that C has a unique fixed point in terms of the Hilbert metric [37]. Since
Hilbert metric is a projective metric, the uniqueness is up to a constant scaling. Denote the fixed point
on the unit sphere U by h, then

C(h) = λh

for some positive number λ. We next show λ = 1. To this end, we introduce a different factorization of
C as

C = E† ◦ Ep0 ◦ E ◦ Ep1 ,

where

E(u) =

[∫
S1
q(0, x, 1, x1)u(x1)dx1 + r(x)u(c)

u(c)

]
Ep0(u) =

[
ρ0(x)
u(x)

0

]
Ep1(u) =

[
ρ1(x)
u(x)
c1
u(c)

]
,

and E† is the adjoint operator of E . Clearly,

〈u, Ep0(u)〉 = 〈Ep1(u), u〉 = 1, ∀u ∈ K0.

It follows that

1 = 〈E ◦ Ep1(h), Ep0 ◦ E ◦ Ep1(h)〉
= 〈Ep1(h), E† ◦ Ep0 ◦ E ◦ Ep1(h)〉
= 〈Ep1(h), C(h)〉
= 〈Ep1(h), λh〉 = λ.

Once the fixed point h is computed, the 4-tuple (ϕ̂(1, x), ψ̂(1), ϕ(0, x), ψ(0)) can be recovered by

ϕ̂(1, x) = h(x), ψ̂(1) = h(c),

and [
ϕ(0, ·)
ψ(0)

]
= E2 ◦ E1(h).

The uniqueness of the 4-tuple (ϕ̂(1, x), ψ̂(1), ϕ(0, x), ψ(0)) follows from the uniqueness of the fixed point
h. This completes the proof of Theorem 13. A standard argument [37, Theorem 3.5] can be used to extend
the proof to the setting where S0, S1 are not necessarily compact for Theorem 9.
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