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ABSTRACT. In this paper, we consider Cauchy problem for the modified Korteweg-de
Vries hierarchy on the real line with decaying initial data. Using the Riemann—Hilbert
formulation and nonlinear steepest descent method, we derive a uniform asymptotic
expansion to all orders in powers of t 71/ with smooth coefficients of the variable
()" z((2n + 1)t)~ YD in the self-similarity region for the solution of n-th
member of the hierarchy. It turns out that the leading asymptotics is described by a
family of special solutions of the Painlevé II hierarchy, which generalize the classical
Ablowitz-Segur solution for the Painelvé IT equation and appear in a variety of random
matrix and statistical physics models. We establish the connection formulas for this
family of solutions. In the special case that the reflection coefficient vanishes at the
origin, the solutions of Painlevé II hierarchy in the leading coefficient vanishes as
well, the leading and subleading terms in the asymptotic expansion are instead given
explicitly in terms of derivatives of the generalized Airy function.

AMS SuBJECT CLASSIFICATION (2010): 37K15, 41A60, 35Q15, 35Q53.
KEYWORDSs: Long-time asymptotics, modified Korteweg-de Vries hierarchy, Painlevé II tran-

scendents, Riemann—Hilbert problems, nonlinear steepest descent method.

e N N

CONTENTS

Introduction and main results

Preliminaries

Asymptotic analysis of the RH problem for ¥
Asymptotic analysis of the RH problem for m: Case 1
Asymptotic analysis of the RH problem for m: Case II
Proofs of main results

Appendix A. Model RH problems
References

1. INTRODUCTION AND MAIN RESULTS
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In a seminal work [I§], Deift and Zhou introduced the celebrated nonlinear steepest
descent method to analyze asymptotics of oscillatory Riemann—Hilbert (RH) problems.
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2 HIGHER. ORDER AIRY AND PAINLEVE ASYMPTOTICS FOR THE MKDV HIERARCHY

This approach deals with the RH problem directly and consists of various contour defor-
mations, following the spirit of classical steepest descent method. Compared with the
inverse scattering method [3§], it does not require any priori ansatz for the asymptotic
form of the solution. Since the solutions for a variety of integrable nonlinear differential
equations are closely related to RH problems, the nonlinear steepest descent method
and its variants has been applied successfully to resolve many asymptotic problems
arising from integrable systems.

The illustrative example used in [18] is the modified Korteweg-de Vries (mKdV)
equation

up — 6uuy + Ugyr =0, TER, >0, (1.1)

with Schwartz space initial data. Long-time asymptotics of the solution, which depends
explicitly on the reflection coefficient associated with the initial data, is presented in
six regions of the (z,t)-plane. In the similarity region —M; < x/t < —Msy, M;2 > 0,
the mKdV equation can be solved to any fixed order O(1/t"), n € N= {1,2,...}, and
the leading asymptotics is described by a slowly decaying modulated sine wave. The
full asymptotic expansion in this region is later derived in [I7], and each higher order
coefficient therein can be calculated recursively. In the self-similarity region |x| < M /3,
M > 0, leading asymptoics of the solution, however, is given in terms of the Ablowitz-
Segur solution [2, 36] for the homogeneous Painelvé II equation

¢"(x) = 29(x)* = zq(2), (1.2)
which is determined by the reflection coefficient. This result has recently been improved
in a paper of Charlier and Lenells [9] by showing that the solution actually admits a
uniform expansion to all orders in powers of t~/3 with smooth coefficients. Moreover, if
the reflection coefficient vanishes at the origin, they derived the leading and subleading
terms in the expansion explicitly with the aid of the classical Airy function. Besides
these studies of mKdV equation on the real line, we also refer to [6],29] for the asymptotic
results on the half-line.

In this paper, we are concerned with the mKdV hierarchy [12] which is defined by

g (0 9
up + (9:6<81‘ —|—2u>£n[ul« —u]=0, neN, (1.3)

where the operator £,, satisfies the Lenard recursion relation [28]:
3
ELinf = (dd rafd + 2fm> Lif,
Lof =35, L£j0=0, j=1,2---.
If n =1 1n (1.3)), one recovers (|L.1)), and the equation for n = 2 reads

Up — 10u2umx — 40Ut Upy — 10u‘3 + 30u4ux + Ugpgzrz = 0.

(1.4)

Following the spirit in [9], emphasis will be put on the higher order Painlevé-type
asymptotics for the mKdV hierarchy in the self-similarity region with initial data
u(z,0) = up(z) € S(R), where S(R) is the Schwartz class of smooth rapidly decaying
functions. As we will show later, the role played by the Ablowitz-Segur solution and
Airy function in the mKdV equation will be replaced by their higher-order generaliza-
tions. In the literatures, we note that the Painlevé transcendents and their higher-order
analogues are crucial in asymptotic analysis of many integrable nonlinear differential
equations, as can be seen from their appearances in the focusing nonlinear Schrodinger
equation [4, 5], in critical asymptotics for Hamiltonian perturbations of hyperbolic and
elliptic systems [10], in the Camassa-Holm equation [7], in the Sasa-Satsuma equation
[24], in an extended mKdV equation [30} 31] and in the sine-Gordon equation [32]. The
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higher order asymptotics in similarity region for other integrable equations can be found
in [26, 37).
Main results of this paper are stated in what follows.

1.1. Main Results. To state our results, we start with the Painlevé II hierarchy, which
is a sequence of ordinary differential equations obtained from equations of the mKdV
hierarchy via self-similar reduction [20]; see also [I3| 27, B3]. The n-th member of
the Painlevé II hierarchy is a non-linear ordinary differential equation of order 2n for
q = q(z), and reads as

(c;i‘ + 2q> Lnlgz — q2] = xq, neN, (1.5)

where the Lenard operators are defined in (|1.4)). The Painlevé II equation (1.2]) corre-
sponds to n = 1 in ([L.5)), while for n = 2, we have

¢""(x) = 10g(x)(¢'(x))* — 10g(2)?¢" () + 6¢(x)° = zq(x).
In the most general case, the Painlevé II hierarchy depends on several parameters, and
the one in corresponds to the case that all the parameters are taken to be zero.
As is well-known, the solutions to Painlevé equations and hierarchy are transcendental

in general, hence, we cannot expect simple closed forms for the solutions. By assuming
that q((—1)""'z) tends to zero exponentially fast as x — +oo0, it is readily seen that
the n-th member of the Painlevé II hierarchy is approximated by the generalized
Airy equation

d2n

(@) = wy(a). (16)
If n = 1, the above equation is nothing but the classical Airy equation. It is straight-
forward to check that the function Aig, 1((—1)"*2) with

) (_1)n+1 / (—1)n $2n+1 s
A = I+l T 1.7
i2n+1() omi ) s (1.7)
solves ([1.6]), where v is a curve in the left half of the complex plane that is asymptotic to

straight lines with arguments i;:rllﬁ at infinity with the orientation from the bottom

to the top. Note that Aiz(z) = 5 f,y 6_§+x8d8 is the standard Airy function Ai(x)
[35].

Let —1 < p < 1 be a real number, it has recently been shown in [§] that each of the
n-th member of the Painlevé II hierarchy admits a one-parameter family of real
solutionsﬂ denoted by gasn(z; p) that are pole-free on the real line with the asymptotics

qAS,n((—l)n—Hl';p) ~ pA12n+1($), T — 400,

where Aigp,41(x) is defined in . This family of solutions plays an important role
in multicritical edge statistics for the momenta of fermions in nonharmonic traps [19]
and other statistical physics model [3]. They are natural generalizations of the classical
real Ablowitz-Segur solutions for the Painelvé II equation, and are determined by the
Stokes multipliers

81 = —Sont1 = P, S9 == 89 = 0. (1.8)
Since gas,, will also appear in long-time asymptotics of the mKdV hierarchy, our first
result is the following asymptotics of gas,((—1)""1z; p) as @ — —oo. This particularly
establishes the so-called connection formulas for this special family of solutions.

In [8], the authors only considered the case that 0 < p < 1, but it is clear that the arguments
therein can be extended to —1 < p < 1.
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Theorem 1.1. For each of the n-th member of the Painlevé II hierarchy (1.5)), there
ezists a one-parameter family of real solutions qasn(x; p) such that as x — 400,

qasn((=1)""2;p) = pAignia(2)(1 4+ 0(1),  —1<p<1, (1.9)
where Aigp11(x) is defined in (1.7)), and as v — —o0,

2n 2nt1 2n+1 4
_ _ d? In(—
2n+1( #) 2 4n a( x)—i—(p)

+0((—2)™Y, (1.10)

where the constants d and ¢ are related to the parameter p through the connection
formulas

qasn((=1)" s p) = a1 COS (

do _m“;ﬁx (1.11)

d? d? . m 0
b= In(8n) + argI’ <2z> + §sgn(p) -7 (1.12)

with T'(z) being the Gamma function.

If n = 1, Theorem is due to Ablowitz and Segur [2], 36]; see also [14], 16} 23] for
rigorous derivations using different methods.

We are now ready to state long-time asymptotics of the mKdV hierarchy. It comes
out that, in the self-similarity region |z| < Ct'/"*D where C = C(n) is a pos-
itive constant for fixed n, the solution of the mKdV hierarchy with Schwartz
space initial data admits a uniform expansion to all orders in powers of ¢~/ (271 with
smooth coefficients. Furthermore, the leading coefficient is described by the generalized
Ablowitz-Segur solution gas ,, with the parameter explicitly determined by the reflection
coeflicient according to the inverse scattering transform on the real line.

Theorem 1.2. Let u(x,t) be the solution for each of the n-th member of the mKdV
hierarchy (L.3) with initial condition ug(x) = u(z,0) € S(R). As t — oo, we have

_ N+1 x

), y=(=n"t —— (1.13)
((2n + 1)t) 2+

||M2

uniformly for |z| < CtYCn+) with fived C > 0 and N > 1, where {u;j(y)}jen are
smooth functions of y € R and

ur(y) = (2n + 1) 75 gag,((—1)" Ly, ir(0)). (1.14)

In (1.14), qasn is the generalized Ablowitz-Segur solution of the Painlevé II hierarchy
1.5) as stated in Theorem and () is the reflection coefficient associated with the
initial date ug.

We shall see existence of the solution for each n-th member of the mKdV hierarchy
with Schwartz class initial data from Lemma 2.3] below.

By substituting into and comparing the coefficients of powers of ¢~ /(2n+1)
it follows that the coefficients u;(y), j = 2,3,..., in satisfy coupled differential
equations, which in general cannot be solved explicitly. If the reflection coefficient
vanishes at the origin, however, one can calculate the first few terms as shown in the
following theorem.
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Theorem 1.3. If r(0) = 0, then the asymptotic formula still holds with

w) =0, wly)=— "0 Ay ), (L.15)
2 % (2n + 1)Z0r

and

Z.?“” 0 N
- O AL, (1.16)
8 X (2n 4 1)2n+1

where the Aiap41 is the generalized Airy function defined in (1.7)).

Theorems and extend the results for the mKdV equation (1.1)) in [9] to the
mKdV hierarchy ([1.3). For n = 2, the leading asymptotics in ((1.13)) is also known in
[31].

uz(y) =

1.2. Organization of the paper and notation. The rest of this paper is devoted to
the proofs of our main results, which rely on the Deift /Zhou steepest descent analysis
of the associated RH problems and a technique introduced by Charlier and Lenells
in [9] to derive the higher order asymptotic expansion. In Section 2| we present RH
representations for the mKdV hierarchy and the Painlevé II hierarchy, respectively.
Asymptotic analysis of these RH problems are scattered in Sections To analyse
the RH problem for the mKdV hierarchy, it is necessary to divide the discussion into
several different cases. The asymptotic outcomes will finally lead to the proofs of our
main results, i.e., Theorems [[.IHI.3] as shown in Section [6]
We conclude this section with some notation used throughout this paper.

o If Ais an n x m matrix, the A;; stands for the (7,j)-th entry of A. We define
|A] > 0 by |A]? = doij |A;j|%. Tt is then easily seen that |A+ B| < |A|+|B| and
|AB| < |A||B].

e For a (piecewise smooth) contour v C C and 1 < p < oo, we write A € LP(7) if
|A| belongs to LP(y). A € LP() if and only if each entry A;; belongs to LP (7).
We also define || Al = [[|AlllLr(4)-

e For a complex-valued function f(k) of k € C, we use

(k) := f(k) (1.17)
to denote its Schwartz conjugate.
e As usual, the three Pauli matrices {o; }?:1 are defined by

o1 = <(1) (1)) , o9 = (? _OZ) , o3 = ((1) _01> . (1.18)

e Let D be an open connected subset of C bounded by a piecewise smooth curve
v c C:=CuU{oo} and zp € C\ D. We use EP(D), 1 < p < oo, to denote
the space of all analytic functions f : D — C with the property that there
exist piecewise smooth curves {C},}°2; in D tending to v in the sense that C),
eventually surrounds each compact subset of D and such that

sup/ |z — 20|P 2| f (2)[P|dz| < oo.
n>1JC,

If D= D;U---UD, is a finite union of such open subsets, then Ep(D) denotes
the space of analytic functions f : D — C such that f|p, € EP(D;) for each
=1,...,n.
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e For a (piecewise smooth) oriented contour v C C and a function h defined on

v, the Cauchy transform of A is defined by
1 h(z")dz'
@) =5 [BE sechy,
¥

21 2 -z

whenever the integral converges. If h € L2(7), the left and right non-tangential
boundary values of Ch exist a.e. on v and belong to L?(v), which we denote
by Ci+h and C_h, respectively. Moreover, C+ € B(L?(v)), where B(L?(y)) is
the space of bounded linear operators on L?(7), and by the Sokhotski-Plemelj
relation, it follows that C4 —C_ =1,

In what follows, it is understood that most of the quantities encountered should
depend on a parameter n, which corresponds to the n-th member of the mKdV
hierarchy or the Painlevé II hierarchy. For simplicity, we omit this dependence
unless otherwise specified.

2. PRELIMINARIES

2.1. Lax Pair for the mKdV hierarchy. According to [I] (see also [12, Proposition
1]), the Lax pair for n-th equation of the mKdV hierarchy (1.3]) is given by

where

with

—iA u
¢:L’ = ( u 2/\> ¢a
B (2.1)
d)t = <D A) d)v
2n+1 2n 2n
A= A6, B=Y Bi(iN/, D=3 D@ry,
j=0 j=0 J=0

A2n+1:4n7 A2k:07k:0717"'7n7

4k+1

A2k+1 = 5 {ﬁn—k[ul‘ - U2] - 2 (8 + 2U> En—k—l[ul’ - ’U,2]} ) k= 07 17 ceey 1)

2 Oz \ Ox

4k+1 o o
ng+1 = — { <—|—2u) ﬁn_k_l[ux —UQ}}, k:O,l,...,n— 1,

BQk = —4k(a + 2U>£nk[“x - uz]y k= 07 17- - 1,
A

Dy = (=1)*By, k=0,1,...,2n, (2.2)

and Ly, k=0,1,...,n, being the Lenard operators defined in (1.4)).

Remark 2.1. If the initial data ug(x) € S(R), then <B(a:,0)> — (8) as r — 00.

D(z,0)

By introducing the matrix-valued functions

a0 =(14).

~ Az, t, ) — 22"(1')\)2"""1 B(x,t, )
Qz,t,\) = < D(z,t,\) — Az, t,\) + 22n(i)\)2n+1) )
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we could rewrite the Lax pair (2.1) as

o = (I(=1)" A5 + Q(r, )9 = Ua, £, M), 23)
Py = (—i22° A2 og + Q(z, t, (—1)" A = Vi, t, A)p, '

where o3 is the Pauli matrix defined in (1.18). Equivalently, let

’I,Z) — (be—i((—l)n-"l/\93+22n/\2n+1t)0'3

)

we have

Dy + 122"\ g3, B = Q(x, t, (—1)" TN D.
From (2.2)), it follows that U(z,¢,\) and V(x,t, A) in (2.3)) satisfy the following sym-

metry relations:

{cpm +i(=1)"H )\ [os, @] = Q(a, ),

Ue,t,=2) = Ul 1)), V(zt, =) = V(z,t,)),
1 U(z,t, oy = U(x,t,)), o1V (2.t Ny = V(z,t,\).
where o7 is given in ([1.18]). This, in turn, implies that
O(z,t,—A\) =(x,t,N),  01®(x,t, oy = B(z,t,\).

2.2. RH problem for the mKdV hierarchy. For the Cauchy problem of the mKdV
hierarchy with initial data ug(x), we see from the nonlinear Fourier transform formalism
[34] and the standard unified method introduced by Fokas [2I] that the associated
reflection coefficient r is defined by
b*(N)
A)=—= 24
") =T (24)

where f* stands for its Schwartz conjugate (1.17)), and the spectral functions a(\) and
b(\) constitute the scattering matrix

<a*()\) b()\)>
b*(A) a(A))
We note that r satisfies the symmetry relation
r(A) = —r(=\), NER, (2.5)
and if up(z) € S(R), then

sup |r(M\)| < 1.
AER

With the reflection coefficient r in (2.4), we define a 2 x 2 matrix-valued function
v(z,t,\) by

o 2 —tO(&,N)
v(a, t,\) = (rl( A)Z&)N T(A)el ) : (2.6)
where
O£, \) i= 2i((—1)"Flen 4 22a2Hl) ¢ o % (2.7)

We then formulate the following RH problem:

RH problem 2.2.
(a) m(z,t,\) is analytic for A € C\ R.
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(b) For a.e. A € R, the limiting values
my,_(w,t,A) = lim m(x,t, \)

"=
X' on the upper/lower half-plance

exist, and satisfy the jump condition
my(x, t,\) =m_(z,t, \)v(z,t,\), (2.8)

where the jump matriz v is given in (2.6]).
(c) As A — oo, we have m(z,t,\) = I+ O(A71).

From the standard argument (cf. [24] Theorem 1]), the relation between the above
RH problem and the solution of the mKdV hierarchy is given in the following lemma.

Lemma 2.3. The RH problemfor m has a unique solution for the each (z,t) € R?
and the limit imy_, oo (Am(x,t, X))21 exists. Moreover, the function u(z,t) defined by

u(x,t) = 2)\li_)n;o()\m(a:,t, A))21, (2.9)

is a smooth function with rapid decay as |x| — 0o, which satisfies the n-th member of
the mKdV hierarchy (1.3) with Schwartz class initial data.

Remark 2.4. By (2.5)), it is clear that r(0) is purely imaginary and the jump matriz v
defined in (2.6|) satisfies

v(z,t,\) = alv(x,t, 5\) o1 = o1o3v(x, t, —/\)710'30'1, A eR.
Thus, by uniqueness of the solution of the RH problem[2.3, it follows that
m(x,t,/\) = alm(x,t,jx)al = Ulagm(x,t, —)\)0'301, AE C\R (2.10)

We will perform asymptotic analysis of the RH problem for m as t — oco. Based
on the parity of n and the range of z, we split the analysis into four cases, namely,

CaseIi{(x,tHngSMtﬁ}, n is odd,
Case IT = {(z,t) |0 <z < Mtﬁ}, n is even,
Case III = {(z,t) | — Mtz < z < 0}, n is even,
Case IV = {(z,t) | Mtz <z <0}, n is odd,

where M is a positive constant. Since the analysis for Case IIT and Case IV is similar
to that for Case I and Case II (see Remark [5.7| below for a brief comment), it suffices
to focus on the first two cases, which is presented in Sections 4 and [ below, respectively.

2.3. RH problem for the Painlevé II hierarchy. We finally give an RH charac-
terization of the generalized Ablowitz-Segur solution gas,, of the Painlevé II hierarchy
. As aforementioned, the RH problem below is obtained from the general one (cf.
[11]) by choosing the specified Stokes multipliers (L.8).

RH problem 2.5.
(a) ¥(C) = ¥(x,p,() is defined and analytic in C\ Y, where

T:=T1U Y911 UTopi0UTypio (211)
with
T'::{CE(C arg(z2j_17r} j=1,...,4n+2. (2.12)
J in + 2 ’ ’ ’
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Tont1 Ty

Tont Y ant2

FIGURE 1. The jump contour Y for the RH problem for U,

(b) For ¢ € Y, we have
V(€)= ¥-(¢)Ju(<),

where
10
p 1) ) C € Tl)
10
—p 1> ) < c T2n+1;
Ju(C) =19 ) p
0 1) ) C S T2n+27
1 —
0 1p> ) C_ S T4n+27

and the orientation of Y is shown in Figure []]
(¢) As ( — oo, we have

U(C) = (I + ‘I“éx) + 0(42)> e~ "= (2.13)
for some function V1, where
- - B (2c)2n+1
E(¢) =E(z,¢) = Into + z¢. (2.14)

(d) ¥(C) is bounded near the origin.

Let ¥ be a solution of the above RH problem, by [8, Proposition 2.3], it follows that

the function

26 )12(z) = —2i(Py)21 (), n odd,
aasn(w5p) = {21(\111)1;(—3: = —21‘(111321(—33), n even, (2.15)

is real for x € R and —1 < p < 1, where ¥;(x) is given in

2.13)). Moreover, it satisfies

the Painlevé I hierarchy (|1.5)) and the boundary condition (]

.9). We will prove Theorem

by analysing RH problem [2.5] for large negative x in Section [3] below.
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Remark 2.6. One can strengthen the asymptotic behavior (2.13) to be

N
\IJ y =
V) =1+ chx) + 0N ) 7= Qs ¢ o0, (2.16)
j=1
uniformly for x in compact subsets of C\ Y, where ¥;(x), j = 1,...,N, are smooth

functions. If p =0, we have U(() = e~ =73 which implies that gasn = 0. Moreover,
since it is readily seen that both o3¥(x,p,()os and ¥(x,—p,() satisfy the same RH
problem, by ([2.15)), it follows that

qasn(x;=p) = —qasn(x; p). (2.17)

3. ASYMPTOTIC ANALYSIS OF THE RH PROBLEM FOR V¥

In this section, we perform a Deift-Zhou steepest descent analysis [I8] to the RH
problem [2.5| for ¥ as x — —oo. It consists of a series of explicit and invertible transfor-
mations which leads to an RH problem tending to the identity matrix for large negative
x.

3.1. First transformation: ¥ — X. The first transformation is a rescaling and nor-
malization of the RH problem for W, which is defined by

X(0) = U(|a| B )ell B 200, (3.1)
where
= 22" omt1
:(C) = m( n ¢. (3-2)

It is then straightforward to check that X satisfies the following RH problem.

RH problem 3.1.

(a) X(C) is defined and analytic in C\ Y, where Y is defined in (2.11]).
(b) For ¢ € Y, we have

where

1 0 .
pe2ilel FEQ) 1 ) ceth,
1 0 .
- _pezim"’%fé(g) 1] ¢ € Tont1,
- ~2ifa| "B E()
L pe= 7 = €Y
0 1 ) C 2n+2;
2ila] “Bn E(0)
1 —pe~2iel 3% € Tunso.
0 1 > 9 C 4n+2
(¢) As ¢ — oo, we have
Uy (z _
x(@) =1+ 28 L o2,
2|35

where U1 (x) is given in (2.13).
(d) X(C) is bounded near the origin.
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Tont2 Toni2 Tynio Tanio

FIGURE 2. The jump contour Xy for the RH problem for Y.

3.2. Second transformation: X — Y. In the second transformation we apply con-
tour deformations. The four rays T;, j = 1,2n+1,2n 4+ 2,4n + 2, are replaced by their
parallel lines emanating from some special points on the real line. More precisely, we
replace T1 and Yy4,49 by their parallel rays Tl and T4n+2 emanatmg from the point
1/2, and replace Yo,4+1 and Y,12 by their parallel rays T2n+1 and T2n+2 emanating
from the point —1/2; see Figure [2] for an illustration.

The second transformation is defined as follows.

4 1 0 _
X(¢) (pemxl%é(o 1) , C between Y7 and Y

and ¢ between Yo,41 and :f2n+1,

Y ()= 2o P B ~
©) X () ((1) pe | ‘12 © , ¢ between Yo,19 and To,40

(3.3)

and ¢ between Y 4,42 and T4n+2,
X(€), elsewhere.

In view of the RH problem for X and (3.3), it is readily seen that Y satisfies the
following RH problem.

RH problem 3.2.
(a) Y(Q) is defined and analytic in C\ Xy, where

Yy = ’Afl U T?n—&—l U T2n+2 U T4n+2 U [—1/2, 1/2],

see the solid lines in Figure 3,
(b) For ¢ € Xy, we have
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Yont1 D25} T : E :

Tomys U2 1/2

b Tynto

(a) n=2 (b) n=3

FIGURE 3. The jump contour ¥ for the RH problem for T. The
shaded areas indicate the regions where Rei= > 0 for n = 2 (left) and

n = 3 (right).
where
( 0 T
p€21|IIT'—'(C 1 C < L
1 0 ~
_p622‘$| 2” : 1 C € T2n+1’
—QZII\ 55 () ~
Jy (¢) = (1) pe ) ¢ € Tonyo, (3.4)
1 _p6727’|z| 2” E C) € ,"Ii
0 1 C An+2,
1= p2 _p672i|x\2ﬁn#§(0 -
. M: bl C E (_57 5)
pe2z|z| 2n ‘:(C) 1
(c) As ¢ — o0, we have
Uy (x _
Q=1+, ‘1§2+0<< ),
€I|2n

where Wy (x) is given in (2.13]).
(d) Y(¢) is bounded near { = £1/2.

3.3. Third transformation: Y — 7. As x — —o0, it comes out that Jy ({) tends to
the identity matrix exponentially fast except for ¢ € (—1/2,1/2), as evidenced in Figure
Since ImE(¢) = 0 for ¢ € (—1/2,1/2), we have that Jy (¢) is highly oscillatory for
large negative x. The third transformation then involves the so-called lens opening,
which is based on the following factorization:

1 0\ /1—p% 0 1 __»p 22| B E(0)
Jv(C) = =S < 1 ) 1-p2¢
© <1f262”“' o E© 1) 0 =2/ \o 1

for ¢ € (—1/2,1/2).
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By opening lens around (—1/2,1/2) as shown in Figure [3| so that ReiZ(¢) > 0 for
¢ € ¥1 and ReiZ(() < 0 for ¢ € X9, the third transformation is defined by

Y (¢), ¢ outside the lens,

| £ _=2ilal B E(Q) ,
Y (¢) 1—p? , C in the upper part of the lens,
0 1 (3.5)
1 0

Y (<) ( , 262i|$\@%§(4) 1) ,  ( in the lower part of the lens.
N —p

It is then straightforward to check that T satisfies the following RH problem
RH problem 3.3.
(a) T(C) is defined and analytic in C\ X1, where
Yro= Tl U T2n+1 U T2n+2 U T4n+2 U [_1/2; 1/2] U X1 U Xo; (36)

see Figure [ for an illustration.
(b) For ¢ € 1, we have

T4 (¢) = T-(¢)J7(¢),

where

( oo B R
1 T 2¢
0 1 ’

-p?
Jy (€), elsewhere,

and where Jy () is given in (3.4)).
(c) As ¢ — oo, we have

T =T+—52+0(),
where Wy (x) is given in (2.13).
(d) T(C) is bounded near ¢ = +1/2.

3.4. Global parametrix. It is now easily seen that the jump matrix Jr tends to the
identity matrix except for ¢ € (—1/2,1/2). We are then led to consider the following
RH problem for the global parametrix p(eo),

RH problem 3.4.
(a) P)(() is defined and analytic in C\ [~1/2,1/2].

(b) For ¢ € (—1/2,1/2), we have
_ 2
PO =P (17 1),

(c) As ¢ — oo, we have

P =T+0(¢CH).
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One can check that the solution to the above RH problem is explicitly given by

- ()

where the branch cut of (CH/Z)V is taken along the interval [—1/2,1/2] such that

v= —L, In(1 — p?), (3.8)

—1/2

(gﬂg)y — 1 as ( — oo.

3.5. Local parametrices near ( = +1/2. Since the convergence of Jp to the identity
matrix is not uniform near ¢ = +1/2, we have to build local parametrices around these
two points. Denote by D(zp,d) a fixed open disc centered at zp with radius 6 > 0, the
local parametrix near ¢ = 1/2 reads as follows

RH problem 3.5.
(a) P(%)(() is defined and analytic in D(1/2,6) \ S, where S is defined (3.6)).
(b) For ( € D(1/2,0) N X7, we have

P Q) = PP Q) (<),
where Jr(C) is defined in (3.7)).

(c) Asz — —o0, P(%)(C) matches P(*)(¢) on the boundary dD(1/2,68) of D(1/2,0),
i.e.,

2n+1

L — ()
PG(Q) = (I + O([z|~757)) P)(Q), (3.9)
where P(®)(¢) is given in (3.8).
We can construct P(2) (¢) explicitly by using the parabolic cylinder parametrix ¥(F€)

introduced in Appendix following the strategy in [22 Section 9.4]. To proceed, we
define

= = 1
n(¢) := 2(—iE(¢) +i2(1/2))2, (3.10)
where Z(¢) is defined in (3.2) and the branch cut of (-)'/2 is chosen such that arg(¢ —
1/2) € (—m,m). It is readily seen that
1

MO~ TN~ 5) oy (3.11)

Let W(PC)(¢; 1) be the parabolic cylinder parametrix with v given in (3.8)) (see Appendix
below), we set, for ¢ € D(%, 0)\ Xp,

1 2n41 o 2ndl ~ 03/2
PG = B (ol p(@imell 200 (B 7H(T0)

where 7(¢) is defined in (3.10), h; = F(EZ) e™ and

hi\ "% et T
E(¢) := <(1) (Z)) (B(C))7 (Zzpf) etnlzl 2n o3/(2n+1) (‘x| | n(¢) (1)>

and where

ST UE) 13

66) = (1ol % 00 103
By (3.11)), it follows that 3({) is analytic near ¢ = 1/2 with

B(1/2) = (2v2nla| "5 ) e/,
which also implies that E(() is an analytic prefactor in D(%, 9). From the RH problem
for (PO it is straightforward to show (cf. [22] for the case k = 1) that P(%)(C)
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defined in (3.12)) indeed solves the RH problem Moreover, the matching condition
(3.9) now reads

PIES
0 v 2l Gty B2 .
P(%)(O — <I+ - ‘%Ll , hi€ n(¢) |x’724:§1
__hy —2n|z n + 1
e R (SEI(S) 0

+O(|$!_23:1)>P(°°)(C), (3.14)
as © — —oo, uniformly for ¢ € 9D(1/2,0).

Similarly, near ( = —1/2, we intend to find a function p=3) satisfying the following
RH problem.

RH problem 3.6.
(a) P(_%)(() is defined and analytic in D(—1/2,9) \ X7, where X1 is defined (3.6).
(b) For ( € D(—1/2,9) N X1, we have
_1 _1
PO = PUP(Q01(0),
where Jr(C) is defined in (3.7)).
(c) As & — —o0, we have, for ¢ € D(—1/2,0)
PER(C) = (I+O(a ) P(Q), (3.15)
where P()(¢) is given in (3.8).
From the symmetry of Jr, one can check directly that
PE2)(¢) = 01 PR (=)o (3.16)
with o1 and P(%)(C ) given (1.18)) and (3.12) solves the above RH problem.
3.6. Final transformation. The final transformation is defined by
T(OPE)(Q), ¢ C\(D(},8)UD(-},6) UTr),
R(C) = § T(OPD(Q)!, CeD(3,9), (3.17)
TP ¢ € D(-3,9).
It is then easily seen that R satisfies the following RH problem.
RH problem 3.7.
(a) R(C) is defined and analytic in C\ X, where

S = Sr UOD(3,8) UID(—,6)\ {(~ 5, £) U D(3,8) UD(~1,6)}.
(b) For ¢ € ¥R, we have
Ri(¢) = R-(¢)Jr(C), (3.18)
where
PR (P, ¢ €dD(4,4),
Jr(¢) =< PE2) ()P ()L, ¢ € aD(—3,6), (3.19)

PN QI (Q)P(¢) 7 ¢ € Br\ {0D(5,8) UOD(~3,4)},
and where Jp(C) is defined in and the orientation of 0D(£1/2,9) is taken

i a clock-wise manner.
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Re® >0
Re® >0 Re® >0
[ ]
®Reo <0 ®
R
Re® >0
° o
[ ]
Re® <0 Re® <0
Re® <0

FIGURE 4. The critical points )\(03’j), j=1,...,6, and signature of Re ©
in the complex A-plane for £ =1 in Case 1.

(c) As ( — oo, we have,
R(Q)=1+0().
From (3.7), (3.9) and (3.15)), it is readily seen from (3.18)) that, as z — —o0,
[+0([~5%5), ¢ €dD(3,6)UdD(=4,0),
_2n¥1
I+0(e==l" 2y, ¢ € S\ {0D(3,6) UOD(—3,6)},

for some ¢ > 0. An appeal to the standard small norm arguments (cf. [I5, [18]) then
shows that

Jr(¢) = (3.20)

2n+1
4n

R(C) =1+ O(|z|~
uniformly for ¢ € C\ Xp.

For later use, it is worth noting that R is also characterized by the following integral
equation

), x> —o0, (3.21)

R(C) =1+ 2%” i R‘(S)(sjf(;) =Dy (3.22)

4. ASYMPTOTIC ANALYSIS OF THE RH PROBLEM FOR m: Case I
In this section, we analyse the RH problem for m as t — oo in Case I, that is,
{(z,t) |0 <2 < MtT¥1},  nis odd,
where M > 0. In this case, the critical points of phase function © in are

YL R S

(2n+1)22ne ’ J ) &y , 41,

which are not on the real line and approach 0 at least as fast as ¢t~/ as t — oo,

Thus, it follows that |)\(()n’j)| < Ot~ Y+ for some C' > 0. For n = 3 and £ = 1, an
illustration of the six critical points and signature of Re © are shown in Figure [4
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Re® >0

Re® >0 Re® >0

Ty

O Yant2

2n+2

Re® <0 Re® <0

Re® <0

FIGURE 5. The open subsets V, V* in Case I and the contour I'V) for
the RH problem [4.2] for m®).

4.1. First transformation: m — m™). The first transformation involves deformation
of the jump matrix along the real axis and we need to decompose the reflection coefficient
r into an analytic part 7, and a small remainder r,.. To proceed, recall the rays T;,
j=1,2n41,2n + 2,4n + 2, defined in with the orientations shown in Figure
By reversing the orientations of T;, j = 2n + 1,2n + 2, we obtain two new rays
denoted by T7. Clearly, the three curves Ty UY5, ., R and T3, 5 U T4y formulate
the boundaries of two open subsets V' and V*, as shown in Figure[5| The decomposition
of r is then given in the following lemma. Since the proof is similar to that of [9, Lemma
2.1] or [25, Lemma 7.1}, we omit the details here.

Lemma 4.1 (Analytic approximation for £ > 0). Let r be the reflection coefficient

defined in (2.4), we have
r(A) = ro(x, t, \) + (2,8, N), t>C(n), XeR, (4.1)

where C(n) is a positive constant depending on n, and for a fived N € N the functions
rq and . have the following properties:

(a) For eacht > C(n), rq(t, A) is defined and continuous for \ € V' and analytic for
A eV, where V denotes the closure of V.
(b) There exists a constant C > 0 such that

C ¢
Wzt )] < 7/Re©(&N)] NeV
|r ($7 9 )| — 1 _|_ ’A’e4 ) e )

and

bV

< CANFLeilReOEN N e (4.2)

N ()
ro(x,t,\) — g r '(0)
= 7

for each £ >0 and t > C(n).
(c) Ast — oo, the L' and L™ norms of r.(z,t,-) on R are O(t=N).
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(d) The functions rq and r, satisfy the following symmetries:

ro(x, t,\) = —ri(z,t,—N), A€V,
re(x, t, ) = —rf(x,t,—N), AeER.

With the aid of decomposition (4.1)), we define a sectionally analytic matrix-valued
function m® by

mD (@, 1, A) = m(z, 6, )G(x,t, \), (4.3)
where
.
1 0
L et® AevV,
G(z,t,\) = —r*e~tO 4.4
(:1: ) ! T > ’ AE V*7 ( )
0 1
1, elsewhere.

By Lemma[f.1]and the notation EP(D) introduced at the end of Section[1.2] it is readily
seen that

G(x,t,) e I+ (E2NE®)(V UV,

and m satisfies the RH problemif and only if m(!) defined in (4.3)) solves the following
RH problem.

RH problem 4.2.
(a) mW(x,t,-) € I+ E>(C\TW), where

IO =RUYUTS, 1 UT 0 U T (4.5)

see Figure[5 for an illustration and the orientation.
(b) For a.e. A € T we have

mM (@, t, ) = mD (@, t, oD (2,1, )),

where
([ 1 0 .
1 — * 7t@
o (2,8, \) = . " , AE TS, 90U anio, (4.6)
1— |r|? —rﬁe‘t@
, AeER
rrete 1

4.2. Local parametrix near the origin. As t — oo, 1t is easﬂy seen from the sig-
nature of Re® (c.f. Figure |4]) and Item (c) of Lemma 4 that v(! 4.6) tends to
the identity matrix. The convergence, however, is not uniform for )\ E D\ R and
close to the origin, which means we have to construct a local parametrix in a small
neighborhood of the origin D(0, €¢) with ¢ > 0 being small and fixed.

To formulate the local parametrix, we make a local change of variable for \ near
origin and introduce two new variables y and z by

yo=(2n+ 1)) Tz, 2= ((2n+ 1)) 5N, (4.7)
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2n+1
O(&,N) =21 (yz + %) .

Since 0 < z < Mt/ we have that g is bounded and the map A — z maps D(0, €)

onto the open disk D(0, ((2n + 1)t)#+le) in the complex z-plane. The idea now is, in
view of Item (b) of Lemma to replace the analytic part rq of r in (4.6)) by its N-th
order polynomial approximation

so that

N i
pn(t,2) == Z . (4.8)
=0 =0 ] j! Qn + 1)2n+1 t2n+1
and approximate v by
p(t, 2)e® 1> , AED(0,6) N{T1UT3, 4},
U0($7t7 >‘) = 1 —p* (t Z)e—t® (49)
0 N 71 >,AED(O,e)m{T§n+2uT4n+2}.
Indeed, for T' > 0 large enough, we define
Case IT = Case IN {t > T},
and the following estimate holds.
Lemma 4.3. For (z,t) € Case IT, we have
(1) — ST
[0 = voll Lo (Do, gy < CE 20 F1, (4.10)

for each 1 < p < 0o and some C > 0, where vV and vy are defined in and (| .,
respectively.

Proof. 1t is readily seen from and ( . ) that

0 0
, AeDO0,e)N{Y1UT5, .1},
1) (ra(z,t,A) — pN(t, 2))e™® 0) (0,6) V{T1UYS, 41}
v —Uoz
0 x,t,\) — pi(t,z))e t® .
. —(ra( )0 ~(t,2)) , /\ED(O,e)ﬂ{Tzn+2uT4n+2}_

(4.11)

We will only prove (4.10) for A € D(0,€) N Yy, since the proofs for the other contours
follow from similar arguments. Let A € D(0,¢) N Y1 and (z,t) € Case IT, for ¢ > 0,
we have from ([2.7)) that

ReO(E,A) = Re O(&, [AeTi7)

= — 22\ 20+ _ 9¢[)|sin ( 4l
4n

In particular,
e~ FIReO| < Ceat22 Pt < Ce A€ D(0,e) N Ty,
for some C' > 0. Thus, by (4.11]), (4.2) and (4.8]), it follows that

|v(1) —vg| < C|re(t, A) —pN(t,z)\etRGQ < C’|zt_ﬁ]N+1e*%|Re®|

‘2n+1

_22n71 |Z|2n+l
Y

< Olat™ T V422 AeD(0,6)NT;.
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Consequently, writing o = |z|,
__1 n— n _N+1
0 — vl oo (po,nry) < C sup (ot~ T )N L2 < Oy
0<p<0
and
722n—192n+1 dg

(1) 1 N4t _N+2
||o* — UOHLl(D(O,e)ﬂTl) < C/o (ot~ 2n¥1) e ) < Ct 2n+1,
2n+1

which gives us (4.10). O

In the virtue of Lemmal[4.3] we are then led to consider the following local parametrix.

RH problem 4.4.
(a) mo(z,t,\) is analytic for D(0,e) NI\ R,
(b) For a.e. A € D(0,e) NTM \ R, we have
mo+(z,t,A) = mo—(x,t, \)vo(x,t, A),

where vo(x,t, \) is defined in (4.9).
(¢c) For A € 9D(0,¢), we have mo(z,t,\) — [ ast — oco.

We can solve the above RH problem by using the solution of model RH problem
introduced in Section Let m™" (y,t, z) be the solution of RH problem with the
polynomial (A.3)) given by (4.8), i.e., the parameters s and p;, j =1,..., N, therein are
chosen to be

(o
s=r(0) €iR,  p;= L)] (4.13)
J1(2n + 1)zt
Due to the symmetry of reflection coefficient in (2.5)), the polynomial py (¢, z) satisfies
the symmetry relation

pN(t7 Z) == _pN(tv _2)7

which implies that p; € R and po € iR. We then define
mo(x, t,\) =mY (y,t,2), A € D(0,¢), (4.14)

where y and z are defined in . By Lemma it follows that we can choose
T > C(n) such that mg in is well-defined whenever (z,t) € Case IT and indeed
solves the RH problem More properties of mg are collected in the following lemma
for later use.

Lemma 4.5. For each (v,t) € Case IT, we have
Imo(z,t,\)| < C,  AeD(0,e)NTW\ R, (4.15)

for some C > 0. Moreover,

N X il (v) N+1
mo(z,t, ) =T+ Y -+ Ot ) (4.16)

uniformly for (x,t) € Case IT and A € 9D(0,¢€), where the coefficients @S.?)(y) are
smooth functions of y € [0,00). In particular,
1
lImo(z, t,-) " = I|| L ap(0,) = O 1), (4.17)

and

(mo(a, t, )" = Ndx =Y T L o awit), (4.18)
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uniformly for (x,t) € Case IT, where g;41(y) = @g?) (y) for each 1 >0 and

(2n + 1) #1

(91)12(y) = (91)21(y) = _fIQAS,n(y;W(O)) (4.19)

with qas, being the generalized Ablowitz-Segur solution of the Painlevé II hierarchy
(1.5). If r(0) = 0, we have

(0 .
©) —5— Ay, 11 (y)on, (4.21)
4 x (2n 4 1)2n+1

1:7”, 0 2 > . i’f‘” 0 N
O 3 (/ (A1/2n+1(yl))2dy/) 03+ © 3 A12n+1(y)‘71-
8 x (2n +1)2n+1 \Jy 16 x (2n + 1) 2+
(4.22)

Proof. The proof essentially follows from Lemma By (A.5)), we obtain the bound
1
1’ To show (4.16]), we note that if |A\| = €, the variable z = ((2n+1)t) 27+ \ satisfies
lii

|z| = ((2n + 1)t)2»+Te and z — oo if t — co. Thus equation (A.4)) yields

92(y) = —

93(y) =

Y ‘I)X;*(y) _ N+
@t A) =T+ e+ Ot ),
=1 1=0 (((2n + 1)t)2nFTX)7E 2051
uniformly for (z,t) € Case IT and A € 9D(0,¢). It is then straightforward to check
that the expansion (4.16|) exists where the coefficients ¢)§?) (y) can be expressed in terms
of @ﬁ(y) In particular, we have @g%)(y) = —2n + 1)_T1+1<I>¥0* (y). By (4.16]), the
estimate (4.17)) holds and we obtain from the Cauchy’s formula that

1
— (mgt — I)dX = Z m +Ot2n+1)

271 Jop(0,e) ot
which is .
Finally, note that
— 00N _ — gt & T
91( ) =015 (y) = —(2n+ 1) 71y (y),
we then obtain from (A.8) and ( - ) that

(91)12(y) = (91)21(y) = (2”+12)_2"“

which is (4.19). If »(0) = 0, a combination of the fact that
0 __1 *

g (y) = 2 (y) = —@n+ )T (y), 1=0,12,
[13) and (A9)—([A1T) gives us (L20)-E22). O
4.3. Final transformation. The final transformation is defined by

. mM (z,t, Nymo(z,t, )", X e D(0,¢),

(x,t,\) = .
mM (x,t,\), A€ C\D(0,e),

and it is readily seen that m satisfies the following RH problem.

RH problem 4.6.
(a) m(z,t,-) € I+ E*(C\T), where T :==TMW UdD(0,€) with TY) defined in @.5);

see Figure[6 for an illustration.

(2n + 1)z

qasn(y; —ir(0)) = —qusm(y;iT(O)),

(4.23)
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FIGURE 6. The contour I for the RH problem for m.

(b) For a.e. A € ', we have
my(x, t, ) =m_(z,t, \)o(z,t,\), (4.24)

where

and where vV is defined in ([4.6).

The jump matrix ¢ in (4.24)) tends to the identity matrix as ¢ — oo. More precisely,
let
wi=0v—1, (4.25)

we have the following estimates.

Lemma 4.7. For each 1 < p < oo, the following estimates hold uniformly for (z,t) €
Case IT:

1

|0l LroD(0,e)) < Ct™ 201, (4.26a)
) _Nw1

191 Lo (D(0,e)nrng) < CF 2L, (4.26b)

]| Loy < CEY, (4.26¢)

HUA)HLP(F(U\{RUW}) < Ceica (4.26d)

for some positive constants ¢ and C.

Proof. The estimate (4.26al) follows from (4.17). For A € D(0,¢) NT(M \ R, we have
W = mg,_ (v — vo)mgjr.

This, together with (4.10) and (4.15]), gives us (4.26b)). According to Item (c) of Lemma

and the boundedness (4.15]) of mg, one has (4.26¢|). Finally, (4.26d) follows because
e tRe®l < Ce=¢t uniformly on T\ {R U D(0,¢€)}. O




HIGHER. ORDER AIRY AND PAINLEVE ASYMPTOTICS FOR THE MKDV HIERARCHY 23

Re®© > 0
T
TSnJrl,)\o ° Tix
Vv Vv
V*) — Ao Ao v
T§n+2,A0 i Tant2.2,

FIGURE 7. The contour I'™) for the RH problem for m®) and the
sets V and V* in Case II. The region where Re® > 0 is shaded and

the dark points stand for the critical points )\(()Q’j), j=1,...,4,for £ =1.

5. ASYMPTOTIC ANALYSIS OF THE RH PROBLEM FOR m: Case II
In this section, we analyse the RH problem for m as t — oo in Case II, that is,
{(z,1) IOSxSMtﬁ}, n is even,
where M > 0. In this case, the critical points of phase function © in are

)\(nﬁj):%#j% i—1.2.....9
0 2+ 1) 0 T T
which approach 0 at least as fast as t~1/(2»*1) as ¢ — oo. Thus, it follows that ])\(()n’j )] <

Ct~1/27+1 for some C > 0. The difference between the present case and Case I lies in
the fact that there are two critical points lying on the real line, which we denote by

o— 2n f
+ )= ’/22n(2n+1)' (5.1)

For n = 2 and £ = 1, an illustration of the four critical points and signature of Re ©
are shown in Figure

During our analysis performed in what follows, the same notations mM v, ..., wil
be used to emphasize the analogies with the previous section, and we believe this will
not cause any confusion.

5.1. First transformation: m — m). As in Section we need to decompose the
reflection coefficient 7 into an analytic part and a small remainder to define the first
transformation. In this case, we define

Tirg =X+ 7Y, 1=14n+2, o= A+ T, i=2n+1,2n42.

These four rays, together with (—oo, —Ag] U [Ag, 00), formulate the boundaries of open
subsets V = V(§) and V* = V*(§), as illustrated in Figure [7} Similar to [9, Lemma
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5.7], [24, Lemma 5.2] and [25, Lemma 7.1], the decomposition of r in Case II reads as
follows and we again omit the proof.

Lemma 5.1 (Analytic approximation for 0 < ¢ < A). Let r be the reflection coefficient
defined in (2.4]), we have
r(A) = ro(x, t, \) + (2,8, A), A € (—00,—Ag) U (Ao, 0), (5.2)
and for a fited N € N the functions rq and r, have the following properties:
(a) For each & € [0, A] and t > C(n) with positive A and C(n), ro(z,t,\) is defined
and continuous for A € V. and analytic for A € V.
(b) There exists a constant C' > 0 such that

e%‘ReG(gvA)l’ A e ‘7’

a 7t7>\ S
refar t ] < T

and

)\ Ao) | < CIA = AN HLeiRe®ENI - N eV, (5.3)

Mz

oz, t, )

Jj=0

uniformly for § € [0, A] and t > C(n).

(c) The L' and L™ norms of r.(x,t,-) on (—00,—Ag) U (Ao, 00) are O(t~N) as
t — oo uniformly with respect to & € [0, A].

(d) The functions ro and r, satisfy the following symmetries:

ro(x,t,\) = —ri(z,t,—N), A€V,
rr(z,t,A) = —ri(z, t,—X), X € (=00, —Ng) U (A, 0).
We now define m") by (@.3) with G(z,t,\) given by ([#.4) and emphasize that the
function r, therein appears in the decomposition (5.2). By Lemma one has
Gz, t,-) € [+ (E>NE®)(VUV*),
and m satisfies the RH problem [2.2]if and only if m(!) solves the following RH problem.
RH problem 5.2.
(a) mW(x,t,-) € I+ E>(C\TW), where
PO = RUT 1A U 504100 Y Ton12,00 U Tanto,0; (5-4)

see Figure [ for an illustration and the orientation.
(b) For a.e. A € T we have

m (@, t,0) = mD (@6, )W (2,¢,2),

where
1 0
re et@ 1 AeTy A0 U T2n+1 Ao’
1 —r*et®
. al > , AE T2n+2 Ao U T4n+27>\0,
o (z,t,\) = o (5.5)
L=l =rie™) o, —20) U (Mo, )
) —00, — y Q)
rrete 1 0 0
1— ’T|2 _r*e—tG
,  AE (=X, No).
ret® 1 (=20, 30)
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5.2. Local parametrix near the origin. Ast — oo, it is easﬂy seen from the signa-
ture of Re© (c.f. Figure ' and Item (c) of Lemma [5.1| that v(!) in (6. tends to the
identity matrix. The convergence is not uniform for )\ € T\ (=00, —=Ao] U[Xg, 00) and
close to +g. Since \g = O(t~/2**1) we need to build a local parametrix in a small
neighborhood of the origin D(0, €).

To formulate the local parametrix, as in Case I, we introduce the new variables y
and z by

y:=—((2n+ 1)t)7T1+13:, z:=(2n+ l)t)Tlﬂ)\, (5.6)
so that
iy @
O, \) =2 (yz—i— it )

Since 0 < z < Mtl/(Q”“), it is easily seen that —C < y < 0 for some C' > 0. Moreover,
the critical point \g is mapped to the point

20 := ((2n + 1)t 2n+1 Ao = A|yl/2 (5.7)

on the z-plane. Following the strategy used in Section we approximate r, and r
by the N-th order polynomial py given in (4.8)) for large ¢, which also leads to the
approximation of v(!) in (5.5 by

1 0

ot 1) A€ D(0.6) N {T 130 UTh 00, )

1 _m* t, —tO "
vl ) =4 (4 PN, A€ D0,6) N {500, UTantano}s

1—|pn(t,2)|* —py(t,2)e ™ B

( pN(t,z)et@ 1 s A€ (=0, Ao).
(5.8)
For T > 0 large enough, by setting
Case IIT = Case II N {t>T},
the following estimate holds.
Lemma 5.3. For (x,t) € Case IIT, we have
(1) _ N+1
[0 = ol Lo (D(0,0) AP\ { (00, - Ao]UProso0)}) = O 21, (5.9)

for each 1 < p < oo and some C > 0, where vV and vy are defined in ) and ( .,

respectively.

Proof. 1t is readily seen from ((5.5)) and (/5.8]) that

N
(
0 0

(ra(z,t,\) — pn(t,2))e® 0]’ A€ D(0,€) N {1, UX501, )\0}

0 2t \) — pio(t, 2))e 1O
=21, —(ra( ) ) ~v(t:2)) ) A€ D(0,€) N{T5, 55 U Taniz}

=[P+ pn? = (\) = pi(t,2)e™®
, AE(=Xo,Np).
(r(\) — p(t, 2))et® 0 (=20, 40)

(5.10)
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We will prove (5.9) for A € (—=Xg, A\g) and A € D(0,€) N Yy y,, since the proofs for the
other contours follow from similar arguments.
By expanding 7)(\g), j = 1,..., N, around the origin, it is easily seen that

N G\ N N LG
r . r .
> ,(| 0)(/\— o) = ZZW())\ZO()\—AO)] + O
j=0 J: j=0 1=0 J:b
N N-+I (r

()
=30 % EERA O -+ o)

1=0 k=l (k —

N ()
= Z r K'(O) 2+ O(|)\|N+1) — PN(t, z) 4 O(‘)\’N—H)’ (5‘11)
k=0 '

uniformly for 0 < Ao < C and A € D(0,¢)NT'M\ {(c0, =A]U[Ag,00)}). IEX € (=0, Xo),
we have Re©® = 0. A combination of (5.10), (5.11)) and Lemma [5.1| shows that

WD — o] < Clr(A) — pa(t, 2)] < CINNHL < O zerr

which gives us (5.9) for A € (=Xg, Ag). If A = Ao+ Qeﬁ € D(0,e)N 7Yy y,, we see from
the fact £ = (2n + 1)(2X0)?" > 0 and (2.7) that

ReO(&, A) = Re (&, Ao + peT12)
= Re2i(—{(Xo + Qeﬁ) + 22 (N + Qeﬁ)%"'l)

= —9ntl ( <2n2—|— 1> A1 o? sin n 4 Q2n+1>

m
2n+1
< _22n+1Q2n+1 — _22n+1|)\ _ )\O|2n+17

where (Z) is the binomial number. Thus,

3t 3.92n+1 2n+1 3 2n41 3 _|y2n+1
e~ TIReOl < =21 < =GN < T am T (5.12)

It then follows from ([5.3)), (5.10)), (5.11) and (5.12)) that

‘U(l) —vg| < Clra(z,t,\) — pn(t, 2)|eRe®

N 0) .
< Clre(z, t, ) — Z ! ,(')\0) (A — Xg)? [e!Re®
=0
N G () M) .
r T e
+CZ (' 0)(}\_)\@]_2 j'( ))\JetRG)
§=0 =0

< C|A — N[N Hlem 1ROl | o \|N+1—tIRe O]
3
< C'|zt_2n1+1 |N+16_W‘
As in the proof of Lemma this implies
M < Ot o
[0 = wollzinzeey DT ) < ,
as required. .
In the virtue of Lemma/5.3| we are then led to consider the following local parametrix.

RH problem 5.4.
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(a) mo(x,t,\) is analytic for D(0,€) NTW \ {(=o0, —=Ao] U [Ag, 00}, where T s
defined in (5.4)).
(b) For a.e. A € D(0,e) NI M\ {(—=o00, =] U [\g, 00}, we have
mo,+(x,t, A) = mo,—(z,t, \)vo(z, t, \), (5.13)

where vo(x,t, \) is defined in (5.8).
(¢c) For A € 9D(0,¢), we have mo(z,t,\) — [ ast — oco.

We can solve the above RH problem with the aid of the solution of model RH problem
introduced in Section Let m?(y,t, 20, z) be solution of RH problem with the

polynomial (A.3)) in the jump condition given by (4.8]), we define

mo(x,t,\) == mZ(y,t, 20, 2), A€ D(0,¢), (5.14)
where y, z and zy are defined in (5.6) and , respectively. If (z,t) € Case IIT, then
(y,t,20) € Pr, where Pp defined in (A.39). By Lemma we can choose suitable T
such that mq in (5.14)) is well-defined and check that it indeed solves the RH problem

The function mg in this case has similar properties as that in Case I, which are
collected in the following lemma and follow directly from Lemma [A.7]

Lemma 5.5. For each (z,t) € Case IIT, the function mo(x,t,\) defined in is

uniformly bounded, i.e.,

Imo(z, 6, )| < C,  Xe D(0,e) NTW\ {(—oc0, —Ag] U [Ag, 00} (5.15)
Moreover,
Al ‘I)('(z)) () N+1
mo(z,t, ) =T+ Y -+ Ot ) (5.16)

0D(0,€). The function mo(x,t,\) satisfies

J
uniformly for (x,t) € Case IIT and X
€ Case IIT, where the coefficients {g;(y)}\¥ are

[E17) and [@I8) uniformly for (xt)

smooth functions of y € R with

aQm

(9)12) = (9 (y) = ~E T g e (0). (517)

If r(0) = 0, we still have (4.20)—(4.22) for the first few terms in (5.16)).

5.3. Final transformation. As in Case I, we define m by in the final trans-
formation, but it is understood that the functions m(!) and my therein solve RH prob-
lems and respectively. Thus, m satisfies RH problem with the contour
[ :=TW yUdD(0,¢) illustrated in Figure

The estimates of w in for Case II are given in the following lemma, which can
be proved in a manner similar to that of Lemma
Lemma 5.6. For each 1 < p < oo, the following estimates hold uniformly for (z,t) €
Case IIT:

1

|0 r(ap(0,e)) < Ct™ 2H1, (5.18a)
. _ N1

19| Lo (D(0,) AN {(—00,~A0]Urgs0}) = O 2T, (5.18b)

19| Lo R\ [~ 20 20)) < OV, (5.18¢)

HwHLp(p(l)\{RUm}) < Ce_d, (5.18d)

for some positive constants ¢ and C.
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T
>
—€ €
FIGURE 8. The contour I' in Case II.
Re® <0
[ ] [ ] ° [ ]
Re® >0
L ) L ]
Re© < 0
[ ] [ ]
[ ] L]
Re® >0
(a) n=2 (b)n=3

FIGURE 9. The critical points and signature of Re® in the complex
A-plane with ¢ = —1 for Case III and Case IV. The shaded areas
indicate the regions where Re© > 0 for n = 2 (left) and n = 3 (right).

Remark 5.7. We have completed asymptotic analysis of the RH problem[2.3 for m in
Case I and Case II. For Case I11, critical points of the phase function © in are
not on the real line; see the left picture in Figure[9. Therefore, the asymptotic analysis
18 analogous to that in Case 1 and local analysis near the origin is related to the model
RH problem[A.2. For Case IV, the phase function © has two critical points lying on
the real line; see the right picture in Figure [4, which implies that the analysis can be
carried out in a way similar to that in Case II and the model RH problem[A.6 will play
a crucial role in the local analysis.

6. PROOFS OF MAIN RESULTS

6.1. Proof of Theorem The asymptotics (1.9) is given in [8] by analysing the
RH problem for ¥ as ¢ — oo and we only need to show (|1.10). By tracing back
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the transformations ¥ — X — Y — T — R given in (3.1)), (3.3), (3.5) and (3.17)), it is
readily seen from (2.15)) and (3.22]) that

gasn((—1)" s p) = 2i(1)12(2)

= 2’.213‘%1 lim CRH(C) = — ‘{L‘|ﬁ / (R_(s)(JR(s) — I)) ds.
(o0 Sk 12

s

This, together with (3.20)) and (3.21]), implies that, as x — —oo,

gasn((=1)""'z; p)
1
x|2n +1
_ I (/ (Tr)a(s)ds + O(|a|~ 54 )) . (6.1)
T dD(1/2,6)U8D(—1/2,68)
In view of (3.19)), we obtain from (3.14]) and (3.16)) that, for large negative z,

ZV 2n|a:| 2n z/(?n-i—l)ﬁ |3§‘|7 4n +O(’x|7 2n )7 CG@D(]_/Q,(;),
2n41
_%e—Zn\xl T z/(%“)iﬁ(—@%n (|gc]* B ), ¢ € 0D(—1/2,9).
Inserting the above estimates into (6.1]), it is readily seen that

(Jr)12(¢) =

n 1 pv 2|z| i 1/3/ /8(8)2
gasn((—1 +1x; P)= "1 ds
(=) ) wla| i (hl ap(1/2,5) 1(8)

M -2 2’%31‘/3/ 1 L
+—e ‘ ———ds | + O(|x| ).
P aD(=1/2,5) B(=5)*n(=s) (l=[)
By (3.11)) and (3.13]), we have
6(8)2 ™ 3 +§ ; 2n+1\ Y
ds = — 2Vt (g1 Zon :
/BD(I/Q,J) n(s) V2n ( =1 )

1 T 3,3 . 2n41\ —V¥
ds = — e 2V <8n\:n| 2n ) .

/ap(_1/2,5) B(—s)*n(—s) V2n

Thus,
qasn((—=1)"a; p)
B eim pv 2n\w\(zz++711)/(2")i+gym‘ gnlo )"
= Vol \ e
h 2 | ‘(2n+1)/(2n) 3 "
B ?16 nlx 2n+17z 2]/71’1 (8n‘x|22:1) +O(|x‘71)

2n+1)/(2n
\/? 1 ] 2D, *m+"1n(8"‘x' Ea )* ™
=A@ | 756
np’$| 4n F(V)

2n|e |(2n+1)/(2n)

nt1
1 ni 14 l/hl(8 | 2n )—l 3
N F( . oTEn] i—gmi— n|x 47rz> —|—O(|1,"_1)

-1
pF(l/)e O(lz|™), (6.2)

nlz|(2n+1)/(2n) +
2 R [ N3 —%M-S-WTH“H(SRM )+ i
——he
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where we have made use of the facts that h; = F(%/er)e”” , V= —% and
92 ‘
F(w)(—v) = 7T T emvm (6.3)

~ vsin(vm) T i

in the second equality, and since v is purely imaginary, the third equality follows im-
mediately. To this end, we note that |['(v)|?> = I'(v)['(—v), it is then easily seen from

(6-3) that
L(v) ! = ﬂ —In(1 = 2 e%m'JriargF(fz/).

Substituting this formula into (6.2)), we then obtain the asymptotics (1.10)—(1.12) by
straightforward calculations, which completes the proof of Theorem O

6.2. Proofs of Theorems and We will prove Theorems and for
Case I and Case II in a unified way. Thus, it is always assumed that (z,t) €
Case ITUCase IIT for some T and the same notations might have different definitions
for different cases.

To proceed, we observe from Lemmas [£.7] and [5.6] that
_ 1
Hw|’(leLoo)(f‘) < Ct™ 2. (6.4)

In particular, (W]} () — 0 uniformly as ¢ — oo, which implies that there exist a
suitable constant 7' such that

||éw||B(L2(f)) < CHw”Loo(f) < 1/2 (6-5)
for all (x,t), where
Cof = C_(f)
with C being the Cauchy transform associated with the contour f‘; see Section By

(6.5), the operator I —C,, € B(L2(I")) is invertible and the RH problem has a unique
solution given by

. 1 d
(e, t,N) =1+ C(an) = I+ 5— [ (jud)(x.t,5)—,
27t Jp 5—A
where fi(z,t,\) € I + L) is defined by ji = I 4+ (I — Cy) 'Cyl. Also, it is readily
seen from ([6.4) that

(6.6)

Cllw -
10| 21y <o

‘|ﬂ(m7t7)_IH 2(T S =
L) =4 _ HCwHB(B(f))

For A € T, it is easily seen from (4.16)), (5.16]), Lemmas and that as t — oo,
01(y, A) | wa(y, A ON(Y; A) | Werr(z, T, A
i, ) = 2N | BN DY) | Bern(@, A (6.7)

2
t2n+1 t2n+1 t2n+1 t2n+l

where the coefficients {uvj}j.V:l are nonzero only for A € 9D(0,¢), and for 1 < p < oo,
105 My <G G=1,e, N,
[err (2, 2, ')HLp(f‘) <C.
As a consequence, we also have
N o Ca
Cop=—1—+—F++ 3 + =

t2n+1 t2n+1 t2n+1 t2n+1
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Since i = Zj‘vzo CZJI + (I — éw)_lénglI, it is readily seen from the above expansion
that

A AN (Y, N) | frerr (@, 8\
it n) = 1+ 1Y )+...+“N(i)+”m(w ), (6.8)
t2n+1 t2n+1 t2n+1

where the coefficients {/1;(y, /\)}j-\[:1 are smooth functions of y € [0,00) and

H:u](ya)HL2 <C jzla"'aNa
||H€T1"(x7t7 )HLQ S C

By inverting the transformations (4.3)) and (4.23), we obtain from (6.6 and (6.8)

that
lim A(m(z,t,A) —I) = lim A(m(x,t,\) — 1)

A—00 A—00
N

1 h;
— g(x,t,x)w(x,t,x)cu:—Z@Jro(fﬁﬂ), t = o0,
2mi Jp =1t

uniformly for (x,t), where {h;(y )}N 1 are smooth functions with h;(y) = g1(y). In view
of { . this leads to the asymptotic formula

_ N+41

u(z,t) =2 lim A(m(x,t,\))o1 =
A—00

an

where

uj(y) = —2(hj)a1(y),  j=1,...,N, (6.9)
are smooth functions of y € [0, 00). Thus, we have proved (1.13]).

Since hi(y) = g1(y), we obtain from and (5.17)). If it is further assumed
that 7(0) = 0, then w; = i1 = 0, and so hj(y) = g;(y) for j = 1,2,3. This, together
with and (4.20)-(4.22), implies (1.15) and (1.16). We thus complete the proof of
Theorems [[.2] and [L.3] for Case I and Case II. O

APPENDIX A. MODEL RH PROBLEMS

A.1. The parabolic cylinder parametrix. The parabolic cylinder parametrix VACLS) €)=
\II(PC)(C ;) with v being a real or complex parameter is a solution of the following RH
problem; see [22, Chapter 9].

RH problem A.1.

(a) TPCN(¢) is analytic in C\ {U;*:Oij U{0}}, where the contours ij, j=0,...,4,
are indicated in Figure [10
(b) WO satisfies the following jump condition:

Hj, CGZ],j—O 3,

PC PC
lI,Sr )(C):\IJ(— )(C){ 2umios CEZ4 (A]_)
where
10 1h g il
o= (ho 1)’ = <0 11>’ Hiyo(z) = e H2)os Hiemim42)os = 0,1,

with

\/% m iV

ho = —i hi = e,

'r(u +1)’ - T(-v)
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Figure 10. The jump contours for the RH problem for ¥(PO),

(¢) As ( — oo, we have

§(PO)(¢) = C_\;;/Q (G _11> + 21C2 (EZi BEZt;; VV(I(/V+3§)) + O(C4))

s (G~ )5

From [22, Section 9.4], it follows that the above RH problem can be solved explicitly
in the following way. For z belonging to the region bounded by the rays >4 and X,

“z (( Doa(i€) - Du(Q) ) (5 g
PO (¢) = 2~ ! €
=2 (&Dﬂhmm>lio)< 0 1)’

where D, stands for the parabolic cylinder function (cf. [35, Chapter 12]). The explicit
formula of U(PC)(¢) in the other sectors is then determined by using the jump condition

E).

A.2. The Model RH problem for Case I and Case III. The long-time asymptotics
of m in Case I and Case III is related to the solution mY of the following model RH
problem parameterized by (y,t).

RH problem A.2.
(a) m " (y,t,-) € I + E*(C\ T*), where

T =T, U T;nJrl U T§n+2 U T4n+2,

and where the contours Y1,75, 1,75, o and Typyo are illustrated in Figure .
(b) For a.e. A € T*, we have

mI (y,t,2) =mT (y,t, 207 (y,t, 2),



HIGHER. ORDER AIRY AND PAINLEVE ASYMPTOTICS FOR THE MKDV HIERARCHY 33

where
( 1 0
o Z)eQi(szr(QZf:;l) 1] z€TiUT5, .0,
vyt ) =4 (A.2)
—2i| yz+ (22)
1 % (t ) Y 4n+2 %
pn(l;z)e , 2 € T2n+2 U Y42,
0 1
\
and where
N
pN(t, z) :s—l—z e, n €N, (A.3)
=1 t2n+1

2n+1)

is a polynomial of degree N in zt=/( with coefficients s =ip, —1 < p < 1,

and {p;}V C C.

Note that if pj, j =1,..., N, in ({A.3)) all vanishes, the above RH problem reduces to
the RH problem for the Painlevé II hierarchy, up to a conjugation. For general p;,
we have the following lemma about the properties of mY .

Lemma A.3. There exists a suitable T such that the RH problem has a unique

solution mY (y,t,z) whenever y > 0 and t > T. Moreover, the following properties of
’I‘*

m~  hold.

(a) For each integer N > 1, there are smooth functions {@%* (y)} of y € ]0,00) such
that, as z — 00,

N N T* _ N+1
« (OF (y) t 2n+1 1
mT () =1+3 Y 10 +ieT | (A.4)
j=1 1=0 2Jt2n+1 |Z| |Z|

uniformly with respect to argz € [0,2x], y >0, and t > T.
(b) mY" is uniformly bounded, i.e.,

supsup sup |mY (y,t,2)| < oo, (A.5)
y>0 t>T -cC\T*

and satisfies the symmetry relation
m¥ (y,t,2) = oym T (y,t, 2)o1. (A.6)
If pn(t, 2) = —pn(t, —Z), we also have
mY (y,t,2) = oro3mY (y,t, —z)o307. (A.7)

(c) For the leading coefficient in (A.4), we have

(@17 )i2(6) = (@1 )a1(4) = — 5aasn((~1)"* 53 p), (A8)

where qasy, is the generalized Ablowitz-Sequr solution of the Painlevé II hierar-

chy (L.5)) as stated in Theorem . Furthermore, if s =0, p1 € R, and p3 € iR,
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the first few terms in are given by

ol (y) =0, (A.9)
* p .
oY (y) = ZlAlénH(y)Ul, (A.10)
T pif [ 2 P2
o) = ([T At )P Jou + EA e, (A
y
* p .
31 (y) = — 5 ALy, 4 (1301, (A.12)
Proof. We follow the strategy in [9]. Define
-1
Pry._ (10 iZ(y,z)os (10
w )i (3 1) g 2= (39) (A1

where U solves the RH problem and = is given in (2.14]). It is then readily seen that
mP satisfies the following RH problem.

RH problem A .4.
(a) mP(2) =mP(y, p, 2) is defined and analytic in C\ Y*.
(b) For z € T*, we have

m% (z) = mP (z)v" (A.14)
where
( 1 0

' 2i(yz+ (2212:;1) 1 7 FASH SRUN P

ipe
’L)P(z) = A oyt (A.15)

) *
1 ipe 2 €5, 0UTynq2.
0 1

(¢) As z — oo, we have

N mP(y)
mP(z) =1+ ;7] + 0>V, (A.16)
j=1

-1
10 10 : : .
P _ . ) -
where m; = (0 Z> | (0 z) with ¥; given in (2.16]) for j =1,...,N.

(d) mP(2) is bounded near the origin.

By (A13) and (2:15), we have

. — _2(mP) (y) = _2(mP) (y)7 n odd,
nsatin )= S = i o, 17
and
sup  sup |m(y,z)| < oo. (A.18)

y>—C1 zeC\T*

for each C7 > 0.
It is straightforward to check that the matrix-valued function mY " satisfies RH prob-
lem [A72] if and only if

W= m T

mP)~1 (A.19)
satisfies the following RH problem.

RH problem A.5.
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(a) mT* (y7t7 ) €l+ E2((C \ T*)
(b) For a.e. A € Y*, we have
mi (y,t,2) =mI (y,1,2)07 (.1, 2),
where
o7 = mPoT (m

and where v¥" is given in (A.2).

9

P)—l

By setting
W' =0T — T =mP T —oP)(mE)
we have
A * A’r*
e z w , 2
Wyt = D) O D), (A.20)
t2n+1 t2n+1
where, for 5 =1,..., N,
0 0
m?Z . 2i(yz+ (21)271;1) (mf)~, zeT1UT5, 41,
e p;zle " 0
wy (y,2) = . 2nt1 (A.21)
. —2z(yz+(2il+2 )
mP [0 —pjle (m)™', 2€ Y5, 15U Tunta.
L \o 0
Since y > 0, it follows that
2n+1
2i (yz+ (21 ) 92ntl on g
e 2 < e mrr P z€T1UTY3, 1y,
2n+1
—27 (szr (22’)n ) 722n+1 2n+1
e 2 < e 2ntl |21 z € T§n+2 U T4n+2.
This, together with (A.21]), implies that for any integer m > 0,
. ) 2n+1 n n
20 ) " (y, 2)] < Cle™He T T < One eI ey,
and hence, for any 1 < p < oo,
~Y*
2™ (y, 2)|| Loy < C, 1 (A.22)
12 (g, t, 2) | Loeey < CE 27T, E> 1

We then particularly have
T* AT
Hcm"f*(y7t,.)HB(L2(T*) <Cllo” [[pee(rsy, t=1.

Therefore, there exists a suitable T' > 1 such that the RH problem has a unique
solution which is given by

mY (y,t,2) = T+CT (")

=T+ 2% T*(ﬂT*wT*)(y,t, s)%, t>T, (A.23)
where 2¥ " (y,t,-) € I + L*(Y*) is defined by
P =T+ Cl i =T+ (I —Clp) 'Clre 1. (A.24)
Note that o e T
Cli = S 4y ™ L NeN,

t2n+1 t2n+1 t2n+1



36 HIGHER. ORDER AIRY AND PAINLEVE ASYMPTOTICS FOR THE MKDV HIERARCHY

it follows from (|A.24) that

N
(ot 2) = (Clre )T+ (I = Clye) M Co )N T
r=0
N ~7T* AT
:u’ ( 7 Z) y t, z
—I1+Y o 1 fer(y:1:2) (A.25)
j:1 t2n+1 t2n+1
where [L]I* is a sum of terms of the form [];_ 1CTWI with ¥I_,j; = j, and the kX

involves terms of the same form (but with j; + - jr > N +1). By (A.22 -, it follows
that

X" . *< =
{Hu] W)y SC G =1.N, (8.26)

”:U’err(yv )HL2 T*) < C, t> T,

for some C' > 0.
We now plug (A.20) and (A.25)) back into (A.23]), it is readily seen from (A.22) and

(A.26]) that, as z — oo,

N N
15 g st [ (o S o)
j=1 =1
O(|o| N 1w, (A.27)

uniformly for y > 0 and ¢ > T'. Denote by

o 1

T .

¥ ) =51 [ (ol +Zm AT )i, 1SAISN. (A2s)
we can rewrite (A.27) as

T* _ N+1 _ 1
R T ) t 2n+1 t 2n+1
(y.t.2) —I+ZZ 0( + |le+1>’ (A.29)

J=1 1=1 z]t2n+1 |Z|

uniformly with respect to argz € [0,2x], y > 0 and t > T. Moreover, from (A.28)),
A.21) and (A.25)), we obtam the smoothness of <I>T (y). A combination of (A.16)),

A.19) and - ) gives us with

X (y)=ml(z), j=1,...,N. (A.30)

The bound ( - ) follows from |i and the fact that the contour can be
deformed. The symmetries (A.6) ) and 1 ) follow from the analogous symmetries for
the jump v¥"

We finally prove Item (c) of the lemma. The relation follows directly from

(A.17) and (A.30). If s =0, p1 € R, and pa € iR, it is easily seen from (A.13) and
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Remark that m” = I, and by (A.21]), we have

—21( +(2Z)2n+1)
4n+2
e 0 —prze Lrs  UTang2(2)
wy = 2n+1 ’
Qi(yz"‘ (2421)n+2 )
p1ze Iv,urs,,, (2) 0
(A.31)
2n+1
722( +<22) )
2 4n+2
e 0 pezle s o UTang2(2)
Wy = 2n+1 )
) 2i(yz+(221+2 )
pazie vy, ,, (2) 0
(A.32)

where 1 4(z) denotes the characteristic function of the set A C C. In view of the function
Aigp+1(y) defined in ([1.7]), a change of variable shows that

(22)2n+1 (22)2n+1

21 (yz+ - ) —21 (szr - ) .
/ e ) dy = / e ) dy = mAion1+1(y).
T1UT5, Y3, 12U an12

By differentiating the above formula j times with respect to y, it follows that

A Qz(yz+(22) "H) , , f2i(yZ+(2Z>2n+l)
/ Ze ) dy = (—1)]/ Ze " dz
T1UT2n+1 T2n+2UT4n+2
(4)
_ 7TA12n+1(y) (A 33)
@2 7

for each integer j > 0. A combination of (A.28) and (A.30))—(A.33) then implies that
iy (y) = 0,

* A * 1 N
(I)E (y) = (I)Flrl (y) = T o wir dz
T Jy=
2n+1
—2i(yz+ e )
_ P Oy e dz
27TZ (Z+(2Z)n+2 ) 0
TiUY5, ¢
p1 Al 1 (y) (01
o 21 10/’

* fay * 1 ~ *
‘1’31 (y) = ‘I’;f1 (y) = “omi - Zwir dz

i (2Z)2n+1
2 _2Z(yz+ ) o

_ b 0 - fr;n+2ur4n+2 ze
- 2n+1
2mi ) 2i(yz+(2ii31+§ ) J 0
10Ty, % € z
_ p1 mALG, 1 (y) (0 -1
27 4 10/’

which are (A.9)), (A.10) and (A.12). It remains to show (A.11). By (A.28) and (A.25)),
we have

1

‘Pg(y):_fm T*(wér*(y,Z)er (. 2)y (y,2))dz, (A.34)
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and
. . . 1 WX (y, s)ds
AT T T* AT 1 Y,
2)=C.ysI =C_ (W = — _
fir (y,2) W (W ) 27”/* s o
2n+1
72i<yz+%>
Se
D 0 _fT§n+2UT4n+2 s—z_ ds
- A - o 2n+1
27TZ 21 <yz+ (24')n+2 >
Se
leuT* S—z_ ds 0

2n+1

We now define

2
e Fi(y) 0
Fly) = P S T 1
(y) /*:ul wy az i 0 FQ(Z/) )

where

2n+1 2n+1
721'(?}84“ i ) 2i(yz+ 22 )
sze e
R = [ ( / ds>dz,
T1UTE, \JT5, Ul a0 574
2n+1 2n+1
2i (ys+ (2481)n+2 ) —2 (yZJF (221+2

sze e )
Fy(y) = / </ ds> dz.
Tt 2UTan 12 T1UY5, 11 §—%

Since Fy(y) = —Fi1(y) (by Fubini’s theorem), it follows that

Pl
Fly) = ——F .
(v) o 1(y)o3

Differentiating both sides of the above two equalities with respect to y, we observe from

(A:33) that
(22)2n+1 (28)2n+1

2 () (o)
Yzt 2i| ys+—-
F'(y) = pl(/ ze 2 dz> (/ se e ds) o3
T YUY, T3, 20U ant2

_ (WAi’QnH(y)) (_ WAi’an(y)) _ i

. 2
- 5 9% 03 = 4 ( 1,2n+1(y)) 3.

Note that F(y) — 0 as y — 0o, we have

Y

i wal oo = pw = [* P =T ([ 00 ) o

+00 oo
Combining the above formula and (A.32))—(A.34]), we arrive at

2n+1
) —2i<yz+(2f1)nf2 >d
(I)T* - P2 0 fT§n+2UY4n+2 z7e z
12 (y) - . 2n+1
211 9 Qi(yz+(2le+2 )
1,07y, ze dz

1 mp? Y .
o ([ i ) o
o0
2

_ P2 T (gor + 1 ( / w(Aignmy'))?dy') o5,
21 4 817 y

which is (A.11)).

This completes the proof of Lemma [A-3] O
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FiGUrE 11. The contour Z for the RH problem for m?.

A.3. The Model RH problem for Case II and Case IV. For each zy > 0, we
define

Zy =20+ Tla Zy = —zp+ Tgn—i—la Z3 = —zp+ T§n+27 Zy = zo+ T4n+27 (A35)

where the contours Y1,Y5, 1, Tonyo and Ty, are shown in Figure 4l The long-time

asymptotics of m in Case IT and Case IV is related to the solution m# of the following
model RH problem parameterized by y < 0, t > 0, and z9 > 0.

RH problem A.6.
(a) mZ(y,t,z0,-) € I + E%(C\ Z), where
Z = U?le]‘ U (—Z(), Zo); (A36)

see Figure|11 for an illustration and the orientation.
(b) For a.e. A € Z, we have

mi(y, t,z0,2) = mg(y, t, 20, z)vz(y, t, 20, 2), (A.37)
where
v?(y, t, 20, 2)
1 0

2i(yz+ (Qif:;l) . ) z € Zl U Z27

. (22)2n+1
N —21 (yz+74n+2 )
— 1 _pN(t7 Z)e 3 A Z3UZ4, (A38)

pn (L, z)e

0 1
2n—+1
~2i( yz+ 220 )
1—|pn(t,2)? —py(t, 2)e ( "
’ ) 7(22’)2n+1 N( ’ ) , R € (_ZOa ZO)v
o (t z>e2l(yz+4n+2 ) 1

with pn(t, z) given in (A.3]).
Define the parameter subset Pr of R3 by
Pr={(y.t,20) ER*| —=C1 <y < 0,1 >T, */|yl/2 < 20 < Ca}, (A.39)

where C1,Cy > 0 are constants, we have the following lemma about the properties of
m?, which serves as the counterpart of Lemma in Case I and Case III.

Lemma A.7. There exists a suitable T > 1 such that the RH problem (A.6) has a
unique solution m?(y,t, 29, z) whenever (y,t,z) € Pr. Moreover, the following proper-
ties of m? hold.
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(a) For each integer N > 1,
N N &Y _N41
D (y) t 2n+1 1
gl
1 S5 o ()

umformly with respect to argz € [0,27] and (y,t,20) € Pr as z — oo, where
y)} are smooth functions of y € R which coincide with the functions in
for y > 0 and satisfy the properties indicated in Item (c) of Lemma

18 uniformly bounded, i.e.,

sup sup |mZ(yat7207Z)| < 00,
(y,t,20)EPr 26€C\Z

and satisfies the symmetry relation
m?(y,t, 29, z) = orm?(y, t, 20, 2)01
If pn(t, 2) = —pn(t, —Z), it also follows that
m?(y,t, 29, z) = oro03m? (y, t, 20, —2)03071.

Proof. Proceeding as in Section we introduce a matrix-valued function m”(y, 2)
by

1 0
m¥ (2) 9 (yz+ (2212:2“> , 2 between Z; and T
ipe 1
and z between Y3, ., and Zs,
o (y:2) = —2i (yZ+ (24:?:;1)
mP(z) | 1 —ipe , z between Z3 and 13, ,
0 1
and z between Z4 and Y 4,42,
mP(z), elsewhere,

where m” is defined in (A.13)). In view of the RH problem for m?, it can be easily
checked that m®! satisfies the following RH problem.

RH problem A.S8.

(a) mP(y,t,20,-) € I + E*(C\ Z), where the contour Z is defined in (A.36)).
(b) For a.e. A € Z, we have

mil(y7 t? ZO? Z) = mfl(y? t? ZO? 'Z)vpl(y? t? ZO? Z)?

where
P1
(y7 ta 20, Z)
( 1 0
ey ) AV
ipe 1
. 2 (yz+ (222;; 1)
_ 1 ipe , 2z € Z3U Zy,
0 1
2n+1
—22( +(2Z> )
2 . 4n—+2
L= o2 ipe
(22)2n+1 , %€ (—ZQ,ZO).
. ( 2+ 4dn+2 )
ipe 1
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By defining
mZ . mZ(mPl)_l,

one can show that, analogous to the arguments used in the proof of Lemma that
m? admits an asymptotic expansion like (A.29), which finally leads to the statements
of Lemma [A7l We omit the details here. O
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