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family of special solutions of the Painlevé II hierarchy, which generalize the classical
Ablowitz-Segur solution for the Painelvé II equation and appear in a variety of random
matrix and statistical physics models. We establish the connection formulas for this
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well, the leading and subleading terms in the asymptotic expansion are instead given
explicitly in terms of derivatives of the generalized Airy function.
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1. Introduction and main results

In a seminal work [18], Deift and Zhou introduced the celebrated nonlinear steepest
descent method to analyze asymptotics of oscillatory Riemann–Hilbert (RH) problems.
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This approach deals with the RH problem directly and consists of various contour defor-
mations, following the spirit of classical steepest descent method. Compared with the
inverse scattering method [38], it does not require any priori ansatz for the asymptotic
form of the solution. Since the solutions for a variety of integrable nonlinear differential
equations are closely related to RH problems, the nonlinear steepest descent method
and its variants has been applied successfully to resolve many asymptotic problems
arising from integrable systems.

The illustrative example used in [18] is the modified Korteweg-de Vries (mKdV)
equation

ut − 6u2ux + uxxx = 0, x ∈ R, t > 0, (1.1)

with Schwartz space initial data. Long-time asymptotics of the solution, which depends
explicitly on the reflection coefficient associated with the initial data, is presented in
six regions of the (x, t)-plane. In the similarity region −M1 ≤ x/t ≤ −M2, M1,2 > 0,
the mKdV equation can be solved to any fixed order O(1/tn), n ∈ N = {1, 2, . . .}, and
the leading asymptotics is described by a slowly decaying modulated sine wave. The
full asymptotic expansion in this region is later derived in [17], and each higher order

coefficient therein can be calculated recursively. In the self-similarity region |x| ≤Mt1/3,
M > 0, leading asymptoics of the solution, however, is given in terms of the Ablowitz-
Segur solution [2, 36] for the homogeneous Painelvé II equation

q′′(x)− 2q(x)3 = xq(x), (1.2)

which is determined by the reflection coefficient. This result has recently been improved
in a paper of Charlier and Lenells [9] by showing that the solution actually admits a

uniform expansion to all orders in powers of t−1/3 with smooth coefficients. Moreover, if
the reflection coefficient vanishes at the origin, they derived the leading and subleading
terms in the expansion explicitly with the aid of the classical Airy function. Besides
these studies of mKdV equation on the real line, we also refer to [6, 29] for the asymptotic
results on the half-line.

In this paper, we are concerned with the mKdV hierarchy [12] which is defined by

ut +
∂

∂x

(
∂

∂x
+ 2u

)
Ln[ux − u2] = 0, n ∈ N, (1.3)

where the operator Ln satisfies the Lenard recursion relation [28]: d
dxLj+1f =

(
d3

dx3 + 4f d
dx + 2fx

)
Ljf,

L0f = 1
2 , Lj0 = 0, j = 1, 2, · · · .

(1.4)

If n = 1 in (1.3), one recovers (1.1), and the equation for n = 2 reads

ut − 10u2uxxx − 40uuxuxx − 10u3
x + 30u4ux + uxxxxx = 0.

Following the spirit in [9], emphasis will be put on the higher order Painlevé-type
asymptotics for the mKdV hierarchy in the self-similarity region with initial data
u(x, 0) = u0(x) ∈ S(R), where S(R) is the Schwartz class of smooth rapidly decaying
functions. As we will show later, the role played by the Ablowitz-Segur solution and
Airy function in the mKdV equation will be replaced by their higher-order generaliza-
tions. In the literatures, we note that the Painlevé transcendents and their higher-order
analogues are crucial in asymptotic analysis of many integrable nonlinear differential
equations, as can be seen from their appearances in the focusing nonlinear Schrödinger
equation [4, 5], in critical asymptotics for Hamiltonian perturbations of hyperbolic and
elliptic systems [10], in the Camassa-Holm equation [7], in the Sasa-Satsuma equation
[24], in an extended mKdV equation [30, 31] and in the sine-Gordon equation [32]. The
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higher order asymptotics in similarity region for other integrable equations can be found
in [26, 37].

Main results of this paper are stated in what follows.

1.1. Main Results. To state our results, we start with the Painlevé II hierarchy, which
is a sequence of ordinary differential equations obtained from equations of the mKdV
hierarchy via self-similar reduction [20]; see also [13, 27, 33]. The n-th member of
the Painlevé II hierarchy is a non-linear ordinary differential equation of order 2n for
q = q(x), and reads as (

d

dx
+ 2q

)
Ln[qx − q2] = xq, n ∈ N, (1.5)

where the Lenard operators are defined in (1.4). The Painlevé II equation (1.2) corre-
sponds to n = 1 in (1.5), while for n = 2, we have

q′′′′(x)− 10q(x)(q′(x))2 − 10q(x)2q′′(x) + 6q(x)5 = xq(x).

In the most general case, the Painlevé II hierarchy depends on several parameters, and
the one in (1.5) corresponds to the case that all the parameters are taken to be zero.

As is well-known, the solutions to Painlevé equations and hierarchy are transcendental
in general, hence, we cannot expect simple closed forms for the solutions. By assuming
that q((−1)n+1x) tends to zero exponentially fast as x → +∞, it is readily seen that
the n-th member of the Painlevé II hierarchy (1.5) is approximated by the generalized
Airy equation

d2n

dx2n
y(x) = xy(x). (1.6)

If n = 1, the above equation is nothing but the classical Airy equation. It is straight-
forward to check that the function Ai2n+1((−1)n+1x) with

Ai2n+1(x) :=
(−1)n+1

2πi

∫
γ
e(−1)n s

2n+1

2n+1
+xsds (1.7)

solves (1.6), where γ is a curve in the left half of the complex plane that is asymptotic to
straight lines with arguments ± n+1

2n+1π at infinity with the orientation from the bottom

to the top. Note that Ai3(x) = 1
2πi

∫
γ e
− s

3

3
+xsds is the standard Airy function Ai(x)

[35].
Let −1 < ρ < 1 be a real number, it has recently been shown in [8] that each of the

n-th member of the Painlevé II hierarchy (1.5) admits a one-parameter family of real
solutions1 denoted by qAS,n(x; ρ) that are pole-free on the real line with the asymptotics

qAS,n((−1)n+1x; ρ) ∼ ρAi2n+1(x), x→ +∞,
where Ai2n+1(x) is defined in (1.7). This family of solutions plays an important role
in multicritical edge statistics for the momenta of fermions in nonharmonic traps [19]
and other statistical physics model [3]. They are natural generalizations of the classical
real Ablowitz-Segur solutions for the Painelvé II equation, and are determined by the
Stokes multipliers

s1 = −s2n+1 = ρ, s2 = · · · = s2n = 0. (1.8)

Since qAS,n will also appear in long-time asymptotics of the mKdV hierarchy, our first
result is the following asymptotics of qAS,n((−1)n+1x; ρ) as x→ −∞. This particularly
establishes the so-called connection formulas for this special family of solutions.

1In [8], the authors only considered the case that 0 < ρ < 1, but it is clear that the arguments
therein can be extended to −1 < ρ < 1.
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Theorem 1.1. For each of the n-th member of the Painlevé II hierarchy (1.5), there
exists a one-parameter family of real solutions qAS,n(x; ρ) such that as x→ +∞,

qAS,n((−1)n+1x; ρ) = ρAi2n+1(x)(1 + o(1)), −1 < ρ < 1, (1.9)

where Ai2n+1(x) is defined in (1.7), and as x→ −∞,

qAS,n((−1)n+1x; ρ) =
d

√
n(−x)

2n−1
4n

cos

(
2n

2n+ 1
(−x)

2n+1
2n − 2n+ 1

4n
d2 ln(−x) + ϕ

)
+O((−x)−1), (1.10)

where the constants d and ϕ are related to the parameter ρ through the connection
formulas

d =

√
− ln(1− ρ2)

π
, (1.11)

ϕ = − d2

2
ln(8n) + arg Γ

(
d2

2
i

)
+
π

2
sgn(ρ)− π

4
, (1.12)

with Γ(z) being the Gamma function.

If n = 1, Theorem 1.1 is due to Ablowitz and Segur [2, 36]; see also [14, 16, 23] for
rigorous derivations using different methods.

We are now ready to state long-time asymptotics of the mKdV hierarchy. It comes
out that, in the self-similarity region |x| < Ct1/(2n+1), where C = C(n) is a pos-
itive constant for fixed n, the solution of the mKdV hierarchy (1.3) with Schwartz

space initial data admits a uniform expansion to all orders in powers of t−1/(2n+1) with
smooth coefficients. Furthermore, the leading coefficient is described by the generalized
Ablowitz-Segur solution qAS,n with the parameter explicitly determined by the reflection
coefficient according to the inverse scattering transform on the real line.

Theorem 1.2. Let u(x, t) be the solution for each of the n-th member of the mKdV
hierarchy (1.3) with initial condition u0(x) = u(x, 0) ∈ S(R). As t→∞, we have

u(x, t) =
N∑
j=1

uj(y)

t
j

2n+1

+O
(
t−

N+1
2n+1

)
, y

.
= (−1)n+1 x

((2n+ 1)t)
1

2n+1

, (1.13)

uniformly for |x| ≤ Ct1/(2n+1) with fixed C > 0 and N ≥ 1, where {uj(y)}j∈N are
smooth functions of y ∈ R and

u1(y) = (2n+ 1)−
1

2n+1 qAS,n((−1)n+1y, ir(0)). (1.14)

In (1.14), qAS,n is the generalized Ablowitz-Segur solution of the Painlevé II hierarchy
(1.5) as stated in Theorem 1.1, and r(λ) is the reflection coefficient associated with the
initial date u0.

We shall see existence of the solution for each n-th member of the mKdV hierarchy
with Schwartz class initial data from Lemma 2.3 below.

By substituting (1.13) into (1.3) and comparing the coefficients of powers of t−1/(2n+1),
it follows that the coefficients uj(y), j = 2, 3, . . ., in (1.13) satisfy coupled differential
equations, which in general cannot be solved explicitly. If the reflection coefficient
vanishes at the origin, however, one can calculate the first few terms as shown in the
following theorem.
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Theorem 1.3. If r(0) = 0, then the asymptotic formula (1.13) still holds with

u1(y) ≡ 0, u2(y) =
r′(0)

2× (2n+ 1)
2

2n+1

Ai′2n+1(y), (1.15)

and

u3(y) = − ir′′(0)

8× (2n+ 1)
3

2n+1

Ai
′′
2n+1(y), (1.16)

where the Ai2n+1 is the generalized Airy function defined in (1.7).

Theorems 1.2 and 1.3 extend the results for the mKdV equation (1.1) in [9] to the
mKdV hierarchy (1.3). For n = 2, the leading asymptotics in (1.13) is also known in
[31].

1.2. Organization of the paper and notation. The rest of this paper is devoted to
the proofs of our main results, which rely on the Deift/Zhou steepest descent analysis
of the associated RH problems and a technique introduced by Charlier and Lenells
in [9] to derive the higher order asymptotic expansion. In Section 2, we present RH
representations for the mKdV hierarchy and the Painlevé II hierarchy, respectively.
Asymptotic analysis of these RH problems are scattered in Sections 3–5. To analyse
the RH problem for the mKdV hierarchy, it is necessary to divide the discussion into
several different cases. The asymptotic outcomes will finally lead to the proofs of our
main results, i.e., Theorems 1.1–1.3, as shown in Section 6.

We conclude this section with some notation used throughout this paper.

• If A is an n ×m matrix, the Aij stands for the (i, j)-th entry of A. We define
|A| ≥ 0 by |A|2 =

∑
i,j |Aij |2. It is then easily seen that |A+B| ≤ |A|+ |B| and

|AB| ≤ |A||B|.
• For a (piecewise smooth) contour γ ⊂ C and 1 ≤ p ≤ ∞, we write A ∈ Lp(γ) if
|A| belongs to Lp(γ). A ∈ Lp(γ) if and only if each entry Aij belongs to Lp(γ).
We also define ‖A‖Lp(γ) := ‖|A|‖Lp(γ).
• For a complex-valued function f(k) of k ∈ C, we use

f∗(k) := f(k̄) (1.17)

to denote its Schwartz conjugate.
• As usual, the three Pauli matrices {σj}3j=1 are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.18)

• Let D be an open connected subset of C bounded by a piecewise smooth curve
γ ⊂ Ĉ := C ∪ {∞} and z0 ∈ C \ D̄. We use Ėp(D), 1 ≤ p < ∞, to denote
the space of all analytic functions f : D → C with the property that there
exist piecewise smooth curves {Cn}∞n=1 in D tending to γ in the sense that Cn
eventually surrounds each compact subset of D and such that

sup
n≥1

∫
Cn

|z − z0|p−2|f(z)|p|dz| <∞.

If D = D1 ∪ · · · ∪Dn is a finite union of such open subsets, then Ėp(D) denotes

the space of analytic functions f : D → C such that f |Dj ∈ Ėp(Dj) for each
j = 1, . . . , n.
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• For a (piecewise smooth) oriented contour γ ⊂ Ĉ and a function h defined on
γ, the Cauchy transform of h is defined by

(Ch)(z) =
1

2πi

∫
γ

h(z′)dz′

z′ − z
, z ∈ C \ γ,

whenever the integral converges. If h ∈ L2(γ), the left and right non-tangential
boundary values of Ch exist a.e. on γ and belong to L2(γ), which we denote
by C+h and C−h, respectively. Moreover, C± ∈ B(L2(γ)), where B(L2(γ)) is
the space of bounded linear operators on L2(γ), and by the Sokhotski-Plemelj
relation, it follows that C+ − C− = I,
• In what follows, it is understood that most of the quantities encountered should

depend on a parameter n, which corresponds to the n-th member of the mKdV
hierarchy or the Painlevé II hierarchy. For simplicity, we omit this dependence
unless otherwise specified.

2. Preliminaries

2.1. Lax Pair for the mKdV hierarchy. According to [1] (see also [12, Proposition
1]), the Lax pair for n-th equation of the mKdV hierarchy (1.3) is given by

φx =

(
−iλ u

u iλ

)
φ,

φt =

(
A B

D −A

)
φ,

(2.1)

where

A =
2n+1∑
j=0

Aj(iλ)j , B =
2n∑
j=0

Bj(iλ)j , D =
2n∑
j=0

Dj(iλ)j ,

with

A2n+1 = 4n, A2k = 0, k = 0, 1, . . . , n,

A2k+1 =
4k+1

2

{
Ln−k[ux − u2]− ∂

∂x

(
∂

∂x
+ 2u

)
Ln−k−1[ux − u2]

}
, k = 0, 1, . . . , n− 1,

B2k+1 =
4k+1

2

{
∂

∂x

(
∂

∂x
+ 2u

)
Ln−k−1[ux − u2]

}
, k = 0, 1, . . . , n− 1,

B2k = −4k
(
∂

∂x
+ 2u

)
Ln−k[ux − u2], k = 0, 1, . . . , n,

Dk = (−1)kBk, k = 0, 1, . . . , 2n, (2.2)

and Lk, k = 0, 1, . . . , n, being the Lenard operators defined in (1.4).

Remark 2.1. If the initial data u0(x) ∈ S(R), then

(
B(x, 0)
D(x, 0)

)
→
(

0
0

)
as x→∞.

By introducing the matrix-valued functions

Q(x, t) =

(
0 u
u 0

)
,

Q̃(x, t, λ) =

(
A(x, t, λ)− 22n(iλ)2n+1 B(x, t, λ)

D(x, t, λ) −A(x, t, λ) + 22n(iλ)2n+1

)
,
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we could rewrite the Lax pair (2.1) as{
ψx = (i(−1)nλσ3 +Q(x, t))ψ

.
= U(x, t, λ)ψ,

ψt = (−i22nλ2n+1σ3 + Q̃(x, t, (−1)n+1λ))ψ
.
= V(x, t, λ)ψ,

(2.3)

where σ3 is the Pauli matrix defined in (1.18). Equivalently, let

ψ = Φe−i((−1)n+1λx+22nλ2n+1t)σ3 ,

we have {
Φx + i(−1)n+1λ[σ3,Φ] = Q(x, t)Φ,

Φt + i22nλ2n+1[σ3,Φ] = Q̃(x, t, (−1)n+1λ)Φ.

From (2.2), it follows that U(x, t, λ) and V(x, t, λ) in (2.3) satisfy the following sym-
metry relations:

U(x, t,−λ) = U(x, t, λ̄), V(x, t,−λ) = V(x, t, λ̄),

σ1U(x, t, λ̄)σ1 = U(x, t, λ), σ1V(x, t, λ̄)σ1 = V(x, t, λ).

where σ1 is given in (1.18). This, in turn, implies that

Φ(x, t,−λ) = Φ(x, t, λ̄), σ1Φ(x, t, λ̄)σ1 = Φ(x, t, λ).

2.2. RH problem for the mKdV hierarchy. For the Cauchy problem of the mKdV
hierarchy with initial data u0(x), we see from the nonlinear Fourier transform formalism
[34] and the standard unified method introduced by Fokas [21] that the associated
reflection coefficient r is defined by

r(λ) =
b∗(λ)

a(λ)
, (2.4)

where f∗ stands for its Schwartz conjugate (1.17), and the spectral functions a(λ) and
b(λ) constitute the scattering matrix(

a∗(λ) b(λ)
b∗(λ) a(λ)

)
.

We note that r satisfies the symmetry relation

r(λ) = −r(−λ), λ ∈ R, (2.5)

and if u0(x) ∈ S(R), then

sup
λ∈R
|r(λ)| < 1.

With the reflection coefficient r in (2.4), we define a 2 × 2 matrix-valued function
v(x, t, λ) by

v(x, t, λ) =

(
1− |r(λ)|2 −r(λ)e−tΘ(ξ,λ)

r(λ)etΘ(ξ,λ) 1

)
, (2.6)

where

Θ(ξ, λ) := 2i((−1)n+1ξλ+ 22nλ2n+1), ξ :=
x

t
. (2.7)

We then formulate the following RH problem:

RH problem 2.2.

(a) m(x, t, λ) is analytic for λ ∈ C \ R.
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(b) For a.e. λ ∈ R, the limiting values

m+/−(x, t, λ) := lim
λ′→λ

λ′ on the upper/lower half-plance

m(x, t, λ′)

exist, and satisfy the jump condition

m+(x, t, λ) = m−(x, t, λ)v(x, t, λ), (2.8)

where the jump matrix v is given in (2.6).
(c) As λ→∞, we have m(x, t, λ) = I +O(λ−1).

From the standard argument (cf. [24, Theorem 1]), the relation between the above
RH problem and the solution of the mKdV hierarchy is given in the following lemma.

Lemma 2.3. The RH problem 2.2 for m has a unique solution for the each (x, t) ∈ R2

and the limit limλ→∞(λm(x, t, λ))21 exists. Moreover, the function u(x, t) defined by

u(x, t) = 2 lim
λ→∞

(λm(x, t, λ))21, (2.9)

is a smooth function with rapid decay as |x| → ∞, which satisfies the n-th member of
the mKdV hierarchy (1.3) with Schwartz class initial data.

Remark 2.4. By (2.5), it is clear that r(0) is purely imaginary and the jump matrix v
defined in (2.6) satisfies

v(x, t, λ) = σ1v(x, t, λ̄)
−1
σ1 = σ1σ3v(x, t,−λ)−1σ3σ1, λ ∈ R.

Thus, by uniqueness of the solution of the RH problem 2.2, it follows that

m(x, t, λ) = σ1m(x, t, λ̄)σ1 = σ1σ3m(x, t,−λ)σ3σ1, λ ∈ C \ R. (2.10)

We will perform asymptotic analysis of the RH problem 2.2 for m as t→∞. Based
on the parity of n and the range of x, we split the analysis into four cases, namely,

Case I
.
= {(x, t) | 0 ≤ x ≤Mt

1
2n+1 }, n is odd,

Case II
.
= {(x, t) | 0 ≤ x ≤Mt

1
2n+1 }, n is even,

Case III
.
= {(x, t) | −Mt

1
2n+1 ≤ x ≤ 0}, n is even,

Case IV
.
= {(x, t) | −Mt

1
2n+1 ≤ x ≤ 0}, n is odd,

where M is a positive constant. Since the analysis for Case III and Case IV is similar
to that for Case I and Case II (see Remark 5.7 below for a brief comment), it suffices
to focus on the first two cases, which is presented in Sections 4 and 5 below, respectively.

2.3. RH problem for the Painlevé II hierarchy. We finally give an RH charac-
terization of the generalized Ablowitz-Segur solution qAS,n of the Painlevé II hierarchy
(1.5). As aforementioned, the RH problem below is obtained from the general one (cf.
[11]) by choosing the specified Stokes multipliers (1.8).

RH problem 2.5.

(a) Ψ(ζ) = Ψ(x, ρ, ζ) is defined and analytic in C \Υ, where

Υ := Υ1 ∪Υ2n+1 ∪Υ2n+2 ∪Υ4n+2 (2.11)

with

Υj :=

{
ζ ∈ C

∣∣∣∣ arg ζ =
2j − 1

4n+ 2
π

}
, j = 1, . . . , 4n+ 2. (2.12)
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Figure 1. The jump contour Υ for the RH problem 2.5 for Ψ.

(b) For ζ ∈ Υ, we have

Ψ+(ζ) = Ψ−(ζ)JΨ(ζ),

where

JΨ(ζ) :=



(
1 0
ρ 1

)
, ζ ∈ Υ1,(

1 0
−ρ 1

)
, ζ ∈ Υ2n+1,(

1 ρ
0 1

)
, ζ ∈ Υ2n+2,(

1 −ρ
0 1

)
, ζ ∈ Υ4n+2,

and the orientation of Υ is shown in Figure 1.
(c) As ζ →∞, we have

Ψ(ζ) =

(
I +

Ψ1(x)

ζ
+O(ζ−2)

)
e−iΞ(ζ)σ3 (2.13)

for some function Ψ1, where

Ξ(ζ) = Ξ(x, ζ) :=
(2ζ)2n+1

4n+ 2
+ xζ. (2.14)

(d) Ψ(ζ) is bounded near the origin.

Let Ψ be a solution of the above RH problem, by [8, Proposition 2.3], it follows that
the function

qAS,n(x; ρ) :=

{
2i(Ψ1)12(x) = −2i(Ψ1)21(x), n odd,
2i(Ψ1)12(−x) = −2i(Ψ1)21(−x), n even,

(2.15)

is real for x ∈ R and −1 < ρ < 1, where Ψ1(x) is given in (2.13). Moreover, it satisfies
the Painlevé II hierarchy (1.5) and the boundary condition (1.9). We will prove Theorem
1.1 by analysing RH problem 2.5 for large negative x in Section 3 below.
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Remark 2.6. One can strengthen the asymptotic behavior (2.13) to be

Ψ(ζ) =

I +
N∑
j=1

Ψj(x)

ζj
+O(ζ−N−1)

 e−iΞ(ζ)σ3 , ζ →∞, (2.16)

uniformly for x in compact subsets of C \ Υ, where Ψj(x), j = 1, . . . , N , are smooth

functions. If ρ = 0, we have Ψ(ζ) ≡ e−iΞ(ζ)σ3, which implies that qAS,n ≡ 0. Moreover,
since it is readily seen that both σ3Ψ(x, ρ, ζ)σ3 and Ψ(x,−ρ, ζ) satisfy the same RH
problem, by (2.15), it follows that

qAS,n(x;−ρ) = −qAS,n(x; ρ). (2.17)

3. Asymptotic analysis of the RH problem for Ψ

In this section, we perform a Deift-Zhou steepest descent analysis [18] to the RH
problem 2.5 for Ψ as x→ −∞. It consists of a series of explicit and invertible transfor-
mations which leads to an RH problem tending to the identity matrix for large negative
x.

3.1. First transformation: Ψ→ X. The first transformation is a rescaling and nor-
malization of the RH problem for Ψ, which is defined by

X(ζ) = Ψ(|x|
1

2n ζ)ei|x|
2n+1

2n Ξ̃(ζ)σ3 , (3.1)

where

Ξ̃(ζ) :=
22n

2n+ 1
ζ2n+1 − ζ. (3.2)

It is then straightforward to check that X satisfies the following RH problem.

RH problem 3.1.

(a) X(ζ) is defined and analytic in C \Υ, where Υ is defined in (2.11).
(b) For ζ ∈ Υ, we have

X+(ζ) = X−(ζ)JX(ζ),

where

JX(ζ) = e−i|x|
2n+1

2n Ξ̃(ζ)σ3JΨ(ζ)ei|x|
2n+1

2n Ξ̃(ζ)σ3

=



(
1 0

ρe2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ ∈ Υ1,(

1 0

−ρe2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ ∈ Υ2n+1,(

1 ρe−2i|x|
2n+1

2n Ξ̃(ζ)

0 1

)
, ζ ∈ Υ2n+2,(

1 −ρe−2i|x|
2n+1

2n Ξ̃(ζ)

0 1

)
, ζ ∈ Υ4n+2.

(c) As ζ →∞, we have

X(ζ) = I +
Ψ1(x)

|x|
1

2n ζ
+O(ζ−2),

where Ψ1(x) is given in (2.13).
(d) X(ζ) is bounded near the origin.
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Figure 2. The jump contour ΣY for the RH problem 3.2 for Y .

3.2. Second transformation: X → Y . In the second transformation we apply con-
tour deformations. The four rays Υj , j = 1, 2n+ 1, 2n+ 2, 4n+ 2, are replaced by their
parallel lines emanating from some special points on the real line. More precisely, we

replace Υ1 and Υ4n+2 by their parallel rays Υ̃1 and Υ̃4n+2 emanating from the point

1/2, and replace Υ2n+1 and Υ2n+2 by their parallel rays Υ̃2n+1 and Υ̃2n+2 emanating
from the point −1/2; see Figure 2 for an illustration.

The second transformation is defined as follows.

Y (ζ) =



X(ζ)

(
1 0

ρe2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ between Υ1 and Υ̃1

and ζ between Υ2n+1 and Υ̃2n+1,

X(ζ)

(
1 ρe−2i|x|

2n+1
2n Ξ̃(ζ)

0 1

)
, ζ between Υ2n+2 and Υ̃2n+2

and ζ between Υ4n+2 and Υ̃4n+2,
X(ζ), elsewhere.

(3.3)

In view of the RH problem 3.1 for X and (3.3), it is readily seen that Y satisfies the
following RH problem.

RH problem 3.2.

(a) Y (ζ) is defined and analytic in C \ ΣY , where

ΣY := Υ̃1 ∪ Υ̃2n+1 ∪ Υ̃2n+2 ∪ Υ̃4n+2 ∪ [−1/2, 1/2];

see the solid lines in Figure 2.
(b) For ζ ∈ ΣY , we have

Y+(ζ) = Y−(ζ)JY (ζ),
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Σ2

Σ1

−1/2 1/2Υ̃2n+2

Υ̃2n+1

Υ̃4n+2

Υ̃1r r

(a) n = 2 (b) n = 3

Figure 3. The jump contour ΣT for the RH problem 3.3 for T . The

shaded areas indicate the regions where Re iΞ̃ > 0 for n = 2 (left) and
n = 3 (right).

where

JY (ζ) =



(
1 0

ρe2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ ∈ Υ̃1,(

1 0

−ρe2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ ∈ Υ̃2n+1,(

1 ρe−2i|x|
2n+1

2n Ξ̃(ζ)

0 1

)
, ζ ∈ Υ̃2n+2,(

1 −ρe−2i|x|
2n+1

2n Ξ̃(ζ)

0 1

)
, ζ ∈ Υ̃4n+2,(

1− ρ2 −ρe−2i|x|
2n+1

2n Ξ̃(ζ)

ρe2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ ∈ (−1

2 ,
1
2).

(3.4)

(c) As ζ →∞, we have

Y (ζ) = I +
Ψ1(x)

|x|
1

2n ζ
+O(ζ−2),

where Ψ1(x) is given in (2.13).
(d) Y (ζ) is bounded near ζ = ±1/2.

3.3. Third transformation: Y → T . As x→ −∞, it comes out that JY (ζ) tends to
the identity matrix exponentially fast except for ζ ∈ (−1/2, 1/2), as evidenced in Figure

3. Since Im Ξ̃(ζ) = 0 for ζ ∈ (−1/2, 1/2), we have that JY (ζ) is highly oscillatory for
large negative x. The third transformation then involves the so-called lens opening,
which is based on the following factorization:

JY (ζ) =

(
1 0

ρ
1−ρ2 e

2i|x|
2n+1

2n Ξ̃(ζ) 1

)(
1− ρ2 0

0 1
1−ρ2

)(
1 − ρ

1−ρ2 e
−2i|x|

2n+1
2n Ξ̃(ζ)

0 1

)
for ζ ∈ (−1/2, 1/2).
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By opening lens around (−1/2, 1/2) as shown in Figure 3 so that Re iΞ̃(ζ) > 0 for

ζ ∈ Σ1 and Re iΞ̃(ζ) < 0 for ζ ∈ Σ2, the third transformation is defined by

T (ζ) =



Y (ζ), ζ outside the lens,

Y (ζ)

(
1 ρ

1−ρ2 e
−2i|x|

2n+1
2n Ξ̃(ζ)

0 1

)
, ζ in the upper part of the lens,

Y (ζ)

(
1 0

ρ
1−ρ2 e

2i|x|
2n+1

2n Ξ̃(ζ) 1

)
, ζ in the lower part of the lens.

(3.5)

It is then straightforward to check that T satisfies the following RH problem

RH problem 3.3.

(a) T (ζ) is defined and analytic in C \ ΣT , where

ΣT := Υ̃1 ∪ Υ̃2n+1 ∪ Υ̃2n+2 ∪ Υ̃4n+2 ∪ [−1/2, 1/2] ∪ Σ1 ∪ Σ2; (3.6)

see Figure 3 for an illustration.
(b) For ζ ∈ ΣT , we have

T+(ζ) = T−(ζ)JT (ζ),

where

JT (ζ) =



(
1 − ρ

1−ρ2 e
−2i|x|

2n+1
2n Ξ̃(ζ)

0 1

)
, ζ ∈ Σ1,(

1 0
ρ

1−ρ2 e
2i|x|

2n+1
2n Ξ̃(ζ) 1

)
, ζ ∈ Σ2,(

1− ρ2 0
0 1

1−ρ2

)
, ζ ∈ (−1

2 ,
1
2),

JY (ζ), elsewhere,

(3.7)

and where JY (ζ) is given in (3.4).
(c) As ζ →∞, we have

T (ζ) = I +
Ψ1(x)

|x|
1

2n ζ
+O(ζ−2),

where Ψ1(x) is given in (2.13).
(d) T (ζ) is bounded near ζ = ±1/2.

3.4. Global parametrix. It is now easily seen that the jump matrix JT tends to the
identity matrix except for ζ ∈ (−1/2, 1/2). We are then led to consider the following

RH problem for the global parametrix P (∞).

RH problem 3.4.

(a) P (∞)(ζ) is defined and analytic in C \ [−1/2, 1/2].
(b) For ζ ∈ (−1/2, 1/2), we have

P
(∞)
+ (ζ) = P

(∞)
− (ζ)

(
1− ρ2 0

0 1
1−ρ2

)
.

(c) As ζ →∞, we have

P (∞)(ζ) = I +O(ζ−1).
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One can check that the solution to the above RH problem is explicitly given by

P (∞)(ζ) =

(
ζ + 1/2

ζ − 1/2

)νσ3

, ν = − 1

2πi
ln(1− ρ2), (3.8)

where the branch cut of
(
ζ+1/2
ζ−1/2

)ν
is taken along the interval [−1/2, 1/2] such that(

ζ+1/2
ζ−1/2

)ν
→ 1 as ζ →∞.

3.5. Local parametrices near ζ = ±1/2. Since the convergence of JT to the identity
matrix is not uniform near ζ = ±1/2, we have to build local parametrices around these
two points. Denote by D(z0, δ) a fixed open disc centered at z0 with radius δ > 0, the
local parametrix near ζ = 1/2 reads as follows

RH problem 3.5.

(a) P ( 1
2

)(ζ) is defined and analytic in D(1/2, δ) \ ΣT , where ΣT is defined (3.6).
(b) For ζ ∈ D(1/2, δ) ∩ ΣT , we have

P
( 1

2
)

+ (ζ) = P
( 1

2
)

− (ζ)JT (ζ),

where JT (ζ) is defined in (3.7).

(c) As x→ −∞, P ( 1
2

)(ζ) matches P (∞)(ζ) on the boundary ∂D(1/2, δ) of D(1/2, δ),
i.e.,

P ( 1
2

)(ζ) = (I +O(|x|−
2n+1

4n ))P (∞)(ζ), (3.9)

where P (∞)(ζ) is given in (3.8).

We can construct P ( 1
2

)(ζ) explicitly by using the parabolic cylinder parametrix Ψ(PC)

introduced in Appendix A.1, following the strategy in [22, Section 9.4]. To proceed, we
define

η(ζ) := 2(−iΞ̃(ζ) + iΞ̃(1/2))
1
2 , (3.10)

where Ξ̃(ζ) is defined in (3.2) and the branch cut of (·)1/2 is chosen such that arg(ζ −
1/2) ∈ (−π, π). It is readily seen that

η(ζ) ∼ e
3πi
4 2
√

2n(ζ − 1

2
), ζ → 1

2
. (3.11)

Let Ψ(PC)(ζ; ν) be the parabolic cylinder parametrix with ν given in (3.8) (see Appendix
A.1 below), we set, for ζ ∈ D(1

2 , δ) \ ΣT ,

P ( 1
2

)(ζ) = E(ζ)Ψ(PC)(|x|
2n+1

4n η(ζ); ν)ei|x|
2n+1

2n Ξ̃(ζ)σ3

(
i
h1

ρ

)σ3/2(1 0
0 −i

)
(3.12)

where η(ζ) is defined in (3.10), h1 =
√

2π
Γ(−ν)e

iπν , and

E(ζ) :=

(
1 0
0 i

)
(β(ζ))σ3

(
i
2h1

ρ

)−σ3/2

ein|x|
2n+1

2n σ3/(2n+1)

(
|x|

2n+1
4n η(ζ) 1
1 0

)
and where

β(ζ) :=

(
|x|

2n+1
4n η(ζ)

ζ + 1/2

ζ − 1/2

)ν
. (3.13)

By (3.11), it follows that β(ζ) is analytic near ζ = 1/2 with

β(1/2) = (2
√

2n|x|
2n+1

4n )νe3νπi/4,

which also implies that E(ζ) is an analytic prefactor in D(1
2 , δ). From the RH problem

A.1 for Ψ(PC), it is straightforward to show (cf. [22] for the case k = 1) that P ( 1
2

)(ζ)
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defined in (3.12) indeed solves the RH problem 3.5. Moreover, the matching condition
(3.9) now reads

P ( 1
2

)(ζ) =

(
I +

 0 −ρν
h1
e

2n|x|
2n+1

2n i
(2n+1) β(ζ)2

η(ζ)

−h1
ρ e
−2n|x|

2n+1
2n i

(2n+1) 1
β(ζ)2η(ζ)

0

 |x|− 2n+1
4n

+O(|x|−
2n+1

2n )

)
P (∞)(ζ), (3.14)

as x→ −∞, uniformly for ζ ∈ ∂D(1/2, δ).

Similarly, near ζ = −1/2, we intend to find a function P (− 1
2

) satisfying the following
RH problem.

RH problem 3.6.

(a) P (− 1
2

)(ζ) is defined and analytic in D(−1/2, δ) \ΣT , where ΣT is defined (3.6).
(b) For ζ ∈ D(−1/2, δ) ∩ ΣT , we have

P
(− 1

2
)

+ (ζ) = P
(− 1

2
)

− (ζ)JT (ζ),

where JT (ζ) is defined in (3.7).
(c) As x→ −∞, we have, for ζ ∈ ∂D(−1/2, δ)

P (− 1
2

)(ζ) = (I +O(|x|−
2n+1

4n ))P (∞)(ζ), (3.15)

where P (∞)(ζ) is given in (3.8).

From the symmetry of JT , one can check directly that

P (− 1
2

)(ζ) = σ1P
( 1

2
)(−ζ)σ1 (3.16)

with σ1 and P ( 1
2

)(ζ) given (1.18) and (3.12) solves the above RH problem.

3.6. Final transformation. The final transformation is defined by

R(ζ) =


T (ζ)P (∞)(ζ)−1, ζ ∈ C \ {D(1

2 , δ) ∪D(−1
2 , δ) ∪ ΣT },

T (ζ)P ( 1
2

)(ζ)−1, ζ ∈ D(1
2 , δ),

T (ζ)P (− 1
2

)(ζ)−1, ζ ∈ D(−1
2 , δ).

(3.17)

It is then easily seen that R satisfies the following RH problem.

RH problem 3.7.

(a) R(ζ) is defined and analytic in C \ ΣR, where

ΣR := ΣT ∪ ∂D(
1

2
, δ) ∪ ∂D(−1

2
, δ) \ {(−1

2
,
1

2
) ∪D(

1

2
, δ) ∪D(−1

2
, δ)}.

(b) For ζ ∈ ΣR, we have

R+(ζ) = R−(ζ)JR(ζ), (3.18)

where

JR(ζ) =


P ( 1

2
)(ζ)P (∞)(ζ)−1, ζ ∈ ∂D(1

2 , δ),

P (− 1
2

)(ζ)P (∞)(ζ)−1, ζ ∈ ∂D(−1
2 , δ),

P (∞)(ζ)JT (ζ)P (∞)(ζ)−1, ζ ∈ ΣR \
{
∂D(1

2 , δ) ∪ ∂D(−1
2 , δ)

}
,

(3.19)

and where JT (ζ) is defined in (3.7) and the orientation of ∂D(±1/2, δ) is taken
in a clock-wise manner.
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Figure 4. The critical points λ
(3,j)
0 , j = 1, . . . , 6, and signature of Re Θ

in the complex λ-plane for ξ = 1 in Case I.

(c) As ζ →∞, we have,

R(ζ) = I +O(ζ−1).

From (3.7), (3.9) and (3.15), it is readily seen from (3.18) that, as x→ −∞,

JR(ζ) =

{
I +O(|x|−

2n+1
4n )), ζ ∈ ∂D(1

2 , δ) ∪ ∂D(−1
2 , δ),

I +O(e−c|x|
− 2n+1

2n )), ζ ∈ ΣR \ {∂D(1
2 , δ) ∪ ∂D(−1

2 , δ)},
(3.20)

for some c > 0. An appeal to the standard small norm arguments (cf. [15, 18]) then
shows that

R(ζ) = I +O(|x|−
2n+1

4n ), x→ −∞, (3.21)

uniformly for ζ ∈ C \ ΣR.
For later use, it is worth noting that R is also characterized by the following integral

equation

R(ζ) = I +
1

2πi

∫
ΣR

R−(s)(JR(s)− I)

s− ζ
ds. (3.22)

4. Asymptotic analysis of the RH problem for m: Case I

In this section, we analyse the RH problem 2.2 for m as t→∞ in Case I, that is,

{(x, t) | 0 ≤ x ≤Mt
1

2n+1 }, n is odd,

where M > 0. In this case, the critical points of phase function Θ in (2.7) are

λ
(n,j)
0 = 2n

√
ξ

(2n+ 1)22n
ei

(2j−1)π
2n , j = 1, 2, . . . , 2n,

which are not on the real line and approach 0 at least as fast as t−1/(2n+1) as t → ∞.

Thus, it follows that |λ(n,j)
0 | ≤ Ct−1/(2n+1) for some C > 0. For n = 3 and ξ = 1, an

illustration of the six critical points and signature of Re Θ are shown in Figure 4.
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Figure 5. The open subsets V , V ∗ in Case I and the contour Γ(1) for
the RH problem 4.2 for m(1).

4.1. First transformation: m→ m(1). The first transformation involves deformation
of the jump matrix along the real axis and we need to decompose the reflection coefficient
r into an analytic part ra and a small remainder rr. To proceed, recall the rays Υj ,
j = 1, 2n + 1, 2n + 2, 4n + 2, defined in (2.12) with the orientations shown in Figure
1. By reversing the orientations of Υj , j = 2n + 1, 2n + 2, we obtain two new rays
denoted by Υ∗j . Clearly, the three curves Υ1 ∪Υ∗2n+1, R and Υ∗2n+2 ∪Υ4n+1 formulate
the boundaries of two open subsets V and V ∗, as shown in Figure 5. The decomposition
of r is then given in the following lemma. Since the proof is similar to that of [9, Lemma
2.1] or [25, Lemma 7.1], we omit the details here.

Lemma 4.1 (Analytic approximation for ξ ≥ 0). Let r be the reflection coefficient
defined in (2.4), we have

r(λ) = ra(x, t, λ) + rr(x, t, λ), t ≥ C(n), λ ∈ R, (4.1)

where C(n) is a positive constant depending on n, and for a fixed N ∈ N the functions
ra and rr have the following properties:

(a) For each t ≥ C(n), ra(t, λ) is defined and continuous for λ ∈ V̄ and analytic for
λ ∈ V , where V̄ denotes the closure of V .

(b) There exists a constant C > 0 such that

|ra(x, t, λ)| ≤ C

1 + |λ|
e
t
4
|Re Θ(ξ,λ)|, λ ∈ V̄ ,

and ∣∣∣∣ra(x, t, λ)−
N∑
j=0

r(j)(0)

j!
λj
∣∣∣∣ ≤ C|λ|N+1e

t
4
|Re Θ(ξ,λ)|, λ ∈ V̄ , (4.2)

for each ξ ≥ 0 and t ≥ C(n).
(c) As t→∞, the L1 and L∞ norms of rr(x, t, ·) on R are O(t−N ).
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(d) The functions ra and rr satisfy the following symmetries:{
ra(x, t, λ) = −r∗a(x, t,−λ), λ ∈ V̄ ,
rr(x, t, λ) = −r∗r(x, t,−λ), λ ∈ R.

With the aid of decomposition (4.1), we define a sectionally analytic matrix-valued

function m(1) by

m(1)(x, t, λ) = m(x, t, λ)G(x, t, λ), (4.3)

where

G(x, t, λ) :=



(
1 0

−raetΘ 1

)
, λ ∈ V,(

1 −r∗ae−tΘ

0 1

)
, λ ∈ V ∗,

I, elsewhere.

(4.4)

By Lemma 4.1 and the notation Ep(D) introduced at the end of Section 1.2, it is readily
seen that

G(x, t, ·) ∈ I + (Ė2 ∩ E∞)(V ∪ V ∗),
and m satisfies the RH problem 2.2 if and only if m(1) defined in (4.3) solves the following
RH problem.

RH problem 4.2.

(a) m(1)(x, t, ·) ∈ I + Ė2(C \ Γ(1)), where

Γ(1) := R ∪Υ1 ∪Υ∗2n+1 ∪Υ∗2n+2 ∪Υ4n+2; (4.5)

see Figure 5 for an illustration and the orientation.
(b) For a.e. λ ∈ Γ(1), we have

m
(1)
+ (x, t, λ) = m

(1)
− (x, t, λ)v(1)(x, t, λ),

where

v(1)(x, t, λ) =



(
1 0

rae
tΘ 1

)
, λ ∈ Υ1 ∪Υ∗2n+1,(

1 −r∗ae−tΘ

0 1

)
, λ ∈ Υ∗2n+2 ∪Υ4n+2,(

1− |rr|2 −r∗re−tΘ

rre
tΘ 1

)
, λ ∈ R.

(4.6)

4.2. Local parametrix near the origin. As t → ∞, it is easily seen from the sig-
nature of Re Θ (c.f. Figure 4) and Item (c) of Lemma 4.1 that v(1) in (4.6) tends to

the identity matrix. The convergence, however, is not uniform for λ ∈ Γ(1) \ R and
close to the origin, which means we have to construct a local parametrix in a small
neighborhood of the origin D(0, ε) with ε > 0 being small and fixed.

To formulate the local parametrix, we make a local change of variable for λ near
origin and introduce two new variables y and z by

y := ((2n+ 1)t)−
1

2n+1x, z := ((2n+ 1)t)
1

2n+1λ, (4.7)
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so that

tΘ(ξ, λ) = 2i

(
yz +

(2z)2n+1

4n+ 2

)
.

Since 0 ≤ x ≤Mt1/(2n+1), we have that y is bounded and the map λ 7→ z maps D(0, ε)

onto the open disk D(0, ((2n + 1)t)
1

2n+1 ε) in the complex z-plane. The idea now is, in
view of Item (b) of Lemma 4.1, to replace the analytic part ra of r in (4.6) by its N -th
order polynomial approximation

pN (t, z) :=
N∑
j=0

r(j)(0)

j!
λj =

N∑
j=0

r(j)(0)

j!(2n+ 1)
j

2n+1

zj

t
j

2n+1

. (4.8)

and approximate v(1) by

v0(x, t, λ) :=


(

1 0
pN (t, z)etΘ 1

)
, λ ∈ D(0, ε) ∩ {Υ1 ∪Υ∗2n+1},(

1 −p∗N (t, z)e−tΘ

0 1

)
, λ ∈ D(0, ε) ∩ {Υ∗2n+2 ∪Υ4n+2}.

(4.9)

Indeed, for T > 0 large enough, we define

Case IT
.
= Case I ∩ {t ≥ T},

and the following estimate holds.

Lemma 4.3. For (x, t) ∈ Case IT, we have

‖v(1) − v0‖Lp(D(0,ε)∩Γ(1)\R) ≤ Ct
− N+1

2n+1 , (4.10)

for each 1 ≤ p ≤ ∞ and some C > 0, where v(1) and v0 are defined in (4.6) and (4.9),
respectively.

Proof. It is readily seen from (4.6) and (4.9) that

v(1) − v0 =



(
0 0

(ra(x, t, λ)− pN (t, z))etΘ 0

)
, λ ∈ D(0, ε) ∩ {Υ1 ∪Υ∗2n+1},(

0 −(r∗a(x, t, λ)− p∗N (t, z))e−tΘ

0 0

)
, λ ∈ D(0, ε) ∩ {Υ∗2n+2 ∪Υ4n+2}.

(4.11)

We will only prove (4.10) for λ ∈ D(0, ε) ∩ Υ1, since the proofs for the other contours
follow from similar arguments. Let λ ∈ D(0, ε) ∩ Υ1 and (x, t) ∈ Case IT, for ξ ≥ 0,
we have from (2.7) that

Re Θ(ξ, λ) = Re Θ(ξ, |λ|e
πi

4n+2 )

= −22n+1|λ|2n+1 − 2ξ|λ| sin
(

π

4n+ 2

)
≤ −22n+1|λ|2n+1. (4.12)

In particular,

e−
3t
4
|Re Θ| ≤ Ce−

3
4
t22n+1|λ|2n+1 ≤ Ce−22n−1|z|2n+1

, λ ∈ D(0, ε) ∩Υ1,

for some C > 0. Thus, by (4.11), (4.2) and (4.8), it follows that

|v(1) − v0| ≤ C|ra(t, λ)− pN (t, z)|etRe Θ ≤ C|zt−
1

2n+1 |N+1e−
3t
4
|Re Θ|

≤ C|zt−
1

2n+1 |N+1e−22n−1|z|2n+1
, λ ∈ D(0, ε) ∩Υ1.



20 HIGHER ORDER AIRY AND PAINLEVÉ ASYMPTOTICS FOR THE MKDV HIERARCHY

Consequently, writing % = |z|,

‖v(1) − v0‖L∞(D(0,ε)∩Υ1) ≤ C sup
0≤%<∞

(%t−
1

2n+1 )N+1e−22n−1ρ2n+1 ≤ Ct−
N+1
2n+1

and

‖v(1) − v0‖L1(D(0,ε)∩Υ1) ≤ C
∫ ∞

0
(%t−

1
2n+1 )N+1e−22n−1%2n+1 d%

t
1

2n+1

≤ Ct−
N+2
2n+1 ,

which gives us (4.10). �

In the virtue of Lemma 4.3, we are then led to consider the following local parametrix.

RH problem 4.4.

(a) m0(x, t, λ) is analytic for D(0, ε) ∩ Γ(1) \ R.

(b) For a.e. λ ∈ D(0, ε) ∩ Γ(1) \ R, we have

m0,+(x, t, λ) = m0,−(x, t, λ)v0(x, t, λ),

where v0(x, t, λ) is defined in (4.9).
(c) For λ ∈ ∂D(0, ε), we have m0(x, t, λ)→ I as t→∞.

We can solve the above RH problem by using the solution of model RH problem
introduced in Section A.2. Let mΥ∗(y, t, z) be the solution of RH problem A.2 with the
polynomial (A.3) given by (4.8), i.e., the parameters s and pj , j = 1, . . . , N , therein are
chosen to be

s = r(0) ∈ iR, pj =
r(j)(0)

j!(2n+ 1)
j

2n+1

. (4.13)

Due to the symmetry of reflection coefficient in (2.5), the polynomial pN (t, z) satisfies
the symmetry relation

pN (t, z) = −pN (t,−z̄),
which implies that p1 ∈ R and p2 ∈ iR. We then define

m0(x, t, λ) = mΥ∗(y, t, z), λ ∈ D(0, ε), (4.14)

where y and z are defined in (4.7). By Lemma A.3, it follows that we can choose
T ≥ C(n) such that m0 in (4.14) is well-defined whenever (x, t) ∈ Case IT and indeed
solves the RH problem 4.4. More properties of m0 are collected in the following lemma
for later use.

Lemma 4.5. For each (x, t) ∈ Case IT, we have

|m0(x, t, λ)| ≤ C, λ ∈ D(0, ε) ∩ Γ(1) \ R, (4.15)

for some C > 0. Moreover,

m0(x, t, λ)−1 = I +

N∑
j=1

N∑
l=0

Φ
(0)
jl (y)

λjt
j+l

2n+1

+O(t−
N+1
2n+1 ) (4.16)

uniformly for (x, t) ∈ Case IT and λ ∈ ∂D(0, ε), where the coefficients Φ
(0)
jl (y) are

smooth functions of y ∈ [0,∞). In particular,

||m0(x, t, ·)−1 − I||L∞(∂D(0,ε)) = O(t−
1

2n+1 ), (4.17)

and

1

2πi

∫
∂D(0,ε)

(m0(x, t, λ)−1 − I)dλ =

N∑
l=1

gl(y)

t
l

2n+1

+O(t−
N+1
2n+1 ), (4.18)
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uniformly for (x, t) ∈ Case IT, where gl+1(y) = Φ
(0)
1l (y) for each l ≥ 0 and

(g1)12(y) = (g1)21(y) = −(2n+ 1)−
1

2n+1

2
qAS,n(y; ir(0)) (4.19)

with qAS,n being the generalized Ablowitz-Segur solution of the Painlevé II hierarchy
(1.5). If r(0) = 0, we have

g1(y) = 0, (4.20)

g2(y) = − r′(0)

4× (2n+ 1)
2

2n+1

Ai′2n+1(y)σ1, (4.21)

g3(y) =
ir′(0)2

8× (2n+ 1)
3

2n+1

(∫ ∞
y

(Ai′2n+1(y′))2dy′
)
σ3 +

ir′′(0)

16× (2n+ 1)
3

2n+1

Ai
′′
2n+1(y)σ1.

(4.22)

Proof. The proof essentially follows from Lemma A.3. By (A.5), we obtain the bound

(4.15). To show (4.16), we note that if |λ| = ε, the variable z = ((2n+1)t)
1

2n+1λ satisfies

|z| = ((2n+ 1)t)
1

2n+1 ε and z →∞ if t→∞. Thus equation (A.4) yields

m0(x, t, λ) = I +
N∑
j=1

N∑
l=0

ΦΥ∗
jl (y)

(((2n+ 1)t)
1

2n+1λ)jt
l

2n+1

+O
(
t−

N+1
2n+1

)
,

uniformly for (x, t) ∈ Case IT and λ ∈ ∂D(0, ε). It is then straightforward to check

that the expansion (4.16) exists where the coefficients Φ
(0)
jl (y) can be expressed in terms

of ΦΥ∗
jl (y). In particular, we have Φ

(0)
10 (y) = −(2n + 1)−

1
2n+1 ΦΥ∗

10 (y). By (4.16), the

estimate (4.17) holds and we obtain from the Cauchy’s formula that

1

2πi

∫
∂D(0,ε)

(m−1
0 − I)dλ =

N∑
l=0

Φ
(0)
1l (y)

t
l+1

2n+1

+O(t−
N+2
2n+1 ),

which is (4.18).
Finally, note that

g1(y) = Φ
(0)
10 (y) = −(2n+ 1)−

1
2n+1 ΦΥ∗

10 (y),

we then obtain from (A.8) and (2.17) that

(g1)12(y) = (g1)21(y) =
(2n+ 1)−

1
2n+1

2
qAS,n(y;−ir(0)) = −(2n+ 1)−

1
2n+1

2
qAS,n(y; ir(0)),

which is (4.19). If r(0) = 0, a combination of the fact that

gl+1(y) = Φ
(0)
1l (y) = −(2n+ 1)−

1
2n+1 ΦΥ∗

1l (y), l = 0, 1, 2,

(4.13) and (A.9)–(A.11) gives us (4.20)–(4.22). �

4.3. Final transformation. The final transformation is defined by

m̂(x, t, λ) =

{
m(1)(x, t, λ)m0(x, t, λ)−1, λ ∈ D(0, ε),

m(1)(x, t, λ), λ ∈ C \D(0, ε),
(4.23)

and it is readily seen that m̂ satisfies the following RH problem.

RH problem 4.6.

(a) m̂(x, t, ·) ∈ I + Ė2(C \ Γ̂), where Γ̂ := Γ(1) ∪ ∂D(0, ε) with Γ(1) defined in (4.5);
see Figure 6 for an illustration.
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Γ̂ε−ε

Figure 6. The contour Γ̂ for the RH problem 4.6 for m̂.

(b) For a.e. λ ∈ Γ̂, we have

m̂+(x, t, λ) = m̂−(x, t, λ)v̂(x, t, λ), (4.24)

where

v̂ =


m0,−v

(1)m−1
0,+, λ ∈ Γ̂ ∩D(0, ε),

m−1
0 , λ ∈ ∂D(0, ε),

v(1), λ ∈ Γ̂ \D(0, ε),

and where v(1) is defined in (4.6).

The jump matrix v̂ in (4.24) tends to the identity matrix as t→∞. More precisely,
let

ŵ := v̂ − I, (4.25)

we have the following estimates.

Lemma 4.7. For each 1 ≤ p ≤ ∞, the following estimates hold uniformly for (x, t) ∈
Case IT:

‖ŵ‖Lp(∂D(0,ε)) ≤ Ct−
1

2n+1 , (4.26a)

‖ŵ‖Lp(D(0,ε)∩Γ(1)\R) ≤ Ct
− N+1

2n+1 , (4.26b)

‖ŵ‖Lp(R) ≤ Ct−N , (4.26c)

‖ŵ‖
Lp(Γ(1)\{R∪D(0,ε)}) ≤ Ce

−ct, (4.26d)

for some positive constants c and C.

Proof. The estimate (4.26a) follows from (4.17). For λ ∈ D(0, ε) ∩ Γ(1) \ R, we have

ŵ = m0,−(v(1) − v0)m−1
0,+.

This, together with (4.10) and (4.15), gives us (4.26b). According to Item (c) of Lemma
4.1 and the boundedness (4.15) of m0, one has (4.26c). Finally, (4.26d) follows because

e−t|Re Θ| ≤ Ce−ct uniformly on Γ(1) \ {R ∪D(0, ε)}. �
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Γ(1)

Υ1,λ0
Υ∗

2n+1,λ0

Υ4n+2,λ0
Υ∗

2n+2,λ0

V

V ∗

V

V ∗

Re Θ > 0

s

s
s
−λ0

s
λ0

Figure 7. The contour Γ(1) for the RH problem 5.2 for m(1) and the
sets V and V ∗ in Case II. The region where Re Θ > 0 is shaded and

the dark points stand for the critical points λ
(2,j)
0 , j = 1, . . . , 4, for ξ = 1.

5. Asymptotic analysis of the RH problem for m: Case II

In this section, we analyse the RH problem 2.2 for m as t→∞ in Case II, that is,

{(x, t) | 0 ≤ x ≤Mt
1

2n+1 }, n is even,

where M > 0. In this case, the critical points of phase function Θ in (2.7) are

λ
(n,j)
0 = 2n

√
ξ

22n(2n+ 1)
ej

πi
n , j = 1, 2, · · · , 2n,

which approach 0 at least as fast as t−1/(2n+1) as t→∞. Thus, it follows that |λ(n,j)
0 | ≤

Ct−1/2n+1 for some C > 0. The difference between the present case and Case I lies in
the fact that there are two critical points lying on the real line, which we denote by

± λ0 := ± 2n

√
ξ

22n(2n+ 1)
. (5.1)

For n = 2 and ξ = 1, an illustration of the four critical points and signature of Re Θ
are shown in Figure 7.

During our analysis performed in what follows, the same notations m(1), V, . . ., will
be used to emphasize the analogies with the previous section, and we believe this will
not cause any confusion.

5.1. First transformation: m→ m(1). As in Section 4.1, we need to decompose the
reflection coefficient r into an analytic part and a small remainder to define the first
transformation. In this case, we define

Υi,λ0 := λ0 + Υi, i = 1, 4n+ 2, Υ∗i,λ0
:= −λ0 + Υ∗i , i = 2n+ 1, 2n+ 2.

These four rays, together with (−∞,−λ0] ∪ [λ0,∞), formulate the boundaries of open
subsets V ≡ V (ξ) and V ∗ ≡ V ∗(ξ), as illustrated in Figure 7. Similar to [9, Lemma
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5.7], [24, Lemma 5.2] and [25, Lemma 7.1], the decomposition of r in Case II reads as
follows and we again omit the proof.

Lemma 5.1 (Analytic approximation for 0 ≤ ξ ≤ A). Let r be the reflection coefficient
defined in (2.4), we have

r(λ) = ra(x, t, λ) + rr(x, t, λ), λ ∈ (−∞,−λ0) ∪ (λ0,∞), (5.2)

and for a fixed N ∈ N the functions ra and rr have the following properties:

(a) For each ξ ∈ [0, A] and t ≥ C(n) with positive A and C(n), ra(x, t, λ) is defined
and continuous for λ ∈ V̄ and analytic for λ ∈ V .

(b) There exists a constant C > 0 such that

|ra(x, t, λ)| ≤ C

1 + |λ|
e
t
4
|Re Θ(ξ,λ)|, λ ∈ V̄ ,

and∣∣∣∣ra(x, t, λ)−
N∑
j=0

r(j)(λ0)

j!
(λ− λ0)j

∣∣∣∣ ≤ C|λ− λ0|N+1e
t
4
|Re Θ(ξ,λ)|, λ ∈ V̄ , (5.3)

uniformly for ξ ∈ [0, A] and t ≥ C(n).
(c) The L1 and L∞ norms of rr(x, t, ·) on (−∞,−λ0) ∪ (λ0,∞) are O(t−N ) as

t→∞ uniformly with respect to ξ ∈ [0, A].
(d) The functions ra and rr satisfy the following symmetries:{

ra(x, t, λ) = −r∗a(x, t,−λ), λ ∈ V̄ ,
rr(x, t, λ) = −r∗r(x, t,−λ), λ ∈ (−∞,−λ0) ∪ (λ0,∞).

We now define m(1) by (4.3) with G(x, t, λ) given by (4.4) and emphasize that the
function ra therein appears in the decomposition (5.2). By Lemma 5.1, one has

G(x, t, ·) ∈ I + (Ė2 ∩ E∞)(V ∪ V ∗),

and m satisfies the RH problem 2.2 if and only if m(1) solves the following RH problem.

RH problem 5.2.

(a) m(1)(x, t, ·) ∈ I + Ė2(C \ Γ(1)), where

Γ(1) := R ∪Υ1,λ0 ∪Υ∗2n+1,λ0
∪Υ∗2n+2,λ0

∪Υ4n+2,λ0 ; (5.4)

see Figure 7 for an illustration and the orientation.
(b) For a.e. λ ∈ Γ(1), we have

m
(1)
+ (x, t, λ) = m

(1)
− (x, t, λ)v(1)(x, t, λ),

where

v(1)(x, t, λ) =



(
1 0

rae
tΘ 1

)
, λ ∈ Υ1,λ0 ∪Υ∗2n+1,λ0

,(
1 −r∗ae−tΘ

0 1

)
, λ ∈ Υ∗2n+2,λ0

∪Υ4n+2,λ0 ,(
1− |rr|2 −r∗re−tΘ

rre
tΘ 1

)
, λ ∈ (−∞,−λ0) ∪ (λ0,∞),(

1− |r|2 −r∗e−tΘ

retΘ 1

)
, λ ∈ (−λ0, λ0).

(5.5)
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5.2. Local parametrix near the origin. As t→∞, it is easily seen from the signa-
ture of Re Θ (c.f. Figure 7) and Item (c) of Lemma 5.1 that v(1) in (5.5) tends to the

identity matrix. The convergence is not uniform for λ ∈ Γ(1) \ (−∞,−λ0]∪ [λ0,∞) and

close to ±λ0. Since λ0 = O(t−1/(2n+1)), we need to build a local parametrix in a small
neighborhood of the origin D(0, ε).

To formulate the local parametrix, as in Case I, we introduce the new variables y
and z by

y := −((2n+ 1)t)−
1

2n+1x, z := ((2n+ 1)t)
1

2n+1λ, (5.6)

so that

tΘ(ξ, λ) = 2i

(
yz +

(2z)2n+1

4n+ 2

)
.

Since 0 ≤ x ≤Mt1/(2n+1), it is easily seen that −C ≤ y ≤ 0 for some C > 0. Moreover,
the critical point λ0 is mapped to the point

z0 := ((2n+ 1)t)
1

2n+1λ0 = 2n
√
|y|/2 (5.7)

on the z-plane. Following the strategy used in Section 4.2, we approximate ra and r
by the N -th order polynomial pN given in (4.8) for large t, which also leads to the

approximation of v(1) in (5.5) by

v0(x, t, λ) :=



(
1 0

pN (t, z)etΘ 1

)
, λ ∈ D(0, ε) ∩ {Υ1,λ0 ∪Υ∗2n+1,λ0

},(
1 −p∗N (t, z)e−tΘ

0 1

)
, λ ∈ D(0, ε) ∩ {Υ∗2n+2,λ0

∪Υ4n+2,λ0},(
1− |pN (t, z)|2 −p∗N (t, z)e−tΘ

pN (t, z)etΘ 1

)
, λ ∈ (−λ0, λ0).

(5.8)

For T > 0 large enough, by setting

Case IIT
.
= Case II ∩ {t ≥ T},

the following estimate holds.

Lemma 5.3. For (x, t) ∈ Case IIT, we have

‖v(1) − v0‖Lp(D(0,ε)∩Γ(1)\{(∞,−λ0]∪[λ0,∞)}) ≤ Ct
− N+1

2n+1 , (5.9)

for each 1 ≤ p ≤ ∞ and some C > 0, where v(1) and v0 are defined in (5.5) and (5.8),
respectively.

Proof. It is readily seen from (5.5) and (5.8) that

v(1) − v0

=



(
0 0

(ra(x, t, λ)− pN (t, z))etΘ 0

)
, λ ∈ D(0, ε) ∩ {Υ1,λ0 ∪Υ∗2n+1,λ0

},(
0 −(r∗a(x, t, λ)− p∗N (t, z))e−tΘ

0 0

)
, λ ∈ D(0, ε) ∩ {Υ∗2n+2,λ0

∪Υ4n+2,λ0},(
−|r|2 + |pN |2 −(r∗(λ)− p∗N (t, z))e−tΘ

(r(λ)− pN (t, z))etΘ 0

)
, λ ∈ (−λ0, λ0).

(5.10)
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We will prove (5.9) for λ ∈ (−λ0, λ0) and λ ∈ D(0, ε) ∩ Υ1,λ0 , since the proofs for the
other contours follow from similar arguments.

By expanding r(j)(λ0), j = 1, . . . , N , around the origin, it is easily seen that

N∑
j=0

r(j)(λ0)

j!
(λ− λ0)j =

N∑
j=0

N∑
l=0

r(j+l)(0)

j!l!
λl0(λ− λ0)j +O(λN+1

0 )

=

N∑
l=0

N+l∑
κ=l

r(κ)(0)

(κ− l)!l!
λl0(λ− λ0)κ−l +O(λN+1

0 )

=
N∑
κ=0

r(κ)(0)

κ!
λκ +O(|λ|N+1) = PN (t, z) +O(|λ|N+1), (5.11)

uniformly for 0 ≤ λ0 ≤ C and λ ∈ D(0, ε)∩Γ(1)\{(∞,−λ0]∪[λ0,∞)}). If λ ∈ (−λ0, λ0),
we have Re Θ = 0. A combination of (5.10), (5.11) and Lemma 5.1 shows that

|v(1) − v0| ≤ C|r(λ)− pN (t, z)| ≤ C|λ|N+1 ≤ Ct−
N+1
2n+1 ,

which gives us (5.9) for λ ∈ (−λ0, λ0). If λ = λ0 + %e
πi

4n+2 ∈ D(0, ε)∩Υ1,λ0 , we see from
the fact ξ = (2n+ 1)(2λ0)2n > 0 and (2.7) that

Re Θ(ξ, λ) = Re Θ(ξ, λ0 + %e
πi

4n+2 )

= Re 2i(−ξ(λ0 + %e
πi

4n+2 ) + 22n(λ0 + %e
πi

4n+2 )2n+1)

= −22n+1

((
2n+ 1

2

)
λ2n−1

0 %2 sin
n

2n+ 1
π + · · ·+ %2n+1

)
≤ −22n+1%2n+1 = −22n+1|λ− λ0|2n+1,

where

(
n
k

)
is the binomial number. Thus,

e−
3t
4
|Re Θ| ≤ e−

3
4
t22n+1%2n+1 ≤Ce−

3
4
t|λ|2n+1 ≤ Ce−

3
4(2n+1)

|z|2n+1

. (5.12)

It then follows from (5.3), (5.10), (5.11) and (5.12) that

|v(1) − v0| ≤ C|ra(x, t, λ)− pN (t, z)|etRe Θ

≤ C
∣∣∣∣ra(x, t, λ)−

N∑
j=0

r(j)(λ0)

j!
(λ− λ0)j

∣∣∣∣etRe Θ

+ C

∣∣∣∣ N∑
j=0

r(j)(λ0)

j!
(λ− λ0)j −

N∑
j=0

r(j)(0)

j!
λj
∣∣∣∣etRe Θ

≤ C|λ− λ0|N+1e−
3
4
t|Re Θ| + C|λ|N+1e−t|Re Θ|

≤ C
∣∣zt− 1

2n+1
∣∣N+1

e
− 3

4(2n+1)|z|2n+1 .

As in the proof of Lemma 4.5, this implies

‖v(1) − v0‖(L1∩L∞)(D(0,ε)∩Υ1,λ0
) ≤ Ct

− N+1
2n+1 ,

as required. �

In the virtue of Lemma 5.3, we are then led to consider the following local parametrix.

RH problem 5.4.
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(a) m0(x, t, λ) is analytic for D(0, ε) ∩ Γ(1) \ {(−∞,−λ0] ∪ [λ0,∞}, where Γ(1) is
defined in (5.4).

(b) For a.e. λ ∈ D(0, ε) ∩ Γ(1) \ {(−∞,−λ0] ∪ [λ0,∞}, we have

m0,+(x, t, λ) = m0,−(x, t, λ)v0(x, t, λ), (5.13)

where v0(x, t, λ) is defined in (5.8).
(c) For λ ∈ ∂D(0, ε), we have m0(x, t, λ)→ I as t→∞.

We can solve the above RH problem with the aid of the solution of model RH problem
introduced in Section A.3. Let mZ(y, t, z0, z) be solution of RH problem A.6 with the
polynomial (A.3) in the jump condition given by (4.8), we define

m0(x, t, λ) := mZ(y, t, z0, z), λ ∈ D(0, ε), (5.14)

where y, z and z0 are defined in (5.6) and (5.7), respectively. If (x, t) ∈ Case IIT, then
(y, t, z0) ∈ PT , where PT defined in (A.39). By Lemma A.7, we can choose suitable T
such that m0 in (5.14) is well-defined and check that it indeed solves the RH problem
5.4. The function m0 in this case has similar properties as that in Case I, which are
collected in the following lemma and follow directly from Lemma A.7.

Lemma 5.5. For each (x, t) ∈ Case IIT, the function m0(x, t, λ) defined in (5.14) is
uniformly bounded, i.e.,

|m0(x, t, λ)| ≤ C, λ ∈ D(0, ε) ∩ Γ(1) \ {(−∞,−λ0] ∪ [λ0,∞}. (5.15)

Moreover,

m0(x, t, λ)−1 = I +
N∑
j=1

N∑
l=0

Φ
(0)
jl (y)

λjt
j+l

2n+1

+O(t−
N+1
2n+1 ) (5.16)

uniformly for (x, t) ∈ Case IIT and λ ∈ ∂D(0, ε). The function m0(x, t, λ) satisfies
(4.17) and (4.18) uniformly for (x, t) ∈ Case IIT, where the coefficients {gj(y)}N1 are
smooth functions of y ∈ R with

(g1)12(y) = (g1)21(y) = −(2n+ 1)−
1

2n+1

2
qAS,n(−y; ir(0)). (5.17)

If r(0) = 0, we still have (4.20)–(4.22) for the first few terms in (5.16).

5.3. Final transformation. As in Case I, we define m̂ by (4.23) in the final trans-

formation, but it is understood that the functions m(1) and m0 therein solve RH prob-
lems 5.2 and 5.4, respectively. Thus, m̂ satisfies RH problem 4.6 with the contour
Γ̂ := Γ(1) ∪ ∂D(0, ε) illustrated in Figure 8.

The estimates of ŵ in (4.25) for Case II are given in the following lemma, which can
be proved in a manner similar to that of Lemma 4.7.

Lemma 5.6. For each 1 ≤ p ≤ ∞, the following estimates hold uniformly for (x, t) ∈
Case IIT:

‖ŵ‖Lp(∂D(0,ε)) ≤ Ct−
1

2n+1 , (5.18a)

‖ŵ‖Lp(D(0,ε)∩Γ(1)\{(−∞,−λ0]∪[λ0,∞}) ≤ Ct
− N+1

2n+1 , (5.18b)

‖ŵ‖Lp(R\[−λ0,λ0]) ≤ Ct−N , (5.18c)

‖ŵ‖
Lp(Γ(1)\{R∪D(0,ε)}) ≤ Ce

−ct, (5.18d)

for some positive constants c and C.
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Γ̂

ε−ε

Figure 8. The contour Γ̂ in Case II.

r
r r

r
Re Θ < 0

Re Θ > 0

(a) n = 2

r
r

r r
r
r

Re Θ > 0

Re Θ < 0

(b) n = 3

Figure 9. The critical points and signature of Re Θ in the complex
λ-plane with ξ = −1 for Case III and Case IV. The shaded areas
indicate the regions where Re Θ > 0 for n = 2 (left) and n = 3 (right).

Remark 5.7. We have completed asymptotic analysis of the RH problem 2.2 for m in
Case I and Case II. For Case III, critical points of the phase function Θ in (2.7) are
not on the real line; see the left picture in Figure 9. Therefore, the asymptotic analysis
is analogous to that in Case I and local analysis near the origin is related to the model
RH problem A.2. For Case IV, the phase function Θ has two critical points lying on
the real line; see the right picture in Figure 9, which implies that the analysis can be
carried out in a way similar to that in Case II and the model RH problem A.6 will play
a crucial role in the local analysis.

6. Proofs of main results

6.1. Proof of Theorem 1.1. The asymptotics (1.9) is given in [8] by analysing the
RH problem 2.5 for Ψ as x → ∞ and we only need to show (1.10). By tracing back
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the transformations Ψ→ X → Y → T → R given in (3.1), (3.3), (3.5) and (3.17), it is
readily seen from (2.15) and (3.22) that

qAS,n((−1)n+1x; ρ) = 2i(Ψ1)12(x)

= 2|x|
1

2n i lim
ζ→∞

ζR12(ζ) = −|x|
1

2n

π

∫
ΣR

(
R−(s)(JR(s)− I)

)
12

ds.

This, together with (3.20) and (3.21), implies that, as x→ −∞,

qAS,n((−1)n+1x; ρ)

= −|x|
1

2n

π

(∫
∂D(1/2,δ)∪∂D(−1/2,δ)

(JR)12(s)ds+O(|x|−
2n+1

2n )

)
. (6.1)

In view of (3.19), we obtain from (3.14) and (3.16) that, for large negative x,

(JR)12(ζ) =

−
ρν
h1
e2n|x|

2n+1
2n i/(2n+1) β(ζ)2

η(ζ) |x|
− 2n+1

4n +O(|x|−
2n+1

2n ), ζ ∈ ∂D(1/2, δ),

−h1
ρ e
−2n|x|

2n+1
2n i/(2n+1) 1

β(−ζ)2η(−ζ) |x|
− 2n+1

4n +O(|x|−
2n+1

2n ), ζ ∈ ∂D(−1/2, δ).

Inserting the above estimates into (6.1), it is readily seen that

qAS,n((−1)n+1x; ρ) =
1

π|x|
2n−1

4n

(
ρν

h1
e2|x|

2n+1
2n i/3

∫
∂D(1/2,δ)

β(s)2

η(s)
ds

+
h1

ρ
e−2|x|

2n+1
2n i/3

∫
∂D(−1/2,δ)

1

β(−s)2η(−s)
ds

)
+O(|x|−1).

By (3.11) and (3.13), we have∫
∂D(1/2,δ)

β(s)2

η(s)
ds =

π√
2n
e

3
2
νπi+ 3

4
πi
(

8n|x|
2n+1

2n

)ν
,∫

∂D(−1/2,δ)

1

β(−s)2η(−s)
ds = − π√

2n
e−

3
2
νπi+ 3

4
πi
(

8n|x|
2n+1

2n

)−ν
.

Thus,

qAS,n((−1)n+1x; ρ)

=
e

3
4
πi

√
2n|x|

2n−1
4n

(
ρν

h1
e

2n|x|(2n+1)/(2n)

2n+1
i+ 3

2
νπi
(

8n|x|
2n+1

2n

)ν
− h1

ρ
e−

2n|x|(2n+1)/(2n)

2n+1
i− 3

2
νπi
(

8n|x|
2n+1

2n

)−ν )
+O(|x|−1)

=

√
π

n

1

ρ|x|
2n−1

4n

(
1

Γ(ν)
e

2n|x|(2n+1)/(2n)

2n+1
i− ν

2
πi+ν ln

(
8n|x|

2n+1
2n

)
+ 1

4
πi

+
1

Γ(−ν)
e
− 2n|x|(2n+1)/(2n)

2n+1
i− ν

2
πi−ν ln

(
8n|x|

2n+1
2n

)
− 1

4
πi
)

+O(|x|−1)

=
2

√
n|x|

2n−1
4n

Re

[ √
π

ρΓ(ν)
e
− ν

2
πi+

2n|x|(2n+1)/(2n)

2n+1
i+ν ln

(
8n|x|

2n+1
2n

)
+ 1

4
πi
]

+O(|x|−1), (6.2)
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where we have made use of the facts that h1 =
√

2π
Γ(−ν)e

iπν , ν = − ln(1−ρ2)
2πi and

Γ(ν)Γ(−ν) = − π

ν sin(νπ)
=

2π

ρ2νi
e−νπi (6.3)

in the second equality, and since ν is purely imaginary, the third equality follows im-
mediately. To this end, we note that |Γ(ν)|2 = Γ(ν)Γ(−ν), it is then easily seen from
(6.3) that

Γ(ν)−1 =
|ρ|√
2π

√
− ln(1− ρ2)e

ν
2
πi+i arg Γ(−ν).

Substituting this formula into (6.2), we then obtain the asymptotics (1.10)–(1.12) by
straightforward calculations, which completes the proof of Theorem 1.1. �

6.2. Proofs of Theorems 1.2 and 1.3. We will prove Theorems 1.2 and 1.3 for
Case I and Case II in a unified way. Thus, it is always assumed that (x, t) ∈
Case IT∪Case IIT for some T and the same notations might have different definitions
for different cases.

To proceed, we observe from Lemmas 4.7 and 5.6 that

‖ŵ‖(L1∩L∞)(Γ̂) ≤ Ct
− 1

2n+1 . (6.4)

In particular, ‖ŵ‖L∞(Γ̂) → 0 uniformly as t → ∞, which implies that there exist a

suitable constant T such that

‖Ĉŵ‖B(L2(Γ̂)) ≤ C‖ŵ‖L∞(Γ̂) ≤ 1/2 (6.5)

for all (x, t), where

Ĉŵf := Ĉ−(fŵ)

with Ĉ being the Cauchy transform associated with the contour Γ̂; see Section 1.2. By
(6.5), the operator I−Ĉŵ ∈ B(L2(Γ̂)) is invertible and the RH problem 4.6 has a unique
solution given by

m̂(x, t, λ) = I + Ĉ(µ̂ŵ) = I +
1

2πi

∫
Γ̂
(µ̂ŵ)(x, t, s)

ds

s− λ
, (6.6)

where µ̂(x, t, λ) ∈ I + L2(Γ̂) is defined by µ̂ = I + (I − Ĉŵ)−1ĈŵI. Also, it is readily
seen from (6.4) that

‖µ̂(x, t, ·)− I‖L2(Γ̂) ≤
C‖ŵ‖L2(Γ̂)

1− ‖Ĉŵ‖B(L2(Γ̂))

≤ Ct−
1

2n+1 .

For λ ∈ Γ̂, it is easily seen from (4.16), (5.16), Lemmas 4.7 and 5.6 that as t→∞,

ŵ(x, t, λ) =
ŵ1(y, λ)

t
1

2n+1

+
ŵ2(y, λ)

t
2

2n+1

+ · · ·+ ŵN (y, λ)

t
N

2n+1

+
ŵerr(x, t, λ)

t
N+1
2n+1

, (6.7)

where the coefficients {ŵj}Nj=1 are nonzero only for λ ∈ ∂D(0, ε), and for 1 ≤ p ≤ ∞,{
‖ŵj(y, ·)‖Lp(Γ̂) ≤ C, j = 1, . . . , N,

‖ŵerr(x, t, ·)‖Lp(Γ̂) ≤ C.

As a consequence, we also have

Ĉŵ =
Ĉŵ1

t
1

2n+1

+
Ĉŵ2

t
2

2n+1

+ · · ·+ ĈŵN
t

N
2n+1

+
Ĉŵerr
t
N+1
2n+1

.
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Since µ̂ =
∑N

j=0 Ĉ
j
ŵI + (I − Ĉŵ)−1ĈN+1

ŵ I, it is readily seen from the above expansion
that

µ̂(x, t, λ) = I +
µ̂1(y, λ)

t
1

2n+1

+ · · ·+ µ̂N (y, λ)

t
N

2n+1

+
µ̂err(x, t, λ)

t
N+1
2n+1

, (6.8)

where the coefficients {µ̂j(y, λ)}Nj=1 are smooth functions of y ∈ [0,∞) and{
‖µ̂j(y, ·)‖L2(Γ̂) ≤ C, j = 1, . . . , N,

‖µ̂err(x, t, ·)‖L2(Γ̂) ≤ C.

By inverting the transformations (4.3) and (4.23), we obtain from (6.6), (6.7) and (6.8)
that

lim
λ→∞

λ(m(x, t, λ)− I) = lim
λ→∞

λ(m̂(x, t, λ)− I)

= − 1

2πi

∫
Γ̂
µ̂(x, t, λ)ŵ(x, t, λ)dλ = −

N∑
j=1

hj(y)

t
j

2n+1

+O
(
t−

N+1
2n+1

)
, t→∞,

uniformly for (x, t), where {hj(y)}Nj=1 are smooth functions with h1(y) = g1(y). In view

of (2.9), this leads to the asymptotic formula

u(x, t) = 2 lim
λ→∞

λ(m(x, t, λ))21 =
N∑
j=1

uj(y)

t
j

2n+1

+O
(
t−

N+1
2n+1

)
,

where

uj(y) = −2(hj)21(y), j = 1, . . . , N, (6.9)

are smooth functions of y ∈ [0,∞). Thus, we have proved (1.13).
Since h1(y) = g1(y), we obtain (1.14) from (4.19) and (5.17). If it is further assumed

that r(0) = 0, then ŵ1 = µ̂1 = 0, and so hj(y) = gj(y) for j = 1, 2, 3. This, together
with (6.9) and (4.20)–(4.22), implies (1.15) and (1.16). We thus complete the proof of
Theorems 1.2 and 1.3 for Case I and Case II. �

Appendix A. Model RH problems

A.1. The parabolic cylinder parametrix. The parabolic cylinder parametrix Ψ(PC)(ζ) =

Ψ(PC)(ζ; ν) with ν being a real or complex parameter is a solution of the following RH
problem; see [22, Chapter 9].

RH problem A.1.

(a) Ψ(PC)(ζ) is analytic in C \ {∪4
j=0Σ̂j ∪{0}}, where the contours Σ̂j, j = 0, . . . , 4,

are indicated in Figure 10.
(b) Ψ(PC) satisfies the following jump condition:

Ψ
(PC)
+ (ζ) = Ψ

(PC)
− (ζ)

{
Hj , ζ ∈ Σ̂j, j = 0, . . . , 3,

e2νπiσ3 , ζ ∈ Σ̂4,
(A.1)

where

H0 =

(
1 0
h0 1

)
, H1 =

(
1 h1

0 1

)
, Hi+2(z) = eiπ(ν+ 1

2
)σ3Hie

−iπ(ν+ 1
2

)σ3 , i = 0, 1,

with

h0 = −i
√

2π

Γ(ν + 1)
, h1 =

√
2π

Γ(−ν)
eiπν .
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Figure 10. The jump contours for the RH problem A.1 for Ψ(PC).

(c) As ζ →∞, we have

Ψ(PC)(ζ) =
ζ−σ3/2

√
2

((
1 1
1 −1

)
+

1

2ζ2

(
(ν + 1)(ν + 2) −ν(ν − 1)
(ν + 1)(ν − 2) ν(ν + 3)

)
+O(ζ−4)

)
× e( ζ

2

4
−(ν+ 1

2
) ln ζ)σ3 .

From [22, Section 9.4], it follows that the above RH problem can be solved explicitly

in the following way. For z belonging to the region bounded by the rays Σ̂4 and Σ̂0,

Ψ(PC)(ζ) = 2−
σ3
2

(
D−ν−1(iζ) Dν(ζ)
d
dζD−ν−1(iζ) d

dζDν(ζ)

)(
e

(ν+1)π
2

i 0
0 1

)
,

where Dν stands for the parabolic cylinder function (cf. [35, Chapter 12]). The explicit

formula of Ψ(PC)(ζ) in the other sectors is then determined by using the jump condition
(A.1).

A.2. The Model RH problem for Case I and Case III. The long-time asymptotics
of m in Case I and Case III is related to the solution mΥ∗ of the following model RH
problem parameterized by (y, t).

RH problem A.2.

(a) mΥ∗(y, t, ·) ∈ I + Ė2(C \Υ∗), where

Υ∗ := Υ1 ∪Υ∗2n+1 ∪Υ∗2n+2 ∪Υ4n+2,

and where the contours Υ1,Υ
∗
2n+1,Υ

∗
2n+2 and Υ4n+2 are illustrated in Figure 4.

(b) For a.e. λ ∈ Υ∗, we have

mΥ∗
+ (y, t, z) = mΥ∗

− (y, t, z)vΥ∗(y, t, z),
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where

vΥ∗(y, t, z) =



 1 0

pN (t, z)e
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z ∈ Υ1 ∪Υ∗2n+1,1 −p∗N (t, z)e
−2i

(
yz+

(2z)2n+1

4n+2

)
0 1

 , z ∈ Υ∗2n+2 ∪Υ4n+2,

(A.2)

and where

pN (t, z) = s+

N∑
j=1

pjz
j

t
j

2n+1

, n ∈ N, (A.3)

is a polynomial of degree N in zt−1/(2n+1) with coefficients s = iρ, −1 < ρ < 1,
and {pj}N1 ⊂ C.

Note that if pj , j = 1, . . . , N , in (A.3) all vanishes, the above RH problem reduces to
the RH problem 2.5 for the Painlevé II hierarchy, up to a conjugation. For general pj ,

we have the following lemma about the properties of mΥ∗ .

Lemma A.3. There exists a suitable T such that the RH problem A.2 has a unique
solution mΥ∗(y, t, z) whenever y ≥ 0 and t ≥ T . Moreover, the following properties of
mΥ∗ hold.

(a) For each integer N ≥ 1, there are smooth functions {ΦΥ∗
jl (y)} of y ∈ [0,∞) such

that, as z →∞,

mΥ∗(y, t, z) = I +

N∑
j=1

N∑
l=0

ΦΥ∗
jl (y)

zjt
l

2n+1

+O

(
t−

N+1
2n+1

|z|
+

1

|z|N+1

)
, (A.4)

uniformly with respect to arg z ∈ [0, 2π], y ≥ 0, and t ≥ T .
(b) mΥ∗ is uniformly bounded, i.e.,

sup
y≥0

sup
t≥T

sup
z∈C\Υ∗

|mΥ∗(y, t, z)| <∞, (A.5)

and satisfies the symmetry relation

mΥ∗(y, t, z) = σ1mΥ∗(y, t, z̄)σ1. (A.6)

If pN (t, z) = −pN (t,−z̄), we also have

mΥ∗(y, t, z) = σ1σ3m
Υ∗(y, t,−z)σ3σ1. (A.7)

(c) For the leading coefficient in (A.4), we have

(ΦΥ∗
10 )12(y) = (ΦΥ∗

10 )21(y) = −1

2
qAS,n((−1)n+1y; ρ), (A.8)

where qAS,n is the generalized Ablowitz-Segur solution of the Painlevé II hierar-
chy (1.5) as stated in Theorem 1.1. Furthermore, if s = 0, p1 ∈ R, and p2 ∈ iR,
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the first few terms in (A.4) are given by

ΦΥ∗
10 (y) = 0, (A.9)

ΦΥ∗
11 (y) =

p1

4
Ai′2n+1(y)σ1, (A.10)

ΦΥ∗
12 (y) =

p2
1

8i

(∫ ∞
y

(Ai′2n+1(y′))2dy′
)
σ3 +

p2

8i
Ai′′2n+1(y)σ1, (A.11)

ΦΥ∗
21 (y) = −p1

8i
Ai′′2n+1(y)σ3σ1. (A.12)

Proof. We follow the strategy in [9]. Define

mP (z) :=

(
1 0
0 i

)
Ψ(y, ρ, z)eiΞ(y,z)σ3

(
1 0
0 i

)−1

, (A.13)

where Ψ solves the RH problem 2.5 and Ξ is given in (2.14). It is then readily seen that
mP satisfies the following RH problem.

RH problem A.4.

(a) mP (z) = mP (y, ρ, z) is defined and analytic in C \Υ∗.
(b) For z ∈ Υ∗, we have

mP
+(z) = mP

−(z)vP , (A.14)

where

vP (z) :=



 1 0

iρe
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z ∈ Υ1 ∪Υ∗2n+1,1 iρe
−2i

(
yz+

(2z)2n+1

4n+2

)
0 1

 , z ∈ Υ∗2n+2 ∪Υ4n+2.

(A.15)

(c) As z →∞, we have

mP (z) = I +
N∑
j=1

mP
j (y)

zj
+O(z−N−1), (A.16)

where mP
j =

(
1 0
0 i

)
Ψj

(
1 0
0 i

)−1

with Ψj given in (2.16) for j = 1, . . . , N .

(d) mP (z) is bounded near the origin.

By (A.13) and (2.15), we have

qAS,n(y; ρ) :=

{
−2(mP

1 )12(y) = −2(mP
1 )21(y), n odd,

−2(mP
1 )12(−y) = −2(mP

1 )21(−y), n even,
(A.17)

and

sup
y≥−C1

sup
z∈C\Υ∗

|mP (y, z)| <∞. (A.18)

for each C1 > 0.
It is straightforward to check that the matrix-valued function mΥ∗ satisfies RH prob-

lem A.2 if and only if

m̂Υ∗ := mΥ∗(mP )−1 (A.19)

satisfies the following RH problem.

RH problem A.5.
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(a) m̂Υ∗(y, t, ·) ∈ I + Ė2(C \Υ∗).
(b) For a.e. λ ∈ Υ∗, we have

mΥ∗
+ (y, t, z) = mΥ∗

− (y, t, z)v̂Υ∗(y, t, z),

where
v̂Υ∗ = mP

−v
Υ∗(mP

+)−1,

and where vΥ∗ is given in (A.2).

By setting
ŵΥ∗ := v̂Υ∗ − I = mP

−(vΥ∗ − vP )(mP
+)−1,

we have

ŵΥ∗(y, t, z) =
ŵΥ∗

1 (y, z)

t
1

2n+1

+ · · ·+
ŵΥ∗
N (y, z)

t
N

2n+1

, (A.20)

where, for j = 1, . . . , N ,

ŵΥ∗
j (y, z) =


mP
−

 0 0

pjz
je

2i

(
yz+

(2z)2n+1

4n+2

)
0

 (mP
+)−1, z ∈ Υ1 ∪Υ∗2n+1,

mP
−

0 −p∗jzje
−2i

(
yz+

(2z)2n+1

4n+2

)
0 0

 (mP
+)−1, z ∈ Υ∗2n+2 ∪Υ4n+2.

(A.21)

Since y ≥ 0, it follows that

∣∣∣∣∣e2i

(
yz+

(2z)2n+1

4n+2

)∣∣∣∣∣ ≤ e− 22n+1

2n+1
|z|2n+1

, z ∈ Υ1 ∪Υ∗2n+1,∣∣∣∣∣e−2i

(
yz+

(2z)2n+1

4n+2

)∣∣∣∣∣ ≤ e− 22n+1

2n+1
|z|2n+1

, z ∈ Υ∗2n+2 ∪Υ4n+2.

This, together with (A.21), implies that for any integer m ≥ 0,

|zmŵΥ∗
j (y, z)| ≤ C|z|m+je−

22n+1

2n+1
|z|2n+1

≤ C(n)e−c(n)|z|2n+1
, z ∈ Υ∗,

and hence, for any 1 ≤ p ≤ ∞,{
‖zmŵΥ∗

j (y, z)‖Lp(Υ∗) ≤ C,
‖zmŵΥ∗(y, t, z)‖Lp(Υ∗) ≤ Ct−

1
2n+1 , t ≥ 1.

(A.22)

We then particularly have

‖CΥ∗

ŵΥ∗ (y,t,·)‖B(L2(Υ∗) ≤ C‖ŵΥ∗‖L∞(Υ∗), t ≥ 1.

Therefore, there exists a suitable T ≥ 1 such that the RH problem A.5 has a unique
solution which is given by

m̂Υ∗(y, t, z) = I + CΥ∗(µ̂Υ∗ŵΥ∗)

= I +
1

2πi

∫
Υ∗

(µ̂Υ∗ŵΥ∗)(y, t, s)
ds

s− z
, t ≥ T, (A.23)

where µ̂Υ∗(y, t, ·) ∈ I + L2(Υ∗) is defined by

µ̂Υ∗ = I + CΥ∗

ŵΥ∗ µ̂
Υ∗ = I + (I − CΥ∗

ŵΥ∗ )
−1CΥ∗

ŵΥ∗ I. (A.24)

Note that

CΥ∗

ŵΥ∗ =
CΥ∗

ŵΥ∗
1

t
1

2n+1

+
CΥ∗

ŵΥ∗
2

t
2

2n+1

+ · · ·+
CΥ∗

ŵΥ∗
N

t
N

2n+1

, N ∈ N,
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it follows from (A.24) that

µ̂Υ∗(y, t, z) =
N∑
r=0

(CΥ∗

ŵΥ∗ )
rI + (I − CΥ∗

ŵΥ∗ )
−1(CΥ∗

ŵΥ∗ )
N+1I

= I +
N∑
j=1

µ̂Υ∗
j (y, z)

t
j

2n+1

+
µ̂Υ∗
err(y, t, z)

t
N+1
2n+1

, (A.25)

where µ̂Υ∗
j is a sum of terms of the form

∏r
i=1 CΥ∗

ŵΥ∗
ji

I with Σr
i=1ji = j, and the µ̂Υ∗

err

involves terms of the same form (but with j1 + · · · jr ≥ N + 1). By (A.22), it follows
that {

‖µ̂Υ∗
j (y, ·)‖L2(Υ∗) ≤ C, j = 1, . . . , N,

‖µ̂Υ∗
err(y, t, ·)‖L2(Υ∗) ≤ C, t ≥ T,

(A.26)

for some C > 0.
We now plug (A.20) and (A.25) back into (A.23), it is readily seen from (A.22) and

(A.26) that, as z →∞,

m̂Υ∗(y, t, z) = I −
N∑
j=1

1

2πizj

{ N∑
l=1

t−
l

2n+1

∫
Υ∗
sj−1

(
ŵΥ∗
l +

l−1∑
i=1

µ̂Υ∗
l−iŵ

Υ∗
i

)
ds+O

(
t−

N+1
2n+1

)}
+O

(
|z|−N−1t−

1
2n+1

)
, (A.27)

uniformly for y ≥ 0 and t ≥ T . Denote by

Φ̂Υ∗
jl (y) = − 1

2πi

∫
Υ∗
sj−1

(
ŵΥ∗
l +

l−1∑
i=1

µ̂Υ∗
l−iŵ

Υ∗
i

)
(y, s)ds, 1 ≤ j, l ≤ N. (A.28)

we can rewrite (A.27) as

m̂Υ∗(y, t, z) = I +

N∑
j=1

N∑
l=1

Φ̂Υ∗
jl (y)

zjt
l

2n+1

+O
(
t−

N+1
2n+1

|z|
+
t−

1
2n+1

|z|N+1

)
, (A.29)

uniformly with respect to arg z ∈ [0, 2π], y ≥ 0 and t ≥ T . Moreover, from (A.28),

(A.21) and (A.25), we obtain the smoothness of Φ̂Υ∗
jl (y). A combination of (A.16),

(A.19) and (A.29) gives us (A.4) with

ΦΥ∗
j0 (y) = mP

j (z), j = 1, . . . , N. (A.30)

The bound (A.5) follows from (A.18), (A.29) and the fact that the contour can be
deformed. The symmetries (A.6) and (A.7) follow from the analogous symmetries for
the jump vΥ∗ .

We finally prove Item (c) of the lemma. The relation (A.8) follows directly from
(A.17) and (A.30). If s = 0, p1 ∈ R, and p2 ∈ iR, it is easily seen from (A.13) and
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Remark 2.6 that mP ≡ I, and by (A.21), we have

ŵΥ∗
1 =

 0 −p1ze
−2i

(
yz+

(2z)2n+1

4n+2

)
1Υ∗2n+2∪Υ4n+2(z)

p1ze
2i

(
yz+

(2z)2n+1

4n+2

)
1Υ1∪Υ∗2n+1

(z) 0

 ,

(A.31)

ŵΥ∗
2 =

 0 p2z
2e
−2i

(
yz+

(2z)2n+1

4n+2

)
1Υ∗2n+2∪Υ4n+2(z)

p2z
2e

2i

(
yz+

(2z)2n+1

4n+2

)
1Υ1∪Υ∗2n+1

(z) 0

 ,

(A.32)

where 1A(z) denotes the characteristic function of the set A ⊂ C. In view of the function
Ai2n+1(y) defined in (1.7), a change of variable shows that∫

Υ1∪Υ∗2n+1

e
2i

(
yz+

(2z)2n+1

4n+2

)
dz =

∫
Υ∗2n+2∪Υ4n+2

e
−2i

(
yz+

(2z)2n+1

4n+2

)
dz = πAi2n+1(y).

By differentiating the above formula j times with respect to y, it follows that∫
Υ1∪Υ∗2n+1

zje
2i

(
yz+

(2z)2n+1

4n+2

)
dz = (−1)j

∫
Υ∗2n+2∪Υ4n+2

zje
−2i

(
yz+

(2z)2n+1

4n+2

)
dz

=
πAi

(j)
2n+1(y)

(2i)j
, (A.33)

for each integer j ≥ 0. A combination of (A.28) and (A.30)–(A.33) then implies that

ΦΥ∗
10 (y) = 0,

ΦΥ∗
11 (y) = Φ̂Υ∗

11 (y) = − 1

2πi

∫
Υ∗
ŵΥ∗

1 dz

= − p1

2πi

 0 −
∫

Υ∗2n+2∪Υ4n+2
ze
−2i

(
yz+

(2z)2n+1

4n+2

)
dz∫

Υ1∪Υ∗2n+1
ze

2i

(
yz+

(2z)2n+1

4n+2

)
dz 0


= − p1

2πi

πAi′2n+1(y)

2i

(
0 1
1 0

)
,

ΦΥ∗
21 (y) = Φ̂Υ∗

21 (y) = − 1

2πi

∫
Υ∗
zŵΥ∗

1 dz

= − p1

2πi

 0 −
∫

Υ∗2n+2∪Υ4n+2
z2e
−2i

(
yz+

(2z)2n+1

4n+2

)
dz∫

Υ1∪Υ∗2n+1
z2e

2i

(
yz+

(2z)2n+1

4n+2

)
dz 0


=

p1

2πi

πAi′′2n+1(y)

4

(
0 −1
1 0

)
,

which are (A.9), (A.10) and (A.12). It remains to show (A.11). By (A.28) and (A.25),
we have

ΦΥ∗
12 (y) = − 1

2πi

∫
Υ∗

(ŵΥ∗
2 (y, z) + µ̂Υ∗

1 (y, z)ŵΥ∗
1 (y, z))dz, (A.34)
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and

µ̂Υ∗
1 (y, z) = CΥ∗

ŵΥ∗
1
I = CΥ∗

− (ŵΥ∗
1 ) =

1

2πi

∫
Υ∗

ŵΥ∗
1 (y, s)ds

s− z−

=
p1

2πi

 0 −
∫

Υ∗2n+2∪Υ4n+2

se
−2i

(
yz+

(2z)2n+1

4n+2

)
s−z− ds

∫
Υ1∪Υ∗2n+1

se
2i

(
yz+

(2z)2n+1

4n+2

)
s−z− ds 0

 .

We now define

F (y) =

∫
Υ∗
µ̂Υ∗

1 ŵΥ∗
1 dz = − p2

1

2πi

(
F1(y) 0

0 F2(y)

)
,

where

F1(y) =

∫
Υ1∪Υ∗2n+1

(∫
Υ∗2n+2∪Υ4n+2

sze
−2i

(
ys+

(2s)2n+1

4n+2

)
e

2i

(
yz+

(2z)2n+1

4n+2

)
s− z

ds

)
dz,

F2(y) =

∫
Υ∗2n+2∪Υ4n+2

(∫
Υ1∪Υ∗2n+1

sze
2i

(
ys+

(2s)2n+1

4n+2

)
e
−2i

(
yz+

(2z)2n+1

4n+2

)
s− z

ds

)
dz.

Since F2(y) = −F1(y) (by Fubini’s theorem), it follows that

F (y) = − p2
1

2πi
F1(y)σ3.

Differentiating both sides of the above two equalities with respect to y, we observe from
(A.33) that

F ′(y) =
p2

1

π

(∫
Υ1∪Υ∗2n+1

ze
2i

(
yz+

(2z)2n+1

4n+2

)
dz

)(∫
Υ∗2n+2∪Υ4n+2

se
−2i

(
ys+

(2s)2n+1

4n+2

)
ds

)
σ3

=
p2

1

π

(
πAi′2n+1(y)

2i

)(
−
πAi′2n+1(y)

2i

)
σ3 =

πp2
1

4
(Ai′2n+1(y))2σ3.

Note that F (y)→ 0 as y →∞, we have∫
Υ∗
µ̂Υ∗

1 (y, z)ŵΥ∗
1 (y, z)dz = F (y) =

∫ y

+∞
F ′(y′)dy′ =

πp2
1

4

(∫ y

+∞
(Ai′2n+1(y′))2dy′

)
σ3.

Combining the above formula and (A.32)–(A.34), we arrive at

ΦΥ∗
12 (y) = − p2

2πi

 0
∫

Υ∗2n+2∪Υ4n+2
z2e
−2i

(
yz+

(2z)2n+1

4n+2

)
dz∫

Υ1∪Υ∗2n+1
z2e

2i

(
yz+

(2z)2n+1

4n+2

)
dz 0


− 1

2πi

πp2
1

4

(∫ y

+∞
(Ai′2n+1(y′))2dy′

)
σ3

=
p2

2πi

π

4
Ai′′2n+1(y)σ1 +

p2
1

8i

(∫ ∞
y

(Ai′2n+1(y′))2dy′
)
σ3,

which is (A.11).
This completes the proof of Lemma A.3. �
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Z1Z2

Z3 Z4

Υ1Υ∗
2n+1

Υ4n+2Υ∗
2n+2

z0−z0

Figure 11. The contour Z for the RH problem A.6 for mZ .

A.3. The Model RH problem for Case II and Case IV. For each z0 ≥ 0, we
define

Z1 = z0 + Υ1, Z2 = −z0 + Υ∗2n+1, Z3 = −z0 + Υ∗2n+2, Z4 = z0 + Υ4n+2, (A.35)

where the contours Υ1,Υ
∗
2n+1,Υ2n+2 and Υ4n+2 are shown in Figure 4. The long-time

asymptotics of m in Case II and Case IV is related to the solution mZ of the following
model RH problem parameterized by y ≤ 0, t ≥ 0, and z0 ≥ 0.

RH problem A.6.

(a) mZ(y, t, z0, ·) ∈ I + Ė2(C \ Z), where

Z := ∪4
j=1Zj ∪ (−z0, z0); (A.36)

see Figure 11 for an illustration and the orientation.
(b) For a.e. λ ∈ Z, we have

mZ
+(y, t, z0, z) = mZ

−(y, t, z0, z)v
Z(y, t, z0, z), (A.37)

where

vZ(y, t, z0, z)

=



 1 0

pN (t, z)e
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z ∈ Z1 ∪ Z2,1 −p∗N (t, z)e
−2i

(
yz+

(2z)2n+1

4n+2

)
0 1

 , z ∈ Z3 ∪ Z4, 1− |pN (t, z)|2 −p∗N (t, z)e
−2i

(
yz+

(2z)2n+1

4n+2

)

pN (t, z)e
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z ∈ (−z0, z0),

(A.38)

with pN (t, z) given in (A.3).

Define the parameter subset PT of R3 by

PT = {(y, t, z0) ∈ R3 | − C1 ≤ y ≤ 0, t ≥ T, 2n
√
|y|/2 ≤ z0 ≤ C2}, (A.39)

where C1, C2 > 0 are constants, we have the following lemma about the properties of
mZ , which serves as the counterpart of Lemma A.3 in Case I and Case III.

Lemma A.7. There exists a suitable T ≥ 1 such that the RH problem (A.6) has a
unique solution mZ(y, t, z0, z) whenever (y, t, z0) ∈ PT . Moreover, the following proper-
ties of mZ hold.
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(a) For each integer N ≥ 1,

mZ(y, t, z0, z) = I +
N∑
j=1

N∑
l=0

ΦΥ
jl(y)

zjt
l

2n+1

+O

(
t−

N+1
2n+1

|z|
+

1

|z|N+1

)
,

uniformly with respect to arg z ∈ [0, 2π] and (y, t, z0) ∈ PT as z → ∞, where
{ΦΥ

jl(y)} are smooth functions of y ∈ R which coincide with the functions in

(A.4) for y ≥ 0 and satisfy the properties indicated in Item (c) of Lemma A.3.
(b) mZ is uniformly bounded, i.e.,

sup
(y,t,z0)∈PT

sup
z∈C\Z

|mZ(y, t, z0, z)| <∞,

and satisfies the symmetry relation

mZ(y, t, z0, z) = σ1mZ(y, t, z0, z̄)σ1.

If pN (t, z) = −pN (t,−z̄), it also follows that

mZ(y, t, z0, z) = σ1σ3m
Z(y, t, z0,−z)σ3σ1.

Proof. Proceeding as in Section 3.2, we introduce a matrix-valued function mP1(y, z)
by

mP1(y, z) =



mP (z)

 1 0

iρe
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z between Z1 and Υ1

and z between Υ∗2n+1 and Z̃2,

mP (z)

1 −iρe
−2i

(
yz+

(2z)2n+1

4n+2

)
0 1

 , z between Z3 and Υ∗2n+2

and z between Z4 and Υ4n+2,
mP (z), elsewhere,

where mP is defined in (A.13). In view of the RH problem A.4 for mP , it can be easily
checked that mP1 satisfies the following RH problem.

RH problem A.8.

(a) mP1(y, t, z0, ·) ∈ I + Ė2(C \ Z), where the contour Z is defined in (A.36).
(b) For a.e. λ ∈ Z, we have

mP1
+ (y, t, z0, z) = mP1

− (y, t, z0, z)v
P1(y, t, z0, z),

where

vP1(y, t, z0, z)

=



 1 0

iρe
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z ∈ Z1 ∪ Z2,1 iρe
−2i

(
yz+

(2z)2n+1

4n+2

)
0 1

 , z ∈ Z3 ∪ Z4, 1− |ρ|2 iρe
−2i

(
yz+

(2z)2n+1

4n+2

)

iρe
2i

(
yz+

(2z)2n+1

4n+2

)
1

 , z ∈ (−z0, z0).
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By defining

m̂Z := mZ(mP1)−1,

one can show that, analogous to the arguments used in the proof of Lemma A.3, that
m̂Z admits an asymptotic expansion like (A.29), which finally leads to the statements
of Lemma A.7. We omit the details here. �
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tritronquée solution to Painlevé I, Comm. Pure Appl. Math. 66 (2013), 678–752.

[5] D. Bilman, L.-M. Ling and P. D. Miller, Extreme superposition: Rogue waves of
infinite order and the Painleve-III hierarchy, Duke Math. J. 169 (2020), 671–760.

[6] A. Boutet de Monvel, A. S. Fokas and D. Shepelsky, The mKdV equation on the
half-line, J. Inst. Math. Jussieu 3 (2004), 139–164.

[7] A. Boutet de Monvel, A. Its and D. Shepelsky, Painlevé-type asymptotics for the
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transcendent, Arch. Ration. Mech. Anal. 103 (1988), 97–138.

[15] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Ap-
proach, Courant Lecture Notes 3, New York University, 1999.
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